WO2013161412A1 - Heating control device and heating control method for exhaust sensor - Google Patents

Heating control device and heating control method for exhaust sensor Download PDF

Info

Publication number
WO2013161412A1
WO2013161412A1 PCT/JP2013/056842 JP2013056842W WO2013161412A1 WO 2013161412 A1 WO2013161412 A1 WO 2013161412A1 JP 2013056842 W JP2013056842 W JP 2013056842W WO 2013161412 A1 WO2013161412 A1 WO 2013161412A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
energization
internal combustion
combustion engine
heating control
Prior art date
Application number
PCT/JP2013/056842
Other languages
French (fr)
Japanese (ja)
Inventor
梓 小林
民一 木村
良輔 佐々木
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Publication of WO2013161412A1 publication Critical patent/WO2013161412A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1456Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with sensor output signal being linear or quasi-linear with the concentration of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1493Details
    • F02D41/1494Control of sensor heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0414Air temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0606Fuel temperature

Definitions

  • the present invention relates to a heating control device and a heating control method for a sensor element of an exhaust sensor such as an air-fuel ratio sensor or an oxygen sensor provided in an exhaust passage of an internal combustion engine.
  • the exhaust gas contains moisture generated by the combustion of fuel. For this reason, when moisture in the exhaust gas is condensed and attached (watered) to the high-temperature sensor element of the exhaust sensor disposed in the exhaust passage, the sensor element may be cracked due to rapid cooling of the surface element temperature.
  • Patent Document 1 based on the cooling water temperature of the internal combustion engine so that energization of the heater is started after the exhaust gas temperature becomes sufficiently high and condensed water does not exist in the exhaust passage.
  • a heater energization prohibition period for prohibiting energization of the heater and starting the energization of the heater after the heater energization prohibition period has elapsed after the start of the internal combustion engine the sensor element of the exhaust sensor The element is prevented from being cracked by water.
  • the condensed water in the exhaust gas is more likely to be generated as the outside air temperature becomes lower. Therefore, when the outside air temperature is low, it is effective to lengthen the heater energization prohibition period and delay the energization start timing of the heater in order to prevent element cracking due to the wetness of the sensor element.
  • the heater energization prohibition period is not set in consideration of the outside air temperature. For example, after the warmed-up internal combustion engine is stopped in an environment where the outside air temperature is low such as a cold district. When the internal combustion engine is started before the cold state is reached, there is a possibility that condensed water in which the moisture in the exhaust gas has condensed is present in the exhaust passage when the sensor element is heated. Then, there is a possibility that element cracking occurs.
  • the present invention sets an energization prohibition period according to the outside air temperature estimated at the time of starting the internal combustion engine, and until the above energization prohibition period elapses from the start of the internal combustion engine, electric heating for heating the sensor element of the exhaust sensor. Energizing the heater is prohibited, and energization of the electric heater is started after the energization prohibition period has elapsed.
  • the energization prohibition period is set according to the outside air temperature, and heating of the sensor element of the exhaust sensor by the electric heater is prohibited during a period in which condensed water exists in the exhaust passage due to condensation or the like. Therefore, even in an environment where the outside air temperature is low, such as a cold district, the sensor element is not wetted while the sensor element is heated by the electric heater, and the element breakage of the sensor element can be prevented.
  • FIG. 1 is an explanatory diagram schematically showing a system configuration of an in-vehicle internal combustion engine 1 to which the present invention is applied.
  • a manifold catalyst 3 and an underfloor catalyst 4 for purifying exhaust gas are disposed in an exhaust passage 2 of the internal combustion engine (engine) 1.
  • the manifold catalyst 3 is provided at a position that is relatively close to the combustion chamber, for example, immediately downstream of the collection portion of the exhaust manifold.
  • the underfloor catalyst 4 is provided at a position such as under the floor that is relatively far from the combustion chamber on the downstream side of the manifold catalyst 3.
  • the exhaust passage 2 is provided with an exhaust sensor that detects an air-fuel ratio or a specific component concentration in the exhaust gas.
  • the air-fuel ratio sensor 5 having a substantially linear output characteristic corresponding to the air-fuel ratio, and the output voltage change ON / OFF (rich, lean) in a narrow range near the theoretical air-fuel ratio.
  • an oxygen sensor 6 that detects only the rich and lean air-fuel ratio is provided in the exhaust passage 2.
  • the air-fuel ratio sensor 5 is arranged upstream of the manifold catalyst 3 and detects the air-fuel ratio in the exhaust gas flowing into the manifold catalyst 3.
  • the oxygen sensor 6 is disposed on the upstream side of the underfloor catalyst 4 and detects the rich / lean of the air-fuel ratio of the exhaust gas flowing into the underfloor catalyst 4.
  • reference numeral 7 in FIG. 1 denotes an intake passage of the internal combustion engine 1.
  • the air-fuel ratio sensor 5 and the oxygen sensor 6 can detect the air-fuel ratio and determine whether the air-fuel ratio is rich or lean when the sensor element rises to a predetermined activation temperature.
  • Electric heaters 5a and 6a to be activated are provided.
  • the air-fuel ratio sensor 5 and the oxygen sensor 6 can activate and maintain the activation of the sensor elements by energizing the electric heaters 5a and 6a.
  • Energization control (heating control) of the electric heaters 5 a and 6 a is performed by an ECM (engine control module) 10.
  • the ECM 10 incorporates a microcomputer and performs various controls of the internal combustion engine 1.
  • the ECM 10 is an outside air temperature estimating means for detecting the temperature of the fuel in addition to the detection signals detected by the air-fuel ratio sensor 5 and the oxygen sensor 6. Signals from various sensors such as the fuel temperature sensor 11 are input.
  • the exhaust gas contains moisture generated by the combustion of fuel, and there is a possibility that condensation occurs in the exhaust passage 2 when the outside air temperature is low and the wall temperature of the exhaust passage 2 is low. . Further, the condensed water generated in the exhaust gas increases as the outside air temperature is lower.
  • the wall temperature of the exhaust passage 2 around the air-fuel ratio sensor 5 and the oxygen sensor 6 is sufficiently high, the moisture in the exhaust gas is vaporized at least around the air-fuel ratio sensor 5 and the oxygen sensor 6, It is considered that the sensor elements of the air-fuel ratio sensor 5 and the oxygen sensor 6 do not get wet.
  • the outside air temperature can be directly measured by an outside air temperature sensor used for air conditioner control or the like, the outside air temperature sensor is often provided at the upper part of the dashboard of the vehicle. Due to the heat received, the outside air temperature may not be accurately measured.
  • the outside air temperature sensor for controlling the air conditioner is mounted only in the car equipped with the auto air conditioner, the outside air temperature cannot be detected directly in the car equipped with the manual air conditioner or the car not equipped with the air conditioner.
  • FIG. 2 is an explanatory diagram schematically showing the installation status of various temperature sensors mounted on a car equipped with an auto air conditioner.
  • 12 is a cooling water temperature sensor that detects the cooling water temperature
  • 13 is an outside air temperature sensor that detects the outside air temperature
  • 14 is an oil temperature sensor that detects the engine oil temperature
  • 15 is the intake air temperature in the intake passage 7. This is an intake air temperature sensor to be detected.
  • Reference numeral 16 denotes a fuel tank in which the above-described fuel temperature sensor 11 is disposed.
  • the fuel temperature in the fuel tank 16 receives little heat from the internal combustion engine 1 and a sufficient amount of liquid is often secured, there is a difference from the outside air temperature regardless of the operating state of the internal combustion engine 1. Least. That is, for example, even when the warmed-up internal combustion engine 1 is stopped and started before the cool air state is entered, the outside air temperature can be accurately estimated from the fuel temperature.
  • the outside air temperature is estimated from the fuel temperature in the fuel tank 16 correlated with the outside air temperature.
  • the heating control prohibition time is set to be long. In other words, the lower the outside air temperature at the start of the internal combustion engine 1, the longer the heating control prohibition time as the energization prohibition period is set, and the energization start timing for the electric heaters 5a and 6a is delayed.
  • the heating control inhibition time is calculated from the fuel temperature at the start using, for example, a heating control inhibition time calculation table as shown in FIG.
  • This heating control inhibition time calculation table is stored in the ECM 10 in advance. That is, the ECM 10 in which the heating control prohibition time calculation table is stored corresponds to the energization prohibition period setting unit.
  • the heating control prohibition time is set to the maximum value when the fuel temperature is equal to or lower than the predetermined temperature T1, and the heating control prohibition time is set to the minimum value when the fuel temperature is equal to or higher than the predetermined temperature T2. Is set to the shortest time for which heating control is prohibited.
  • the heating control prohibition time is set to be shorter as the fuel temperature is higher. That is, as a whole, the heating control prohibition time is set to be shorter as the fuel temperature approaches normal temperature.
  • the wall temperature of the exhaust passage 2 is low, condensed water is generated in the exhaust passage 2, and the sensor elements of the air-fuel ratio sensor 5 and the oxygen sensor 6 are easily wet. Energization of the heaters 5a and 6a is prohibited.
  • the heating control prohibition time is set in accordance with the outside air temperature
  • the internal combustion engine 1 is stopped before the engine is cooled down after the warmed-up internal combustion engine 1 is stopped in an environment where the outside air temperature is low such as a cold district.
  • the electric heaters 5a and 6a Even in the case of restarting, it is possible to prevent the sensor element from being wetted by condensed water during heating of the air-fuel ratio sensor 5 and the sensor element of the oxygen sensor 6 by the electric heaters 5a and 6a. Therefore, it is possible to prevent the sensor elements of the air-fuel ratio sensor 5 and the oxygen sensor 6 from being cracked due to a sudden temperature change caused by water.
  • the outside air temperature can be reduced without providing a wall temperature of the exhaust passage 2 or a sensor for measuring the outside air temperature. Since the estimation can be performed with high accuracy, it is advantageous in terms of cost.
  • FIG. 4 is a flowchart showing a procedure for calculating the heating control inhibition time. Note that the calculation of the heating control inhibition time is performed in the ECM 10.
  • S1 it is determined whether or not the fuel temperature sensor 11 has failed. If not, the process proceeds to S2, and if it has failed, the process proceeds to S4.
  • the failure of the fuel temperature sensor 11 is determined as a failure, for example, when the signal voltage output from the fuel temperature sensor 11 to the ECM 10 is too low or too high.
  • S2 it is determined whether or not fuel has been refueled while the internal combustion engine 1 is stopped. If not, the process proceeds to S3, and if refueling, the process proceeds to S4. For example, the fuel amount at the start of the internal combustion engine 1 detected by the fuel sensor for detecting the fuel amount in the fuel tank 16 is increased by a predetermined amount or more than the fuel amount detected by the fuel sensor when the internal combustion engine 1 was stopped last time. If it is, it is determined that the fuel was supplied while the internal combustion engine 1 was stopped.
  • the heating control prohibition maximum time which is the maximum time that can be set, is applied.
  • the fuel temperature sensor 11 when the fuel temperature sensor 11 is out of order, the fuel temperature cannot be accurately measured, and the outside air temperature cannot be estimated with high accuracy. Therefore, in order to protect the air-fuel ratio sensor 5 and the oxygen sensor 6, Apply the maximum heating control prohibition time that is sometimes applied. Further, when fuel is supplied, the fuel temperature in the fuel tank 16 may change greatly, and the fuel temperature may greatly deviate from the outside air temperature, so that the air-fuel ratio sensor 5 and the oxygen sensor 6 are protected. Therefore, the maximum heating control prohibition time applied at extremely low temperatures is applied.
  • the same heating control prohibition time calculation table may be used for the air-fuel ratio sensor 5 and the oxygen sensor 6, or individual heating for the air-fuel ratio sensor 5 and the oxygen sensor 6 may be used.
  • a control prohibition time calculation table may be used. That is, even when the fuel temperature is the same, the heating control inhibition time of the air-fuel ratio sensor 5 and the heating control inhibition time of the oxygen sensor 6 may be set as different values.
  • the heating prohibition time is individually set for the air-fuel ratio sensor 5 and the oxygen sensor 6. Is set to a longer heating prohibition time in proportion to the length of the exhaust passage from the internal combustion engine 1 to the sensor mounting position. In addition, it is preferable to set the heating prohibition time relatively long even when there is a portion where the condensed water tends to accumulate due to the shape of the exhaust passage 2 on the upstream side of the sensor mounting position.
  • the heating control of the electric heaters 5a and 6a is prohibited until the elapsed time from the start of the internal combustion engine 1 reaches the heating control prohibition time, but the accumulation from the start of the internal combustion engine 1 is prohibited. Heating control of the electric heaters 5a and 6a is prohibited until the engine speed and the cumulative intake air amount become the heating control prohibition cumulative engine speed and the heating control prohibition cumulative intake air amount calculated according to the outside air temperature. Also good.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

In the present invention, an air-fuel ratio sensor (5) and an oxygen sensor (6) have electric heaters (5a and 6a) for heating their respective sensor elements, and are arranged in the exhaust passage (2) of an internal combustion engine (1). When the internal combustion engine (1) is started the fuel temperature of the fuel tank (16), which correlates with the outside air temperature, is detected by a fuel temperature sensor (11), and a heating control prohibition time (an energization prohibition period) is set in accordance with the detected fuel temperature. During the interval from starting of the internal combustion engine (1) until the heating control prohibition time has elapsed, energization of the electric heaters (5a, 6a) is prohibited, and heating of the electric heaters (5a, 6a) begins after the heating control prohibition time has elapsed. Thus, it is possible to prevent breaking of the exhaust sensor elements even in an environment in which the outside air temperature is low, such as a cold climate.

Description

排気センサの加熱制御装置及び加熱制御方法Exhaust sensor heating control device and heating control method
 本発明は、内燃機関の排気通路に設けられた空燃比センサや酸素センサ等の排気センサのセンサ素子の加熱制御装置及び加熱制御方法に関する。 The present invention relates to a heating control device and a heating control method for a sensor element of an exhaust sensor such as an air-fuel ratio sensor or an oxygen sensor provided in an exhaust passage of an internal combustion engine.
 排気ガス中には、燃料の燃焼により生成された水分が含まれている。そのため、排気ガス中の水分が凝縮され、排気通路に配置された排気センサの高温のセンサ素子に付着(被水)すると、表面素子温度の急冷により当該センサ素子が素子割れする場合がある。 The exhaust gas contains moisture generated by the combustion of fuel. For this reason, when moisture in the exhaust gas is condensed and attached (watered) to the high-temperature sensor element of the exhaust sensor disposed in the exhaust passage, the sensor element may be cracked due to rapid cooling of the surface element temperature.
 そこで、特許文献1では、排気ガス温度が十分に高温となり、排気通路中に凝縮水が存在しないようになってから上記ヒータへの通電が開始されるように、内燃機関の冷却水温度に基づいて上記ヒータへの通電を禁止するヒータ通電禁止期間を設定し、内燃機関の始動後、上記ヒータ通電禁止期間が経過してから上記ヒータへの通電を開始することで、排気センサのセンサ素子が被水により素子割れしないようにしている。 Therefore, in Patent Document 1, based on the cooling water temperature of the internal combustion engine so that energization of the heater is started after the exhaust gas temperature becomes sufficiently high and condensed water does not exist in the exhaust passage. By setting a heater energization prohibition period for prohibiting energization of the heater and starting the energization of the heater after the heater energization prohibition period has elapsed after the start of the internal combustion engine, the sensor element of the exhaust sensor The element is prevented from being cracked by water.
 ここで、排気中の凝縮水は、外気温が低くなるほど発生しやすい。そのため、外気温が低い場合には、ヒータ通電禁止期間を長くし、上記ヒータへの通電開始時期を遅らせることが、センサ素子の被水よる素子割れを防止する上で有効である。 Here, the condensed water in the exhaust gas is more likely to be generated as the outside air temperature becomes lower. Therefore, when the outside air temperature is low, it is effective to lengthen the heater energization prohibition period and delay the energization start timing of the heater in order to prevent element cracking due to the wetness of the sensor element.
 しかしながら、上述した特許文献1では、外気温を考慮してヒータ通電禁止期間を設定しておらず、例えば、寒冷地等の外気温が低い環境において、暖機された内燃機関を停止してから冷機状態となる前にこの内燃機関を始動するような場合、センサ素子の加熱時に、排気通路内に排気ガス中の水分が結露した凝縮水が存在する可能性があり、当該センサ素子が被水して素子割れが生じる虞がある。 However, in Patent Document 1 described above, the heater energization prohibition period is not set in consideration of the outside air temperature. For example, after the warmed-up internal combustion engine is stopped in an environment where the outside air temperature is low such as a cold district. When the internal combustion engine is started before the cold state is reached, there is a possibility that condensed water in which the moisture in the exhaust gas has condensed is present in the exhaust passage when the sensor element is heated. Then, there is a possibility that element cracking occurs.
特開2010-77848号公報JP 2010-77848 A
 そこで、本発明は、内燃機関の始動時に推定された外気温に応じて通電禁止期間を設定し、内燃機関の始動から上記通電禁止期間が経過するまでは、排気センサのセンサ素子加熱用の電熱ヒータへの通電を禁止し、上記通電禁止期間が経過後に上記電熱ヒータへの通電を開始することを特徴としている。 Therefore, the present invention sets an energization prohibition period according to the outside air temperature estimated at the time of starting the internal combustion engine, and until the above energization prohibition period elapses from the start of the internal combustion engine, electric heating for heating the sensor element of the exhaust sensor. Energizing the heater is prohibited, and energization of the electric heater is started after the energization prohibition period has elapsed.
 本発明によれば、外気温に応じて通電禁止期間が設定され、結露等により排気通路内に凝縮水が存在するような期間は、電熱ヒータによる排気センサのセンサ素子の加熱が禁止される。そのため、寒冷地等の外気温が低い環境でも、電熱ヒータによるセンサ素子の加熱中にセンサ素子が被水してしまうことはなく、当該センサ素子の素子割れを防止することができる。 According to the present invention, the energization prohibition period is set according to the outside air temperature, and heating of the sensor element of the exhaust sensor by the electric heater is prohibited during a period in which condensed water exists in the exhaust passage due to condensation or the like. Therefore, even in an environment where the outside air temperature is low, such as a cold district, the sensor element is not wetted while the sensor element is heated by the electric heater, and the element breakage of the sensor element can be prevented.
本発明が適用される内燃機関1のシステム構成を模式的に示した説明図。BRIEF DESCRIPTION OF THE DRAWINGS Explanatory drawing which showed typically the system configuration | structure of the internal combustion engine 1 to which this invention is applied. 各種温度センサの設置状況を模式的に示した説明図。Explanatory drawing which showed typically the installation condition of various temperature sensors. 始動時燃料温度から加熱制御禁止時間を算出する際に用いる加熱制御禁止時間算出テーブル。The heating control prohibition time calculation table used when calculating the heating control prohibition time from the starting fuel temperature. 加熱制御禁止時間の算出手順を示すフローチャート。The flowchart which shows the calculation procedure of heating control prohibition time.
 以下、本発明の一実施例を図面に基づいて詳細に説明する。図1は、本発明が適用される車載用の内燃機関1のシステム構成を模式的に示した説明図である。 Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is an explanatory diagram schematically showing a system configuration of an in-vehicle internal combustion engine 1 to which the present invention is applied.
 内燃機関(エンジン)1の排気通路2には、排気浄化用のマニホールド触媒3及び床下触媒4が配置されている。マニホールド触媒3は、燃焼室から比較的近い、例えば排気マニホールドの集合部の直下流の位置に設けられている。床下触媒4は、マニホールド触媒3よりも下流側で燃焼室から比較的離れた、床下等の位置に設けられている。 A manifold catalyst 3 and an underfloor catalyst 4 for purifying exhaust gas are disposed in an exhaust passage 2 of the internal combustion engine (engine) 1. The manifold catalyst 3 is provided at a position that is relatively close to the combustion chamber, for example, immediately downstream of the collection portion of the exhaust manifold. The underfloor catalyst 4 is provided at a position such as under the floor that is relatively far from the combustion chamber on the downstream side of the manifold catalyst 3.
 そして、排気通路2には、排気ガス中の空燃比あるいは特定の成分濃度を検出する排気センサが配置されている。本実施例では、排気センサとして、空燃比に応じたほぼリニアな出力特性を有する空燃比センサ5と、理論空燃比付近の狭い範囲で出力電圧がON/OFF(リッチ、リーン)的に変化して、空燃比のリッチ、リーンのみを検知する酸素センサ6と、が排気通路2に設けられている。 The exhaust passage 2 is provided with an exhaust sensor that detects an air-fuel ratio or a specific component concentration in the exhaust gas. In this embodiment, as an exhaust sensor, the air-fuel ratio sensor 5 having a substantially linear output characteristic corresponding to the air-fuel ratio, and the output voltage change ON / OFF (rich, lean) in a narrow range near the theoretical air-fuel ratio. Thus, an oxygen sensor 6 that detects only the rich and lean air-fuel ratio is provided in the exhaust passage 2.
 空燃比センサ5は、マニホールド触媒3の上流側に配置され、マニホールド触媒3に流入する排気ガス中の空燃比を検知する。酸素センサ6は、床下触媒4の上流側に配置され、床下触媒4に流入する排気ガスの空燃比のリッチ/リーンを検知する。なお、図1中の7は内燃機関1の吸気通路である。 The air-fuel ratio sensor 5 is arranged upstream of the manifold catalyst 3 and detects the air-fuel ratio in the exhaust gas flowing into the manifold catalyst 3. The oxygen sensor 6 is disposed on the upstream side of the underfloor catalyst 4 and detects the rich / lean of the air-fuel ratio of the exhaust gas flowing into the underfloor catalyst 4. Note that reference numeral 7 in FIG. 1 denotes an intake passage of the internal combustion engine 1.
 ここで、空燃比センサ5及び酸素センサ6は、センサ素子が所定の活性化温度まで上昇することで、空燃比の検出や空燃比のリッチ、リーンの判定ができるものであり、それぞれセンサ素子を活性化させる電熱ヒータ5a、6aを有している。空燃比センサ5及び酸素センサ6は、電熱ヒータ5a、6aへの通電により、センサ素子の活性化促進及び活性化維持が可能となっている。電熱ヒータ5a、6aの通電制御(加熱制御)は、ECM(エンジンコントロールモジュール)10によって行われる。 Here, the air-fuel ratio sensor 5 and the oxygen sensor 6 can detect the air-fuel ratio and determine whether the air-fuel ratio is rich or lean when the sensor element rises to a predetermined activation temperature. Electric heaters 5a and 6a to be activated are provided. The air-fuel ratio sensor 5 and the oxygen sensor 6 can activate and maintain the activation of the sensor elements by energizing the electric heaters 5a and 6a. Energization control (heating control) of the electric heaters 5 a and 6 a is performed by an ECM (engine control module) 10.
 ECM10は、マイクロコンピュータを内蔵し、内燃機関1の種々の制御を行うものであって、空燃比センサ5及び酸素センサ6で検出された検出信号のほか、燃料の温度を検知する外気温推定手段としての燃料温度センサ11等の各種センサ類からの信号が入力されている。 The ECM 10 incorporates a microcomputer and performs various controls of the internal combustion engine 1. The ECM 10 is an outside air temperature estimating means for detecting the temperature of the fuel in addition to the detection signals detected by the air-fuel ratio sensor 5 and the oxygen sensor 6. Signals from various sensors such as the fuel temperature sensor 11 are input.
 ここで、排気ガス中には、燃料の燃焼により生成された水分が含まれており、外気温が低く、排気通路2の壁温が低い場合には排気通路2内で結露する可能性がある。また、排気ガス中の生じる凝縮水は外気温が低いほど増加する。 Here, the exhaust gas contains moisture generated by the combustion of fuel, and there is a possibility that condensation occurs in the exhaust passage 2 when the outside air temperature is low and the wall temperature of the exhaust passage 2 is low. . Further, the condensed water generated in the exhaust gas increases as the outside air temperature is lower.
 排気ガス中の水分が凝縮され、排気通路2に配置された空燃比センサ5や酸素センサ6の高温のセンサ素子に付着(被水)すると、表面素子温度の急冷により当該センサ素子が破損(素子割れ)する場合がある。そのため、内燃機関1の始動直後で排気通路2の壁温が低い状態では、電熱ヒータ5a、6aに通電して空燃比センサ5及び酸素センサ6のセンサ素子を加熱するのは好ましくない。よって、排気通路2内に結露が発生しない状態となるまで、電熱ヒータ5a、6aによる空燃比センサ5及び酸素センサ6のセンサ素子の加熱を遅延させる必要がある。 When moisture in the exhaust gas is condensed and adheres to the high-temperature sensor elements of the air-fuel ratio sensor 5 and the oxygen sensor 6 disposed in the exhaust passage 2, the sensor element is damaged due to rapid cooling of the surface element temperature (element Cracking). Therefore, in the state where the wall temperature of the exhaust passage 2 is low immediately after the internal combustion engine 1 is started, it is not preferable to energize the electric heaters 5a and 6a to heat the sensor elements of the air-fuel ratio sensor 5 and the oxygen sensor 6. Therefore, it is necessary to delay the heating of the air-fuel ratio sensor 5 and the sensor element of the oxygen sensor 6 by the electric heaters 5a and 6a until the dew condensation is not generated in the exhaust passage 2.
 空燃比センサ5及び酸素センサ6の周辺における排気通路2の壁温が十分に高くなっていれば、少なくとも空燃比センサ5及び酸素センサ6に周辺では、排気ガス中の水分は気化した状態となり、空燃比センサ5及び酸素センサ6のセンサ素子が被水することはないと考えられる。 If the wall temperature of the exhaust passage 2 around the air-fuel ratio sensor 5 and the oxygen sensor 6 is sufficiently high, the moisture in the exhaust gas is vaporized at least around the air-fuel ratio sensor 5 and the oxygen sensor 6, It is considered that the sensor elements of the air-fuel ratio sensor 5 and the oxygen sensor 6 do not get wet.
 つまり、直接的に知りたいのは、空燃比センサ5及び酸素センサ6の取り付け位置周辺の排気通路2の壁温であるが、これは外気温に比例する。外気温は、エアコン制御等に用いられる外気温センサで直接的に計測することも可能であるが、上記外気温センサは、車両のダッシュボード上部に設けられることが多く、日射や内燃機関1からの受熱により、精度よく外気温を計測できない場合がある。 That is, what we want to know directly is the wall temperature of the exhaust passage 2 around the mounting position of the air-fuel ratio sensor 5 and the oxygen sensor 6, but this is proportional to the outside air temperature. Although the outside air temperature can be directly measured by an outside air temperature sensor used for air conditioner control or the like, the outside air temperature sensor is often provided at the upper part of the dashboard of the vehicle. Due to the heat received, the outside air temperature may not be accurately measured.
 また、エアコン制御用の外気温センサは、そもそもオートエアコン装着車にのみ搭載されているため、マニュアルエアコン搭載車や、エアコン非搭載車では外気温を直接する検知することはできない。 Also, since the outside air temperature sensor for controlling the air conditioner is mounted only in the car equipped with the auto air conditioner, the outside air temperature cannot be detected directly in the car equipped with the manual air conditioner or the car not equipped with the air conditioner.
 図2は、オートエアコン装着車に搭載された各種温度センサの設置状況を模式的に示した説明図である。 FIG. 2 is an explanatory diagram schematically showing the installation status of various temperature sensors mounted on a car equipped with an auto air conditioner.
 図2において、12は冷却水温度を検知する冷却水温度センサ、13は外気温を検知する外気温センサ、14はエンジン油温を検知する油温センサ、15は吸気通路7内の吸気温を検知する吸気温センサである。また、16は上述した燃料温度センサ11が配置される燃料タンクである。これらの各種温度センサで検知される温度のうち、冷却水温度、エンジン油温、吸気温度は、内燃機関1の発熱により温度が上昇するので、外気温との相関性は失われてしまう。また、外気温センサ13も、上述したように、精度よく外気温を計測できない場合がある。 In FIG. 2, 12 is a cooling water temperature sensor that detects the cooling water temperature, 13 is an outside air temperature sensor that detects the outside air temperature, 14 is an oil temperature sensor that detects the engine oil temperature, and 15 is the intake air temperature in the intake passage 7. This is an intake air temperature sensor to be detected. Reference numeral 16 denotes a fuel tank in which the above-described fuel temperature sensor 11 is disposed. Among the temperatures detected by these various temperature sensors, the coolant temperature, the engine oil temperature, and the intake air temperature rise due to the heat generated by the internal combustion engine 1, and thus the correlation with the outside air temperature is lost. Further, as described above, the outside air temperature sensor 13 may not be able to accurately measure the outside air temperature.
 一方、燃料タンク16内の燃料温度は、内燃機関1からの受熱が少なく、また液量を十分に確保されている場合が多いので、内燃機関1の運転状態によらず外気温との乖離が最も少ない。つまり、例えば、暖気された内燃機関1を停止してから冷気状態となる前に始動するような場合であっても、燃料温度から外気温を精度よく推定することが可能となる。 On the other hand, since the fuel temperature in the fuel tank 16 receives little heat from the internal combustion engine 1 and a sufficient amount of liquid is often secured, there is a difference from the outside air temperature regardless of the operating state of the internal combustion engine 1. Least. That is, for example, even when the warmed-up internal combustion engine 1 is stopped and started before the cool air state is entered, the outside air temperature can be accurately estimated from the fuel temperature.
 そこで、本実施例では、内燃機関1の始動時の外気温に応じて、内燃機関1始動後の空燃比センサ5及び酸素センサ6の電熱ヒータ5a、6aによるセンサ素子の加熱制御の開始時期を可変するにあたって、外気温と相関する燃料タンク16内の燃料温度から外気温を推定する。 Therefore, in this embodiment, the start timing of the heating control of the sensor element by the electric heaters 5a and 6a of the air-fuel ratio sensor 5 and the oxygen sensor 6 after the internal combustion engine 1 is started according to the outside air temperature when the internal combustion engine 1 is started. When changing, the outside air temperature is estimated from the fuel temperature in the fuel tank 16 correlated with the outside air temperature.
 詳述すると、内燃機関1の始動時の燃料温度が低くなるほど、つまり内燃機関1の始動時の外気温が低くなるほど、内燃機関1の始動から電熱ヒータ5a、6aに通電が開始されるまでの加熱制御禁止時間が長くなるよう設定される。換言すれば、内燃機関1の始動時の外気温が低くなるほど、通電禁止期間としての加熱制御禁止時間が長くなるよう設定され、電熱ヒータ5a、6aへの通電開始時期が遅延される。 More specifically, the lower the fuel temperature at the time of starting the internal combustion engine 1, that is, the lower the outside air temperature at the time of starting the internal combustion engine 1, the time from when the internal combustion engine 1 is started until the electric heaters 5a and 6a are energized. The heating control prohibition time is set to be long. In other words, the lower the outside air temperature at the start of the internal combustion engine 1, the longer the heating control prohibition time as the energization prohibition period is set, and the energization start timing for the electric heaters 5a and 6a is delayed.
 加熱制御禁止時間は、例えば、図3に示すような加熱制御禁止時間算出テーブルを用いて、始動時の燃料温度から加熱制御禁止時間を算出する。この加熱制御禁止時間算出テーブルは、予めECM10内に記憶させておくものである。つまり、加熱制御禁止時間算出テーブルが記憶されているECM10が、通電禁止期間設定手段に相当する。 The heating control inhibition time is calculated from the fuel temperature at the start using, for example, a heating control inhibition time calculation table as shown in FIG. This heating control inhibition time calculation table is stored in the ECM 10 in advance. That is, the ECM 10 in which the heating control prohibition time calculation table is stored corresponds to the energization prohibition period setting unit.
 本実施例では、燃料温度が所定温度T1以下の場合に加熱制御禁止時間が最大値である加熱制御禁止最長時間に設定され、燃料温度が所定温度T2以上の場合に加熱制御禁止時間が最小値である加熱制御禁止最短時間に設定される。そして、燃料温度が所定温度T1より大きく、所定温度T2より小さい場合には、燃料温度が高くなるほどに加熱制御禁止時間が短くなるよう設定される。つまり、加熱制御禁止時間は、全体として、燃料温度が常温に近くなるほど、短くなるよう設定される。 In this embodiment, the heating control prohibition time is set to the maximum value when the fuel temperature is equal to or lower than the predetermined temperature T1, and the heating control prohibition time is set to the minimum value when the fuel temperature is equal to or higher than the predetermined temperature T2. Is set to the shortest time for which heating control is prohibited. When the fuel temperature is higher than the predetermined temperature T1 and lower than the predetermined temperature T2, the heating control prohibition time is set to be shorter as the fuel temperature is higher. That is, as a whole, the heating control prohibition time is set to be shorter as the fuel temperature approaches normal temperature.
 これによって、内燃機関1の始動後、排気通路2の壁温が低く、排気通路2内に凝縮水が発生し、空燃比センサ5及び酸素センサ6のセンサ素子が被水しやすい期間は、電熱ヒータ5a、6aへの通電が禁止される。 Thus, after the internal combustion engine 1 is started, the wall temperature of the exhaust passage 2 is low, condensed water is generated in the exhaust passage 2, and the sensor elements of the air-fuel ratio sensor 5 and the oxygen sensor 6 are easily wet. Energization of the heaters 5a and 6a is prohibited.
 つまり、外気温に応じて加熱制御禁止時間が設定されるため、寒冷地等の外気温が低い環境で暖機された内燃機関1を停止してから冷機状態となる前にこの内燃機関1を再始動するような場合であっても、電熱ヒータ5a、6aによる空燃比センサ5及び酸素センサ6のセンサ素子の加熱中に、凝縮水によって当該センサ素子が被水してしまうことを防止できる。そのため、空燃比センサ5及び酸素センサ6のセンサ素子が、被水による急激な温度変化より、素子割れしてしまうことを防止することができる。 That is, since the heating control prohibition time is set in accordance with the outside air temperature, the internal combustion engine 1 is stopped before the engine is cooled down after the warmed-up internal combustion engine 1 is stopped in an environment where the outside air temperature is low such as a cold district. Even in the case of restarting, it is possible to prevent the sensor element from being wetted by condensed water during heating of the air-fuel ratio sensor 5 and the sensor element of the oxygen sensor 6 by the electric heaters 5a and 6a. Therefore, it is possible to prevent the sensor elements of the air-fuel ratio sensor 5 and the oxygen sensor 6 from being cracked due to a sudden temperature change caused by water.
 そして、燃料温度から外気温を推定することにより、エアコン制御用の外気温センサ13がない車両でも、排気通路2の壁温や、外気温を計測するセンサを新たに設けることなく、外気温を精度良く推定することができるので、コスト的にも有利である。 Then, by estimating the outside air temperature from the fuel temperature, even in a vehicle without the outside air temperature sensor 13 for air conditioner control, the outside air temperature can be reduced without providing a wall temperature of the exhaust passage 2 or a sensor for measuring the outside air temperature. Since the estimation can be performed with high accuracy, it is advantageous in terms of cost.
 図4は、加熱制御禁止時間の算出手順を示すフローチャートである。なお、加熱制御禁止時間の算出は、ECM10内で実施される。 FIG. 4 is a flowchart showing a procedure for calculating the heating control inhibition time. Note that the calculation of the heating control inhibition time is performed in the ECM 10.
 S1では、燃料温度センサ11が故障しているか否かを判定し、故障していない場合にはS2へ進み、故障している場合にはS4へ進む。燃料温度センサ11の故障は、例えば、燃料温度センサ11からECM10に出力される信号電圧が低すぎる場合や高すぎる場合に故障と判定する。 In S1, it is determined whether or not the fuel temperature sensor 11 has failed. If not, the process proceeds to S2, and if it has failed, the process proceeds to S4. The failure of the fuel temperature sensor 11 is determined as a failure, for example, when the signal voltage output from the fuel temperature sensor 11 to the ECM 10 is too low or too high.
 S2では、内燃機関1の停止中に、燃料の給油の有無を判定し、給油されていない場合にはS3へ進み、給油されている場合にはS4へ進む。例えば、燃料タンク16の燃料量を検知する燃料センサで検知された内燃機関1の始動時の燃料量が、前回内燃機関1の停止時に上記燃料センサで検知された燃料量よりも所定量以上増加している場合に、内燃機関1の停止中に給油されたものと判定する。 In S2, it is determined whether or not fuel has been refueled while the internal combustion engine 1 is stopped. If not, the process proceeds to S3, and if refueling, the process proceeds to S4. For example, the fuel amount at the start of the internal combustion engine 1 detected by the fuel sensor for detecting the fuel amount in the fuel tank 16 is increased by a predetermined amount or more than the fuel amount detected by the fuel sensor when the internal combustion engine 1 was stopped last time. If it is, it is determined that the fuel was supplied while the internal combustion engine 1 was stopped.
 S3では、内燃機関1の始動時の燃料温度に応じて決まる加熱制御禁止時間を適用する。 In S3, a heating control prohibition time determined according to the fuel temperature at the start of the internal combustion engine 1 is applied.
 一方、燃料温度センサ11が故障している場合や、停止中に給油されているような場合には、S4にて燃料タンク16の燃料温度を利用した外気温の推定を禁止し、S5にて外気温の高低にかかわらず、設定可能な最長時間である加熱制御禁止最長時間を適用する。 On the other hand, if the fuel temperature sensor 11 is out of order or is being refueled during stoppage, estimation of the outside air temperature using the fuel temperature in the fuel tank 16 is prohibited in S4, and in S5 Regardless of the outside air temperature, the heating control prohibition maximum time, which is the maximum time that can be set, is applied.
 すなわち、燃料温度センサ11が故障している場合には、燃料温度を正確に計測できず、外気温が精度良く推定できなくなるので、空燃比センサ5及び酸素センサ6を保護するために、極低温時に適用される加熱制御禁止最長時間を適用する。また、給油された場合には、燃料タンク16の燃料温度が大きく変化する可能性があり、燃料温度が外気温と大きく乖離する可能性があるので、空燃比センサ5及び酸素センサ6を保護するために、極低温時に適用される加熱制御禁止最長時間を適用する。 That is, when the fuel temperature sensor 11 is out of order, the fuel temperature cannot be accurately measured, and the outside air temperature cannot be estimated with high accuracy. Therefore, in order to protect the air-fuel ratio sensor 5 and the oxygen sensor 6, Apply the maximum heating control prohibition time that is sometimes applied. Further, when fuel is supplied, the fuel temperature in the fuel tank 16 may change greatly, and the fuel temperature may greatly deviate from the outside air temperature, so that the air-fuel ratio sensor 5 and the oxygen sensor 6 are protected. Therefore, the maximum heating control prohibition time applied at extremely low temperatures is applied.
 なお、加熱制御禁止時間を算出するにあたっては、空燃比センサ5と酸素センサ6とで同一の加熱制御禁止時間算出テーブルを用いてもよいし、空燃比センサ5と酸素センサ6とで個別の加熱制御禁止時間算出テーブルを用いるようにしてもよい。つまり、同一の燃料温度であっても、空燃比センサ5の加熱制御禁止時間と、酸素センサ6の加熱制御禁止時間とが異なる値として設定されるようにしてもよい。 In calculating the heating control prohibition time, the same heating control prohibition time calculation table may be used for the air-fuel ratio sensor 5 and the oxygen sensor 6, or individual heating for the air-fuel ratio sensor 5 and the oxygen sensor 6 may be used. A control prohibition time calculation table may be used. That is, even when the fuel temperature is the same, the heating control inhibition time of the air-fuel ratio sensor 5 and the heating control inhibition time of the oxygen sensor 6 may be set as different values.
 空燃比センサ5や酸素センサ6の取り付け位置が内燃機関1よりも遠くなるほど、内燃機関1からセンサ取り付け位置までの熱容量が増加するので、空燃比センサ5と酸素センサ6とで加熱禁止時間を個別に設定する場合には、内燃機関1からセンサ取り付け位置までの排気通路長に比例して加熱禁止時間を長く設定するのが好ましい。また、排気通路2の形状により凝縮水が溜まりやすくなる部位がセンサ取り付け位置の上流側に存在するような場合にも、加熱禁止時間を相対的に長く設定するのが好ましい。 Since the heat capacity from the internal combustion engine 1 to the sensor mounting position increases as the mounting position of the air-fuel ratio sensor 5 or the oxygen sensor 6 becomes farther from the internal combustion engine 1, the heating prohibition time is individually set for the air-fuel ratio sensor 5 and the oxygen sensor 6. Is set to a longer heating prohibition time in proportion to the length of the exhaust passage from the internal combustion engine 1 to the sensor mounting position. In addition, it is preferable to set the heating prohibition time relatively long even when there is a portion where the condensed water tends to accumulate due to the shape of the exhaust passage 2 on the upstream side of the sensor mounting position.
 そして、上述した実施例では、内燃機関1の始動時からの経過時間が加熱制御禁止時間となるまで電熱ヒータ5a、6aの加熱制御を禁止しているが、内燃機関1の始動時からの累積機関回転数や累積吸入空気量が、外気温に応じて算出された加熱制御禁止累積機関回転数や加熱制御禁止累積吸入空気量となるまで電熱ヒータ5a、6aの加熱制御を禁止するようにしてもよい。 In the above-described embodiment, the heating control of the electric heaters 5a and 6a is prohibited until the elapsed time from the start of the internal combustion engine 1 reaches the heating control prohibition time, but the accumulation from the start of the internal combustion engine 1 is prohibited. Heating control of the electric heaters 5a and 6a is prohibited until the engine speed and the cumulative intake air amount become the heating control prohibition cumulative engine speed and the heating control prohibition cumulative intake air amount calculated according to the outside air temperature. Also good.

Claims (7)

  1.  センサ素子加熱用の電熱ヒータを有して内燃機関の排気通路に配置される排気センサと、
     外気温を推定する外気温推定手段と、
     内燃機関の始動時に上記外気温推定手段で推定された外気温に応じて通電禁止期間を設定する通電禁止期間設定手段と、を有し、
     内燃機関の始動から上記通電禁止期間が経過するまでは上記電熱ヒータへの通電を禁止し、上記通電禁止期間が経過後に上記電熱ヒータへの通電を開始する排気センサの加熱制御装置。
    An exhaust sensor having an electric heater for heating the sensor element and disposed in the exhaust passage of the internal combustion engine;
    An outside air temperature estimating means for estimating the outside air temperature,
    An energization prohibition period setting means for setting an energization prohibition period according to the outside air temperature estimated by the outside air temperature estimating means at the start of the internal combustion engine,
    An exhaust sensor heating control apparatus that prohibits energization of the electric heater from the start of the internal combustion engine until the energization prohibition period elapses, and starts energization of the electric heater after the energization prohibition period elapses.
  2.  外気温検知手段は、燃料タンク内の燃料温度を検知する燃料温度センサの検出値を用いて外気温を推定する請求項1に記載の排気センサの加熱制御装置。 2. The exhaust sensor heating control device according to claim 1, wherein the outside air temperature detecting means estimates the outside air temperature using a detection value of a fuel temperature sensor that detects a fuel temperature in the fuel tank.
  3.  上記通電禁止期間設定手段は、上記燃料温度センサで検知した内燃機関始動時の燃料温度が低いほど、上記通電禁止期間を長く設定する請求項2に記載の排気センサの加熱制御装置。 3. The exhaust sensor heating control device according to claim 2, wherein the energization prohibition period setting means sets the energization prohibition period longer as the fuel temperature at the start of the internal combustion engine detected by the fuel temperature sensor is lower.
  4.  前回の内燃機関停止から今回の内燃機関始動までの間に上記燃料タンクへの燃料の給油が行われた場合、上記通電禁止期間設定手段は、予め設定された所定期間、上記電熱ヒータへの通電を禁止する請求項3に記載の排気センサの加熱制御装置。 When fuel is supplied to the fuel tank between the previous internal combustion engine stop and the current internal combustion engine start, the energization prohibition period setting means supplies the energization to the electric heater for a predetermined period. The exhaust sensor heating control device according to claim 3, wherein the control is prohibited.
  5.  上記燃料センサが故障している場合、上記通電禁止期間設定手段は、予め設定された所定期間、上記電熱ヒータへの通電を禁止する請求項3または4に記載の排気センサの加熱制御装置。 The exhaust sensor heating control device according to claim 3 or 4, wherein, when the fuel sensor is out of order, the energization prohibition period setting means prohibits energization of the electric heater for a predetermined period set in advance.
  6.  上記所定期間は、燃料温度に応じて設定される上記通電禁止期間の最長期間である請求項4または5に記載の排気センサの加熱制御装置。 The exhaust sensor heating control device according to claim 4 or 5, wherein the predetermined period is a longest period of the energization prohibition period set in accordance with a fuel temperature.
  7.  センサ素子加熱用の電熱ヒータを有して内燃機関の排気通路に配置される排気センサを有し、
     内燃機関の始動時に燃料タンク内の燃料温度から算出された外気温に応じて通電禁止期間を設定し、
     内燃機関の始動から上記通電禁止期間が経過するまでは上記電熱ヒータへの通電を禁止し、上記通電禁止期間が経過後に上記電熱ヒータへの通電を開始する排気センサの加熱制御方法。
    An exhaust sensor having an electric heater for heating the sensor element and disposed in the exhaust passage of the internal combustion engine;
    Set the energization prohibition period according to the outside air temperature calculated from the fuel temperature in the fuel tank when starting the internal combustion engine,
    An exhaust sensor heating control method for prohibiting energization of the electric heater from the start of the internal combustion engine until the energization prohibition period elapses, and starting energization of the electric heater after the energization prohibition period elapses.
PCT/JP2013/056842 2012-04-25 2013-03-12 Heating control device and heating control method for exhaust sensor WO2013161412A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012099371 2012-04-25
JP2012-099371 2012-04-25

Publications (1)

Publication Number Publication Date
WO2013161412A1 true WO2013161412A1 (en) 2013-10-31

Family

ID=49482752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/056842 WO2013161412A1 (en) 2012-04-25 2013-03-12 Heating control device and heating control method for exhaust sensor

Country Status (1)

Country Link
WO (1) WO2013161412A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000073884A (en) * 1998-08-27 2000-03-07 Mitsubishi Motors Corp Lean burn internal combustion engine
JP2003097323A (en) * 2001-09-25 2003-04-03 Hitachi Ltd Control device of heater of exhaust gas sensor
JP2003155953A (en) * 2001-11-19 2003-05-30 Hitachi Unisia Automotive Ltd Air-fuel ratio detection device for engine
JP2003176761A (en) * 2001-12-11 2003-06-27 Denso Corp Fuel injection device
JP2004069644A (en) * 2002-08-09 2004-03-04 Denso Corp Heating controller for gas sensor of internal combustion engine
JP2004225617A (en) * 2003-01-23 2004-08-12 Toyota Motor Corp Protective device for sensor
JP2007321561A (en) * 2006-05-30 2007-12-13 Denso Corp Heater control device of exhaust gas sensor
JP2009257147A (en) * 2008-04-15 2009-11-05 Denso Corp Fuel filter clogging detection device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000073884A (en) * 1998-08-27 2000-03-07 Mitsubishi Motors Corp Lean burn internal combustion engine
JP2003097323A (en) * 2001-09-25 2003-04-03 Hitachi Ltd Control device of heater of exhaust gas sensor
JP2003155953A (en) * 2001-11-19 2003-05-30 Hitachi Unisia Automotive Ltd Air-fuel ratio detection device for engine
JP2003176761A (en) * 2001-12-11 2003-06-27 Denso Corp Fuel injection device
JP2004069644A (en) * 2002-08-09 2004-03-04 Denso Corp Heating controller for gas sensor of internal combustion engine
JP2004225617A (en) * 2003-01-23 2004-08-12 Toyota Motor Corp Protective device for sensor
JP2007321561A (en) * 2006-05-30 2007-12-13 Denso Corp Heater control device of exhaust gas sensor
JP2009257147A (en) * 2008-04-15 2009-11-05 Denso Corp Fuel filter clogging detection device

Similar Documents

Publication Publication Date Title
JP5798059B2 (en) Engine control device
US9021868B2 (en) Sensor controller and exhaust gas treatment system using the same
JP4661767B2 (en) Failure diagnosis device for engine cooling system
CN103261604B (en) Device for detecting malfunction in electrically heated catalyst
JP2009257198A (en) Diagnosis apparatus for internal combustion engine
EP3688290B1 (en) Method for operating a catalyst arrangement of an internal combustion engine and catalyst arrangement
KR101491353B1 (en) Device and method for controlling NOx sensor of SCR system
JP2012172535A (en) Engine control device
JP5851333B2 (en) Control device for internal combustion engine
WO2013161412A1 (en) Heating control device and heating control method for exhaust sensor
JP4135380B2 (en) Exhaust gas sensor heater control device
JP4396534B2 (en) Heater control device
JP4151547B2 (en) Exhaust gas sensor heater control device
JP6377534B2 (en) Sensor control device and sensor control method
JP2013189865A (en) Control device for exhaust gas sensor
JP4816268B2 (en) Exhaust system for internal combustion engine
WO2014080846A1 (en) Gas concentration sensor and method for warming up same
JP6077398B2 (en) Water detection device and water detection method
JP2004360563A (en) Exhaust gas detection device
JPH09184443A (en) Heater control device for air-fuel ratio sensor in downstream of catalyst
JP2013234573A (en) Control device for internal combustion engine
JP2010014036A (en) Internal combustion engine stop time estimation device
JP6416689B2 (en) Inspection method of sensor with heater
JP5387553B2 (en) Vehicle control device
JP2018071363A (en) Sensor control system and sensor control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13781915

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13781915

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP