JP2013234573A - Control device for internal combustion engine - Google Patents

Control device for internal combustion engine Download PDF

Info

Publication number
JP2013234573A
JP2013234573A JP2012105589A JP2012105589A JP2013234573A JP 2013234573 A JP2013234573 A JP 2013234573A JP 2012105589 A JP2012105589 A JP 2012105589A JP 2012105589 A JP2012105589 A JP 2012105589A JP 2013234573 A JP2013234573 A JP 2013234573A
Authority
JP
Japan
Prior art keywords
amount
temperature
internal combustion
combustion engine
exhaust pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012105589A
Other languages
Japanese (ja)
Inventor
Kenji Takada
健司 高田
Koji Matsufuji
弘二 松藤
Heikichi Kamoshita
平吉 鴨志田
Hiroshi Sekine
寛 関根
Toshio Hori
俊雄 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2012105589A priority Critical patent/JP2013234573A/en
Publication of JP2013234573A publication Critical patent/JP2013234573A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To sufficiently reduce manufacturing costs required for preventing damage to an exhaust gas sensor by eliminating the need for instruments or the like employed for measuring the amount of condensation water accumulated in an exhaust pipe and allow reduction of exhaust gas by activating the exhaust gas sensor as early as possible.SOLUTION: An exhaust pipe wall temperature estimation part calculates an estimated wall temperature in an exhaust pipe which is determined one by one from an exhaust temperature detected from an exhaust temperature sensor, the flow rate of gas detected from an air flow meter, and an outside air temperature detected by an outside air temperature sensor by referring to a map for calculating the supplied amount of heat, a wall temperature additional value map, and a wall temperature subtraction value map. Then a dew-point temperature calculation part of an exhaust pipe wall calculates, by referring to a dew-point temperature calculation map, the dew-point temperature determined from an air-fuel ratio between the flow rate of gas and the weight of fuel. A condensation water amount estimation part determines a relative wall temperature from the estimated wall temperature and the dew-point temperature by referring to a map for calculating a condensation water accumulated amount, calculates the condensation water accumulated amount from the relative wall temperature and the flow rate of gas, and estimates a value obtained by totalizing a calculated condensation water accumulated amount as the amount of the condensation water.

Description

本発明は、内燃機関の排気管内で生じる凝縮水量を推定する機能を備えた内燃機関の制御装置に関するものである。   The present invention relates to a control device for an internal combustion engine having a function of estimating the amount of condensed water generated in an exhaust pipe of the internal combustion engine.

一般に、内燃機関の排出ガスには、燃料と吸入空気の燃焼反応によって生成された水蒸気が含まれており、この水蒸気を含んだ排出ガスが排気管内で冷やされると、排気管内で排出ガス中の水蒸気が凝縮して凝縮水が生じる。しかし、排気管に配置された酸素センサがヒータで加熱されているときに、排気管内で発生した凝縮水が高温の酸素センサに付着すると、センサ素子が割れてしまうことがある。   In general, the exhaust gas of an internal combustion engine contains water vapor generated by the combustion reaction of fuel and intake air. When the exhaust gas containing water vapor is cooled in the exhaust pipe, the exhaust gas in the exhaust pipe contains Water vapor condenses to produce condensed water. However, when the oxygen sensor arranged in the exhaust pipe is heated by the heater, if the condensed water generated in the exhaust pipe adheres to the high-temperature oxygen sensor, the sensor element may be broken.

この対策として、特許文献1(特開2004−316594号公報)に記載されているように、排気管路の外部に温度センサを配設し、該温度センサにより排気管路の温度を推定し、その温度に基づいて排気管路に凝縮水が存在し得る状況かどうかを判断し、凝縮水が存在し得る状況であれば排気管路を、燃焼バーナで熱せられた熱媒体によって加熱するようにしたものがある。   As a countermeasure, as described in Patent Document 1 (Japanese Patent Application Laid-Open No. 2004-316594), a temperature sensor is disposed outside the exhaust pipe, and the temperature of the exhaust pipe is estimated by the temperature sensor. Based on the temperature, it is determined whether or not condensate can exist in the exhaust pipe. If the condensate can exist, the exhaust pipe is heated by a heat medium heated by the combustion burner. There is what I did.

特開2004−316594号公報JP 2004-316594 A

上記目的を達成するため、上述のような従来の内燃機関の制御装置にあって、内燃機関の排気系において、排気管路の外部に温度取得手段を設け、そして、外部に設けた温度取得手段により排気管路の温度を取得して、その温度に基づいて排気管路の凝縮水の発生を防止するものである。   In order to achieve the above object, in the control apparatus for a conventional internal combustion engine as described above, in the exhaust system of the internal combustion engine, temperature acquisition means is provided outside the exhaust pipe, and temperature acquisition means provided outside is provided. Thus, the temperature of the exhaust pipe is acquired, and the generation of condensed water in the exhaust pipe is prevented based on the temperature.

より詳しくは、内燃機関の排気管路と、加熱されることで活性化するセンサ素子によって排気ガスの酸素濃度を検出する排気ガスセンサと、センサ素子を加熱して活性化させるセンサ素子加熱手段と、排気管路の外部に配設されて排気管路の温度を取得する温度取得手段と、取得された排気管路の温度によって排気ガスセンサの上流側の凝縮水の状況を判断する凝縮水状況判断手段と、排気ガスセンサの上流側に凝縮水が存在し得る状況であると判断された場合に排気ガスセンサの上流側の排気管路を加熱する排気管路加熱手段を新たに設ける必要があるため、その分の製造コストが負担となってしまうという問題があった。   More specifically, an exhaust pipe of the internal combustion engine, an exhaust gas sensor that detects the oxygen concentration of the exhaust gas by a sensor element that is activated when heated, a sensor element heating means that heats and activates the sensor element, Temperature acquisition means that is disposed outside the exhaust pipe and acquires the temperature of the exhaust pipe, and condensed water status determination means that determines the status of the condensed water upstream of the exhaust gas sensor based on the acquired temperature of the exhaust pipe And it is necessary to newly provide an exhaust pipe heating means for heating the exhaust pipe upstream of the exhaust gas sensor when it is determined that condensate can exist upstream of the exhaust gas sensor. There was a problem that the manufacturing cost of a minute would be borne.

本発明は、上述のような従来の問題を解決するためになされたもので、排気管に溜まる凝縮水の量を計測する器具などを不要にして、排気ガスセンサの損傷防止にかかる製造コストを十分に低減することができる排気ガスセンサの制御装置を提供することを目的とする。   The present invention has been made to solve the above-described conventional problems, and eliminates the need for an instrument for measuring the amount of condensed water accumulated in the exhaust pipe, thereby sufficiently increasing the manufacturing cost for preventing damage to the exhaust gas sensor. An object of the present invention is to provide a control device for an exhaust gas sensor that can be reduced to a low level.

本発明に係る排気ガスセンサの制御装置は、上記目的達成のため、(1)内燃機関の排気管に設けられた排気ガスセンサを加熱するヒータの通電状態を制御する排気ガスセンサの制御装置において、前記排気管の排気ガスの排気温度を検出する排気温度検出手段と、前記内燃機関に吸気されるガスの流量を検出するガス流量検出手段と、外気温を検出する外気温検出手段と、前記内燃機関が始動したとき前記排気温度検出手段によって検出された排気温度、前記ガス流量検出手段によって検出されたガスの流量、および前記外気温検出手段によって検出された外気温を用いて前記排気管内に溜まる凝縮水の量を推定する凝縮水量推定手段と、前記凝縮水量推定手段によって凝縮水が所定値以下と判定された場合に前記ヒータの通電を許可するよう制御する加熱制御手段と、を備えるよう構成する。   In order to achieve the above object, the exhaust gas sensor control apparatus according to the present invention is (1) an exhaust gas sensor control apparatus for controlling an energization state of a heater for heating an exhaust gas sensor provided in an exhaust pipe of an internal combustion engine. Exhaust temperature detection means for detecting the exhaust temperature of the exhaust gas from the pipe, gas flow rate detection means for detecting the flow rate of the gas sucked into the internal combustion engine, outside air temperature detection means for detecting the outside air temperature, and the internal combustion engine Condensed water that accumulates in the exhaust pipe using the exhaust temperature detected by the exhaust temperature detection means, the gas flow rate detected by the gas flow detection means, and the outside air temperature detected by the outside air temperature detection means when the engine is started The amount of condensed water is estimated, and when the condensed water is determined to be equal to or less than a predetermined value by the condensed water amount estimating means, energization of the heater is permitted. And heating control means for cormorants control, configured with a.

この構成により、内燃機関が始動したとき排気温度、ガス流量、および外気温を用いて排気管内に溜まる凝縮水の量を推定し、推定された凝縮水の量を判定することで、一般的に内燃機関に備えられている排気温度センサ、エアフロメータ、外気温センサからの出力値を使用し、凝縮水が所定値以下と判定された場合にヒータを加熱するため、排気管に溜まる凝縮水の量を計測する器具などを不要にして、排気ガスセンサの損傷防止にかかる製造コストを十分に低減することができる。   This configuration generally estimates the amount of condensed water that accumulates in the exhaust pipe using the exhaust temperature, gas flow rate, and outside air temperature when the internal combustion engine is started, and generally determines the estimated amount of condensed water. Condensed water collected in the exhaust pipe is used to heat the heater when it is determined that the condensed water is below a predetermined value using output values from the exhaust temperature sensor, air flow meter, and outside air temperature sensor provided in the internal combustion engine. It is possible to reduce the manufacturing cost required for preventing damage to the exhaust gas sensor by eliminating the need for an instrument for measuring the amount.

上記(1)に記載の排気ガスセンサの制御装置において、(2)前記凝縮水量推定手段が、前記排気温度、前記ガス流量、および前記外気温を用いて逐次求められる前記排気管内の推定壁温を算出すると共に前記ガス流量と燃料重量との空燃比から求まる前記排気管の露点温度を算出し、算出された推定壁温と露点温度とから相対壁温を求め、前記相対壁温および前記ガス流量から凝縮水積算量を算出し、算出された凝縮水積算量を積算した値を前記凝縮水の量として推定するよう構成する。   In the exhaust gas sensor control apparatus according to (1) above, (2) the condensed water amount estimation means calculates an estimated wall temperature in the exhaust pipe that is sequentially obtained using the exhaust temperature, the gas flow rate, and the outside air temperature. And calculating a dew point temperature of the exhaust pipe obtained from an air-fuel ratio of the gas flow rate and fuel weight, obtaining a relative wall temperature from the calculated estimated wall temperature and dew point temperature, and calculating the relative wall temperature and the gas flow rate. The condensed water integrated amount is calculated from the value, and the value obtained by integrating the calculated condensed water integrated amount is estimated as the amount of condensed water.

この構成により、排気温度、ガス流量、および外気温を用いて逐次求められる排気管内の推定壁温を算出すると共にガス流量と燃料重量との空燃比から求まる排気管の露点温度を算出し、算出された推定壁温と露点温度とから相対壁温を求め、前記相対壁温および前記ガス流量から凝縮水積算量を算出し、算出された凝縮水積算量を積算した値を凝縮水の量として推定することで、一般的に内燃機関に備えられているエアフロメータ、排気温度センサ、外気温センサからの出力値を使用するため、排気管に溜まる凝縮水の量を計測する器具などを不要にして、排気ガスセンサの損傷防止にかかる製造コストを十分に低減することができる。   With this configuration, the estimated wall temperature in the exhaust pipe, which is obtained sequentially using the exhaust temperature, gas flow rate, and outside air temperature, is calculated, and the dew point temperature of the exhaust pipe is calculated from the air-fuel ratio of the gas flow rate and fuel weight. The relative wall temperature is obtained from the estimated wall temperature and dew point temperature, the condensed water integrated amount is calculated from the relative wall temperature and the gas flow rate, and the value obtained by integrating the calculated condensed water integrated amount is used as the amount of condensed water. By estimating, the output values from the air flow meter, exhaust temperature sensor, and outside air temperature sensor that are generally provided in internal combustion engines are used, eliminating the need for equipment that measures the amount of condensed water that accumulates in the exhaust pipe. Thus, the manufacturing cost for preventing damage to the exhaust gas sensor can be sufficiently reduced.

また、上記(1)または(2)に記載の排気ガスセンサの制御装置において、(3)前記凝縮水量推定手段が、前記排気管内に溜まる前記排気ガスセンサの上流および下流にある凝縮水の量を推定するよう構成する。   In the exhaust gas sensor control apparatus according to (1) or (2), (3) the condensed water amount estimating means estimates the amount of condensed water upstream and downstream of the exhaust gas sensor accumulated in the exhaust pipe. Configure to

この構成により、排気管内に溜まる前記排気ガスセンサの上流および下流にある凝縮水の量を推定するため、上流または下流にある何れかの凝縮水の量を推定する場合に比べて凝縮水の量の判定精度をさらに高めることができ、その上で排気ガスセンサのヒータを加熱するため、排気ガスセンサが損傷してしまうことを確実に防止することができる。   With this configuration, in order to estimate the amount of condensed water upstream and downstream of the exhaust gas sensor that accumulates in the exhaust pipe, the amount of condensed water is larger than when estimating the amount of condensed water upstream or downstream. Since the determination accuracy can be further increased and the heater of the exhaust gas sensor is further heated, it is possible to reliably prevent the exhaust gas sensor from being damaged.

本発明によれば、排気管に溜まる凝縮水の量を計測する器具などを不要にして、排気ガスセンサの損傷防止にかかる製造コストを十分に低減する内燃機関の制御装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the control apparatus of the internal combustion engine which fully reduces the manufacturing cost concerning the damage prevention of an exhaust gas sensor can be provided, the instrument etc. which measure the quantity of the condensed water which accumulates in an exhaust pipe are unnecessary.

システム構成図。System Configuration. エンジン制御装置の制御構成。Control configuration of the engine control device. 排気センサの構造。Exhaust sensor structure. 排気センサの制御構成。Exhaust sensor control configuration. 始動後経過時間と素子温度。Elapsed time after startup and element temperature. エンジン運転中の凝縮水推定方法。Condensate estimation method during engine operation. エンジン停止中の凝縮水推定方法。Condensate estimation method when the engine is stopped. ヒータ通電方法。Heater energization method. ヒータ通電方法。Heater energization method. ヒータ通電方法。Heater energization method. ヒータ通電タイミングの設定方法。Setting method of heater energization timing. ヒータ通電タイミングの設定方法。Setting method of heater energization timing.

以下、本発明の実施の形態について図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明に係る制御装置が適用されたヒータ付き排気ガスセンサを備えた内燃機関を示す。   FIG. 1 shows an internal combustion engine provided with an exhaust gas sensor with a heater to which a control device according to the present invention is applied.

図示の内燃機関100は、水温センサ110が配設された気筒107の頭部(燃焼室)に点火コイル103から点火電圧を印加される点火プラグ102が配設され、また、クランク軸及び吸排気動弁機構に関連してクランク角センサ111及びカム角センサ112が設けられ、吸気系(吸気管108)には、燃料噴射弁101、スロットル弁104、スロットルポジションセンサ113、吸気管圧力センサ114、吸入空気流量計115、吸気温センサ121等が配設され、排気系(排気管109)には、前述した図3に示されるリニア空燃比センサ10、排気温センサ122、触媒118等が配在されている。前記燃料噴射弁101には、燃料タンク125から燃料ポンプ117及び燃圧制御弁126を介して一定圧に調圧された燃料が圧送されるようになっている。   In the illustrated internal combustion engine 100, a spark plug 102 to which an ignition voltage is applied from an ignition coil 103 is disposed at the head (combustion chamber) of a cylinder 107 in which a water temperature sensor 110 is disposed. In connection with the valve operating mechanism, a crank angle sensor 111 and a cam angle sensor 112 are provided, and an intake system (intake pipe 108) includes a fuel injection valve 101, a throttle valve 104, a throttle position sensor 113, an intake pipe pressure sensor 114, An intake air flow meter 115, an intake air temperature sensor 121, and the like are provided, and the exhaust air system (exhaust pipe 109) includes the linear air-fuel ratio sensor 10, the exhaust gas temperature sensor 122, the catalyst 118, and the like shown in FIG. Has been. Fuel that has been regulated to a constant pressure is pumped from the fuel tank 125 through the fuel pump 117 and the fuel pressure control valve 126 to the fuel injection valve 101.

そして、本実施形態の制御装置1においては、前記リニア空燃比センサ10内に設けられた検知素子加熱用ヒータ30(図3A参照)の温度(発熱量)の制御、前記燃料噴射弁101による燃料噴射量や燃料噴射時期の制御、前記点火プラグ102の点火時期の制御等を行うため、コントロールユニット120が備えられている。   And in the control apparatus 1 of this embodiment, control of the temperature (heat generation amount) of the heater 30 (refer FIG. 3A) for the detection element heating provided in the said linear air fuel ratio sensor 10, and the fuel by the said fuel injection valve 101 A control unit 120 is provided to control the injection amount and fuel injection timing, control the ignition timing of the spark plug 102, and the like.

コントロールユニット120は、図2に示される如くに、数値・論理演算を行うCPU401、CPU401が実行するプログラム及びデータを格納したROM402、データを一時的に記憶するRAM403、各センサ類からのアナログ信号を取り込んでデジタル信号に変換するA/D変換器404、運転状態を示すスイッチ類からの信号を取り込むデジタル入力回路405、パルス信号の時間間隔や所定時間内のパルス数を計数するパルス入力回路406、さらに、CPU401の演算結果に基づきアクチュエータ(図示せず)のON・OFFを行う、デジタル出力回路407、パルス出力回路408、そして、通信回路409を備えており、これらにより、データを外部に出力し、さらに、外部からの通信コマンドによって内部状態を変更できるようになっている。   As shown in FIG. 2, the control unit 120 includes a CPU 401 that performs numerical and logical operations, a ROM 402 that stores programs and data executed by the CPU 401, a RAM 403 that temporarily stores data, and analog signals from each sensor. An A / D converter 404 that captures and converts it into a digital signal, a digital input circuit 405 that captures signals from switches indicating operation states, a pulse input circuit 406 that counts the time interval of pulse signals and the number of pulses within a predetermined time, Furthermore, a digital output circuit 407, a pulse output circuit 408, and a communication circuit 409 are provided to turn ON / OFF an actuator (not shown) based on the calculation result of the CPU 401, thereby outputting data to the outside. Furthermore, the internal state can be changed by external communication commands. It has to be able to further.

図4は、コントロールユニット120、リニア空燃比センサ10、ヒータ30の接続関係を示しており、リニア空燃比センサ10の検知素子20から得られる酸素濃度をあらわす信号はセンサ信号処理回路26を介してコントロールユニット120に入力される。また、ヒータ30は、トランジスタ36のON(導通)/OFF(非導通)に応じてバッテリ37から通電され、その通電量(時間)に応じて発熱し、検知素子20を加熱する。この加熱温度を制御すべく、コントロールユニット120からトランジスタ36をON/OFFするための制御信号(デューティ信号)が供給される。なお、トランジスタ36の両端の電圧値(又は電流値)は、ヒータ30の故障診断等に用いるため、コントロールユニット120に取り込まれるようになっている。   FIG. 4 shows a connection relationship between the control unit 120, the linear air-fuel ratio sensor 10, and the heater 30. A signal representing the oxygen concentration obtained from the detection element 20 of the linear air-fuel ratio sensor 10 is sent via the sensor signal processing circuit 26. Input to the control unit 120. The heater 30 is energized from the battery 37 according to ON (conducting) / OFF (non-conducting) of the transistor 36, generates heat according to the energization amount (time), and heats the detection element 20. In order to control the heating temperature, a control signal (duty signal) for turning ON / OFF the transistor 36 is supplied from the control unit 120. Note that the voltage value (or current value) at both ends of the transistor 36 is taken into the control unit 120 for use in failure diagnosis of the heater 30 and the like.

次に、コントロールユニット120が、機関始動直後において、ヒータ30で検知素子20を加熱するにあたり、検知素子20にクラック、破損等の不具合を生じさせることがないようにするための制御例を説明する。   Next, a control example for preventing the detection element 20 from causing defects such as cracks and breakage when the control unit 120 heats the detection element 20 with the heater 30 immediately after the engine is started will be described. .

前述したように、燃焼によって生じた水分は、排気管温度が露点以上であれば水蒸気となって排出されるが、排気管温度が露点以下であれば排気管109の壁面に水滴となって結露し、検知素子20の表面20sにも水分(結露水)が付着する。   As described above, the moisture generated by the combustion is discharged as water vapor if the exhaust pipe temperature is above the dew point, but if the exhaust pipe temperature is below the dew point, it forms water droplets on the wall surface of the exhaust pipe 109 to cause condensation. In addition, moisture (condensation water) also adheres to the surface 20s of the detection element 20.

また、ヒータ30による加熱は、検知素子20に対して一様な温度分布にならず、ヒータ近傍部分(内部)20iが高く、ヒータ30から離れた表面部分20sが低くなるため、その温度差によって熱応力が生じる。温度差は検知素子20の熱抵抗に応じて変わる。熱抵抗が大きいと、熱は内部にたまり、温度差が大きくなる。   In addition, the heating by the heater 30 does not have a uniform temperature distribution with respect to the detection element 20, the heater vicinity (inside) 20 i is high, and the surface portion 20 s away from the heater 30 is low. Thermal stress is generated. The temperature difference varies depending on the thermal resistance of the sensing element 20. When the thermal resistance is large, heat is accumulated inside and the temperature difference becomes large.

よって、ヒータ30の温度(検知素子20に対する加熱量)を一定とすると、図5に示される如くに、ヒータ30への通電直後(機関始動直後)にヒータ近傍部分(内部)20iの温度が高くなり、表面部分20sとの温度差が最大となる。   Therefore, assuming that the temperature of the heater 30 (the heating amount for the detection element 20) is constant, as shown in FIG. 5, the temperature in the vicinity of the heater (inside) 20i is high immediately after energizing the heater 30 (immediately after starting the engine). Thus, the temperature difference from the surface portion 20s is maximized.

水分が検知素子表面20sに付着していると、素子表面20sは水分の潜熱があるので、加熱されても水分が蒸発する間は100℃に維持され、そのため、温度差はさらに拡大する。水分蒸発中の素子表面20sの温度上昇率は略ゼロであるが、水分が無くなった直後からは急速に上昇する。   If moisture adheres to the sensing element surface 20s, the element surface 20s has a latent heat of moisture. Therefore, even if heated, the element surface 20s is maintained at 100 ° C. while the moisture evaporates. Therefore, the temperature difference further increases. Although the temperature rise rate of the element surface 20s during the evaporation of water is substantially zero, it rapidly rises immediately after the water is used up.

そこで、本実施形態においては、コントロールユニット120が、機関始動時における検知素子20の表面20sの水分付着状態を推定し、表面20sに水分(結露水)が付着している可能性があるときは、始動直後においてヒータ30の温度(加熱量)を従来のように急速に上げないで比較的低い温度に抑え、検知素子20におけるヒータ30近傍の内部20iとヒータ30から離れた表面20sとの温度差が所定値を超えないように、ヒータ30の温度を制御するウォームアップ制御を行う。   Therefore, in the present embodiment, when the control unit 120 estimates the moisture adhesion state of the surface 20s of the detection element 20 at the time of starting the engine, there is a possibility that moisture (condensation water) may adhere to the surface 20s. The temperature (heating amount) of the heater 30 immediately after starting is suppressed to a relatively low temperature without rapidly increasing as in the prior art, and the temperature between the interior 20i of the detection element 20 near the heater 30 and the surface 20s away from the heater 30 Warm-up control is performed to control the temperature of the heater 30 so that the difference does not exceed a predetermined value.

そして、前記ウォームアップ制御を、素子表面20sの水分が全て蒸発する時期(これも排気ガスの発熱量=吸入空気量の積算値等に基づいて推定する)まで継続し、水分が全て蒸発したと推定された時期以後は、検知素子20の温度を活性化温度(約600℃以上)まで上昇させるセンサ活性促進制御を行い、検知素子20が活性化温度に達した以降は、フィードバック制御により最適温度(例えば750℃〜760℃程度)で維持する。なお、フィードバック制御には、検知素子20の実温度が必要であるが、検知素子20の実温度は、それが400℃〜500℃に達すると、検知素子20から得られる信号に基づいて求めることができる。   Then, the warm-up control is continued until the time when all the moisture on the element surface 20s evaporates (this is also estimated based on the heat generation amount of the exhaust gas = the integrated value of the intake air amount, etc.). After the estimated time, sensor activation promotion control is performed to increase the temperature of the sensing element 20 to the activation temperature (about 600 ° C. or higher), and after the sensing element 20 reaches the activation temperature, the optimum temperature is achieved by feedback control. (For example, about 750 ° C. to 760 ° C.). The feedback control requires the actual temperature of the sensing element 20, but the actual temperature of the sensing element 20 is obtained based on a signal obtained from the sensing element 20 when it reaches 400 ° C to 500 ° C. Can do.

前記した機関始動時における素子表面20sの水分付着状態は、機関始動時における排気管109の温度に応じて異なるので、本実施形態においては、排気管109の温度と略同じと見なすことができる機関の冷却水温及び吸気温(いずれか一方だけでも可)に基づいて前記検知素子表面20sの水分付着状態を推定するようにされている。   Since the moisture adhesion state of the element surface 20s at the time of starting the engine differs depending on the temperature of the exhaust pipe 109 at the time of starting the engine, in this embodiment, the engine that can be regarded as substantially the same as the temperature of the exhaust pipe 109. The water adhering state of the sensing element surface 20s is estimated on the basis of the cooling water temperature and the intake air temperature (only one of them is acceptable).

また、コントロールユニット120は、凝縮水量推定制御によって排気管109内で生じる凝縮水量Mconを推定する。   Further, the control unit 120 estimates a condensed water amount Mcon generated in the exhaust pipe 109 by the condensed water amount estimation control.

以下、排気管109内で生じる凝縮水量Mconの推定方法について説明する。
単位時間当りの吸入空気量Mair[g/s]と単位時間当りの燃料噴射量Mfue[g/s]とに基づいて、燃料と吸入空気の燃焼反応により発生する単位時間当りの水蒸気量Mwgs[g/s]を算出する。
Hereinafter, a method for estimating the amount of condensed water Mcon generated in the exhaust pipe 109 will be described.
Based on the intake air amount Mair [g / s] per unit time and the fuel injection amount Mfue [g / s] per unit time, the water vapor amount Mwgs per unit time generated by the combustion reaction between the fuel and the intake air g / s] is calculated.

また、吸入空気量、エンジン回転速度等に基づいて排出ガス温度Tg(例えば排気ポート近傍における排出ガス温度)を推定する。尚、排出ガス温度Tgを温度センサで検出するようにしても良い。更に、後述する方法で排気管温度Tp(例えば酸素センサ26近傍における排気管温度)を推定する。   Further, the exhaust gas temperature Tg (for example, the exhaust gas temperature in the vicinity of the exhaust port) is estimated based on the intake air amount, the engine speed, and the like. The exhaust gas temperature Tg may be detected by a temperature sensor. Further, the exhaust pipe temperature Tp (for example, the exhaust pipe temperature in the vicinity of the oxygen sensor 26) is estimated by a method described later.

そして、排出ガス温度Tgと排気管温度Tpとをパラメータとする凝縮割合Cのマップを参照して、現在の排出ガス温度Tgと排気管温度Tpとに応じた凝縮割合Cを算出する。この凝縮割合Cは、燃料と吸入空気の燃焼反応により発生する水蒸気(排出ガス中の水蒸気)のうち排気管25内で凝縮する割合である。凝縮割合Cのマップは、予め、実験データや設計データ等に基づいて求めた排出ガス温度Tgと排気管温度Tpと凝縮割合Cとの関係を用いて作成され、コントロールユニット120のROMに記憶されている。   Then, a condensation ratio C corresponding to the current exhaust gas temperature Tg and the exhaust pipe temperature Tp is calculated with reference to a map of the condensation ratio C using the exhaust gas temperature Tg and the exhaust pipe temperature Tp as parameters. This condensation rate C is the rate of condensation in the exhaust pipe 25 of the water vapor (water vapor in the exhaust gas) generated by the combustion reaction between the fuel and the intake air. The map of the condensation ratio C is created in advance using the relationship between the exhaust gas temperature Tg, the exhaust pipe temperature Tp, and the condensation ratio C obtained based on experimental data, design data, etc., and is stored in the ROM of the control unit 120. ing.

この後、水蒸気量Mwgsに凝縮割合Cと演算周期Δtとを乗算して演算周期Δt当りの凝縮水増加量ΔMcon[g]を算出する。   Thereafter, the water vapor amount Mwgs is multiplied by the condensation ratio C and the calculation cycle Δt to calculate the condensed water increase amount ΔMcon [g] per calculation cycle Δt.

ΔMcon=Mwgs×C×Δt
この後、前回の凝縮水量推定値Mconに今回の凝縮水増加量ΔMconを加算して今回の凝縮水量推定値Mcon[g]を求める。
ΔMcon = Mwgs × C × Δt
Thereafter, the current condensed water amount increase ΔMcon is added to the previous condensed water amount estimated value Mcon to obtain the current condensed water amount estimated value Mcon [g].

Mcon=Mcon+ΔMcon
この凝縮水量推定値Mconは、コントロールユニット120のバックアップRAM(記憶手段)に記憶される。コントロールユニット120のバックアップRAMの記憶データは、図示しないIGスイッチ(イグニッションスイッチ)がOFFされたエンジン停止中も保持される。エンジン再始動時に凝縮水量Mconを推定する際には、前回のエンジン停止直前に記憶した凝縮水量推定値Mcon(つまり、エンジン停止中に排気管109内に残留する凝縮水量の推定値)を初期値とする。
Mcon = Mcon + ΔMcon
This condensed water amount estimated value Mcon is stored in a backup RAM (storage means) of the control unit 120. The data stored in the backup RAM of the control unit 120 is retained even when the engine is stopped when an IG switch (ignition switch) (not shown) is turned off. When estimating the condensed water amount Mcon when the engine is restarted, the estimated condensed water amount Mcon stored immediately before the previous engine stop (that is, the estimated amount of condensed water remaining in the exhaust pipe 109 while the engine is stopped) is an initial value. And

ところで、アクセル踏み込み等により吸入空気量が増加して排気管109内を流れる排出ガス量が増加すると、排気管109内に蓄積された凝縮水が排出ガスによって吹き飛ばされて排気管109外へ排出される。   By the way, when the amount of intake air increases due to accelerator depression or the like and the amount of exhaust gas flowing through the exhaust pipe 109 increases, the condensed water accumulated in the exhaust pipe 109 is blown away by the exhaust gas and discharged outside the exhaust pipe 109. The

そこで、本実施例では、吸入空気量Mairが所定値Mthを超えたときに、凝縮水量推定値Mconを0にリセットする。或は、吸入空気量Mairに応じて凝縮水量推定値Mconを減少させるようにしても良い。これにより、吸入空気量Mairが増加して排気管109内を流れる排出ガス量が増加したときに、排気管109内に蓄積された凝縮水が排出ガスによって吹き飛ばされて排気管109外へ排出されるのに対応して、凝縮水量推定値Mconを0にリセット又は減少させる。   Therefore, in this embodiment, when the intake air amount Mair exceeds the predetermined value Mth, the condensed water amount estimated value Mcon is reset to zero. Alternatively, the condensed water amount estimated value Mcon may be decreased according to the intake air amount Mair. Thus, when the intake air amount Mair increases and the amount of exhaust gas flowing through the exhaust pipe 109 increases, the condensed water accumulated in the exhaust pipe 109 is blown off by the exhaust gas and discharged outside the exhaust pipe 109. In response to this, the condensed water amount estimation value Mcon is reset to 0 or decreased.

次に、排気管温度Tpの推定方法について説明する。
コントロールユニット120は、エンジン運転中(エンジン始動からIGスイッチのOFFまでの期間)は、エンジン運転中の推定方法(図6参照)で排気管温度Tpを推定し、エンジン停止中(IGスイッチのONからエンジン始動までの期間)は、エンジン停止中の推定方法(図7参照)で排気管温度Tpを推定する。
Next, a method for estimating the exhaust pipe temperature Tp will be described.
The control unit 120 estimates the exhaust pipe temperature Tp by an estimation method during engine operation (see FIG. 6) during engine operation (period from engine start to IG switch OFF), and engine stop (IG switch ON). During the period from engine start to engine start), the exhaust pipe temperature Tp is estimated by an estimation method during engine stop (see FIG. 7).

図6に示すように、エンジン運転中に排気管温度Tpを推定する場合には、まず、排出ガスから排気管109へ伝達される受熱量を求めるための受熱側熱伝達係数Kinと、排気管109から外気へ放熱される放熱量を求めるための放熱側熱伝達係数Koutを算出する。   As shown in FIG. 6, when estimating the exhaust pipe temperature Tp during engine operation, first, the heat receiving side heat transfer coefficient Kin for obtaining the amount of heat received from the exhaust gas to the exhaust pipe 109, and the exhaust pipe A heat radiation side heat transfer coefficient Kout for calculating a heat radiation amount radiated from 109 to the outside air is calculated.

受熱側熱伝達係数Kinを算出する際には、エンジン回転速度(排気流速の代用情報)と負荷(排気圧の代用情報)とをパラメータとする補正係数αのマップを参照して、現在のエンジン回転速度と負荷とに応じた補正係数αを算出する。   When calculating the heat-receiving-side heat transfer coefficient Kin, the current engine is referred to by referring to a map of the correction coefficient α using the engine speed (substitution information of exhaust flow velocity) and the load (substitution information of exhaust pressure) as parameters. A correction coefficient α corresponding to the rotational speed and load is calculated.

この補正係数αは、受熱側熱伝達係数基本値Kin0を補正するための係数である。補正係数αのマップは、予め、実験データや設計データ等に基づいて求めたエンジン回転速度と負荷と排気管109の受熱量との関係を用いて作成され、コントロールユニット120のROMに記憶されている。一般に、エンジン回転速度が高くなって排気流速が速くなるほど排気管109の受熱量が少なくなり、負荷が大きくなって排気圧が高くなるほど排気管109の受熱量が多くなるため、補正係数αのマップは、エンジン回転速度が高くなるほど補正係数αが小さくなって受熱側熱伝達係数Kinが小さくなり、負荷が大きくなるほど補正係数αが大きくなって受熱側熱伝達係数Kinが大きくなるように設定されている。   The correction coefficient α is a coefficient for correcting the heat receiving side heat transfer coefficient basic value Kin0. The map of the correction coefficient α is created in advance using the relationship between the engine rotational speed, the load, and the amount of heat received by the exhaust pipe 109 obtained based on experimental data, design data, and the like, and is stored in the ROM of the control unit 120. Yes. In general, the amount of heat received by the exhaust pipe 109 decreases as the engine speed increases and the exhaust flow rate increases, and the amount of heat received by the exhaust pipe 109 increases as the load increases and the exhaust pressure increases. Is set such that the higher the engine speed, the smaller the correction coefficient α and the smaller the heat receiving side heat transfer coefficient Kin, and the larger the load, the larger the correction coefficient α and the larger the heat receiving side heat transfer coefficient Kin. Yes.

この後、受熱側熱伝達係数基本値Kin0に補正係数αを乗算して受熱側熱伝達係数Kinを求める。   Thereafter, the heat receiving side heat transfer coefficient Kin is obtained by multiplying the heat receiving side heat transfer coefficient basic value Kin0 by the correction coefficient α.

Kin=Kin0×α
これにより、エンジン回転速度(排気流速の代用情報)や負荷(排気圧の代用情報)に応じて受熱側熱伝達係数基本値Kin0を補正して受熱側熱伝達係数Kinを変化させる。
Kin = Kin0 × α
As a result, the heat-receiving-side heat transfer coefficient Kin is changed by correcting the heat-receiving-side heat transfer coefficient basic value Kin0 in accordance with the engine speed (substitution information for the exhaust gas flow rate) and the load (substitution information for the exhaust pressure).

また、放熱側熱伝達係数Koutを算出する際には、ラジエターファン回転速度と車速とをパラメータとする補正係数βのマップを参照して、現在のラジエターファン回転速度と車速とに応じた補正係数βを算出する。   Further, when calculating the heat radiation side heat transfer coefficient Kout, the correction coefficient β according to the current radiator fan rotation speed and the vehicle speed is referred to by referring to the map of the correction coefficient β using the radiator fan rotation speed and the vehicle speed as parameters. β is calculated.

この補正係数βは、放熱側熱伝達係数基本値Kout0を補正するための係数である。補正係数βのマップは、予め、実験データや設計データ等に基づいて求めたラジエターファン回転速度と車速と排気管109の放熱量との関係を用いて作成され、コントロールユニット120のROMに記憶されている。一般に、ラジエターファン回転速度や車速が速くなるほど排気管109の放熱量が多くなるため、補正係数βのマップは、ラジエターファン回転速度や車速が速くなるほど補正係数βが大きくなって放熱側熱伝達係数Koutが大きくなるように設定されている。尚、大気圧(排気管109の外側の圧力)が高くなるほど排気管109の放熱量が多くなるため、大気圧が高くなるほど補正係数βが大きくなって放熱側熱伝達係数Koutが大きくなるようにしても良い。   The correction coefficient β is a coefficient for correcting the heat radiation side heat transfer coefficient basic value Kout0. The map of the correction coefficient β is created in advance using the relationship between the radiator fan rotation speed, the vehicle speed, and the heat dissipation amount of the exhaust pipe 109, which is obtained based on experimental data, design data, and the like, and is stored in the ROM of the control unit 120. ing. In general, the higher the radiator fan rotational speed and the vehicle speed, the greater the heat radiation amount of the exhaust pipe 109. Therefore, the correction coefficient β map shows that the higher the radiator fan rotational speed and the vehicle speed, the larger the correction coefficient β and the heat dissipation side heat transfer coefficient. Kout is set to be large. As the atmospheric pressure (pressure outside the exhaust pipe 109) increases, the amount of heat released from the exhaust pipe 109 increases. Therefore, as the atmospheric pressure increases, the correction coefficient β increases to increase the heat radiation side heat transfer coefficient Kout. May be.

この後、放熱側熱伝達係数基本値Kout0に補正係数βを乗算して放熱側熱伝達係数Koutを求める。   Thereafter, the heat radiation side heat transfer coefficient Kout is obtained by multiplying the heat radiation side heat transfer coefficient basic value Kout0 by the correction coefficient β.

Kout=Kout0×β
これにより、ラジエターファン回転速度や車速に応じて放熱側熱伝達係数基本値Kout0を補正して放熱側熱伝達係数Koutを変化させる。
Kout = Kout0 × β
As a result, the heat dissipation side heat transfer coefficient Kout is changed by correcting the heat dissipation side heat transfer coefficient basic value Kout0 according to the rotational speed of the radiator fan and the vehicle speed.

このようにして、受熱側熱伝達係数Kinと放熱側熱伝達係数Koutとを算出した後、排出ガス温度Tgと排気管温度Tpとの差(Tg−Tp)に受熱側熱伝達係数Kinを乗算して排気管109の受熱量{Kin×(Tg−Tp)}を求めると共に、排気管温度Tpと外気温Taとの差(Tp−Ta)に放熱側熱伝達係数Koutを乗算して排気管109の放熱量{Kout×(Tp−Ta)}を求める。   After calculating the heat receiving side heat transfer coefficient Kin and the heat radiating side heat transfer coefficient Kout in this way, the difference (Tg−Tp) between the exhaust gas temperature Tg and the exhaust pipe temperature Tp is multiplied by the heat receiving side heat transfer coefficient Kin. Then, the amount of heat received by the exhaust pipe 109 {Kin × (Tg−Tp)} is obtained, and the difference between the exhaust pipe temperature Tp and the outside air temperature Ta (Tp−Ta) is multiplied by the heat radiation side heat transfer coefficient Kout. The heat dissipation amount {Kout × (Tp−Ta)} of 109 is obtained.

そして、排気管109の受熱量{Kin×(Tg−Tp)}と排気管109の放熱量{Kout×(Tp−Ta)}と排気管109の熱容量Cpと演算周期Δtとを用いて次式により演算周期Δt当りの排気管温度変化量ΔTpを算出する。   Then, using the heat reception amount {Kin × (Tg−Tp)} of the exhaust pipe 109, the heat release amount {Kout × (Tp−Ta)} of the exhaust pipe 109, the heat capacity Cp of the exhaust pipe 109, and the calculation period Δt, Is used to calculate the exhaust pipe temperature change amount ΔTp per calculation cycle Δt.

ΔTp={Kin×(Tg−Tp)−Kout×(Tp−Ta)}/Cp×Δt
この後、前回の排気管温度推定値Tpに今回の排気管温度変化量ΔTpを加算して今回の排気管温度推定値Tpを求める。
ΔTp = {Kin × (Tg−Tp) −Kout × (Tp−Ta)} / Cp × Δt
Thereafter, the current exhaust pipe temperature estimated value Tp is obtained by adding the current exhaust pipe temperature change amount ΔTp to the previous exhaust pipe temperature estimated value Tp.

Tp=Tp+ΔTp
この排気管温度推定値Tpは、コントロールユニット120のバックアップRAMに記憶される。尚、エンジン再始動時に排気管温度Tpを推定する際には、後述するエンジン停止中の推定方法でエンジン始動直前に推定した排気管温度推定値Tpを初期値とする。
Tp = Tp + ΔTp
This exhaust pipe temperature estimated value Tp is stored in the backup RAM of the control unit 120. When the exhaust pipe temperature Tp is estimated when the engine is restarted, the exhaust pipe temperature estimated value Tp estimated immediately before the engine is started by an estimation method during engine stop, which will be described later, is used as an initial value.

一方、図7に示すように、エンジン停止中(IGスイッチのONから始動までの期間)に排気管温度Tpを推定する場合には、まず、エンジン停止時間をパラメータとする排気管温度低下割合Dのマップを参照して、現在のエンジン停止時間に応じた排気管温度低下割合Dを算出する。この排気管温度低下割合Dのマップは、予め、実験データや設計データ等に基づいて求めたエンジン停止時間と排気管温度低下割合Dとの関係を用いて作成され、コントロールユニット120のROMに記憶されている。   On the other hand, as shown in FIG. 7, when the exhaust pipe temperature Tp is estimated while the engine is stopped (the period from when the IG switch is turned on to when the engine is started), first, the exhaust pipe temperature decrease rate D using the engine stop time as a parameter. Referring to the map, the exhaust pipe temperature decrease rate D corresponding to the current engine stop time is calculated. The map of the exhaust pipe temperature decrease rate D is created in advance using the relationship between the engine stop time and the exhaust pipe temperature decrease rate D obtained based on experimental data, design data, etc., and stored in the ROM of the control unit 120. Has been.

この後、前回のエンジン停止直前の排気管温度推定値Tpzと外気温Taとの差(Tpz−Ta)に排気管温度低下割合Dを乗算し、その値を外気温Taに加算して排気管温度推定値Tpを求める。   Thereafter, the difference (Tpz-Ta) between the estimated exhaust pipe temperature Tpz immediately before the engine stop and the outside air temperature Ta (Tpz-Ta) is multiplied by the exhaust pipe temperature decrease rate D, and this value is added to the outside air temperature Ta to obtain the exhaust pipe. A temperature estimated value Tp is obtained.

Tp=(Tpz−Ta)×D+Ta
ところで、リニア空燃比センサ10は、ヒータで加熱されて高温状態のときに凝縮水が付着して被水すると、センサ素子が割れてしまうことがある。
Tp = (Tpz−Ta) × D + Ta
By the way, when the linear air-fuel ratio sensor 10 is heated by a heater and is in a high temperature state and condensed water adheres and gets wet, the sensor element may be broken.

これらの事情を考慮して、本実施例では、凝縮水量推定値Mconが所定値M1以上になって被水する可能性が高くなったときに、リニア空燃比センサ10のヒータ制御を禁止(又は制限)する。これにより、被水によるリニア空燃比センサ10の故障や異常動作を未然に防止すると共に、被水によってリニア空燃比センサ10のヒータが正常動作できない状態を、リニア空燃比センサ10のヒータの異常と誤診断してしまうことを未然に防止する。   In consideration of these circumstances, in the present embodiment, the heater control of the linear air-fuel ratio sensor 10 is prohibited (or when the estimated condensate amount Mcon becomes equal to or greater than the predetermined value M1 and the possibility of being flooded increases (or Restrict. As a result, failure or abnormal operation of the linear air-fuel ratio sensor 10 due to flooding can be prevented in advance, and a state where the heater of the linear air-fuel ratio sensor 10 cannot normally operate due to flooding is regarded as an abnormality of the heater of the linear air-fuel ratio sensor 10. Preventing misdiagnosis in advance.

上記凝縮水量の推定値は、エンジンの始動直後は0kg(ドライ状態)からスタートするため、排気管モデルが演算する凝縮水量(推定値)と、リニア空燃比センサ10が被水しても素子割れが発生しない限界被水量(以下、被水耐力上限値と称す)とを比較する手法では、始動直後(時点t0)においては、その後に凝縮水量(推定値)が被水耐力上限値(通電閾値M1)を超えるか否か、言い換えれば、凝縮水量の最大値が通電閾値M1を超えるか否かが不明のため、リニア空燃比センサ10のヒータをON(通電)すべきか否かを判断できない。   Since the estimated value of the condensed water amount starts from 0 kg (dry state) immediately after the engine is started, the condensate amount (estimated value) calculated by the exhaust pipe model and the element crack even if the linear air-fuel ratio sensor 10 is submerged. In a method for comparing the limit water amount (hereinafter referred to as the water yield strength upper limit value) that does not generate water, immediately after the start (time point t0), the amount of condensed water (estimated value) becomes the water yield strength upper limit value (energization threshold value). Since it is unclear whether or not the maximum value of the condensed water amount exceeds the energization threshold value M1, it cannot be determined whether or not the heater of the linear air-fuel ratio sensor 10 should be turned on (energized).

したがって、本発明実施例では、次のような処理を行う。
すなわち、図11、図12に記載のように、始動時水温と始動時吸気温度(外気温)から、凝縮水量が最大となるワースト条件(ここでは、排熱が最少となるアイドル放置時)での凝縮水量(アイドル放置時凝縮水量)の最大値をマップで与える(条件Aの凝縮水量(A値)とする)。一方、上記した排気管モデルから演算される凝縮水量(推定値)を条件Bの凝縮水量(B値)とする。
Therefore, in the embodiment of the present invention, the following processing is performed.
That is, as described in FIG. 11 and FIG. 12, the worst condition in which the amount of condensed water is maximized from the starting water temperature and the starting intake air temperature (outside air temperature) (here, when idling is left where exhaust heat is minimized). The maximum value of the amount of condensed water (condensed water amount when idling) is given on a map (condensed water amount (A value) in condition A). On the other hand, the amount of condensed water (estimated value) calculated from the above-described exhaust pipe model is set as the amount of condensed water (B value) in Condition B.

排気管モデルから演算される条件Bの凝縮水量は、走行を開始すると、排熱が高くなるため、凝縮水の蒸発が早くなり、アイドル放置時に比べて、凝縮水量の減少が早くなる。   The amount of condensed water in the condition B calculated from the exhaust pipe model increases the exhaust heat when traveling is started, so that the condensed water evaporates faster and the amount of condensed water decreases more quickly than when idle.

そこで、始動後に、条件Aの凝縮水量から、正しく計算されている条件Bの凝縮水量へと切り換えを行う。その切り換えタイミングは、条件Bの凝縮水量が増加(最大値)から減少に転じた瞬間、即ち今回演算された凝縮水量が前回演算された凝縮水量より小となった時点とする(この時点において切り換え指令が発せられる)。   Therefore, after the start-up, the amount of condensed water in condition A is switched to the amount of condensed water in condition B calculated correctly. The switching timing is the moment when the amount of condensate in condition B starts to decrease from the increase (maximum value), that is, the time when the amount of condensate calculated this time becomes smaller than the amount of condensate calculated last time (switching at this time). A command is issued).

そして、ヒータへの通電開始タイミング判定に使用する凝縮水量として、前記排気管モデルにより演算される凝縮水量(B値)が最大値から減少に転じるまでは、ワースト条件(アイドル放置時)での凝縮水量推定値の最大値(A値)を用い、それ以後は前記排気管モデルにより演算される凝縮水量(B値)を用いるようにされ、エンジンを始動した際に、前記凝縮水量が被水耐力上限値(判定しきい値M1)を超えている場合は、前記凝縮水量が前記被水耐力上限値以下になるまでは、前記ヒータへの通電を禁止又は制限するようにされる。なお、始動時において条件Aの凝縮水量(A値)が被水耐力上限値(通電閾値M1)以下である場合は、凝縮水量がその後に通電閾値M1を超えることはないと考えられるので、始動直後の、例えばエンジン回転数が所定値N1を超えた時点でヒータへの通電を開始するようにされる。   Then, as the amount of condensed water used to determine the timing of starting energization of the heater, the condensation under worst conditions (when idling) is continued until the amount of condensed water (B value) calculated by the exhaust pipe model starts to decrease from the maximum value. The maximum value (A value) of the estimated water amount is used, and after that, the amount of condensed water (B value) calculated by the exhaust pipe model is used. When the upper limit value (determination threshold value M1) is exceeded, energization of the heater is prohibited or restricted until the amount of condensed water becomes equal to or less than the upper limit value of water resistance. When the amount of condensed water (A value) in condition A is equal to or less than the water yield strength upper limit (energization threshold M1) at the time of starting, it is considered that the amount of condensed water will not exceed the energization threshold M1 after that. Immediately after, for example, when the engine speed exceeds a predetermined value N1, energization of the heater is started.

ここで、本発明実施例のリニア空燃比センサ10のヒータ通電方法としては、エンジン始動時の冷却水温度や吸入空気温度や外気温度から予め当該温度域での凝縮水発生量を、例えば図11、図12に記載のマップで予測し、凝縮水量推定値Mconの通電閾値M1と比較することで、ヒータ通電の可否判断を行う。   Here, as a heater energization method of the linear air-fuel ratio sensor 10 of the embodiment of the present invention, the amount of condensed water generated in the temperature range in advance from the cooling water temperature, the intake air temperature, and the outside air temperature at the time of engine start, for example, FIG. Then, by predicting with the map shown in FIG. 12 and comparing with the energization threshold value M1 of the condensed water amount estimated value Mcon, it is determined whether or not heater energization is possible.

図8記載のように、凝縮水発生量予測値よりも通電閾値M1が大きい場合、始動時に該当水温域ではセンサ素子割れする程の凝縮水が発生しないことが予測できるため、エンジン始動直後からヒータを通電させる。   As shown in FIG. 8, when the energization threshold M1 is larger than the predicted amount of condensed water generation, it can be predicted that condensed water will not be generated to the extent that the sensor element will break in the corresponding water temperature range at the time of starting. Energize.

図9記載のように、凝縮水発生量予測値よりも通電閾値M1が小さい場合、センサ素子割れする程の凝縮水が発生する可能性があるため、始動直後にはヒータ通電を開始しない。始動した後に蒸発により凝縮水が減少し始めた時、所定値M1よりも凝縮水量推定値Mconが小さければ、センサ素子割れする程の凝縮水が発生しないと判断できるため、蒸発し始めた時点でヒータに通電開始する。   As shown in FIG. 9, when the energization threshold M1 is smaller than the predicted amount of condensed water generation, there is a possibility that condensed water is generated to the extent that the sensor element is broken. When the condensed water begins to decrease due to evaporation after starting, if the condensed water amount estimated value Mcon is smaller than the predetermined value M1, it can be determined that the condensed water is not generated enough to break the sensor element. Start energizing the heater.

図10記載のように、一方、始動した後に蒸発により凝縮水が減少し始めた時、所定値M1よりも凝縮水量推定値Mconが大きければ、センサ素子割れするため、凝縮水量推定値Mconが所定値M1以下となるまでヒータに通電しない。   On the other hand, as shown in FIG. 10, when the condensed water starts to decrease due to evaporation after starting, if the condensed water amount estimated value Mcon is larger than the predetermined value M1, the sensor element is broken, so the condensed water amount estimated value Mcon is predetermined. The heater is not energized until the value M1 or less.

このように本発明では、冷却水温度や吸入空気温度や外気温度から凝縮水発生量を予測して、予測された凝縮水発生量に基づいてヒータへの通電タイミングを可変するので、想定される温度領域に基づいて適切なタイミングでヒータへの通電タイミングを設定できるので、リニア空燃比センサ10の素子割れを防止できる。   Thus, in the present invention, the amount of condensed water generated is predicted from the cooling water temperature, the intake air temperature, and the outside air temperature, and the energization timing to the heater is varied based on the predicted amount of condensed water generated. Since energization timing to the heater can be set at an appropriate timing based on the temperature region, element cracking of the linear air-fuel ratio sensor 10 can be prevented.

1 制御装置
10 リニア空燃比センサ
20 検知素子
30 ヒータ
100 内燃機関
101 燃料噴射弁
102 点火プラグ
103 点火コイル
104 スロットル弁
110 水温センサ
111 クランク角センサ
112 カム角センサ
113 スロットルポジションセンサ
114 吸気管圧力センサ
115 吸入空気流量計
118 触媒
119 酸素センサ
120 コントロールユニット
121 吸気温センサ
122 排気温センサ
DESCRIPTION OF SYMBOLS 1 Control apparatus 10 Linear air fuel ratio sensor 20 Detection element 30 Heater 100 Internal combustion engine 101 Fuel injection valve 102 Spark plug 103 Ignition coil 104 Throttle valve 110 Water temperature sensor 111 Crank angle sensor 112 Cam angle sensor 113 Throttle position sensor 114 Intake pipe pressure sensor 115 Intake air flow meter 118 Catalyst 119 Oxygen sensor 120 Control unit 121 Intake air temperature sensor 122 Exhaust air temperature sensor

Claims (5)

内燃機関の排気管に設けられた排気ガスセンサを加熱するヒータの通電状態を制御する内燃機関の制御装置において、
内燃機関の燃料噴射量と吸入空気量とに基づいて燃焼により発生する水蒸気量を算出する水蒸気量算出手段と、
内燃機関の排出ガスの温度を推定又は検出する排出ガス温度取得手段と、
内燃機関の排気管の温度を推定又は検出する排気管温度取得手段と、
前記水蒸気量と前記排出ガス温度と前記排気管温度とに基づいて前記排気管内で生じる凝縮水量を推定する第一の凝縮水量推定手段と、
前記内燃機関始動時の冷却水温度と吸入空気温度と外気温度のうち少なくとも一つから予め想定される温度域での最大凝縮水量を予測する第二の凝縮水量推定手段と、
前記凝縮水量または前記最大凝縮水量が所定値以下と判定された場合に前記ヒータの通電を許可するよう制御する加熱制御手段と、を備えることを特徴とする内燃機関の制御装置。
In a control device for an internal combustion engine that controls an energization state of a heater that heats an exhaust gas sensor provided in an exhaust pipe of the internal combustion engine,
A water vapor amount calculating means for calculating a water vapor amount generated by combustion based on a fuel injection amount and an intake air amount of an internal combustion engine;
Exhaust gas temperature acquisition means for estimating or detecting the temperature of the exhaust gas of the internal combustion engine;
Exhaust pipe temperature acquisition means for estimating or detecting the temperature of the exhaust pipe of the internal combustion engine;
First condensate amount estimation means for estimating the amount of condensate generated in the exhaust pipe based on the water vapor amount, the exhaust gas temperature, and the exhaust pipe temperature;
A second condensate amount estimating means for predicting a maximum condensate amount in a temperature range preliminarily estimated from at least one of a cooling water temperature, an intake air temperature, and an outside air temperature when starting the internal combustion engine;
A control apparatus for an internal combustion engine, comprising: a heating control unit that controls to allow energization of the heater when the amount of condensed water or the maximum amount of condensed water is determined to be equal to or less than a predetermined value.
請求項1記載の内燃機関の制御装置において、
前記内燃機関の始動時に前記所定値と前記最大凝縮水量とを比較して前記所定値が大きい場合、
前記加熱制御手段は、始動後直ちに前記ヒータの通電を許可することを特徴とする内燃機関の制御装置。
The control apparatus for an internal combustion engine according to claim 1,
When the predetermined value is large by comparing the predetermined value and the maximum amount of condensed water when starting the internal combustion engine,
The control apparatus for an internal combustion engine, wherein the heating control means permits energization of the heater immediately after starting.
請求項1記載の内燃機関の制御装置において、
前記内燃機関始動時に前記所定値と前記最大凝縮水量とを比較して前記所定値が小さい場合、
前記加熱制御手段は、前記ヒータへの通電を許可しないことを特徴とする内燃機関の制御装置。
The control apparatus for an internal combustion engine according to claim 1,
When the predetermined value is small by comparing the predetermined value and the maximum amount of condensed water when the internal combustion engine is started,
The control apparatus for an internal combustion engine, wherein the heating control means does not permit energization of the heater.
請求項3記載の内燃機関の制御装置において、
前記内燃機関始動後に前記凝縮水量が蒸発による減少を始めた時点で前記所定値よりも小さい場合、
前記加熱制御手段は、前記ヒータへの通電を許可することを特徴とする内燃機関の制御装置。
The control apparatus for an internal combustion engine according to claim 3,
When the amount of condensed water after the internal combustion engine starts is smaller than the predetermined value when it starts to decrease due to evaporation,
The control device for an internal combustion engine, wherein the heating control means permits energization of the heater.
請求項3記載の内燃機関の制御装置において、
前記内燃機関始動後に前記凝縮水量が蒸発による減少を始めた時点で前記所定値よりも大きい場合、
前記加熱制御手段は、前記凝縮水量が前記所定値以下となるまで前記ヒータへの通電を許可しないことを特徴とする内燃機関の制御装置。
The control apparatus for an internal combustion engine according to claim 3,
When the amount of condensed water after starting the internal combustion engine is greater than the predetermined value when starting to decrease due to evaporation,
The control device for an internal combustion engine, wherein the heating control means does not permit energization of the heater until the amount of condensed water becomes equal to or less than the predetermined value.
JP2012105589A 2012-05-07 2012-05-07 Control device for internal combustion engine Pending JP2013234573A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012105589A JP2013234573A (en) 2012-05-07 2012-05-07 Control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012105589A JP2013234573A (en) 2012-05-07 2012-05-07 Control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2013234573A true JP2013234573A (en) 2013-11-21

Family

ID=49760888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012105589A Pending JP2013234573A (en) 2012-05-07 2012-05-07 Control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2013234573A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016222175A (en) * 2015-06-02 2016-12-28 トヨタ自動車株式会社 Information notification device
CN108798918A (en) * 2017-04-28 2018-11-13 丰田自动车株式会社 The control device of internal combustion engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016222175A (en) * 2015-06-02 2016-12-28 トヨタ自動車株式会社 Information notification device
CN108798918A (en) * 2017-04-28 2018-11-13 丰田自动车株式会社 The control device of internal combustion engine
CN108798918B (en) * 2017-04-28 2021-05-28 丰田自动车株式会社 Control device for internal combustion engine

Similar Documents

Publication Publication Date Title
JP5798059B2 (en) Engine control device
US8407986B2 (en) Method for operating a lambda sensor during the heating phase
JP2007009878A (en) Exhaust pipe temperature estimating device for internal combustion engine
JP2006220026A (en) Control device for internal combustion engine
JP6591680B2 (en) Exhaust pipe temperature estimation device and sensor heater control device for exhaust sensor using the same
JP4093919B2 (en) Control device for an internal combustion engine having an exhaust gas sensor with a heater
JP6550689B2 (en) Exhaust gas sensor heater control device
JP5379722B2 (en) Water temperature sensor abnormality determination device
JP5851333B2 (en) Control device for internal combustion engine
JP2012172535A (en) Engine control device
US8000883B2 (en) Control apparatus and method for air-fuel ratio sensor
JP2013234573A (en) Control device for internal combustion engine
JP4135380B2 (en) Exhaust gas sensor heater control device
JP4888426B2 (en) Exhaust gas sensor control device
JP2002256949A (en) Heater current application control device of air fuel ratio sensor
JP2008151004A (en) Fuel moisture content detecting method and heater current-carrying starting timing setting method using this method
JP3627335B2 (en) Heater control device for catalyst downstream air-fuel ratio sensor
JP2013189865A (en) Control device for exhaust gas sensor
JP5459124B2 (en) Catalyst temperature estimation device for idle stop vehicle
WO2014080846A1 (en) Gas concentration sensor and method for warming up same
JP2001073827A (en) Exhaust gas sensor and its control device
JP2003227400A (en) Temperature control device for air/fuel ratio sensor
JP3692847B2 (en) Oxygen concentration detector
JP2010014036A (en) Internal combustion engine stop time estimation device
JP5387553B2 (en) Vehicle control device