JP2003227400A - Temperature control device for air/fuel ratio sensor - Google Patents

Temperature control device for air/fuel ratio sensor

Info

Publication number
JP2003227400A
JP2003227400A JP2002025488A JP2002025488A JP2003227400A JP 2003227400 A JP2003227400 A JP 2003227400A JP 2002025488 A JP2002025488 A JP 2002025488A JP 2002025488 A JP2002025488 A JP 2002025488A JP 2003227400 A JP2003227400 A JP 2003227400A
Authority
JP
Japan
Prior art keywords
temperature
air
fuel ratio
ratio sensor
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002025488A
Other languages
Japanese (ja)
Inventor
Sueaki Inoue
季明 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002025488A priority Critical patent/JP2003227400A/en
Publication of JP2003227400A publication Critical patent/JP2003227400A/en
Pending legal-status Critical Current

Links

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To realize an early activation of an air/fuel ratio sensor without generating a thermal shock by controlling a calorific power by presuming a thermal transition of a protection means of the air/fuel ratio sensor. <P>SOLUTION: The air/fuel ratio sensor 6, 7 are provided with a heater 15 for imparting heat for activating a sensor element 16; and a protector 17 for protecting the sensor element 16. The controller 10 presumes a temperature of the protector 17 and judges that the presumption temperature arrives at a predetermined value at which wetted state is released. The controller switches the heater 15 to the previous heating state until the presumption temperature of the protector 17 arrives at a predetermined value and switches the heater 15 to the heating state having a larger calorific power than that of the previous heating state after it arrives at the predetermined state. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は内燃機関の空燃比セン
サの温度制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature control device for an air-fuel ratio sensor of an internal combustion engine.

【0002】[0002]

【従来技術】内燃機関の排気空燃比を検出し、燃料供給
量を目標値に精度よくフィードバック制御するために空
燃比センサが広く採用されている。
2. Description of the Related Art An air-fuel ratio sensor is widely used to detect the exhaust air-fuel ratio of an internal combustion engine and accurately perform feedback control of a fuel supply amount to a target value.

【0003】この空燃比センサは機関の始動直後など排
気系の温度が低いときには活性化せず、この状態では空
燃比を正確に検出することはできない。空燃比センサを
早期に活性化するために、空燃比のセンサの内部に電気
的なヒータを設け、低温時にヒータに通電して加熱し、
空燃比センサを暖めている。
This air-fuel ratio sensor is not activated when the temperature of the exhaust system is low, such as immediately after the engine is started, and the air-fuel ratio cannot be detected accurately in this state. In order to activate the air-fuel ratio sensor early, an electric heater is provided inside the air-fuel ratio sensor, and the heater is energized and heated at low temperature,
The air-fuel ratio sensor is warming up.

【0004】ところが、ヒータによる加熱中に空燃比セ
ンサに排気系の凝縮水が被水(付着)していると、空燃
比センサのセンサ素子がサーマルショックによりひび割
れを起こしたりする。
However, if condensed water in the exhaust system is adhered to the air-fuel ratio sensor during heating by the heater, the sensor element of the air-fuel ratio sensor may crack due to thermal shock.

【0005】そこで、特開平8−15213号、特開2
001−41923号公報により、機関始動直後など排
気管の温度を状態を検出しながら被水状態を判定し、ヒ
ータを作動させるまでの時間遅れを設定したり、弱電流
を通電したりして、被水が無くなってからヒータによる
定常的な加熱を行うことで、空燃比センサの割れを防い
でいる。
Therefore, JP-A-8-15213 and JP-A-2-15213
According to Japanese Patent Publication No. 001-41923, the temperature of the exhaust pipe is detected, such as immediately after the engine is started, to determine the wet state, and the time delay until the heater is activated is set, or a weak current is applied, The constant heating by the heater is performed after the water is removed, thereby preventing the air-fuel ratio sensor from cracking.

【0006】[0006]

【発明が解決しようとする課題】しかし、排気管温度は
かならずしも正確に空燃比センサの被水状態を正確に反
映しているとは限らず、とくに空燃比センサの外側に保
護用の金属プロテクタを配置しているものでは、金属プ
ロテクタの温度が排気管の温度推移よりも遅れて変化す
る。このため、このプロテクタが被水し、とくに氷点下
において氷結しているときなど、これらが排気熱などに
より完全に蒸発する前にヒータを定常電流で加熱したり
すると、プロテクタからの溶けた水がセンサ素子に触れ
たりしたときに、センサ素子が急激な温度変化により、
サーマルショックで割れたりするのである。
However, the exhaust pipe temperature does not always accurately reflect the wet state of the air-fuel ratio sensor, and in particular, a protective metal protector is provided outside the air-fuel ratio sensor. With the arrangement, the temperature of the metal protector changes later than the temperature transition of the exhaust pipe. For this reason, if this protector is exposed to water, especially when it is frozen below freezing, and if the heater is heated with a constant current before it completely evaporates due to exhaust heat, etc., the melted water from the protector will be detected. When touching the element, the sensor element may suddenly change its temperature,
It breaks due to thermal shock.

【0007】本発明はこのような問題を解決するために
提案されたもので、空燃比センサの保護手段の温度推移
を推定して、ヒータの作動を制御することで、サーマル
ショックを起こすことなく、空燃比センサの早期活性化
を可能とすることを目的とする。
The present invention has been proposed to solve such a problem. By estimating the temperature transition of the protection means of the air-fuel ratio sensor and controlling the operation of the heater, the present invention can avoid thermal shock. The purpose is to enable early activation of the air-fuel ratio sensor.

【0008】[0008]

【課題を解決するための手段】第1の発明は、センサ素
子の活性化のための熱量を付与する加温手段と、前記セ
ンサ素子を保護する保護手段とを備えた内燃機関の空燃
比センサにおいて、前記保護手段の温度を推定する手段
と、前記推定温度が前記保護手段の被水状態が解除され
る所定値に達したことを判定する手段と、前記保護手段
の推定温度が前記所定値に達するまでは前記加温手段を
予熱状態に、前記所定値に達した後は予熱状態よりも発
熱量の大きい加熱状態に切り換える切換手段と、を備え
たことを特徴とする。
SUMMARY OF THE INVENTION A first invention is an air-fuel ratio sensor for an internal combustion engine, comprising a heating means for applying a heat quantity for activating the sensor element and a protection means for protecting the sensor element. In the above, the means for estimating the temperature of the protection means, the means for determining that the estimated temperature has reached a predetermined value at which the water-exposed state of the protection means is released, and the estimated temperature for the protection means are the predetermined value. Switching means for switching the heating means to a preheated state until reaching a predetermined value, and to a heating state having a larger calorific value than the preheated state after reaching the predetermined value.

【0009】第2の発明は、第1の発明において、前記
温度推定手段は、機関始動後の排気ガスからの受熱量
と、加温手段からの予熱量とに基づいて前記保護手段の
温度を推定する。
In a second aspect based on the first aspect, the temperature estimation means determines the temperature of the protection means based on the amount of heat received from the exhaust gas after the engine is started and the amount of preheat from the heating means. presume.

【0010】第3の発明は、第1または第2の発明にお
いて、前記温度推定手段は、機関始動時の吸気温度に応
じて前記保護手段の温度の推定値を補正する。
In a third aspect based on the first or second aspect, the temperature estimating means corrects the estimated value of the temperature of the protecting means according to the intake air temperature at the time of starting the engine.

【0011】第4の発明は、第1から第3の発明におい
て、前記加温手段の予熱状態では前記センサ素子が被水
しても割れを生じない発熱量に設定される。
According to a fourth aspect of the present invention, in the first to third aspects of the present invention, in the preheating state of the heating means, the heat generation amount is set so that the sensor element is not cracked even when it is exposed to water.

【0012】[0012]

【作用・効果】第1の発明では、センサ素子の近傍にあ
り、センサ素子の被水状態を正確に反映できる保護手段
の温度を推定し、被水状態が解除されるまでは加温手段
を予熱し、解除後により発熱量の大きい加熱状態に切り
換えるので、センサ素子に被水したまま急速加熱したと
きに生じるセンサ素子の割れを確実に防止しつつ、セン
サ素子の早期の活性化が可能となる。
In the first aspect of the invention, the temperature of the protection means, which is in the vicinity of the sensor element and can accurately reflect the wet state of the sensor element, is estimated, and the heating means is used until the wet state is released. Since it is preheated and switched to a heating state in which the amount of heat generated is larger after release, it is possible to reliably prevent the sensor element from cracking when it is rapidly heated while it is exposed to water, while enabling early activation of the sensor element. Become.

【0013】第2の発明では、機関始動後に実際に保護
手段が受ける排気ガスからの熱量と、加温手段の予熱に
よる熱量とに基づいて、温度を推定するので、正確に被
水状態の判定が行える。
In the second aspect of the invention, the temperature is estimated based on the amount of heat from the exhaust gas actually received by the protection means after the engine is started and the amount of heat from the preheating of the heating means, so that the water-containing state can be accurately determined. Can be done.

【0014】第3の発明では、保護手段の温度は、機関
を始動するときの環境温度である、吸気温度に大きく依
存するので、吸気温度に基づいて初期温度の推定値を補
正することにより、より一層正確な温度推定が可能とな
る。
In the third aspect of the invention, the temperature of the protection means largely depends on the intake air temperature, which is the environmental temperature when the engine is started. Therefore, by correcting the estimated value of the initial temperature based on the intake air temperature, A more accurate temperature estimation is possible.

【0015】第4の発明では、予熱中にセンサ素子が被
水していても、発熱量が少ないのでサーマルショックに
よりセンサ素子が割れることはなく、かつその状態にお
いてセンサ素子の温度上昇を促すことができる。
In the fourth aspect of the invention, even if the sensor element is exposed to water during preheating, the amount of heat generated is small, so that the sensor element is not cracked by thermal shock, and the temperature rise of the sensor element is promoted in that state. You can

【0016】[0016]

【実施の形態】以下、本発明の実施の形態を図面にした
がって説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be described below with reference to the drawings.

【0017】図1において、1はエンジン本体、2は吸
気管、3は排気管で、吸気管1には吸気温度を検出する
吸気温センサ4が設けられる。排気管3には排気を浄化
するための触媒5が設けられ、その上流と下流にはそれ
ぞれ排気空燃比を検出するため空燃比センサ6、7が設
置される。
In FIG. 1, 1 is an engine body, 2 is an intake pipe, 3 is an exhaust pipe, and an intake temperature sensor 4 for detecting an intake temperature is provided in the intake pipe 1. A catalyst 5 for purifying the exhaust gas is provided in the exhaust pipe 3, and air-fuel ratio sensors 6 and 7 are installed upstream and downstream thereof for detecting the exhaust air-fuel ratio, respectively.

【0018】エンジン本体1には燃料噴射弁8により燃
料が供給されるが、この燃料の供給量を運転状態に応じ
た目標空燃比となるように制御するためにコントローラ
10が備えられる。
Fuel is supplied to the engine main body 1 by the fuel injection valve 8, and a controller 10 is provided for controlling the supply amount of the fuel so as to attain a target air-fuel ratio according to the operating condition.

【0019】また、前記コントローラ10は、図2にも
示すように、機関低温始動直後などに各排気センサ6、
7を早期に活性化するために、各排気センサ6、7の内
部に設けられる電気的なヒータ15に対する通電も制御
する。
Further, as shown in FIG. 2, the controller 10 controls each exhaust sensor 6 immediately after starting the engine at low temperature.
In order to activate 7 early, the energization to the electric heater 15 provided inside each exhaust sensor 6, 7 is also controlled.

【0020】排気管3に取付けられる空燃比センサ6、
7は同一的な構造を有するため、一方のみを示すが、セ
ンサ素子16の中央の空洞部にヒータ15が配置され、
またセンサ素子16の外側にはその周囲と一定の隙間を
隔てて保護手段としての金属筒状のプロテクタ17が配
置される。プロテクタ17には多数の小孔があけられ、
小孔を通して排気がセンサ素子16に接触するようにな
っている。
An air-fuel ratio sensor 6 attached to the exhaust pipe 3,
Since 7 has the same structure, only one is shown, but the heater 15 is arranged in the central cavity of the sensor element 16,
Further, a protector 17 in the form of a metal cylinder is arranged outside the sensor element 16 as a protection means with a certain gap from the surroundings. The protector 17 has many small holes,
The exhaust gas comes into contact with the sensor element 16 through the small hole.

【0021】前記コントローラ10には、コントローラ
10には運転状態を代表する信号として、エンジンクラ
ンク角センサ11からの回転速度信号、スロットル開度
センサ12からのスロットル開度信号、エンジン冷却水
温センサ13からの冷却水温信号などと共に、前記排気
空燃比センサ6、7からの触媒上流と下流の排気の空燃
比信号、吸気温センサ4からの吸気温度信号などが入力
し、これらに基づいて前記した燃料噴射量を制御し、ま
た空燃比センサ6、7に対する加熱制御を行うようにな
っている。
In the controller 10, as signals representative of an operating state, the controller 10 outputs a rotation speed signal from the engine crank angle sensor 11, a throttle opening signal from the throttle opening sensor 12, and an engine cooling water temperature sensor 13. Together with the cooling water temperature signal of the exhaust air-fuel ratio sensor 6, 7, the air-fuel ratio signal of the exhaust gas upstream and downstream of the catalyst from the exhaust air-fuel ratio sensor 6, 7, the intake air temperature signal from the intake air temperature sensor 4, etc. The amount is controlled, and heating control for the air-fuel ratio sensors 6 and 7 is performed.

【0022】いま、ここでコントローラ10によるヒー
タ15に対する通電制御について図3のフローチャート
にしたがって説明する。なお、このフローは一定の時間
周期で繰り返し実行される。
Now, the energization control of the heater 15 by the controller 10 will be described with reference to the flowchart of FIG. It should be noted that this flow is repeatedly executed at regular time intervals.

【0023】ステップS1でエンジンの始動が開始され
たら、ステップS2でエンジン冷却水温あるいは油温が
所定値以上であるかどうかを判定する。空燃比センサ
6、7が排気の凝縮水により被水しないほど、十分にエ
ンジン温度か高くなっているときにはステップS6に移
行して、ヒータ15の通電デューティ値を最大状態に制
御する。
When the engine is started in step S1, it is determined in step S2 whether the engine cooling water temperature or the oil temperature is equal to or higher than a predetermined value. When the engine temperature is sufficiently high so that the air-fuel ratio sensors 6 and 7 are not exposed to the condensed water of the exhaust gas, the process proceeds to step S6, and the energization duty value of the heater 15 is controlled to the maximum state.

【0024】しかし、ステップS2でエンジン冷却水温
や油温が十分に高くなっていないときは、ステップS3
に進んで、ヒータ15に対する通電を予熱制御による低
デューティ値として緩やかな加熱を行う。
However, when the engine cooling water temperature and the oil temperature are not sufficiently high in step S2, step S3
Then, the heater 15 is energized to a low duty value by the preheating control to perform gentle heating.

【0025】プロテクタ内部に凝縮水が露結したままヒ
ータ通電を行うとセンサ素子16が急激に温度上昇し、
このとき露結した水が溶け、センサ素子16に接触、被
水すると、サーマルショックによりセンサ素子16が割
れたりする。そこで、まず、サーマルショックを生じな
い程度の発熱量でゆっくりと加熱する。
When the heater is energized while the condensed water is condensing inside the protector, the temperature of the sensor element 16 rapidly rises,
At this time, when the dewed water is melted, comes into contact with the sensor element 16 and is exposed to water, the sensor element 16 is cracked due to thermal shock. Therefore, first, heating is performed slowly with a heat generation amount that does not cause a thermal shock.

【0026】プロテクタ17の凝縮水が確実に蒸発して
からヒータ15への通電を最大状態にするために、プロ
テクタ17の温度状態を正確に推定する必要がある。そ
こでステップS4では、空燃比センサ6、7のプロテク
タ内壁温度を推定する。
It is necessary to accurately estimate the temperature state of the protector 17 in order to maximize the energization of the heater 15 after the condensed water of the protector 17 is surely evaporated. Therefore, in step S4, the protector inner wall temperature of the air-fuel ratio sensors 6 and 7 is estimated.

【0027】プロテクタ17の温度は、基本的にはエン
ジン始動時の吸気温度に依存し、さらにエンジン始動後
には低デューティ制御によるヒータ予熱からの受熱分
と、排気ガスからの受熱分に応じて変化していく。
The temperature of the protector 17 basically depends on the intake air temperature when the engine is started, and after the engine is started, the temperature changes depending on the heat received from the heater preheat by the low duty control and the heat received from the exhaust gas. I will do it.

【0028】そこで、プロテクタ内壁推定温度TMPPROを
次のようにして算出している。
Therefore, the protector inner wall estimated temperature TMPPRO is calculated as follows.

【0029】いま、基本プロテクタ温度をTMPBASE、吸
気温補正係数KPROTM、始動時吸気温度STRTAN、また基本
吸気温度(20℃)KPROTHとすると、 KPROTH<STRTANのとき TMPPRO=TMPBASE KPROTH≧STRTANのとき TMPPRO=TMPBASE−KPROTH×STRTAN 始動時の吸気温度が所定の基本吸気温度20℃を境にして
その影響が大きく変化し、吸気温度が低いときには温度
に応じた補正を行い、したがってTMPPROは吸気温度が低
いほど小さな値となる。これに対して吸気温度が基本吸
気温度よりも高いときには補正を行わない。
Now, assuming that the basic protector temperature is TMPBASE, the intake air temperature correction coefficient KPROTM, the starting intake air temperature STRTAN, and the basic intake air temperature (20 ° C) KPROTH, when KPROTH <STRTAN, TMPPRO = TMPBASE KPROTH ≥ STRTAN, TMPPRO = TMPBASE-KPROTH x STRTAN The influence of the intake air temperature at the time of start changes greatly at a predetermined basic intake air temperature of 20 ° C, and when the intake air temperature is low, correction is performed according to the temperature, so TMPPRO is the lower the intake air temperature. It will be a small value. On the other hand, when the intake air temperature is higher than the basic intake air temperature, no correction is made.

【0030】次に前記基本プロテクタ温度TMPBASEは、
ヒータ予熱による温度変化分に相当する基本プロテクタ
温度1をTMPBASE1、排気ガスによる温度変化分に相当す
る基本プロテクタ温度2をTMPBASE2とし、またそれぞれ
の重み係数KAPRO1、KAPRO2とすると、 TMPBASE=KAPRO1×TMPBASE1+KAPRO2×TMPBASE2 として求める。そして、これら基本プロテクタ温度1、
2は、機関始動からの経過時間に応じて変化していくの
で、フローの繰り返しの単位時間毎に次のようにして更
新していく。
Next, the basic protector temperature TMPBASE is
Assuming that the basic protector temperature 1 corresponding to the temperature change due to heater preheating is TMPBASE1, the basic protector temperature 2 corresponding to the temperature change due to exhaust gas is TMPBASE2, and the weighting factors KAPRO1 and KAPRO2 are respectively, TMPBASE = KAPRO1 × TMPBASE1 + KAPRO2 × Request as TMPBASE2. And these basic protector temperatures 1,
Since No. 2 changes according to the elapsed time from engine start, it is updated as follows for each unit time when the flow is repeated.

【0031】 TMPBASE1(新)=TMPBASE1(旧)×(1−FCOEF)+PROST×FCOEF TMPBASE2(新)=TMPBASE2(旧)×(1−0.625×FCOEF)+PROST×(0.625 ×FCOEF) ただし、FCOEFはフィルタ時定数(一次遅れ)、PROSTは
エンジン定常運転時のプロテクタ内壁温で、例えばエン
ジン回転速度が2000rpmで、燃料噴射パルス幅が50msec
の状態が継続しているときにプロテクタ内壁温が一定値
に達している状態のときの温度を指す。また、排気ガス
による温度変化分については、ヒータ予熱よる温度変化
分に対して、ある遅れをもつので、0.625の重み付けを
行っている。
TMPBASE1 (new) = TMPBASE1 (old) x (1-FCOEF) + PROST x FCOEF TMPBASE2 (new) = TMPBASE2 (old) x (1-0.625 x FCOEF) + PROST x (0.625 x FCOEF) However, FCOEF is a filter Time constant (first-order delay), PROST is the protector inner wall temperature during engine steady operation, for example, engine speed is 2000 rpm, fuel injection pulse width is 50 msec.
The temperature when the protector inner wall temperature has reached a certain value while the above condition continues. The temperature change due to the exhaust gas has a certain delay with respect to the temperature change due to the heater preheating, and is therefore weighted by 0.625.

【0032】このようにしてプロテクタ内壁温度TMPPRO
を算出したら、ステップS5でプロテクタ内壁温度が、
凝縮水を十分に蒸発させてしまう温度である所定値SENH
ONまで上昇したかどうか判定し、所定の温度に達するま
で、ステップS4からステップS5の動作を繰り返す。
In this way, the protector inner wall temperature TMPPRO
Once calculated, in step S5, the protector inner wall temperature is
Predetermined value SENH, which is the temperature at which condensed water is sufficiently evaporated
It is determined whether the temperature has risen to ON, and the operations of steps S4 to S5 are repeated until the temperature reaches a predetermined temperature.

【0033】この所定値SENHONまで上昇する時間は、プ
ロテクタ17の初期温度が低いときほど長くかかる。
The time required to reach the predetermined value SENHON increases as the protector 17 has a lower initial temperature.

【0034】そして、ステップS5でプロテクタ内壁温
度TMPPROが所定値SENHONまで上昇したことを判定した
ら、ステップS6に進んでヒータ15に対する通電のデ
ューティ値を最大値MAXに切り換えるのである。
If it is determined in step S5 that the protector inner wall temperature TMPPRO has risen to the predetermined value SENHON, the process proceeds to step S6, and the duty value for energizing the heater 15 is switched to the maximum value MAX.

【0035】ステップS7でエンジンが停止されると、
制御は終了する。
When the engine is stopped in step S7,
Control ends.

【0036】したがって、本実施形態によれば、図4に
も示すように、エンジンが始動されると、空燃比センサ
6、7にはヒータ15により通電が開始されるが、吸気
温度に基づいて推定されたプロテクタ内壁温度が所定値
よりも低いときには、通電量は低く抑えられた、予熱制
御が行われる。
Therefore, according to the present embodiment, as shown in FIG. 4, when the engine is started, the air-fuel ratio sensors 6 and 7 are energized by the heater 15, but based on the intake air temperature. When the estimated inner wall temperature of the protector is lower than the predetermined value, the preheating control is performed while keeping the energization amount low.

【0037】排気センサ6、7のプロテクタ17の温度
は、この予熱制御とこの間の排気ガスの熱を受けて次第
に温度が上昇していく。プロテクタ17が排気中の凝縮
水で被水したり、あるいは凝縮水が氷結し、これらがこ
の温度上昇により蒸発していく過程で、仮にセンサ素子
16に接触しても、ヒータ15による加熱が緩やかに行
われるので、センサ素子16がサーマルショックにより
割れたりすることは防がれる。
The temperature of the protector 17 of the exhaust sensors 6 and 7 gradually rises due to the preheating control and the heat of the exhaust gas in the meantime. Even if the protector 17 is contacted with the sensor element 16 in the process where the protector 17 is flooded with condensed water in the exhaust or the condensed water is frozen and evaporates due to this temperature rise, heating by the heater 15 is gentle. Therefore, the sensor element 16 can be prevented from being cracked by a thermal shock.

【0038】そして、プロテクタ内壁温度が所定値に達
して、完全に蒸発が完了したことが判定されると、ヒー
タ15への通電が高デューティ値に切り換えられ、空燃
比センサ6、7の定常加熱が行われる。このときには、
センサ素子16は被水のおそれはなく、このためサーマ
ルショックにより割れたりするおそれは一切なくなるの
である。
When the temperature of the inner wall of the protector reaches a predetermined value and it is determined that the evaporation is completely completed, the energization of the heater 15 is switched to a high duty value, and the steady heating of the air-fuel ratio sensors 6, 7 is performed. Is done. At this time,
The sensor element 16 has no risk of being exposed to water, and therefore there is no risk of cracking due to thermal shock.

【0039】プロテクタ17の温度は、始動後に排気ガ
スによる受熱分と、ヒータ予熱分とにより上昇していく
が、所定値まで温度上昇する時間は、初期温度が低いと
きほど長くかかるが、本発明ではエンジン始動時のプロ
テクタ内壁温度を、そのときの吸気温度に基づいて補正
しているので、プロテクタ温度が所定値に達したことを
正確に判定することができ、この結果、空燃比センサ
6、7のセンサ素子16の割れを防ぎつつ、早期に空燃
比センサ6、7の活性化を図ることができる。
The temperature of the protector 17 rises after the start due to the amount of heat received by the exhaust gas and the amount of preheating of the heater. The time required for the temperature to rise to a predetermined value is longer as the initial temperature is lower. Since the protector inner wall temperature at engine start is corrected based on the intake air temperature at that time, it can be accurately determined that the protector temperature has reached the predetermined value, and as a result, the air-fuel ratio sensor 6, It is possible to activate the air-fuel ratio sensors 6, 7 early while preventing cracking of the sensor element 16 of No. 7.

【0040】本発明は上記の実施の形態に限定されず
に、その技術的な思想の範囲内において種々の変更がな
しうることは明白である。
It is obvious that the present invention is not limited to the above-mentioned embodiments, and various modifications can be made within the scope of the technical idea thereof.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施形態を示す構成図である。FIG. 1 is a configuration diagram showing an embodiment of the present invention.

【図2】同じく空燃比センサの要部の拡大図である。FIG. 2 is also an enlarged view of the main part of the air-fuel ratio sensor.

【図3】空燃比センサの温度制御動作を示すフローチャ
ートである。
FIG. 3 is a flowchart showing a temperature control operation of the air-fuel ratio sensor.

【図4】空燃比センサの温度制御時のタイミングチャー
トである。
FIG. 4 is a timing chart during temperature control of the air-fuel ratio sensor.

【符号の説明】[Explanation of symbols]

1 エンジン本体 2 吸気通路 3 排気通路 5 触媒 6 空燃比センサ 7 空燃比センサ 10 コントローラ 15 ヒータ 16 センサ素子 17 プロテクタ 1 engine body 2 Intake passage 3 exhaust passage 5 catalyst 6 Air-fuel ratio sensor 7 Air-fuel ratio sensor 10 controller 15 heater 16 sensor elements 17 protector

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】センサ素子の活性化のための熱量を付与す
る加温手段と、 前記センサ素子を保護する保護手段とを備えた内燃機関
の空燃比センサにおいて、 前記保護手段の温度を推定する手段と、 前記推定温度が前記保護手段の被水状態が解除される所
定値に達したことを判定する手段と、 前記保護手段の推定温度が前記所定値に達するまでは前
記加温手段を予熱状態に、前記所定値に達した後は予熱
状態よりも発熱量の大きい加熱状態に切り換える切換手
段と、を備えたことを特徴とする空燃比センサの温度制
御装置。
1. An air-fuel ratio sensor for an internal combustion engine, comprising: a heating means for applying a heat quantity for activating a sensor element; and a protection means for protecting the sensor element, wherein the temperature of the protection means is estimated. Means for determining that the estimated temperature has reached a predetermined value at which the water-covered state of the protection means is released; and preheating the heating means until the estimated temperature of the protection means reaches the predetermined value. The temperature control device for an air-fuel ratio sensor, comprising: a switching means for switching to a heating state in which the amount of heat generated is larger than the preheating state after reaching the predetermined value.
【請求項2】前記温度推定手段は、機関始動後の排気ガ
スからの受熱量と、加温手段からの予熱量とに基づいて
前記保護手段の温度を推定する請求項1に記載の空燃比
センサの温度制御装置。
2. The air-fuel ratio according to claim 1, wherein the temperature estimation means estimates the temperature of the protection means based on the amount of heat received from the exhaust gas after the engine is started and the amount of preheat from the heating means. Sensor temperature control device.
【請求項3】前記温度推定手段は、機関始動時の吸気温
度に応じて前記保護手段の温度の推定値を補正する請求
項1または2に記載の空燃比センサの温度制御装置。
3. The temperature control device for an air-fuel ratio sensor according to claim 1, wherein the temperature estimating means corrects the estimated value of the temperature of the protecting means in accordance with the intake air temperature at the time of starting the engine.
【請求項4】前記加温手段の予熱状態では前記センサ素
子が被水しても割れを生じない発熱量に設定される請求
項1〜3のいずれか一つに記載の空燃比センサの温度制
御装置。
4. The temperature of the air-fuel ratio sensor according to claim 1, wherein the temperature of the air-fuel ratio sensor is set such that the sensor element is not cracked when exposed to water in the preheating state of the heating means. Control device.
JP2002025488A 2002-02-01 2002-02-01 Temperature control device for air/fuel ratio sensor Pending JP2003227400A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002025488A JP2003227400A (en) 2002-02-01 2002-02-01 Temperature control device for air/fuel ratio sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002025488A JP2003227400A (en) 2002-02-01 2002-02-01 Temperature control device for air/fuel ratio sensor

Publications (1)

Publication Number Publication Date
JP2003227400A true JP2003227400A (en) 2003-08-15

Family

ID=27747630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002025488A Pending JP2003227400A (en) 2002-02-01 2002-02-01 Temperature control device for air/fuel ratio sensor

Country Status (1)

Country Link
JP (1) JP2003227400A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007010630A (en) * 2005-07-04 2007-01-18 Nissan Motor Co Ltd Heater controller for exhaust gas sensor
WO2007138412A3 (en) * 2006-05-24 2008-02-07 Toyota Motor Co Ltd Control apparatus and method for air-fuel ratio sensor
JP2008286572A (en) * 2007-05-16 2008-11-27 Toyota Motor Corp Gas sensor control device
JP2009281867A (en) * 2008-05-22 2009-12-03 Autonetworks Technologies Ltd Heater control device for sensor
JP2010117131A (en) * 2008-10-16 2010-05-27 Ngk Spark Plug Co Ltd Gas sensor system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007010630A (en) * 2005-07-04 2007-01-18 Nissan Motor Co Ltd Heater controller for exhaust gas sensor
WO2007138412A3 (en) * 2006-05-24 2008-02-07 Toyota Motor Co Ltd Control apparatus and method for air-fuel ratio sensor
US8000883B2 (en) 2006-05-24 2011-08-16 Toyota Jidosha Kabushiki Kaisha Control apparatus and method for air-fuel ratio sensor
JP2008286572A (en) * 2007-05-16 2008-11-27 Toyota Motor Corp Gas sensor control device
JP2009281867A (en) * 2008-05-22 2009-12-03 Autonetworks Technologies Ltd Heater control device for sensor
JP2010117131A (en) * 2008-10-16 2010-05-27 Ngk Spark Plug Co Ltd Gas sensor system

Similar Documents

Publication Publication Date Title
JP5798059B2 (en) Engine control device
JP3265895B2 (en) Air-fuel ratio sensor heater control device
US8362405B2 (en) Heater controller of exhaust gas sensor
JP6550689B2 (en) Exhaust gas sensor heater control device
JP2008286116A (en) Heater control device of exhaust gas sensor
JP6591680B2 (en) Exhaust pipe temperature estimation device and sensor heater control device for exhaust sensor using the same
WO2020085031A1 (en) Heater energization control device
JP4093919B2 (en) Control device for an internal combustion engine having an exhaust gas sensor with a heater
US20090093945A1 (en) Controller and control system for internal combustion engine
JP4706928B2 (en) Exhaust gas sensor heater control device
US8000883B2 (en) Control apparatus and method for air-fuel ratio sensor
JP2009250182A (en) Heating element control device
JP2003227400A (en) Temperature control device for air/fuel ratio sensor
JP4621984B2 (en) Exhaust gas sensor heater control device
WO2008108502A1 (en) Control device for internal combustion engine
JPH11264811A (en) Device for controlling heater of air-fuel ratio sensor
JP5851333B2 (en) Control device for internal combustion engine
JP4993314B2 (en) Exhaust gas sensor heater control device
JP2002339845A (en) Start control apparatus for internal combustion engine
JP2001073827A (en) Exhaust gas sensor and its control device
JP5041341B2 (en) Exhaust gas sensor heater control device
JP2013234573A (en) Control device for internal combustion engine
JP2003172177A (en) Heater controller for air-fuel ratio sensor
JP2010014036A (en) Internal combustion engine stop time estimation device
JP2003161202A (en) Control device for internal combustion engine