JP4706928B2 - Exhaust gas sensor heater control device - Google Patents

Exhaust gas sensor heater control device Download PDF

Info

Publication number
JP4706928B2
JP4706928B2 JP2006149163A JP2006149163A JP4706928B2 JP 4706928 B2 JP4706928 B2 JP 4706928B2 JP 2006149163 A JP2006149163 A JP 2006149163A JP 2006149163 A JP2006149163 A JP 2006149163A JP 4706928 B2 JP4706928 B2 JP 4706928B2
Authority
JP
Japan
Prior art keywords
temperature
heater
time
cooling water
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006149163A
Other languages
Japanese (ja)
Other versions
JP2007321561A (en
Inventor
裕史 荘田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2006149163A priority Critical patent/JP4706928B2/en
Priority to US11/712,991 priority patent/US7805928B2/en
Publication of JP2007321561A publication Critical patent/JP2007321561A/en
Application granted granted Critical
Publication of JP4706928B2 publication Critical patent/JP4706928B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To maximally early activate an exhaust gas sensor, while preventing an element crack of the exhaust gas sensor with a heater by sticking of moisture in an exhaust pipe. <P>SOLUTION: Heater-off time Toff corresponding to the lowest temperature TPmin lowest among the cooling water temperature, the intake air temperature and the outside air temperature in starting, is calculated (Step 101 and 102). Afterwards, heater-off correction time Tofs1 corresponding to a difference &Delta;TP1 between the cooling water temperature TPwsta and the lowest temperature TPmin in starting (the difference &Delta;TP1 between the cooling water temperature TPwsta and the outside air temperature or the intake air temperature in starting, when engine stopping time is relatively short), is calculated. The heater-off time Toff is shortened as the difference &Delta;TP1 between the cooling water temperature TPwsta and the outside air temperature or the intake air temperature in stating becomes large, by correcting the heater-off time Toff by using this heater-off correction time Tofs1 (Step 103 to 106). Thus, the heater-off time Toff is shortened as the exhaust pipe temperature in starting becomes high. <P>COPYRIGHT: (C)2008,JPO&amp;INPIT

Description

本発明は、排出ガスセンサのセンサ素子を加熱するヒータを制御する排出ガスセンサのヒータ制御装置に関するものである。   The present invention relates to an exhaust gas sensor heater control device for controlling a heater for heating a sensor element of an exhaust gas sensor.

近年の電子制御化された内燃機関では、排気管に排出ガスの空燃比やリッチ/リーン等を検出する排出ガスセンサ(空燃比センサ、酸素センサ等)を配置し、この排出ガスセンサの出力に基づいて排出ガスの空燃比を目標空燃比に一致させるように燃料噴射量等をフィードバック制御するようにしている。一般に、排出ガスセンサは、センサ素子の温度が活性温度まで昇温しないと検出精度が悪いため、排出ガスセンサに内蔵したヒータでセンサ素子を加熱して排出ガスセンサの活性化を促進するようにしている。   In an internal combustion engine that has been electronically controlled in recent years, an exhaust gas sensor (such as an air-fuel ratio sensor or an oxygen sensor) that detects an air-fuel ratio of exhaust gas, rich / lean, or the like is disposed in an exhaust pipe, and based on the output of the exhaust gas sensor The fuel injection amount and the like are feedback controlled so that the air-fuel ratio of the exhaust gas matches the target air-fuel ratio. In general, since the exhaust gas sensor has low detection accuracy unless the temperature of the sensor element is raised to the activation temperature, the sensor element is heated by a heater built in the exhaust gas sensor to promote activation of the exhaust gas sensor.

ところで、内燃機関の排出ガスには、燃料と空気の燃焼反応によって生成された水蒸気が含まれており、内燃機関の始動直後で排気管の温度が低いときには、水蒸気を含んだ排出ガスが排気管内で冷やされるため、排気管内で排出ガス中の水蒸気が凝縮して凝縮水が生じることがある。このため、始動直後に排気管内で生じた凝縮水が排出ガスセンサのセンサ素子に付着する可能性があり、始動直後からセンサ素子をヒータで加熱すると、ヒータで加熱された高温のセンサ素子が凝縮水の付着による局所冷却(熱歪み)によって割れてしまう“素子割れ”が発生することがある。   By the way, the exhaust gas of the internal combustion engine contains water vapor generated by the combustion reaction of fuel and air. When the temperature of the exhaust pipe is low immediately after the start of the internal combustion engine, the exhaust gas containing water vapor is Therefore, the water vapor in the exhaust gas may condense in the exhaust pipe, resulting in condensed water. For this reason, there is a possibility that the condensed water generated in the exhaust pipe immediately after the start adheres to the sensor element of the exhaust gas sensor. When the sensor element is heated with the heater immediately after the start, the high temperature sensor element heated by the heater is condensed water. “Element cracking” may occur due to local cooling (thermal strain) due to the adhesion of silicon.

この対策として、特許文献1(特開2003−328821号公報)に記載されているように、内燃機関の停止から始動までの停止時間が短い再始動時であると判定した場合(つまり始動時の排気管温度が高く排気管内で凝縮水がほとんど発生しないと判定した場合)には、始動時からヒータへの通電を開始し、再始動時ではないと判定した場合には、冷却水温に応じてヒータオフ時間を設定し、始動からヒータオフ時間が経過した時点で、排気管温度が排気管内で凝縮水が発生しない温度まで上昇したと判断して、ヒータへの通電を開始するようにしたものがある。   As a countermeasure, as described in Patent Document 1 (Japanese Patent Application Laid-Open No. 2003-328821), when it is determined that the stop time from the stop to the start of the internal combustion engine is a short restart (that is, at the start) If the exhaust pipe temperature is high and it is determined that almost no condensed water is generated in the exhaust pipe), the heater is energized from the start, and if it is not restarted, There is a heater off time that is set, and when the heater off time has elapsed from the start, the exhaust pipe temperature is judged to have risen to a temperature at which no condensed water is generated in the exhaust pipe, and energization of the heater is started. .

また、特許文献2(特公平6−90167号公報)に記載されているように、排気管に温度センサを取り付け、この温度センサで検出した排気管温度が所定温度以下のときには、排気管内に凝縮水が存在すると判断して、ヒータによる排出ガスセンサの加熱を禁止するようにしたものがある。   Further, as described in Patent Document 2 (Japanese Patent Publication No. 6-90167), a temperature sensor is attached to the exhaust pipe, and when the exhaust pipe temperature detected by this temperature sensor is lower than a predetermined temperature, it is condensed in the exhaust pipe. There is one that judges that water is present and prohibits heating of the exhaust gas sensor by the heater.

更に、特許文献3(特開2002−48749号公報)に記載されているように、内燃機関の運転状態に基づいて排出ガス熱量(又は排出ガス温度)を算出し、この排出ガス熱量(又は排出ガス温度)と、排出ガスと排気管との間の熱伝達及び排気管と外気との間の熱伝達を数学的にモデル化した熱伝達モデルとに基づいて排気管温度を推定し、この排気管温度が排気管内で水分が結露しない温度まで上昇したときに、ヒータによる排出ガスセンサの加熱を開始するようにしたものもある。
特開2003−328821号公報(第2頁等) 特公平6−90167号公報(第1頁等) 特開2002−48749号公報(第2頁等)
Further, as described in Patent Document 3 (Japanese Patent Laid-Open No. 2002-48749), an exhaust gas calorific value (or exhaust gas temperature) is calculated based on the operating state of the internal combustion engine, and the exhaust gas calorific value (or exhaust gas) is calculated. The exhaust pipe temperature is estimated based on the gas temperature) and the heat transfer model that mathematically models the heat transfer between the exhaust gas and the exhaust pipe and the heat transfer between the exhaust pipe and the outside air. In some cases, heating of the exhaust gas sensor by the heater is started when the tube temperature rises to a temperature at which moisture does not condense in the exhaust pipe.
JP 2003-328821 A (the second page etc.) Japanese Patent Publication No. 6-90167 (first page, etc.) JP 2002-48749 A (2nd page, etc.)

ところで、始動時の排気管温度が高いほど、始動後に排気管温度が凝縮水の発生しない温度まで上昇するのに必要な時間が短くなるため、排出ガスセンサの素子割れを防止するのに必要なヒータオフ時間も短くなる。   By the way, the higher the exhaust pipe temperature at start-up, the shorter the time required for the exhaust pipe temperature to rise to a temperature at which condensed water does not occur after start-up, so the heater off necessary to prevent cracks in the exhaust gas sensor Time is also shortened.

しかし、上記特許文献1の技術では、ヒータオフ時間を設定する際に、始動時の排気管温度を全く考慮せずに、単に冷却水温に応じてヒータオフ時間を設定するだけであるため、ヒータオフ時間を適正値に設定することができず、ヒータオフ時間が必要以上に長くなって、排出ガスセンサの活性化が遅れてしまう可能性があり、その分、空燃比フィードバック制御の開始が遅れて、排気エミッションが悪化するという欠点がある。   However, in the technique of Patent Document 1 described above, when setting the heater off time, the heater off time is simply set according to the cooling water temperature without considering the exhaust pipe temperature at the time of starting. It may not be possible to set an appropriate value, the heater off time may be longer than necessary, and activation of the exhaust gas sensor may be delayed. There is a drawback that it gets worse.

また、上記特許文献2の技術では、排気管温度を検出する温度センサを新たに設ける必要があり、その分、コストアップするという欠点がある。   Moreover, in the technique of the above-mentioned Patent Document 2, it is necessary to newly provide a temperature sensor for detecting the exhaust pipe temperature.

更に、上記特許文献3の技術では、内燃機関の運転状態に基づいて排出ガス熱量(又は排出ガス温度)を算出すると共に、この排出ガス熱量(又は排出ガス温度)と熱伝達モデルとを用いて排気管温度を算出する必要があるため、排気管温度の演算処理が複雑化して制御装置の演算負荷が増大するという欠点がある。   Further, in the technique of Patent Document 3, the exhaust gas heat quantity (or exhaust gas temperature) is calculated based on the operating state of the internal combustion engine, and the exhaust gas heat quantity (or exhaust gas temperature) and the heat transfer model are used. Since it is necessary to calculate the exhaust pipe temperature, there is a disadvantage that the calculation process of the exhaust pipe temperature is complicated and the calculation load of the control device increases.

本発明は、これらの事情を考慮してなされたものであり、従って本発明の目的は、排出ガスセンサの素子割れを防止しながら、排出ガスセンサをできるだけ早期に活性化することができると共に、低コスト化及び制御装置の負荷軽減の要求を満たすことができる排出ガスセンサのヒータ制御装置を提供することにある。   The present invention has been made in consideration of these circumstances. Therefore, the object of the present invention is to activate the exhaust gas sensor as early as possible while preventing element cracking of the exhaust gas sensor, and to reduce the cost. It is an object of the present invention to provide a heater control device for an exhaust gas sensor that can satisfy the demands for reducing the load on the control and control device.

上記目的を達成するために、請求項1に係る発明は、内燃機関の排気通路に設けられた排出ガスセンサのセンサ素子を加熱するヒータを備え、内燃機関の始動から所定のヒータオフ時間が経過した後にヒータによるセンサ素子の加熱を開始する排出ガスセンサのヒータ制御装置において、ヒータオフ時間補正手段によって内燃機関の前回の停止時の冷却水温と今回の始動時の冷却水温との差に応じてヒータオフ時間を補正するようにしたものであり、具体的には、内燃機関の前回の停止時の冷却水温と今回の始動時の冷却水温との差が小さいほど前記ヒータオフ時間を短くするように補正するようにしたものである。 To achieve the above object, the invention according to claim 1 is provided with a heater for heating the sensor element of the exhaust gas sensor provided in the exhaust passage of the internal combustion engine, and after a predetermined heater off time has elapsed since the start of the internal combustion engine. In the heater control device of the exhaust gas sensor that starts heating the sensor element by the heater, the heater off time is corrected by the heater off time correction means according to the difference between the cooling water temperature at the previous stop of the internal combustion engine and the cooling water temperature at the current start. der those such that is, specifically, to correct so as to shorten the extent the heater off time difference between the previous coolant temperature and the current start time of the cooling water temperature at the time of stop of the internal combustion engine is small It is what.

燃機関の停止時間が長くなるほど、始動時の排気通路の温度が低くなり、且つ、前回の停止時の冷却水温と今回の始動時の冷却水温との差が大きくなるため、前回の停止時の冷却水温と今回の始動時の冷却水温との差は、始動時の排気通路温度を反映した情報となる。従って、前回の停止時の冷却水温と今回の始動時の冷却水温との差に応じてヒータオフ時間を補正すれば、始動時の排気通路温度に応じてヒータオフ時間を変化させることができる。これにより、始動時の排気通路温度に応じて、始動後に排気通路温度が凝縮水の発生しない温度まで上昇するのに必要な時間(つまり排出ガスセンサの素子割れを防止するのに必要なヒータオフ時間)が変化するのに対応して、ヒータオフ時間を変化させて適正値に設定することができ、排気通路内の水分の付着による排出ガスセンサの素子割れを防止しながら、排出ガスセンサをできるだけ早期に活性化することができる。 More downtime of the inner combustion engine increases, the temperature of the exhaust passage at the time of starting is low, and, since the difference between the coolant temperature and the current start time of the cooling water temperature at the previous stop is large, the previous stop The difference between the cooling water temperature of this time and the cooling water temperature at the start of this time is information reflecting the exhaust passage temperature at the start. Therefore, if the heater off time is corrected according to the difference between the coolant temperature at the previous stop and the coolant temperature at the current start, the heater off time can be changed according to the exhaust passage temperature at the start. As a result, the time required for the exhaust passage temperature to rise to a temperature at which condensed water does not occur after the start according to the exhaust passage temperature at the start (that is, the heater off time necessary to prevent cracking of the exhaust gas sensor element) Can be set to an appropriate value by changing the heater off time, and the exhaust gas sensor can be activated as early as possible while preventing cracks in the exhaust gas sensor due to moisture adhering to the exhaust passage. can do.

本発明は、内燃機関の前回の停止時の冷却水温と今回の始動時の冷却水温との差が小さいほどヒータオフ時間を短くするように補正することを特徴とする。内燃機関の停止時間が短いほど、前回の停止時の冷却水温と今回の始動時の冷却水温との差が小さくなり、且つ、始動時の排気通路温度が高くなるため、前回の停止時の冷却水温と今回の始動時の冷却水温との差が小さくなるほどヒータオフ時間を短くするように補正すれば、始動時の排気通路温度が高くなるほど、始動後に排気通路温度が凝縮水の発生しない温度まで上昇するのに必要な時間が短くなるのに対応して、ヒータオフ時間を短くすることができ、その分、排出ガスセンサを早期に活性化することができる。
The present invention is characterized in that the heater off time is corrected to be shorter as the difference between the cooling water temperature at the previous stop of the internal combustion engine and the cooling water temperature at the current start is smaller. The shorter the stop time of the internal combustion engine, the smaller the difference between the coolant temperature at the previous stop and the coolant temperature at the current start, and the exhaust passage temperature at the start becomes higher. If correction is made so that the heater-off time is shortened as the difference between the water temperature and the cooling water temperature at the time of the start becomes smaller, the exhaust passage temperature at the start increases to a temperature at which no condensed water is generated after the start. Accordingly, the heater off time can be shortened correspondingly to the shortening of the time required to do so, and the exhaust gas sensor can be activated earlier.

以下、本発明を実施するための最良の形態を2つの実施例1,2を用いて説明する。   Hereinafter, the best mode for carrying out the present invention will be described using two Examples 1 and 2.

本発明の実施例1を図1乃至図3に基づいて説明する。
まず、図1に基づいてエンジン制御システム全体の概略構成を説明する。内燃機関であるエンジン11の吸気管12の最上流部には、エアクリーナ13が設けられ、このエアクリーナ13の下流側に、吸入空気量を検出するエアフローメータ14が設けられている。このエアフローメータ14の下流側には、モータ15によって開度調節されるスロットルバルブ16と、このスロットルバルブ16の開度(スロットル開度)を検出するスロットル開度センサ17とが設けられている。
A first embodiment of the present invention will be described with reference to FIGS.
First, a schematic configuration of the entire engine control system will be described with reference to FIG. An air cleaner 13 is provided at the most upstream portion of the intake pipe 12 of the engine 11 that is an internal combustion engine, and an air flow meter 14 that detects the intake air amount is provided downstream of the air cleaner 13. A throttle valve 16 whose opening is adjusted by a motor 15 and a throttle opening sensor 17 that detects the opening (throttle opening) of the throttle valve 16 are provided on the downstream side of the air flow meter 14.

更に、スロットルバルブ16の下流側には、サージタンク18が設けられ、このサージタンク18には、吸気管圧力を検出する吸気管圧力センサ19が設けられている。また、サージタンク18には、エンジン11の各気筒に空気を導入する吸気マニホールド20が設けられ、各気筒の吸気マニホールド20の吸気ポート近傍に、それぞれ燃料を噴射する燃料噴射弁21が取り付けられている。また、エンジン11のシリンダヘッドには、各気筒毎に点火プラグ22が取り付けられ、各点火プラグ22の火花放電によって筒内の混合気に着火される。   Further, a surge tank 18 is provided on the downstream side of the throttle valve 16, and an intake pipe pressure sensor 19 for detecting the intake pipe pressure is provided in the surge tank 18. The surge tank 18 is provided with an intake manifold 20 for introducing air into each cylinder of the engine 11, and a fuel injection valve 21 for injecting fuel is attached in the vicinity of the intake port of the intake manifold 20 of each cylinder. Yes. An ignition plug 22 is attached to the cylinder head of the engine 11 for each cylinder, and the air-fuel mixture in the cylinder is ignited by spark discharge of each ignition plug 22.

一方、エンジン11の排気管23(排気通路)には、排出ガスの空燃比又はリッチ/リーン等を検出する排出ガスセンサ24(空燃比センサ、酸素センサ等)が設けられ、この排出ガスセンサ24には、センサ素子を加熱するヒータ(図示せず)が内蔵されている(又は外付けされている)。この排出ガスセンサ24の下流側に、排出ガスを浄化する三元触媒等の触媒25が設けられている。   On the other hand, the exhaust pipe 23 (exhaust passage) of the engine 11 is provided with an exhaust gas sensor 24 (air-fuel ratio sensor, oxygen sensor, etc.) for detecting the air-fuel ratio or rich / lean of the exhaust gas. A heater (not shown) for heating the sensor element is built in (or attached externally). A catalyst 25 such as a three-way catalyst for purifying exhaust gas is provided on the downstream side of the exhaust gas sensor 24.

また、エンジン11のシリンダブロックには、冷却水温を検出する冷却水温センサ26や、エンジン11のクランク軸27が所定クランク角回転する毎にパルス信号を出力するクランク角センサ28が取り付けられている。このクランク角センサ28の出力信号に基づいてクランク角やエンジン回転速度が検出される。また、外気温センサ30によって外気温が検出され、吸気温センサ31によって吸気温が検出される。   A cooling water temperature sensor 26 that detects the cooling water temperature and a crank angle sensor 28 that outputs a pulse signal each time the crankshaft 27 of the engine 11 rotates a predetermined crank angle are attached to the cylinder block of the engine 11. Based on the output signal of the crank angle sensor 28, the crank angle and the engine speed are detected. The outside air temperature sensor 30 detects the outside air temperature, and the intake air temperature sensor 31 detects the intake air temperature.

これら各種センサの出力は、制御回路(以下「ECU」と表記する)29に入力される。このECU29は、マイクロコンピュータを主体として構成され、内蔵されたROM(記憶媒体)に記憶された各種のエンジン制御プログラムを実行することで、エンジン運転状態に応じて燃料噴射弁21の燃料噴射量や点火プラグ22の点火時期を制御する。   Outputs of these various sensors are input to a control circuit (hereinafter referred to as “ECU”) 29. The ECU 29 is mainly composed of a microcomputer, and executes various engine control programs stored in a built-in ROM (storage medium) to thereby determine the fuel injection amount of the fuel injection valve 21 according to the engine operating state. The ignition timing of the spark plug 22 is controlled.

その際、ECU29は、排出ガスセンサ24の出力に基づいて排出ガスの空燃比を目標空燃比に一致させるように燃料噴射量等をフィードバック制御することで、排出ガスの空燃比が触媒25の浄化ウインドの範囲内になるように制御して、触媒25の排出ガス浄化効率を高めるようにしている。また、排出ガスセンサ24は、センサ素子の温度が活性温度(例えば750℃)まで昇温しないと検出精度が悪いため、ECU29は、センサ素子の温度が活性温度になるように排出ガスセンサ24のヒータの通電を制御してセンサ素子の加熱を制御する。   At that time, the ECU 29 feedback-controls the fuel injection amount and the like so that the air-fuel ratio of the exhaust gas matches the target air-fuel ratio based on the output of the exhaust gas sensor 24, so that the air-fuel ratio of the exhaust gas becomes the purification window of the catalyst 25. Thus, the exhaust gas purification efficiency of the catalyst 25 is increased. Further, since the exhaust gas sensor 24 has poor detection accuracy unless the temperature of the sensor element rises to the activation temperature (for example, 750 ° C.), the ECU 29 sets the heater of the exhaust gas sensor 24 so that the temperature of the sensor element becomes the activation temperature. The energization is controlled to control the heating of the sensor element.

ところで、エンジン11の排出ガスには、燃料と空気の燃焼反応によって生成された水蒸気が含まれており、エンジン11の始動直後で排気管23の温度が低いときには、水蒸気を含んだ排出ガスが排気管23内で冷やされるため、排気管23内で排出ガス中の水蒸気が凝縮して凝縮水が生じることがある。このため、始動直後に排気管23内で生じた凝縮水が排出ガスセンサ24のセンサ素子に付着する可能性があり、始動直後からセンサ素子をヒータで加熱すると、ヒータで加熱された高温のセンサ素子が凝縮水の付着による局所冷却(熱歪み)によって割れてしまう“素子割れ”が発生することがある。   By the way, the exhaust gas of the engine 11 contains water vapor generated by the combustion reaction of fuel and air. When the temperature of the exhaust pipe 23 is low immediately after the engine 11 is started, the exhaust gas containing water vapor is exhausted. Since it is cooled in the pipe 23, the water vapor in the exhaust gas may condense in the exhaust pipe 23 to produce condensed water. For this reason, there is a possibility that the condensed water generated in the exhaust pipe 23 immediately after the start adheres to the sensor element of the exhaust gas sensor 24. When the sensor element is heated by the heater immediately after the start, the high-temperature sensor element heated by the heater However, “element cracking” may occur due to local cooling (thermal strain) due to adhesion of condensed water.

この対策として、ECU29は、エンジン始動から所定のヒータオフ時間が経過したときに、排気管23の温度が排気管23内で凝縮水が発生しない温度まで上昇したと判断して、排出ガスセンサ24のヒータによるセンサ素子の加熱を開始するようにしている。   As a countermeasure, the ECU 29 determines that the temperature of the exhaust pipe 23 has risen to a temperature at which condensed water is not generated in the exhaust pipe 23 when a predetermined heater-off time has elapsed since the start of the engine. The heating of the sensor element is started.

その際、ECU29は、後述する図2のヒータオフ時間設定プログラムを実行することで、始動時の冷却水温と吸気温と外気温のうちで最も低い温度である最低温度TPmin に応じてヒータオフ時間Toff を算出すると共に、始動時の冷却水温TPwstaと最低温度TPmin との差ΔTP1 に応じてヒータオフ補正時間Tofs1を算出し、最低温度TPmin に応じたヒータオフ時間Toff からヒータオフ補正時間Tofs1を差し引くことで最終的なヒータオフ時間Toff を設定するようにしている。   At that time, the ECU 29 executes a heater-off time setting program shown in FIG. 2 described later to set the heater-off time Toff in accordance with the lowest temperature TPmin that is the lowest among the cooling water temperature, the intake air temperature, and the outside air temperature at the time of starting. In addition to calculating, the heater off correction time Tofs1 is calculated according to the difference ΔTP1 between the cooling water temperature TPwsta and the minimum temperature TPmin at the start, and the heater off correction time Tofs1 is subtracted from the heater off time Toff corresponding to the minimum temperature TPmin. The heater off time Toff is set.

以下、ECU29が実行する図2のヒータオフ時間設定プログラムの処理内容を説明する。図2に示すヒータオフ時間設定プログラムは、エンジン始動時に実行される。本プログラムが起動されると、まず、ステップ101で、始動時の冷却水温と吸気温と外気温のうちで最も低い温度を最低温度TPmin として算出する。その際、前回のエンジン停止から今回のエンジン始動までのエンジン停止時間が比較的短い場合には、始動時の冷却水温が外気温や吸気温よりも高くなるため、外気温又は吸気温が最低温度TPmin となる。   Hereinafter, the processing content of the heater-off time setting program of FIG. 2 executed by the ECU 29 will be described. The heater off time setting program shown in FIG. 2 is executed when the engine is started. When this program is started, first, in step 101, the lowest temperature among the cooling water temperature, the intake air temperature, and the outside air temperature at the start is calculated as the minimum temperature TPmin. At that time, if the engine stop time from the previous engine stop to the current engine start is relatively short, the cooling water temperature at the time of starting becomes higher than the outside air temperature or the intake air temperature, so the outside air temperature or the intake air temperature is the lowest temperature. TPmin.

この後、ステップ102に進み、最低温度TPmin に応じたヒータオフ時間Toff をマップ又は数式等により算出する。一般に、最低温度TPmin (始動時の冷却水温と吸気温と外気温のうちで最も低い温度)が低くなるほど、始動時の排気管温度が低くなって、始動後に排気管温度が凝縮水の発生しない温度まで上昇するのに必要な時間(つまり排出ガスセンサ24の素子割れを防止するのに必要なヒータオフ時間)が長くなるため、ヒータオフ時間Toff のマップ又は数式等は、最低温度TPmin が低くなるほどヒータオフ時間Toff が長くなるように設定されている。   Thereafter, the process proceeds to step 102, where the heater off time Toff corresponding to the minimum temperature TPmin is calculated by a map or a mathematical formula. In general, the lower the minimum temperature TPmin (the lowest temperature among the cooling water temperature, the intake air temperature, and the outside air temperature at the start) is, the lower the exhaust pipe temperature at the start is, and the exhaust pipe temperature is not generated after the start. Since the time required to rise to the temperature (that is, the heater off time required to prevent cracking of the exhaust gas sensor 24) becomes longer, the heater off time Toff map or formula shows that the heater off time decreases as the minimum temperature TPmin decreases. Toff is set to be long.

この後、ステップ103に進み、始動時の冷却水温TPwstaを読み込んだ後、ステップ104に進み、始動時の冷却水温TPwstaと最低温度TPmin との差ΔTP1 を算出する。その際、エンジン停止時間が比較的短い場合には、外気温又は吸気温が最低温度TPmin となるため、始動時の冷却水温TPwstaと外気温又は吸気温との差ΔTP1 を算出することになる。   Thereafter, the process proceeds to step 103, and the cooling water temperature TPwsta at the start is read. Then, the process proceeds to step 104, and a difference ΔTP1 between the cooling water temperature TPwsta at the start and the minimum temperature TPmin is calculated. At that time, when the engine stop time is relatively short, the outside air temperature or the intake air temperature becomes the minimum temperature TPmin, and therefore the difference ΔTP1 between the cooling water temperature TPwsta at the start and the outside air temperature or the intake air temperature is calculated.

この後、ステップ105に進み、図3に示すヒータオフ補正時間Tofs1のマップを参照して、始動時の冷却水温TPwstaと最低温度TPmin との差ΔTP1 に応じたヒータオフ補正時間Tofs1を算出する。   Thereafter, the routine proceeds to step 105, where the heater off correction time Tofs1 corresponding to the difference ΔTP1 between the cooling water temperature TPwsta and the minimum temperature TPmin at the start is calculated with reference to the map of the heater off correction time Tofs1 shown in FIG.

図3のヒータオフ補正時間Tofs1のマップは、始動時の冷却水温TPwstaと最低温度TPmin との差ΔTP1 (エンジン停止時間が比較的短い場合には、始動時の冷却水温TPwstaと外気温又は吸気温との差ΔTP1 )が大きくなるほど、ヒータオフ補正時間Tofs1が大きくなって、ヒータオフ時間Toff が短くなるように設定されている。   3 is a difference ΔTP1 between the cooling water temperature TPwsta at the start and the minimum temperature TPmin (when the engine stop time is relatively short, the cooling water temperature TPwsta at the start and the outside air temperature or the intake air temperature The heater OFF correction time Tofs1 is increased and the heater OFF time Toff is shortened as the difference ΔTP1) increases.

エンジン停止時間が比較的短い場合には、エンジン停止時間が短いほど、始動時の冷却水温TPwstaと外気温又は吸気温との差ΔTP1 が大きくなると共に、始動時の排気管温度が高くなるため、始動時の冷却水温TPwstaと外気温又は吸気温との差ΔTP1 が大きくなるほどヒータオフ時間Toff を短くするように補正すれば、始動時の排気管温度が高くなるほど、始動後に排気管温度が凝縮水の発生しない温度まで上昇するのに必要な時間が短くなるのに対応して、ヒータオフ時間Toff を短くすることができる。   When the engine stop time is relatively short, the shorter the engine stop time, the larger the difference ΔTP1 between the cooling water temperature TPwsta at the start and the outside air temperature or the intake air temperature, and the exhaust pipe temperature at the start increases. If the difference ΔTP1 between the cooling water temperature TPwsta at the start and the outside air temperature or the intake air temperature is increased, the heater off time Toff is corrected so that the exhaust pipe temperature at the start becomes higher. The heater off time Toff can be shortened corresponding to the shortening of the time required to rise to a temperature at which it does not occur.

この後、ステップ106に進み、最低温度TPmin に応じたヒータオフ時間Toff からヒータオフ補正時間Tofs1を差し引くことで、ヒータオフ時間Toff を補正して最終的なヒータオフ時間Toff を設定する。
Toff =Toff −Tofs1
これらのステップ105,106の処理が特許請求の範囲でいうヒータオフ時間補正手段としての役割を果たす。
Thereafter, the routine proceeds to step 106, where the heater off time Toff is corrected by subtracting the heater off correction time Tofs1 from the heater off time Toff corresponding to the minimum temperature TPmin to set the final heater off time Toff.
Toff = Toff -Tofs1
The processing of these steps 105 and 106 serves as a heater off time correction means in the claims.

以上説明した本実施例1では、始動時の冷却水温TPwstaと外気温(又は吸気温)との差ΔTP1 が、始動時の排気管温度を反映した情報となることに着目して、始動時の冷却水温TPwstaと外気温(又は吸気温)との差ΔTP1 に応じてヒータオフ時間Toff を補正するようにしたので、始動時の排気管温度に応じてヒータオフ時間Toff を変化させることができる。これにより、始動時の排気管温度が高くなるほど、始動後に排気管温度が凝縮水の発生しない温度まで上昇するのに必要な時間(つまり排出ガスセンサ24の素子割れを防止するのに必要なヒータオフ時間)が短くなるのに対応して、ヒータオフ時間Toff を短くすることができる。これにより、排気管23内の水分の付着による排出ガスセンサ24の素子割れを防止しながら、排出ガスセンサ24をできるだけ早期に活性化して早期に空燃比フィードバック制御を開始することができ、排気エミッションを向上させることができる。   In the first embodiment described above, paying attention to the fact that the difference ΔTP1 between the cooling water temperature TPwsta at the start and the outside air temperature (or the intake air temperature) is information reflecting the exhaust pipe temperature at the start. Since the heater off time Toff is corrected according to the difference ΔTP1 between the cooling water temperature TPwsta and the outside air temperature (or the intake air temperature), the heater off time Toff can be changed according to the exhaust pipe temperature at the start. As a result, the higher the exhaust pipe temperature at the start, the longer the time required for the exhaust pipe temperature to rise to a temperature at which condensed water is not generated after the start (that is, the heater off time necessary to prevent cracking of the exhaust gas sensor 24). ) Is shortened, the heater off time Toff can be shortened. As a result, it is possible to activate the exhaust gas sensor 24 as early as possible and start air-fuel ratio feedback control as early as possible, while preventing element cracking of the exhaust gas sensor 24 due to moisture adhering to the exhaust pipe 23, thereby improving exhaust emission. Can be made.

しかも、始動時の冷却水温と外気温(又は吸気温)との差を始動時の排気管温度の情報として用いるため、排気管温度を検出する温度センサを新たに設ける必要がなく、低コスト化できると共に、排気管温度を算出するための複雑な演算処理を行う必要もなく、ECU29の演算負荷を軽減することができるという利点もある。   Moreover, since the difference between the cooling water temperature and the outside air temperature (or intake air temperature) at the time of starting is used as information on the exhaust pipe temperature at the time of starting, there is no need to newly provide a temperature sensor for detecting the exhaust pipe temperature, thereby reducing the cost. In addition, there is an advantage that it is not necessary to perform complicated calculation processing for calculating the exhaust pipe temperature, and the calculation load on the ECU 29 can be reduced.

尚、上記実施例1では、始動時の冷却水温と吸気温と外気温のうちで最も低い温度を最低温度TPmin とし、始動時の冷却水温TPwstaと最低温度TPmin との差ΔTP1 に応じてヒータオフ補正時間Tofs1を算出するようにしたが、始動時の冷却水温TPwstaと外気温との差ΔTP1 に応じてヒータオフ補正時間Tofs1を算出するようにしたり、或は、始動時の冷却水温TPwstaと吸気温との差ΔTP1 に応じてヒータオフ補正時間Tofs1を算出するようにしても良い。   In the first embodiment, the lowest temperature among the cooling water temperature, the intake air temperature, and the outside air temperature at the start is set as the minimum temperature TPmin, and the heater OFF correction is performed according to the difference ΔTP1 between the cooling water temperature TPwsta at the start and the minimum temperature TPmin. Although the time Tofs1 is calculated, the heater-off correction time Tofs1 is calculated according to the difference ΔTP1 between the cooling water temperature TPwsta at the start and the outside air temperature, or the cooling water temperature TPwsta at the start and the intake air temperature The heater off correction time Tofs1 may be calculated according to the difference ΔTP1.

次に、図4及び図5を用いて本発明の実施例2を説明する。
前記実施例1では、始動時の冷却水温TPwstaと最低温度TPmin との差ΔTP1 に応じてヒータオフ補正時間Tofs1を算出するようにしたが、本実施例2では、後述する図4のヒータオフ時間設定プログラムを実行することで、前回のエンジン停止時の冷却水温TPwstpと今回のエンジン始動時の冷却水温TPwstaとの差ΔTP2 に応じてヒータオフ補正時間Tofs2を算出するようにしている。
Next, Embodiment 2 of the present invention will be described with reference to FIGS.
In the first embodiment, the heater-off correction time Tofs1 is calculated according to the difference ΔTP1 between the cooling water temperature TPwsta and the minimum temperature TPmin at the time of starting. In the second embodiment, the heater-off time setting program of FIG. Is executed, the heater off correction time Tofs2 is calculated according to the difference ΔTP2 between the cooling water temperature TPwstp at the previous engine stop and the cooling water temperature TPwsta at the current engine start.

図4に示すヒータオフ時間設定プログラムでは、まず、ステップ201で、始動時の冷却水温と吸気温と外気温のうちの最低温度Tmin を算出した後、ステップ202に進み、最低温度TPmin に応じたヒータオフ時間Toff をマップ又は数式等により算出する。   In the heater off time setting program shown in FIG. 4, first, in step 201, the minimum temperature Tmin among the cooling water temperature, the intake air temperature, and the outside air temperature at the start is calculated, and then the process proceeds to step 202, where the heater off according to the minimum temperature TPmin is calculated. The time Toff is calculated by a map or a mathematical formula.

この後、ステップ203に進み、前回のエンジン停止時の冷却水温TPwstpを読み込む。このエンジン停止時の冷却水温TPwstpは、前回のエンジン停止直前に検出した冷却水温であり、エンジン停止中でも記憶値を保持できるバックアップRAM等の書き換え可能な不揮発性メモリに記憶したものである。   Thereafter, the process proceeds to step 203, and the coolant temperature TPwstp at the previous engine stop is read. The cooling water temperature TPwstp when the engine is stopped is a cooling water temperature detected immediately before the previous engine stop, and is stored in a rewritable nonvolatile memory such as a backup RAM that can hold a stored value even when the engine is stopped.

この後、ステップ204に進み、今回のエンジン始動時の冷却水温TPwstaを読み込んだ後、ステップ205に進み、前回のエンジン停止時の冷却水温TPwstpと今回のエンジン始動時の冷却水温TPwstaとの差ΔTP2 を算出する。   Thereafter, the process proceeds to step 204, and after reading the coolant temperature TPwsta at the time of the current engine start, the process proceeds to step 205, where the difference ΔTP2 between the coolant temperature TPwstp at the previous engine stop and the coolant temperature TPwsta at the time of the current engine start. Is calculated.

この後、ステップ206に進み、図5に示すヒータオフ補正時間Tofs2のマップを参照して、前回のエンジン停止時の冷却水温TPwstpと今回のエンジン始動時の冷却水温TPwstaとの差ΔTP2 に応じたヒータオフ補正時間Tofs2を算出する。   Thereafter, the routine proceeds to step 206, and referring to the map of the heater-off correction time Tofs2 shown in FIG. 5, the heater-off according to the difference ΔTP2 between the cooling water temperature TPwstp at the previous engine stop and the cooling water temperature TPwsta at the current engine start-up. The correction time Tofs2 is calculated.

図5のヒータオフ補正時間Tofs2のマップは、前回のエンジン停止時の冷却水温TPwstpと今回のエンジン始動時の冷却水温TPwstaとの差ΔTP2 が小さくなるほど、ヒータオフ補正時間Tofs2が大きくなって、ヒータオフ時間Toff が短くなるように設定されている。   The map of the heater-off correction time Tofs2 in FIG. 5 shows that the heater-off correction time Tofs2 increases as the difference ΔTP2 between the coolant temperature TPwstp at the previous engine stop and the coolant temperature TPwsta at the current engine start decreases, and the heater-off time Toff Is set to be shorter.

エンジン停止時間が短いほど、前回のエンジン停止時の冷却水温TPwstpと今回のエンジン始動時の冷却水温TPwstaとの差ΔTP2 が小さくなると共に、始動時の排気管温度が高くなるため、前回のエンジン停止時の冷却水温TPwstpと今回のエンジン始動時の冷却水温TPwstaとの差ΔTP2 が小さくなるほどヒータオフ時間Toff を短くするように補正すれば、始動時の排気管温度が高くなるほど、始動後に排気管温度が凝縮水の発生しない温度まで上昇するのに必要な時間が短くなるのに対応して、ヒータオフ時間Toff を短くすることができる。   The shorter the engine stop time, the smaller the difference ΔTP2 between the coolant temperature TPwstp at the previous engine stop and the coolant temperature TPwsta at the current engine start, and the exhaust pipe temperature at the start increases. If the difference ΔTP2 between the cooling water temperature TPwstp at this time and the cooling water temperature TPwsta at the time of starting the engine becomes smaller, the heater off time Toff is corrected to be shorter. As the exhaust pipe temperature at the start becomes higher, the exhaust pipe temperature becomes higher after the start. The heater off time Toff can be shortened corresponding to the shortening of the time required to rise to a temperature at which condensed water is not generated.

この後、ステップ207に進み、最低温度TPmin に応じたヒータオフ時間Toff からヒータオフ補正時間Tofs2を差し引くことで、ヒータオフ時間Toff を補正して最終的なヒータオフ時間Toff を設定する。
Toff =Toff −Tofs2
これらのステップ206,207の処理が特許請求の範囲でいうヒータオフ時間補正手段としての役割を果たす。
Thereafter, the process proceeds to step 207, where the heater off time Toff is corrected by subtracting the heater off correction time Tofs2 from the heater off time Toff corresponding to the minimum temperature TPmin to set the final heater off time Toff.
Toff = Toff -Tofs2
The processing of these steps 206 and 207 serves as a heater off time correction means in the claims.

以上説明した本実施例2では、前回のエンジン停止時の冷却水温TPwstpと今回のエンジン始動時の冷却水温TPwstaとの差ΔTP2 が、始動時の排気管温度を反映した情報となることに着目して、前回のエンジン停止時の冷却水温TPwstpと今回のエンジン始動時の冷却水温TPwstaとの差ΔTP2 に応じてヒータオフ時間Toff を補正するようにしたので、始動時の排気管温度に応じてヒータオフ時間Toff を変化させることができ、前記実施例1とほぼ同じ効果を得ることができる。   In the second embodiment described above, attention is paid to the fact that the difference ΔTP2 between the cooling water temperature TPwstp at the previous engine stop and the cooling water temperature TPwsta at the current engine start reflects the exhaust pipe temperature at the start. The heater off time Toff is corrected according to the difference ΔTP2 between the coolant temperature TPwstp at the previous engine stop and the coolant temperature TPwsta at the current engine start, so the heater off time according to the exhaust pipe temperature at the start. Toff can be changed, and substantially the same effect as in the first embodiment can be obtained.

尚、上記各実施例1,2では、始動時の冷却水温と吸気温と外気温のうちで最も低い温度を最低温度TPmin とし、この最低温度TPmin に応じたヒータオフ時間Toff を算出するようにしたが、始動時の冷却水温と外気温のうちの低い方の温度を最低温度TPmin とするようにしたり、或は、始動時の冷却水温と吸気温のうちの低い方の温度を最低温度TPmin とするようにしても良い。   In the first and second embodiments, the lowest temperature among the cooling water temperature, the intake air temperature, and the outside air temperature at the start is set as the minimum temperature TPmin, and the heater off time Toff corresponding to the minimum temperature TPmin is calculated. However, the lower one of the cooling water temperature and the outside air temperature at the start is set as the minimum temperature TPmin, or the lower one of the cooling water temperature and the intake air temperature at the start is set as the minimum temperature TPmin. You may make it do.

本発明の実施例1におけるエンジン制御システム全体の概略構成図である。It is a schematic block diagram of the whole engine control system in Example 1 of this invention. 実施例1のヒータオフ時間設定プログラムの処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of the heater off time setting program of Example 1. FIG. 実施例1のヒータオフ補正時間のマップの一例を概念的に示す図である。It is a figure which shows notionally an example of the map of the heater OFF correction | amendment time of Example 1. FIG. 実施例2のヒータオフ時間設定プログラムの処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of the heater off time setting program of Example 2. FIG. 実施例2のヒータオフ補正時間のマップの一例を概念的に示す図である。It is a figure which shows notionally an example of the map of the heater OFF correction | amendment time of Example 2. FIG.

符号の説明Explanation of symbols

11…エンジン(内燃機関)、12…吸気管、16…スロットルバルブ、21…燃料噴射弁、22…点火プラグ、23…排気管(排気通路)、24…排出ガスセンサ、26…冷却水温センサ、29…ECU(ヒータオフ時間補正手段)、30…外気温センサ、31…吸気温センサ   DESCRIPTION OF SYMBOLS 11 ... Engine (internal combustion engine), 12 ... Intake pipe, 16 ... Throttle valve, 21 ... Fuel injection valve, 22 ... Spark plug, 23 ... Exhaust pipe (exhaust passage), 24 ... Exhaust gas sensor, 26 ... Cooling water temperature sensor, 29 ... ECU (heater off time correction means), 30 ... outside air temperature sensor, 31 ... intake air temperature sensor

Claims (1)

内燃機関の排気通路に設けられた排出ガスセンサのセンサ素子を加熱するヒータを備え、内燃機関の始動から所定のヒータオフ時間が経過した後に前記ヒータによる前記センサ素子の加熱を開始する排出ガスセンサのヒータ制御装置において、
内燃機関の前回の停止時の冷却水温と今回の始動時の冷却水温との差に応じて前記ヒータオフ時間を補正するヒータオフ時間補正手段を備え
前記ヒータオフ時間補正手段は、内燃機関の前回の停止時の冷却水温と今回の始動時の冷却水温との差が小さいほど前記ヒータオフ時間を短くするように補正することを特徴とする排出ガスセンサのヒータ制御装置。
A heater control for an exhaust gas sensor that includes a heater for heating a sensor element of an exhaust gas sensor provided in an exhaust passage of the internal combustion engine and starts heating the sensor element by the heater after a predetermined heater off time has elapsed since the start of the internal combustion engine In the device
A heater off time correction means for correcting the heater off time according to the difference between the cooling water temperature at the previous stop of the internal combustion engine and the cooling water temperature at the time of the current start ,
The heater off time correction means corrects the heater off time so that the heater off time is shortened as the difference between the cooling water temperature at the previous stop of the internal combustion engine and the cooling water temperature at the current start is smaller. Control device.
JP2006149163A 2006-04-06 2006-05-30 Exhaust gas sensor heater control device Active JP4706928B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006149163A JP4706928B2 (en) 2006-05-30 2006-05-30 Exhaust gas sensor heater control device
US11/712,991 US7805928B2 (en) 2006-04-06 2007-03-02 System for controlling exhaust gas sensor having heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006149163A JP4706928B2 (en) 2006-05-30 2006-05-30 Exhaust gas sensor heater control device

Publications (2)

Publication Number Publication Date
JP2007321561A JP2007321561A (en) 2007-12-13
JP4706928B2 true JP4706928B2 (en) 2011-06-22

Family

ID=38854615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006149163A Active JP4706928B2 (en) 2006-04-06 2006-05-30 Exhaust gas sensor heater control device

Country Status (1)

Country Link
JP (1) JP4706928B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5041341B2 (en) * 2008-01-18 2012-10-03 株式会社デンソー Exhaust gas sensor heater control device
JP5146349B2 (en) * 2009-02-12 2013-02-20 三菱自動車工業株式会社 Engine control device
JP5168181B2 (en) * 2009-02-12 2013-03-21 三菱自動車工業株式会社 Temperature rise control device for exhaust gas air-fuel ratio sensor
JP5146348B2 (en) * 2009-02-12 2013-02-20 三菱自動車工業株式会社 Engine control device
WO2013161412A1 (en) * 2012-04-25 2013-10-31 日産自動車株式会社 Heating control device and heating control method for exhaust sensor
JP5981819B2 (en) * 2012-09-25 2016-08-31 日本特殊陶業株式会社 Sensor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000097902A (en) * 1998-09-22 2000-04-07 Honda Motor Co Ltd Apparatus for controlling power conduction to heater
JP2002256949A (en) * 2001-02-27 2002-09-11 Hitachi Ltd Heater current application control device of air fuel ratio sensor
JP2003049700A (en) * 2001-08-02 2003-02-21 Nissan Motor Co Ltd Heater control system for exhaust gas sensor
JP2003328821A (en) * 2002-05-15 2003-11-19 Suzuki Motor Corp Heating control device for oxygen sensor
JP2004308494A (en) * 2003-04-03 2004-11-04 Honda Motor Co Ltd Controller of heater
JP2005105960A (en) * 2003-09-30 2005-04-21 Toyota Motor Corp Heater control device for exhaust gas sensor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000097902A (en) * 1998-09-22 2000-04-07 Honda Motor Co Ltd Apparatus for controlling power conduction to heater
JP2002256949A (en) * 2001-02-27 2002-09-11 Hitachi Ltd Heater current application control device of air fuel ratio sensor
JP2003049700A (en) * 2001-08-02 2003-02-21 Nissan Motor Co Ltd Heater control system for exhaust gas sensor
JP2003328821A (en) * 2002-05-15 2003-11-19 Suzuki Motor Corp Heating control device for oxygen sensor
JP2004308494A (en) * 2003-04-03 2004-11-04 Honda Motor Co Ltd Controller of heater
JP2005105960A (en) * 2003-09-30 2005-04-21 Toyota Motor Corp Heater control device for exhaust gas sensor

Also Published As

Publication number Publication date
JP2007321561A (en) 2007-12-13

Similar Documents

Publication Publication Date Title
US8362405B2 (en) Heater controller of exhaust gas sensor
JP6550689B2 (en) Exhaust gas sensor heater control device
JP4706928B2 (en) Exhaust gas sensor heater control device
JP2007120390A (en) Heater control device for exhaust gas sensor
JP4802577B2 (en) Exhaust sensor heater control device
JP4621984B2 (en) Exhaust gas sensor heater control device
JP4475207B2 (en) Control device for internal combustion engine
JP2008138579A (en) Variable valve timing control device for internal combustion engine
JP4993314B2 (en) Exhaust gas sensor heater control device
JP5041341B2 (en) Exhaust gas sensor heater control device
JP2008038720A (en) Abnormality diagnosis device for downstream side oxygen sensor of exhaust emission control system
JP2007101207A (en) Method and apparatus for controlling heater of air/fuel ratio sensor
JP2009168769A (en) Heater control device of exhaust gas sensor
JP4269593B2 (en) Secondary air supply control device for internal combustion engine
JP2010066053A (en) Heater control unit of exhaust gas sensor
JP4573047B2 (en) Control device for internal combustion engine
JP5375800B2 (en) Heating control device for internal combustion engine
JP4872793B2 (en) Control device for internal combustion engine
JP5058141B2 (en) Air-fuel ratio control method for internal combustion engine
JP2010077848A (en) Air-fuel ratio control device for internal combustion engine
JP2006083797A (en) Ignition controller for internal combustion engine
JP2007002685A (en) Ignition timing control device for internal combustion engine
JP2011111895A (en) Control device of internal combustion engine
JP5083044B2 (en) Deterioration diagnosis apparatus and deterioration diagnosis method for air-fuel ratio detection means
JP5883323B2 (en) Engine control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110302

R151 Written notification of patent or utility model registration

Ref document number: 4706928

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250