JPH09184443A - Heater control device for air-fuel ratio sensor in downstream of catalyst - Google Patents

Heater control device for air-fuel ratio sensor in downstream of catalyst

Info

Publication number
JPH09184443A
JPH09184443A JP34402295A JP34402295A JPH09184443A JP H09184443 A JPH09184443 A JP H09184443A JP 34402295 A JP34402295 A JP 34402295A JP 34402295 A JP34402295 A JP 34402295A JP H09184443 A JPH09184443 A JP H09184443A
Authority
JP
Japan
Prior art keywords
catalyst
heat
amount
fuel ratio
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34402295A
Other languages
Japanese (ja)
Other versions
JP3627335B2 (en
Inventor
Hiroshi Abe
浩 阿部
Osamu Matsuno
修 松野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP34402295A priority Critical patent/JP3627335B2/en
Publication of JPH09184443A publication Critical patent/JPH09184443A/en
Application granted granted Critical
Publication of JP3627335B2 publication Critical patent/JP3627335B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To surely prevent an element of an air-fuel ratio sensor provided in an exhaust passage downstream of catalyst and incorporating a heater, from cracking, by accumulating heat values given to the catalyst from the time of starting an engine, and by comparing thus accumulated heat value with a predetermined value so as to inhibit energization to the heater when the accumulated value is the predetermined value or below. SOLUTION: An upstream precatalyst 6 and a downstream main catalyst 7 for control exhaust gas are provided in an exhaust passage 5 of an internal combustion engine 1, and air fuel ration sensors 12, 13 are provided in the upstream of the precatalyst 6 and downstream of the main catalyst 7 in the exhaust passage 5. The air-fuel ratio sensors 12, 13 are incorporated therein with heaters 12a, 13a, respectively, in order to activate their sensor elements. In this case, the heater 13a of the downstream sensor 13a is energized when the engine speed and the engine load are low, and while the battery voltage VB is a predetermined value or below. Further, an accumulated heat value given to the catalyst 7 from the time of starting the engine is obtained, and when the accumulated heat value is below a predetermined value, the energization to the heater 13a is prohibited.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、内燃機関の排気通
路の触媒下流に設けられる空燃比センサのヒータ制御装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heater control device for an air-fuel ratio sensor provided downstream of a catalyst in an exhaust passage of an internal combustion engine.

【0002】[0002]

【従来の技術】内燃機関の排気通路に空燃比センサ(一
般にはO2 センサ)を設けて、排気空燃比(リッチ・リ
ーン)を検出する場合、空燃比センサの活性化のため
に、ヒータを設け、所定の運転条件でヒータに通電し
て、空燃比センサ(センサ素子)を加熱するようにして
いる。
2. Description of the Related Art When an air-fuel ratio sensor (generally an O 2 sensor) is provided in an exhaust passage of an internal combustion engine to detect an exhaust air-fuel ratio (rich / lean), a heater is installed to activate the air-fuel ratio sensor. The heater is energized under predetermined operating conditions to heat the air-fuel ratio sensor (sensor element).

【0003】しかし、内燃機関の排気通路の触媒下流
に、触媒劣化診断等のために、空燃比センサを備える場
合、機関始動直後の低温時には、排気中の水分が触媒通
過時に凝縮して容器内にたまり、この凝縮水又はその蒸
発による水蒸気がヒータにより加熱されている空燃比セ
ンサ(センサ素子)にかかると、素子割れを生じること
がある。
However, when an air-fuel ratio sensor is provided downstream of the catalyst in the exhaust passage of the internal combustion engine for diagnosing catalyst deterioration, etc., when the temperature is low immediately after the engine is started, the water content in the exhaust gas condenses when passing through the catalyst inside the container. If the condensed water or the steam resulting from the evaporation of the condensed water is applied to the air-fuel ratio sensor (sensor element) heated by the heater, element cracking may occur.

【0004】そこで、例えば特公平6−90167号公
報に開示されているように、空燃比センサ近傍の排気管
壁温度を検知する温度検知手段を設け、空燃比センサ近
傍の温度が排気管内の水の存在有無を勘案して設定され
る所定値以下のときは、ヒータによる空燃比センサの加
熱を禁止することが考えられる。
Therefore, for example, as disclosed in Japanese Patent Publication No. 6-90167, a temperature detecting means for detecting the temperature of the exhaust pipe wall near the air-fuel ratio sensor is provided, and the temperature near the air-fuel ratio sensor is the water in the exhaust pipe. When the value is less than or equal to a predetermined value that is set in consideration of the presence or absence of, the heating of the air-fuel ratio sensor by the heater may be prohibited.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、空燃比
センサ近傍の温度を検出し、この温度が所定値以下のと
きにヒータへの通電を禁止するごとく、空燃比センサ上
流側の水の有無を温度によって一義的に決定する方法で
は、余裕を見込んで、ヒータの通電開始温度をかなり高
い温度に設定せざるを得ず、水分がなくなった後も暫く
の間はヒータによる加熱を禁止続けることとなって、触
媒下流側空燃比センサを用いた触媒劣化診断等の開始が
遅れてしまうという問題点があった。
However, the temperature in the vicinity of the air-fuel ratio sensor is detected, and when the temperature is below a predetermined value, the heater is not energized. In the method of uniquely determining by the method, the heater energization start temperature must be set to a considerably high temperature in consideration of the margin, and the heating by the heater continues to be prohibited for a while even after the water content is exhausted. Therefore, there is a problem that the start of the catalyst deterioration diagnosis using the catalyst downstream side air-fuel ratio sensor is delayed.

【0006】本発明は、このような従来の問題点に鑑
み、触媒下流側空燃比センサの加熱用のヒータの通電禁
止制御をより適正化して、センサの素子割れを確実に防
止しつつ、しかも通電開始時期を可能な限り早めること
のできる触媒下流側空燃比センサのヒータ制御装置を提
供することを目的とする。
In view of such conventional problems, the present invention further optimizes the energization prohibition control of the heater for heating the catalyst downstream side air-fuel ratio sensor to surely prevent cracking of the sensor element, and An object of the present invention is to provide a heater control device for an air-fuel ratio sensor on the downstream side of a catalyst, which makes it possible to advance the energization start time as early as possible.

【0007】[0007]

【課題を解決するための手段】このため、請求項1に係
る発明では、内燃機関の排気通路の触媒下流に設けられ
る空燃比センサに対する加熱用のヒータを備え、所定の
運転条件でヒータに通電して空燃比センサを加熱するよ
うにした触媒下流側空燃比センサのヒータ制御装置にお
いて、図1に示すように、機関の運転状態に基づいて、
所定時間毎に触媒に与えられる熱量を算出する付与熱量
算出手段と、機関始動時から、触媒に与えられた熱量を
累積する累積手段と、触媒に与えられた累積熱量を所定
値と比較する比較手段と、比較の結果、累積熱量が所定
値以下の間、ヒータへの通電を禁止するヒータ通電禁止
手段とを設ける構成としたものである。
Therefore, in the invention according to claim 1, a heater for heating the air-fuel ratio sensor provided downstream of the catalyst in the exhaust passage of the internal combustion engine is provided, and the heater is energized under predetermined operating conditions. In the heater control device for the catalyst downstream side air-fuel ratio sensor configured to heat the air-fuel ratio sensor, as shown in FIG. 1, based on the operating state of the engine,
An applied heat amount calculation means for calculating the heat quantity given to the catalyst at every predetermined time, an accumulation means for accumulating the heat quantity given to the catalyst from the time of engine start, and a comparison for comparing the cumulative heat quantity given to the catalyst with a predetermined value. Means and heater energization prohibition means for prohibiting energization to the heater while the accumulated heat quantity is equal to or less than a predetermined value as a result of comparison.

【0008】すなわち、機関始動時からの運転履歴に応
じて、触媒に与えられた累積熱量を求め、これを所定値
と比較することで、機関始動直後に触媒容器内で凝縮す
る排気中の水分の蒸発が完了したか否かを正確に判定
し、累積熱量が所定値以下の間は、水分の蒸発が完了し
ていないとして、ヒータへの通電を禁止する。請求項2
に係る発明では、前記比較手段における比較用の所定値
は、機関始動直後に触媒容器内で凝縮する排気中の水分
を気化させるために必要な熱量であって、機関始動時の
冷却水温によって可変とすることを特徴とする。
That is, the accumulated heat quantity applied to the catalyst is calculated according to the operation history from the engine start time, and by comparing this with a predetermined value, the water content in the exhaust gas condensed in the catalyst container immediately after the engine start. It is accurately determined whether or not the evaporation is completed, and while the accumulated heat quantity is equal to or less than the predetermined value, it is determined that the evaporation of the water is not completed, and the energization to the heater is prohibited. Claim 2
In the invention according to claim 1, the predetermined value for comparison in the comparison means is a heat quantity necessary for vaporizing the water in the exhaust gas condensed in the catalyst container immediately after the engine is started, and is variable depending on the cooling water temperature at the time of starting the engine. It is characterized by

【0009】必要気化熱量を機関始動時の冷却水温によ
って設定することにより、簡単にして正確に水分の蒸発
の完了を判定することができる。請求項3〜請求項6に
係る発明では、前記触媒として、上流側のプリ触媒と下
流側のメイン触媒とを備える場合を想定する。そして、
請求項3に係る発明では、図2に示すように、前記付与
熱量算出手段は、機関の運転状態に基づいて、所定時間
毎にプリ触媒に与えられる熱量を算出するプリ付与熱量
算出手段と、機関始動時から、プリ触媒に与えられた熱
量を累積するプリ累積手段と、プリ触媒に与えられた累
積熱量を所定値と比較するプリ比較手段と、比較結果に
応じて、所定時間毎にプリ触媒以降に伝熱される熱量を
算出する伝熱量算出手段とを含んで構成され、前記プリ
触媒以降に伝熱される熱量に基づいて、メイン触媒に与
えられる熱量を算出するものであることを特徴とする。
By setting the required amount of heat of vaporization according to the temperature of the cooling water when the engine is started, it is possible to easily and accurately determine the completion of evaporation of water. In the invention according to claims 3 to 6, it is assumed that the catalyst includes an upstream side pre-catalyst and a downstream side main catalyst. And
In the invention according to claim 3, as shown in FIG. 2, the applied heat amount calculation means, based on the operating state of the engine, a pre-applied heat amount calculation means for calculating the amount of heat given to the pre-catalyst at predetermined time intervals, Pre-accumulation means for accumulating the amount of heat given to the pre-catalyst, pre-comparison means for comparing the cumulative amount of heat given to the pre-catalyst with a predetermined value from the time of engine start, It is configured to include a heat transfer amount calculation means for calculating the amount of heat transferred after the catalyst, based on the amount of heat transferred after the pre-catalyst, to calculate the amount of heat given to the main catalyst To do.

【0010】プリ触媒とメイン触媒とを備える場合に
は、プリ触媒にも排気中の水分が凝縮し、プリ触媒での
凝縮水の蒸発が完了してから、プリ触媒以降への伝熱が
開始される。よって、機関始動時からの運転履歴に応じ
て、プリ触媒に与えられた累積熱量を求め、これを所定
値と比較することで、プリ触媒での凝縮水の蒸発が完了
したか否かを判定し、この判定結果に応じて、プリ触媒
以降への伝熱量を算出し、この伝熱量に基づいて、メイ
ン触媒に与えられる熱量を算出するのである。
When the pre-catalyst and the main catalyst are provided, the moisture in the exhaust gas is condensed also in the pre-catalyst and the evaporation of the condensed water in the pre-catalyst is completed, and then the heat transfer to the pre-catalyst and thereafter is started. To be done. Therefore, it is determined whether or not the evaporation of the condensed water on the pre-catalyst is completed by calculating the cumulative amount of heat given to the pre-catalyst according to the operation history from the start of the engine and comparing this with a predetermined value. Then, the amount of heat transferred to the pre-catalyst and thereafter is calculated according to this determination result, and the amount of heat given to the main catalyst is calculated based on this amount of heat transfer.

【0011】請求項4に係る発明では、前記プリ比較手
段における比較用の所定値は、機関始動直後にプリ触媒
容器内で凝縮する排気中の水分を気化させるために必要
な熱量であって、機関始動時の冷却水温によって可変と
することを特徴とする。プリ触媒での必要気化熱量を機
関始動時の冷却水温によって設定することにより、簡単
にして正確にプリ触媒での水分の蒸発の完了を判定でき
る。
In the invention according to claim 4, the predetermined value for comparison in the pre-comparison means is the amount of heat necessary for vaporizing the moisture in the exhaust gas condensed in the pre-catalyst container immediately after the engine is started, The feature is that it is variable according to the cooling water temperature at the time of engine start. By setting the required amount of heat of vaporization in the pre-catalyst according to the cooling water temperature at the engine start, it is possible to easily and accurately determine the completion of evaporation of water in the pre-catalyst.

【0012】請求項5に係る発明では、前記付与熱量算
出手段は、プリ触媒で発生する反応熱量を算出する反応
熱量算出手段を有し、前記プリ触媒以降に伝熱される熱
量に対し、少なくとも、前記反応熱量を加算して、メイ
ン触媒に与えられる熱量を算出するものであることを特
徴とする(図2参照)。プリ触媒で発生する反応熱量を
考慮することで、メイン触媒に与えられる熱量をより正
確に求めることができる。
In the invention according to claim 5, the applied heat quantity calculating means has a reaction heat quantity calculating means for calculating the reaction heat quantity generated in the precatalyst, and at least with respect to the heat quantity transferred after the precatalyst, The heat quantity applied to the main catalyst is calculated by adding the reaction heat quantity (see FIG. 2). The amount of heat given to the main catalyst can be more accurately determined by considering the amount of heat of reaction generated by the pre-catalyst.

【0013】請求項6に係る発明では、前記付与熱量算
出手段は、プリ触媒からメイン触媒に至る排気通路での
放熱量を算出する放熱量算出手段を有し、前記プリ触媒
以降に伝熱される熱量に対し、少なくとも、前記放熱量
を減算して、メイン触媒に与えられる熱量を算出するも
のであることを特徴とする(図2参照)。プリ触媒から
メイン触媒に至る排気通路での放熱量を考慮すること
で、メイン触媒に与えられる熱量をより正確に求めるこ
とができる。
In the invention according to claim 6, the applied heat amount calculation means has a heat radiation amount calculation means for calculating a heat radiation amount in the exhaust passage from the precatalyst to the main catalyst, and the heat is transferred to the precatalyst and thereafter. At least the amount of heat radiation is subtracted from the amount of heat to calculate the amount of heat given to the main catalyst (see FIG. 2). By considering the amount of heat radiation in the exhaust passage from the pre-catalyst to the main catalyst, the amount of heat given to the main catalyst can be obtained more accurately.

【0014】[0014]

【発明の効果】請求項1に係る発明によれば、機関始動
時からの運転履歴により、触媒に与えられた累積熱量を
求め、これを所定値と比較することで、機関始動直後に
おける触媒での凝縮水の蒸発が完了したか否かを正確に
判定し、蒸発完了前のヒータへの通電を禁止することに
より、空燃比センサの素子割れを確実に防止しつつ、通
電開始時期を可能な限り早めることができるという効果
が得られる。
According to the first aspect of the present invention, the cumulative heat quantity given to the catalyst is obtained from the operation history from the engine start time, and the accumulated heat quantity is compared with a predetermined value, so that the catalyst immediately after the engine start can be obtained. By accurately determining whether or not the evaporation of the condensed water of is completed and prohibiting the energization to the heater before the completion of the evaporation, it is possible to reliably prevent the element breakage of the air-fuel ratio sensor and to set the energization start timing. The effect is that it can be made as soon as possible.

【0015】請求項2に係る発明によれば、必要気化熱
量を機関始動時の冷却水温によって設定することによ
り、簡単にして正確に水分の蒸発の完了を判定できると
いう効果が得られる。請求項3に係る発明によれば、プ
リ触媒とメイン触媒とを備える場合に、プリ触媒での凝
縮水の蒸発が完了してから、プリ触媒以降への伝熱が開
始されることを考慮して、プリ触媒以降への伝熱量を算
出し、この伝熱量に基づいて、メイン触媒に与えられる
熱量を算出することにより、推定精度を向上させること
ができるという効果が得られる。
According to the second aspect of the present invention, the required amount of heat of vaporization is set according to the temperature of the cooling water at the time of starting the engine, so that it is possible to easily and accurately determine the completion of evaporation of water. According to the invention of claim 3, when the pre-catalyst and the main catalyst are provided, it is considered that the heat transfer to the pre-catalyst and thereafter is started after the evaporation of the condensed water in the pre-catalyst is completed. By calculating the amount of heat transferred to the pre-catalyst and thereafter, and calculating the amount of heat given to the main catalyst based on this amount of heat transfer, it is possible to improve the estimation accuracy.

【0016】請求項4に係る発明によれば、プリ触媒で
の必要気化熱量を機関始動時の冷却水温によって設定す
ることにより、簡単にして正確にプリ触媒での水分の蒸
発の完了を判定できるという効果が得られる。請求項5
に係る発明によれば、プリ触媒で発生する反応熱量を考
慮することで、メイン触媒に与えられる熱量をより正確
に求めることができるという効果が得られる。
According to the fourth aspect of the present invention, the required amount of heat of vaporization in the pre-catalyst is set by the cooling water temperature at the time of starting the engine, so that the completion of the evaporation of water in the pre-catalyst can be determined easily and accurately. The effect is obtained. Claim 5
According to the invention of claim 1, the amount of heat given to the main catalyst can be more accurately obtained by considering the amount of heat of reaction generated in the precatalyst.

【0017】請求項6に係る発明によれば、プリ触媒か
らメイン触媒に至る排気通路での放熱量を考慮すること
で、メイン触媒に与えられる熱量をより正確に求めるこ
とができるという効果が得られる。
According to the invention of claim 6, the amount of heat given to the main catalyst can be obtained more accurately by considering the amount of heat radiation in the exhaust passage from the pre-catalyst to the main catalyst. To be

【0018】[0018]

【発明の実施の形態】以下に本発明の実施の形態を説明
する。図3は本発明の一実施例を示すシステム図であ
る。内燃機関1の吸気通路2には、スロットル弁3が介
装されると共に、その下流側に各気筒毎に吸気ポートへ
向けて燃料を噴射する燃料噴射弁4が設けられている。
排気通路5には、排気浄化用触媒として、上流側のプリ
触媒(マニホールド触媒)6、下流側のメイン触媒(床
下触媒)7とが設けられている。
Embodiments of the present invention will be described below. FIG. 3 is a system diagram showing an embodiment of the present invention. A throttle valve 3 is provided in an intake passage 2 of an internal combustion engine 1, and a fuel injection valve 4 for injecting fuel toward an intake port is provided downstream of the throttle valve 3 for each cylinder.
The exhaust passage 5 is provided with an upstream side pre-catalyst (manifold catalyst) 6 and a downstream side main catalyst (underfloor catalyst) 7 as exhaust gas purification catalysts.

【0019】前記燃料噴射弁4は、コントロールユニッ
ト8からの駆動パルス信号により通電されて開弁し、通
電停止されて閉弁する電磁式燃料噴射弁であって、駆動
パルス信号のパルス幅によって燃料噴射量が制御され、
この燃料噴射量の制御により空燃比が制御される。この
燃料噴射量の制御のため、コントロールユニット8には
各種のセンサから信号が入力されている。
The fuel injection valve 4 is an electromagnetic fuel injection valve that is energized by a drive pulse signal from the control unit 8 to open the valve, and is deenergized to close the valve. Injection quantity is controlled,
The air-fuel ratio is controlled by controlling the fuel injection amount. To control the fuel injection amount, signals are input to the control unit 8 from various sensors.

【0020】前記各種のセンサとしては、吸気通路2の
スロットル弁3上流に、吸入空気流量(質量流量)GA
を検出する例えば熱線式のエアフローメータ9が設けら
れている。また、基準クランク角信号と単位クランク角
信号とを出力するクランク角センサ10が設けられ、基準
クランク角信号の周期などから機関回転数NEを算出可
能である。
As the various sensors, the intake air flow rate (mass flow rate) GA is provided upstream of the throttle valve 3 in the intake passage 2.
For example, a hot-wire type air flow meter 9 for detecting is provided. Further, a crank angle sensor 10 that outputs a reference crank angle signal and a unit crank angle signal is provided, and the engine speed NE can be calculated from the cycle of the reference crank angle signal.

【0021】また、機関1の冷却水温TWを検出する水
温センサ11が設けられている。更に、排気通路5のプリ
触媒6上流に、上流側空燃比センサ12が設けられると共
に、メイン触媒7下流に、下流側空燃比センサ13が設け
られている。これらの空燃比センサ12,13は、具体的に
はO2 センサであって、排気中の残存酸素濃度に応じた
起電力を発生し、特に理論空燃比を境に起電力が急変し
て、理論空燃比よりリッチ側で高レベル(約1V程
度)、リーン側で低レベル(約 100mV程度)となる。
よって、リッチ・リーンを検出することができる。
A water temperature sensor 11 for detecting the cooling water temperature TW of the engine 1 is also provided. Further, an upstream air-fuel ratio sensor 12 is provided upstream of the pre-catalyst 6 in the exhaust passage 5, and a downstream air-fuel ratio sensor 13 is provided downstream of the main catalyst 7. These air-fuel ratio sensors 12, 13 are specifically O 2 sensors, which generate an electromotive force according to the residual oxygen concentration in the exhaust gas, and especially when the electromotive force suddenly changes at the theoretical air-fuel ratio, It becomes a high level (about 1 V) on the rich side and a low level (about 100 mV) on the lean side of the theoretical air-fuel ratio.
Therefore, rich lean can be detected.

【0022】また、これらの空燃比センサ12,13は、セ
ンサ素子の活性化のためにヒータ12a,13aをそれぞれ
内蔵しており、これらのヒータ12a,13aはそれぞれコ
ントロールユニット8からの信号により通電を制御され
るようになっている。この他、スロットルセンサ、車速
センサ、外気温センサ等が設けられるが、図示を省略し
てある。
Further, these air-fuel ratio sensors 12, 13 have heaters 12a, 13a built therein for activating the sensor elements, respectively, and these heaters 12a, 13a are energized by signals from the control unit 8, respectively. To be controlled. Besides, a throttle sensor, a vehicle speed sensor, an outside air temperature sensor and the like are provided, but they are not shown.

【0023】ここにおいて、コントロールユニット8
は、内蔵のマイクロコンピュータにより、前記各種のセ
ンサからの信号に基づいて燃料噴射弁4による燃料噴射
量を制御して空燃比制御を行う。すなわち、エアフロー
メータ9からの信号に基づいて検出される吸入空気流量
GAと、クランク角センサ10からの信号に基づいて算出
される機関回転数NEとから、機関に吸入される空気量
に対応する理論空燃比相当の基本燃料噴射量TP=K×
GA/NE(Kは定数)を演算する。そして、上流側空
燃比センサ12の出力信号に基づいて空燃比フィードバッ
ク補正係数αを演算し、基本燃料噴射量TPに対し空燃
比フィードバック補正などを加えて、最終的な燃料噴射
量TI=TP×α×COEF(COEFは各種補正係
数)を演算する。尚、空燃比フィードバック補正係数α
を演算に際し、下流側空燃比センサ13の出力信号に基づ
く補正を行うこともある。
Here, the control unit 8
The built-in microcomputer controls the fuel injection amount by the fuel injection valve 4 based on the signals from the various sensors to control the air-fuel ratio. That is, the intake air flow rate GA detected based on the signal from the air flow meter 9 and the engine speed NE calculated based on the signal from the crank angle sensor 10 correspond to the amount of air taken into the engine. Basic fuel injection amount TP = K × equivalent to stoichiometric air-fuel ratio
GA / NE (K is a constant) is calculated. Then, the air-fuel ratio feedback correction coefficient α is calculated based on the output signal of the upstream side air-fuel ratio sensor 12, the air-fuel ratio feedback correction is added to the basic fuel injection amount TP, and the final fuel injection amount TI = TP × α × COEF (COEF is various correction coefficients) is calculated. The air-fuel ratio feedback correction coefficient α
In the calculation of, the correction may be performed based on the output signal of the downstream side air-fuel ratio sensor 13.

【0024】燃料噴射量TIが演算されると、機関回転
に同期した所定のタイミングでこのTIのパルス幅をも
つ駆動パルス信号が燃料噴射弁4に出力されて、燃料噴
射が行われる。また、コントロールユニット8は、上流
側空燃比センサ12及び下流側空燃比センサ13からの信号
に基づいて、触媒(プリ触媒6及びメイン触媒7)の劣
化診断を行い、触媒劣化と診断した場合には警告灯14を
点灯させる。
When the fuel injection amount TI is calculated, a drive pulse signal having a pulse width of this TI is output to the fuel injection valve 4 at a predetermined timing synchronized with the engine rotation, and fuel injection is performed. Further, the control unit 8 performs deterioration diagnosis of the catalyst (pre-catalyst 6 and main catalyst 7) based on the signals from the upstream side air-fuel ratio sensor 12 and the downstream side air-fuel ratio sensor 13, and when it is diagnosed that the catalyst has deteriorated. Turns on the warning light 14.

【0025】すなわち、上流側空燃比センサ12の出力信
号のリッチ・リーンの反転周期T1を計測すると共に、
下流側空燃比センサ13の出力信号のリッチ・リーンの反
転周期T2を計測する。触媒6,7が正常であれば、上
流側空燃比センサ12の反転周期T1に比べ、下流側空燃
比センサ13の反転周期T2は十分に長いが、触媒6,7
が劣化すると、下流側空燃比センサ13の反転周期T2が
次第に短くなる。よって、上流側空燃比センサ12の反転
周期T1に対する下流側空燃比センサ13の反転周期T2
の比(T2/T1)を監視し、これが所定値以下(1付
近)になったときに、触媒劣化と診断して、警告灯14を
点灯させる。
That is, while measuring the rich / lean inversion period T1 of the output signal of the upstream side air-fuel ratio sensor 12,
The rich / lean inversion period T2 of the output signal of the downstream side air-fuel ratio sensor 13 is measured. If the catalysts 6, 7 are normal, the reversal cycle T2 of the downstream side air-fuel ratio sensor 13 is sufficiently longer than the reversal cycle T1 of the upstream side air-fuel ratio sensor 12, but the catalysts 6, 7
Is deteriorated, the reversal period T2 of the downstream side air-fuel ratio sensor 13 is gradually shortened. Therefore, the inversion cycle T2 of the downstream side air-fuel ratio sensor 13 with respect to the inversion cycle T1 of the upstream side air-fuel ratio sensor 12.
The ratio (T2 / T1) is monitored, and when it falls below a predetermined value (around 1), it is diagnosed that the catalyst is deteriorated and the warning lamp 14 is turned on.

【0026】また、コントロールユニット8は、上流側
空燃比センサ12及び下流側空燃比センサ13のヒータ制御
を行うが、特に、下流側空燃比センサ13のヒータ制御に
ついて、以下に詳しく説明する。下流側空燃比センサ13
のヒータ制御は、図4のヒータ制御ルーチンと、図5の
始動時ルーチンと、図6の水分蒸発判定ルーチンとに従
って行われる。
The control unit 8 also controls the heaters of the upstream side air-fuel ratio sensor 12 and the downstream side air-fuel ratio sensor 13, and in particular, the heater control of the downstream side air-fuel ratio sensor 13 will be described in detail below. Downstream air-fuel ratio sensor 13
The heater control is performed according to the heater control routine of FIG. 4, the startup routine of FIG. 5, and the moisture evaporation determination routine of FIG.

【0027】先ず、図4のヒータ制御ルーチンについて
説明する。ステップ1(図にはS1と記してある。以下
同様)では、本発明に係る禁止フラグFがセットされて
いる(F=1)か否かを判定し、F=1の場合は、ステ
ップ6へ進んでヒータ13aをOFFとする。F=0の場
合は、ステップ2へ進む。尚、禁止フラグFについて
は、後に図5及び図6により説明する。
First, the heater control routine of FIG. 4 will be described. In step 1 (denoted as S1 in the figure; the same applies hereinafter), it is determined whether the prohibition flag F according to the present invention is set (F = 1). If F = 1, step 6 Proceed to and turn off the heater 13a. If F = 0, go to step 2. The prohibition flag F will be described later with reference to FIGS. 5 and 6.

【0028】ステップ2では、機関回転中か否かを判定
し、機関回転中でない場合は、ステップ6へ進んでヒー
タ13aをOFFとする。機関回転中の場合は、ステップ
3へ進む。ステップ3では、機関回転数NE≦所定値か
否かを判定し、機関回転数NE>所定値(高回転時)の
場合は、ステップ6へ進んでヒータ13aをOFFとす
る。機関回転数NE≦所定値(低回転時)の場合は、ス
テップ4へ進む。
In step 2, it is determined whether the engine is rotating or not. If the engine is not rotating, the process proceeds to step 6 to turn off the heater 13a. If the engine is rotating, proceed to step 3. In step 3, it is determined whether the engine speed NE is equal to or less than a predetermined value. If the engine speed NE is greater than a predetermined value (at high speed), the process proceeds to step 6 to turn off the heater 13a. When the engine speed NE is equal to or less than the predetermined value (at low speed), the process proceeds to step 4.

【0029】ステップ4では、機関負荷(基本燃料噴射
量)TP≦所定値か否かを判定し、機関負荷TP>所定
値(高負荷時)の場合は、ステップ6へ進んでヒータ13
aをOFFとする。機関負荷TP≦所定値(低負荷時)
の場合は、ステップ5へ進む。ステップ5では、バッテ
リ電圧VB≦所定値(例えば16V)か否かを判定し、バ
ッテリ電圧VB>所定値の場合は、ステップ6へ進んで
ヒータ13aをOFFとする。バッテリ電圧VB≦所定値
(異常高電圧)の場合は、ステップ7へ進んでヒータ13
aをONとする。
In step 4, it is determined whether the engine load (basic fuel injection amount) TP ≦ predetermined value. If the engine load TP> predetermined value (high load), the process proceeds to step 6 and the heater 13
Turn off a. Engine load TP ≤ predetermined value (at low load)
If, then go to step 5. In step 5, it is determined whether or not the battery voltage VB ≦ a predetermined value (for example, 16V). If the battery voltage VB> the predetermined value, the process proceeds to step 6 to turn off the heater 13a. If the battery voltage VB ≦ predetermined value (abnormal high voltage), the process proceeds to step 7 and the heater 13
Turn on a.

【0030】すなわち、禁止フラグFが解除されている
こと(F=0)を前提として、機関回転中、機関回転数
NEが所定値以下(低回転時)、機関負荷TPが所定値
以下(低負荷時)、かつ、バッテリ電圧VBが所定値
(例えば16V)以下であるときに、ヒータ13aに通電す
るようにしている。尚、高回転時又は高負荷時にヒータ
13aへの通電を禁止するのは、排気温度が高いことか
ら、空燃比センサ13の過度の温度上昇により、焼損を生
じる恐れがあるからであり、また、バッテリ電圧VBが
例えば16Vを超えるときにヒータ13aへの通電を禁止す
るのは、異常な高電圧によるヒータ13aの過熱により、
焼損を生じる恐れがあるからである。
That is, on the premise that the prohibition flag F is released (F = 0), the engine speed NE is below a predetermined value (low speed) and the engine load TP is below a predetermined value (low) during engine rotation. When the battery voltage VB is equal to or lower than a predetermined value (for example, 16 V), the heater 13a is energized. It should be noted that the heater at high rotation or high load
The reason why energization to 13a is prohibited is that the exhaust gas temperature is high, so that an excessive temperature rise of the air-fuel ratio sensor 13 may cause burnout, and when the battery voltage VB exceeds 16V, for example. It is because the heater 13a is overheated by an abnormally high voltage that the energization of the heater 13a is prohibited.
This is because burning may occur.

【0031】次に、図5の始動時ルーチンについて説明
する。ステップ11では、始動時(キーON時)か否かを
判定する。始動時の場合のみ、ステップ12へ進んで、禁
止フラグFをセットし(F=1)、また、ステップ13
で、水温センサ11からの信号に基づいて水温TWを検出
し、これを始動時水温TWst=TWとして記憶保持す
る。
Next, the starting routine of FIG. 5 will be described. In step 11, it is determined whether or not the engine is starting (when the key is ON). Only when starting, proceed to step 12, set the prohibition flag F (F = 1), and step 13
Then, the water temperature TW is detected based on the signal from the water temperature sensor 11, and this is stored and held as the starting water temperature TWst = TW.

【0032】次に、図6の水分蒸発判定ルーチンについ
て説明する。尚、本ルーチンは所定時間(例えば 100ms
毎)に実行される。ステップ21では、機関1の排気によ
りプリ触媒6に与えられる熱量Q0を次式により計算す
る。この部分がプリ付与熱量算出手段に相当する。 Q0=GE×Cpg×(T0−343 ) GEは排ガス質量であり、理論空燃比(A/F=14.6)
と仮定すれば、吸入空気流量GAから、GE=GA×
(1+1/14.6)により求めることができる。Cpgは排
ガス比熱であり、N2 、CO2 、H2 Oの質量比から、
予め定めておく(例えばCpg=0.274 )。T0はプリ触
媒入口温度(°K)であり、機関回転数NE及び負荷T
Pよりエンジン全性能マップを参照して求める。但し、
343°K=70°Cを基準とした。
Next, the moisture evaporation determination routine of FIG. 6 will be described. Note that this routine takes a predetermined time (for example, 100ms
Every). In step 21, the heat quantity Q0 given to the pre-catalyst 6 by the exhaust of the engine 1 is calculated by the following equation. This portion corresponds to the pre-applied heat amount calculating means. Q0 = GE × Cpg × (T0-343) GE is the exhaust gas mass, the theoretical air-fuel ratio (A / F = 14.6)
Assuming that the intake air flow rate GA, GE = GA ×
It can be calculated by (1 + 1 / 14.6). Cpg is the specific heat of exhaust gas, and from the mass ratio of N 2 , CO 2 and H 2 O,
It is determined in advance (for example, Cpg = 0.274). T0 is the pre-catalyst inlet temperature (° K), the engine speed NE and the load T
It is obtained by referring to the engine total performance map from P. However,
The standard was 343 ° K = 70 ° C.

【0033】ステップ22では、次式により、機関始動時
から、プリ触媒6に与えられた熱量Q0を累積して、プ
リ累積熱量ΣQ0を算出する。この部分がプリ累積手段
に相当する。 ΣQ0=ΣQ0+Q0 ステップ23では、始動時水温TWstに応じて、機関始動
直後にプリ触媒6の容器内で凝縮する排気中の水分を気
化させるために必要な熱量Cpを割付けた図7のテーブ
ルを参照して、実際の始動時水温TWstより、プリ必要
気化熱量Cpを検索する。
In step 22, the calorific value Q0 given to the pre-catalyst 6 is accumulated from the engine start-up by the following equation to calculate the pre-cumulative calorific value ΣQ0. This part corresponds to the pre-accumulation means. ΣQ0 = ΣQ0 + Q0 In step 23, refer to the table of FIG. 7 in which the amount of heat Cp required to vaporize the water in the exhaust gas condensed in the container of the pre-catalyst 6 immediately after the engine is started is assigned according to the starting water temperature TWst. Then, the pre-required heat quantity of vaporization Cp is retrieved from the actual starting water temperature TWst.

【0034】ステップ24では、プリ累積熱量ΣQ0とプ
リ必要気化熱量Cpとを比較する。この部分がプリ比較
手段に相当する。比較の結果、ΣQ0<Cpのときは、
ステップ25へ進む。すなわち、プリ触媒での凝縮水の蒸
発が完了してから、プリ触媒6以降への伝熱が開始され
ると考え、気化中は、プリ触媒6以降へ伝熱される熱量
Q1を0とする(Q1=0)。
In step 24, the pre-cumulative heat quantity ΣQ0 is compared with the pre-required vaporization heat quantity Cp. This part corresponds to the pre-comparison means. As a result of the comparison, when ΣQ0 <Cp,
Go to step 25. That is, it is considered that the heat transfer to the pre-catalyst 6 and thereafter is started after the evaporation of the condensed water in the pre-catalyst is completed, and the heat quantity Q1 transferred to the pre-catalyst 6 and thereafter is set to 0 during the vaporization ( Q1 = 0).

【0035】一方、ΣQ0≧Cpのときは、ステップ26
へ進む。すなわち、プリ触媒6での凝縮水の蒸発が完了
しているので、プリ触媒6以降へ伝熱される熱量Q1を
Q0とする(Q1=Q0)。伝熱遅れを考慮すると、更
によい。ここで、ステップ25,26の部分が伝熱量算出手
段に相当する。ステップ27では、プリ触媒6で発生する
反応熱量QPを次式により計算する。ここでは、温度差
で50°K相当の温度上昇分の発熱があったものと仮定す
る。この部分が反応熱量算出手段に相当する。
On the other hand, when ΣQ0 ≧ Cp, step 26
Proceed to. That is, since the evaporation of the condensed water in the pre-catalyst 6 is completed, the amount of heat Q1 transferred to the pre-catalyst 6 and thereafter is set to Q0 (Q1 = Q0). It is even better considering heat transfer delay. Here, the steps 25 and 26 correspond to the heat transfer amount calculating means. In step 27, the reaction heat quantity QP generated in the pre-catalyst 6 is calculated by the following equation. Here, it is assumed that the temperature difference causes heat generation corresponding to a temperature rise of 50 ° K. This part corresponds to the reaction heat quantity calculating means.

【0036】ΔQP=GE×Cpg×50 (但し、T0<673 °Kの場合は、ΔQP=0) ステップ28では、次式のごとく、プリ触媒6以降へ伝達
される熱量Q1に反応熱量ΔQPを加算して、プリ触媒
出口側熱量Q2を算出する。 Q2=Q1+ΔQP ステップ29では、プリ触媒6からメイン触媒7に至る排
気通路(フロントチューブ)での放熱量ΔQFを次式に
より算出する。この部分が放熱量算出手段に相当する。
ΔQP = GE × Cpg × 50 (however, when T0 <673 ° K, ΔQP = 0) In step 28, the reaction heat quantity ΔQP is converted into the heat quantity Q1 transferred to the pre-catalyst 6 and thereafter as shown in the following equation. The pre-catalyst outlet side heat quantity Q2 is calculated by adding. Q2 = Q1 + ΔQP In step 29, the heat radiation amount ΔQF in the exhaust passage (front tube) from the precatalyst 6 to the main catalyst 7 is calculated by the following equation. This portion corresponds to the heat radiation amount calculation means.

【0037】ΔQF=GE×Kft×Aft×ΔT Kftはフロントチューブの伝導率、Aftはフロントチュ
ーブの表面積、ΔTはプリ触媒出口側温度と外気温度と
の温度差である。ステップ30では、次式のごとく、プリ
触媒出口側熱量Q2からフロントチューブ放熱量ΔQF
を減算して、メイン触媒7に与えられる熱量Q3を算出
する。
ΔQF = GE × Kft × Aft × ΔT Kft is the conductivity of the front tube, Aft is the surface area of the front tube, and ΔT is the temperature difference between the precatalyst outlet side temperature and the outside air temperature. In step 30, as shown in the following equation, the heat quantity Q2 from the precatalyst outlet side to the heat radiation quantity ΔQF from the front tube is calculated.
Is subtracted to calculate the heat quantity Q3 applied to the main catalyst 7.

【0038】Q3=Q2−ΔQF ステップ31では、次式により、機関始動時から、メイン
触媒7に与えられた熱量Q3を累積して、メイン累積熱
量ΣQ3を算出する。この部分が累積手段に相当する。 ΣQ3=ΣQ3+Q3 ステップ32では、始動時水温TWstに応じて、機関始動
直後にメイン触媒7の容器内で凝縮する排気中の水分を
気化させるために必要な熱量Cmを割付けた図7のテー
ブルを参照して、実際の始動時水温TWstより、メイン
必要気化熱量Cmを検索する。
Q3 = Q2-ΔQF In step 31, the heat quantity Q3 given to the main catalyst 7 is accumulated from the engine start-up by the following equation to calculate the main cumulative heat quantity ΣQ3. This part corresponds to the accumulating means. ΣQ3 = ΣQ3 + Q3 In step 32, refer to the table of FIG. 7 in which the amount of heat Cm required to vaporize the water in the exhaust gas condensed in the container of the main catalyst 7 immediately after the engine is started is assigned according to the starting water temperature TWst. Then, the main required vaporization heat quantity Cm is searched from the actual starting water temperature TWst.

【0039】ステップ33では、メイン累積熱量ΣQ3と
メイン必要気化熱量Cmとを比較する。この部分が比較
手段に相当する。比較の結果、ΣQ3<Cmのときは、
そのまま(禁止フラグF=1に維持したまま)、本ルー
チンを終了する。すなわち、メイン触媒7での凝縮水の
蒸発が完了していないとみなして、禁止フラグF=1に
維持することにより、ヒータ13aへの通電を禁止し続け
る。従って、この部分がヒータ通電禁止手段に相当す
る。
At step 33, the main cumulative heat quantity ΣQ3 is compared with the main required heat quantity of vaporization Cm. This part corresponds to the comparison means. As a result of the comparison, when ΣQ3 <Cm,
This routine is terminated as it is (while maintaining the prohibition flag F = 1). That is, assuming that the evaporation of the condensed water in the main catalyst 7 is not completed, the prohibition flag F = 1 is maintained, and the energization to the heater 13a is continuously prohibited. Therefore, this portion corresponds to the heater energization prohibition means.

【0040】一方、ΣQ3≧Cmになったときは、ステ
ップ34へ進む。すなわち、メイン触媒7での凝縮水の蒸
発が完了したとみなして、禁止フラグFを解除する(F
=0)。これにより、図4からわかるように、ヒータ13
aへの通電が可能となる。以上のように、触媒に与えら
れる累積熱量を所定値と比較して、凝縮水の蒸発の有無
を判定することにより、図8からもわかるように、温度
検出による場合に比べ、正確に蒸発完了時期を検知で
き、ヒータ制御を早期に開始することが可能となる。
On the other hand, when ΣQ3 ≧ Cm, the routine proceeds to step 34. That is, it is considered that the evaporation of the condensed water in the main catalyst 7 is completed, and the prohibition flag F is cleared (F
= 0). As a result, as shown in FIG. 4, the heater 13
It is possible to energize a. As described above, by comparing the cumulative amount of heat given to the catalyst with the predetermined value and determining the presence or absence of evaporation of the condensed water, as shown in FIG. 8, the evaporation is completed more accurately than in the case of detecting the temperature. The timing can be detected, and the heater control can be started early.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の構成を示す機能ブロック図(1)FIG. 1 is a functional block diagram (1) showing the configuration of the present invention.

【図2】 本発明の構成を示す機能ブロック図(2)FIG. 2 is a functional block diagram (2) showing the configuration of the present invention.

【図3】 本発明の一実施例を示すシステム図FIG. 3 is a system diagram showing an embodiment of the present invention.

【図4】 ヒータ制御ルーチンのフローチャートFIG. 4 is a flowchart of a heater control routine.

【図5】 始動時ルーチンのフローチャートFIG. 5 is a flowchart of a startup routine.

【図6】 水分蒸発判定ルーチンのフローチャートFIG. 6 is a flowchart of a moisture evaporation determination routine.

【図7】 必要気化熱量テーブルを示す図FIG. 7 is a diagram showing a required vaporization heat quantity table.

【図8】 始動後特性を示す図FIG. 8 is a diagram showing characteristics after starting.

【符号の説明】[Explanation of symbols]

1 機関 5 排気通路 6 プリ触媒 7 メイン触媒 8 コントロールユニット 9 エアフローメータ 10 クランク角センサ 11 水温センサ 12 上流側空燃比センサ 12a ヒータ 13 下流側空燃比センサ 13a ヒータ 1 engine 5 exhaust passage 6 pre-catalyst 7 main catalyst 8 control unit 9 air flow meter 10 crank angle sensor 11 water temperature sensor 12 upstream air-fuel ratio sensor 12a heater 13 downstream air-fuel ratio sensor 13a heater

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】内燃機関の排気通路の触媒下流に設けられ
る空燃比センサに対する加熱用のヒータを備え、所定の
運転条件でヒータに通電して空燃比センサを加熱するよ
うにした触媒下流側空燃比センサのヒータ制御装置にお
いて、 機関の運転状態に基づいて、所定時間毎に触媒に与えら
れる熱量を算出する付与熱量算出手段と、 機関始動時から、触媒に与えられた熱量を累積する累積
手段と、 触媒に与えられた累積熱量を所定値と比較する比較手段
と、 比較の結果、累積熱量が所定値以下の間、ヒータへの通
電を禁止するヒータ通電禁止手段と、 を設けたことを特徴とする触媒下流側空燃比センサのヒ
ータ制御装置。
1. A catalyst downstream side air comprising a heater for heating an air-fuel ratio sensor provided downstream of the catalyst in an exhaust passage of an internal combustion engine and heating the air-fuel ratio sensor by energizing the heater under predetermined operating conditions. In the heater control device for the fuel ratio sensor, the applied heat amount calculation means for calculating the amount of heat given to the catalyst at predetermined time intervals based on the operating state of the engine, and the accumulating means for accumulating the amount of heat given to the catalyst from the time when the engine is started. A comparison means for comparing the cumulative heat quantity applied to the catalyst with a predetermined value, and a heater energization prohibition means for prohibiting energization of the heater while the cumulative heat quantity is below a predetermined value as a result of the comparison. A heater control device for a catalyst downstream side air-fuel ratio sensor.
【請求項2】前記比較手段における比較用の所定値は、
機関始動直後に触媒容器内で凝縮する排気中の水分を気
化させるために必要な熱量であって、機関始動時の冷却
水温によって可変とすることを特徴とする請求項1記載
の触媒下流側空燃比センサのヒータ制御装置。
2. The predetermined value for comparison in the comparison means is
2. The catalyst downstream side air according to claim 1, wherein the amount of heat required to vaporize the water in the exhaust gas condensed in the catalyst container immediately after the engine is started is variable depending on the cooling water temperature at the time of engine start. Heater control device for fuel ratio sensor.
【請求項3】前記触媒として、上流側のプリ触媒と下流
側のメイン触媒とを備え、 前記付与熱量算出手段は、 機関の運転状態に基づいて、所定時間毎にプリ触媒に与
えられる熱量を算出するプリ付与熱量算出手段と、 機関始動時から、プリ触媒に与えられた熱量を累積する
プリ累積手段と、 プリ触媒に与えられた累積熱量を所定値と比較するプリ
比較手段と、 比較結果に応じて、所定時間毎にプリ触媒以降に伝熱さ
れる熱量を算出する伝熱量算出手段とを含んで構成さ
れ、 前記プリ触媒以降に伝熱される熱量に基づいて、メイン
触媒に与えられる熱量を算出するものであることを特徴
とする請求項1又は請求項2記載の記載の触媒下流側空
燃比センサのヒータ制御装置。
3. An upstream side pre-catalyst and a downstream side main catalyst are provided as the catalyst, and the applied heat amount calculation means determines the amount of heat given to the pre-catalyst at predetermined time intervals based on the operating state of the engine. Pre-applied heat amount calculation means for calculating, pre-accumulation means for accumulating heat quantity given to the pre-catalyst from engine start, pre-comparison means for comparing the cumulative heat quantity given to the pre-catalyst with a predetermined value, comparison result According to, the heat transfer amount calculation means for calculating the amount of heat transferred to the pre-catalyst after every predetermined time, and based on the amount of heat transferred to the pre-catalyst, the amount of heat given to the main catalyst The heater control device for the catalyst downstream side air-fuel ratio sensor according to claim 1 or 2, which is calculated.
【請求項4】前記プリ比較手段における比較用の所定値
は、機関始動直後にプリ触媒容器内で凝縮する排気中の
水分を気化させるために必要な熱量であって、機関始動
時の冷却水温によって可変とすることを特徴とする請求
項3記載の触媒下流側空燃比センサのヒータ制御装置。
4. The predetermined value for comparison in the pre-comparing means is the amount of heat necessary to vaporize the water in the exhaust gas that condenses in the pre-catalyst container immediately after the engine is started, and is the cooling water temperature at the time of engine starting. The heater control device for the catalyst downstream side air-fuel ratio sensor according to claim 3, wherein the heater control device is variable.
【請求項5】前記付与熱量算出手段は、プリ触媒で発生
する反応熱量を算出する反応熱量算出手段を有し、前記
プリ触媒以降に伝熱される熱量に対し、少なくとも、前
記反応熱量を加算して、メイン触媒に与えられる熱量を
算出するものであることを特徴とする請求項3又は請求
項4記載の記載の触媒下流側空燃比センサのヒータ制御
装置。
5. The applied heat quantity calculating means has a reaction heat quantity calculating means for calculating the reaction heat quantity generated in the pre-catalyst, and adds at least the reaction heat quantity to the heat quantity transferred after the pre-catalyst. 5. The heater control device for the catalyst downstream side air-fuel ratio sensor according to claim 3 or 4, wherein the amount of heat given to the main catalyst is calculated.
【請求項6】前記付与熱量算出手段は、プリ触媒からメ
イン触媒に至る排気通路での放熱量を算出する放熱量算
出手段を有し、前記プリ触媒以降に伝熱される熱量に対
し、少なくとも、前記放熱量を減算して、メイン触媒に
与えられる熱量を算出するものであることを特徴とする
請求項3〜請求項5のいずれか1つに記載の記載の触媒
下流側空燃比センサのヒータ制御装置。
6. The applied heat amount calculation means has a heat release amount calculation means for calculating a heat release amount in an exhaust passage extending from a pre-catalyst to a main catalyst, and at least with respect to a heat amount transferred after the pre-catalyst, The heater of the catalyst downstream side air-fuel ratio sensor according to any one of claims 3 to 5, wherein the heat amount given to the main catalyst is calculated by subtracting the heat radiation amount. Control device.
JP34402295A 1995-12-28 1995-12-28 Heater control device for catalyst downstream air-fuel ratio sensor Expired - Fee Related JP3627335B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34402295A JP3627335B2 (en) 1995-12-28 1995-12-28 Heater control device for catalyst downstream air-fuel ratio sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34402295A JP3627335B2 (en) 1995-12-28 1995-12-28 Heater control device for catalyst downstream air-fuel ratio sensor

Publications (2)

Publication Number Publication Date
JPH09184443A true JPH09184443A (en) 1997-07-15
JP3627335B2 JP3627335B2 (en) 2005-03-09

Family

ID=18366060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34402295A Expired - Fee Related JP3627335B2 (en) 1995-12-28 1995-12-28 Heater control device for catalyst downstream air-fuel ratio sensor

Country Status (1)

Country Link
JP (1) JP3627335B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007010630A (en) * 2005-07-04 2007-01-18 Nissan Motor Co Ltd Heater controller for exhaust gas sensor
JP2007138832A (en) * 2005-11-18 2007-06-07 Denso Corp Heater control device for gas sensor
US7748216B2 (en) 2006-05-11 2010-07-06 Toyota Jidosha Kabushiki Kaisha Internal combustion engine
WO2011148807A1 (en) * 2010-05-25 2011-12-01 いすゞ自動車株式会社 Scr system
JP2012131240A (en) * 2010-12-17 2012-07-12 Mitsubishi Motors Corp Control device for starting internal combustion engine of hybrid vehicle
KR101361351B1 (en) * 2013-01-22 2014-02-11 주식회사 현대케피코 Method for controlling heater of oxygen sensor
JP2016205322A (en) * 2015-04-27 2016-12-08 トヨタ自動車株式会社 Inspection method of sensor with heater

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007010630A (en) * 2005-07-04 2007-01-18 Nissan Motor Co Ltd Heater controller for exhaust gas sensor
JP2007138832A (en) * 2005-11-18 2007-06-07 Denso Corp Heater control device for gas sensor
US7526914B2 (en) 2005-11-18 2009-05-05 Denso Corporation Heater control device for gas sensor
US7748216B2 (en) 2006-05-11 2010-07-06 Toyota Jidosha Kabushiki Kaisha Internal combustion engine
WO2011148807A1 (en) * 2010-05-25 2011-12-01 いすゞ自動車株式会社 Scr system
US9068487B2 (en) 2010-05-25 2015-06-30 Isuzu Motors Limited Selective catalytic reduction system
JP2012131240A (en) * 2010-12-17 2012-07-12 Mitsubishi Motors Corp Control device for starting internal combustion engine of hybrid vehicle
KR101361351B1 (en) * 2013-01-22 2014-02-11 주식회사 현대케피코 Method for controlling heater of oxygen sensor
JP2016205322A (en) * 2015-04-27 2016-12-08 トヨタ自動車株式会社 Inspection method of sensor with heater

Also Published As

Publication number Publication date
JP3627335B2 (en) 2005-03-09

Similar Documents

Publication Publication Date Title
JP3603422B2 (en) Engine catalyst temperature estimation device and catalyst diagnosis device
JP2860866B2 (en) Vehicle catalyst temperature detector
US5544639A (en) Temperature predicting system for internal combustion engine and temperature control system including same
JP3340330B2 (en) Deterioration diagnostic device for oxygen sensor in engine
US8362405B2 (en) Heater controller of exhaust gas sensor
KR0147916B1 (en) Device for detecting type of internal combustion engine fuel
JPH10148152A (en) Temperature estimating device for oxygen sensor in engine
JP3627335B2 (en) Heater control device for catalyst downstream air-fuel ratio sensor
US8000883B2 (en) Control apparatus and method for air-fuel ratio sensor
US5771690A (en) Engine exhaust purifier
JPH0835418A (en) Temperature controller of exhaust emission control device
JP2000310140A (en) Air-fuel ratio control device for internal combustion engine
JPH0933478A (en) Apparatus for diagnosing response of oxygen sensor in internal combustion engine
JPH0684743B2 (en) Deterioration detection device for hot wire type air flow meter
JP4170167B2 (en) Air-fuel ratio control device for internal combustion engine
JPH06294342A (en) Air-fuel ratio feedback controller of internal combustion engine
JP3692847B2 (en) Oxygen concentration detector
KR100232704B1 (en) Method and apparatus for estimating catalytic temperature of a vehicle
JP2010077848A (en) Air-fuel ratio control device for internal combustion engine
JPH09113481A (en) Activity decision unit for oxygen sensor
JPH0828320A (en) Fuel supply control device for internal combustion engine at starting
JPH07238854A (en) Fuel feeding control device of internal combustion engine
JPH09324691A (en) Fuel control unit for combustion engine
JPH08284651A (en) Catalyst temperature estimating device for internal combustion engine
JPH07269401A (en) Air-fuel ratio control device for engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20040223

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20040302

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041129

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071217

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20091217

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111217

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121217

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees