JP6077398B2 - Water detection device and water detection method - Google Patents

Water detection device and water detection method Download PDF

Info

Publication number
JP6077398B2
JP6077398B2 JP2013131811A JP2013131811A JP6077398B2 JP 6077398 B2 JP6077398 B2 JP 6077398B2 JP 2013131811 A JP2013131811 A JP 2013131811A JP 2013131811 A JP2013131811 A JP 2013131811A JP 6077398 B2 JP6077398 B2 JP 6077398B2
Authority
JP
Japan
Prior art keywords
water
moisture
detection
amount
resistance value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013131811A
Other languages
Japanese (ja)
Other versions
JP2014062889A (en
Inventor
壮一 川口
壮一 川口
祐司 村松
祐司 村松
貴久彦 大野
貴久彦 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2013131811A priority Critical patent/JP6077398B2/en
Publication of JP2014062889A publication Critical patent/JP2014062889A/en
Application granted granted Critical
Publication of JP6077398B2 publication Critical patent/JP6077398B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

本発明は、被水検出箇所における被水状態を検出する被水検出装置および被水検出方法に関する。   The present invention relates to a water-detecting device and a water-detecting method for detecting a water-covering state at a water-detecting location.

被水検出箇所における被水状態を検出する被水検出装置は、例えば、内燃機関の排気管などにおける被水状態の検出に用いられる。より具体的には、内燃機関の始動直後において、排気管に設けられた各種センサに凝縮水が付着する状態(被水状態)を検出する被水検出装置が知られている。   A moisture detection device that detects a moisture condition at a moisture detection location is used, for example, to detect a moisture condition in an exhaust pipe of an internal combustion engine. More specifically, there is known a water detection device that detects a state in which condensed water adheres to various sensors provided in an exhaust pipe (a wet state) immediately after the internal combustion engine is started.

内燃機関の排気管に設けられるセンサとしては、排気ガス中の特定成分の検出を行うガスセンサ(酸素センサ、NOxセンサなど)がある。これらのガスセンサは、高温状態になることでガス検出が可能な活性化状態となるセンサ素子を有するとともに、センサ素子を加熱するヒータを備える。   As a sensor provided in an exhaust pipe of an internal combustion engine, there is a gas sensor (oxygen sensor, NOx sensor, etc.) that detects a specific component in exhaust gas. These gas sensors include a sensor element that is in an activated state where gas detection is possible when the gas sensor is in a high temperature state, and includes a heater that heats the sensor element.

これらのガスセンサは、内燃機関の始動時のエミッション低減の要求から、始動直後において、早期のセンサ活性化のためにヒータによるセンサ素子の加熱が行われる。しかし、内燃機関の始動直後は、排気管内に凝縮水が存在する場合があり、排気と共に凝縮水が飛来して高温状態のセンサ素子に付着すると、熱衝撃によりセンサ素子が破損する虞がある。   In these gas sensors, the sensor element is heated by the heater immediately after the start because of a request for emission reduction at the start of the internal combustion engine for the early sensor activation. However, immediately after the start of the internal combustion engine, condensed water may exist in the exhaust pipe, and if the condensed water comes along with the exhaust and adheres to the high-temperature sensor element, the sensor element may be damaged by thermal shock.

これに対して、実際のガス検出に用いるガスセンサ(酸素センサ)を利用して、被水の有無を判定する装置が提案されている(特許文献1)。この装置では、ヒータおよびセンサ素子を有するガスセンサを用いて被水の有無を判定しており、センサ素子の素子インピーダンスに基づいて素子温度の変化度合いを測定し、素子温度の変化度合いが基準値より大きい場合に「被水有り」と判定する。   On the other hand, the apparatus which determines the presence or absence of moisture using the gas sensor (oxygen sensor) used for actual gas detection is proposed (patent document 1). In this device, the presence or absence of water is determined using a gas sensor having a heater and a sensor element, and the degree of change in element temperature is measured based on the element impedance of the sensor element. If it is larger, it is determined that “there is water”.

そして、この装置では、センサ素子が被水したと判断すると、ヒータへの通電を禁止して、センサ素子の破損を防止している。   In this apparatus, when it is determined that the sensor element has been submerged, energization of the heater is prohibited to prevent the sensor element from being damaged.

特開2000−283948号公報JP 2000-283948 A

しかし、上記従来の装置では、ガス検出に実際に用いるガスセンサを用いて被水の有無を判定するもの、つまり、センサ素子をヒータで加熱し、活性化したセンサ素子の素子インピーダンスに基づいて被水の有無を判定するものであるが、上記構成では素子インピーダンスの変化量が小さく、被水の有無までは判定可能であっても、被水量をも精度よく定量化することまではできなかった。   However, in the above conventional apparatus, the presence or absence of water is determined using a gas sensor that is actually used for gas detection, that is, the sensor element is heated by a heater and activated based on the element impedance of the activated sensor element. However, in the above configuration, the amount of change in the element impedance is small, and even if the presence or absence of water can be determined, the amount of water cannot be accurately quantified.

そこで、本発明は、被水の有無の判定だけでなく、被水量をも精度よく定量化可能な被水検出装置および被水検出方法を提供すること、を目的とする。   Therefore, an object of the present invention is to provide a water detection device and a water detection method capable of accurately quantifying the amount of water as well as determining the presence or absence of water.

本発明は、被水検出箇所における被水状態を検出する被水検出装置であって、発熱抵抗体が先端に埋設された長尺状の絶縁性部材を有する被水検出素子と、発熱抵抗体が予め定められた目標温度となるように、発熱抵抗体に通電を行う温度制御部と、発熱抵抗体における抵抗値の変化状態を検出する抵抗変化検出部と、抵抗変化検出部にて検出した抵抗値の変化状態に基づいて、被水検出素子の被水状態を判定する被水判定部と、を備え、被水検出素子は、絶縁性部材のうち少なくとも前記発熱抵抗体の埋設部分における周方向の全周を覆ってなる、厚さが400μm以下の多孔質層を備えること、を特徴とする被水検出装置である。   The present invention relates to a moisture detection device for detecting a moisture condition at a moisture detection location, a moisture detection element having a long insulating member with a heating resistor embedded at the tip, and a heating resistor. Is detected by a temperature control unit that energizes the heating resistor, a resistance change detection unit that detects a change state of the resistance value in the heating resistor, and a resistance change detection unit so that the temperature becomes a predetermined target temperature. A moisture determination unit that determines a moisture condition of the moisture detection element based on a change state of the resistance value, and the moisture detection element includes at least a peripheral portion of the insulating member in the embedded portion of the heating resistor. A water-detecting device comprising a porous layer having a thickness of 400 μm or less, covering the entire circumference in the direction.

この被水検出装置においては、被水検出素子が多孔質層を備えるため、付着した水を多孔質層に保持することができる。もし、多孔質ではない平滑な表面を有する部材が露出している場合、その部材に多量の水が飛来すると、水がその部材の表面から弾かれてしまい、少なくとも一部の水については被水検出素子から直ちに離れてしまう。   In this water detection apparatus, since the water detection element includes a porous layer, the adhered water can be held in the porous layer. If a member having a smooth surface that is not porous is exposed, if a large amount of water splashes on the member, the water is repelled from the surface of the member, and at least part of the water is covered with water. Immediately away from the sensing element.

これに対して、本発明の被水検出素子は、絶縁性部材のうち少なくとも発熱抵抗体の埋設部分における周方向の全周を覆う多孔質層を備えることで、付着した水の量が多い場合でも多孔質層に水を保持できるため、水が弾かれて被水検出素子から直ちに離れるのを抑制でき、付着した水の量に応じて被水検出素子の温度を変化させることが可能となる。   On the other hand, the water detection element of the present invention includes a porous layer that covers the entire circumference in the circumferential direction of at least the portion where the heating resistor is embedded in the insulating member, so that the amount of attached water is large. However, since water can be retained in the porous layer, it is possible to suppress water from being splashed and immediately separated from the water detection element, and the temperature of the water detection element can be changed according to the amount of attached water. .

また、多孔質層の厚さが400μm以下であることにより、多孔質層に付着した水は、多孔質層を介して絶縁性部材に容易に到達可能となる。温度制御部によって目標温度に制御されている発熱抵抗体は、多孔質層を介して絶縁性部材に付着した水の影響による温度変化に伴い、抵抗値が変化する。抵抗変化検出部が発熱抵抗体における抵抗値の変化状態を検出し、被水判定部が、その抵抗値の変化状態に基づいて被水検出素子の被水状態を判定することで、被水状態を確実に検出できる。   Moreover, when the thickness of the porous layer is 400 μm or less, the water attached to the porous layer can easily reach the insulating member through the porous layer. The resistance value of the heating resistor that is controlled to the target temperature by the temperature controller changes with the temperature change due to the influence of water attached to the insulating member via the porous layer. The resistance change detection unit detects a change state of the resistance value in the heating resistor, and the water determination unit determines the water supply state of the water detection element based on the change state of the resistance value. Can be reliably detected.

なお、発熱抵抗体の抵抗値変化状態のうち抵抗値の変化開始時期は、被水検出素子への水付着時期(被水タイミング)に相当するため、被水判定部は、抵抗値の変化状態に基づいて被水検出素子の被水タイミングを判定できる。   In addition, since the change start time of the resistance value in the resistance value change state of the heating resistor corresponds to the time of water adhesion to the water detection element (water exposure timing), the water determination unit determines the resistance value change state. Based on the above, it is possible to determine the wet timing of the wet detection element.

また、発熱抵抗体の抵抗値は、多孔質層を介して絶縁性部材に付着した水の量(被水量)に応じて様々な変化状態を示す。さらに、発熱抵抗体の抵抗値は、従来技術のようなセンサ素子の素子インピーダンスに比べて、被水に伴う変化量が大きくなる。   In addition, the resistance value of the heating resistor shows various changes depending on the amount of water (water exposure) attached to the insulating member through the porous layer. In addition, the resistance value of the heating resistor has a greater amount of change due to moisture compared to the element impedance of the sensor element as in the prior art.

このため、被水判定部は、抵抗値の変化状態に基づいて被水検出素子の被水状態を判定するにあたり、被水の有無のみならず、被水量も定量的に判定することが可能となる。
つまり、本発明の被水検出装置は、従来は別々に測定する必要があった被水タイミングと被水量とを同時に測定することが可能となり、被水タイミングおよび被水量の測定にかかる工数が削減できる。
For this reason, the moisture determination unit can quantitatively determine not only the presence / absence of moisture but also the amount of moisture in determining the moisture condition of the moisture detection element based on the change state of the resistance value. Become.
In other words, the water detection device of the present invention can simultaneously measure the water timing and the amount of water, which conventionally had to be measured separately, thereby reducing the man-hours for measuring the water timing and the amount of water. it can.

よって、本発明の被水検出装置によれば、被水の有無の判定だけでなく、被水量をも精度よく定量化することが可能となる。さらに、本発明によれば、被水タイミングおよび被水量の測定にかかる工数を削減できる。   Therefore, according to the water detection apparatus of the present invention, it is possible to quantify not only the presence / absence of water but also the amount of water with high accuracy. Furthermore, according to the present invention, it is possible to reduce the man-hours required for measuring the timing of water exposure and the amount of water.

なお、本発明の被水検出装置においては、多孔質層は、厚さが200μm以下であることが好ましい。
多孔質層の厚さを200μm以下にすることにより、多孔質層に付着した水は、より速やかに絶縁性部材に到達する。
In the water detection device of the present invention, the porous layer preferably has a thickness of 200 μm or less.
By setting the thickness of the porous layer to 200 μm or less, the water adhering to the porous layer reaches the insulating member more quickly.

これにより、実際の被水時期から発熱抵抗体の抵抗値変化開始までの時間を短縮することができ、被水検出の応答速度を向上できる。
次に、本発明の被水検出装置においては、被水判定部は、被水検出素子に付着した被水量と抵抗値の変化量との相関関係の情報に基づいて、被水量を少なくとも含む被水状態を判定する、という構成を採ることができる。
As a result, it is possible to shorten the time from the actual flooding timing to the start of the resistance value change of the heating resistor, and the response speed of the moisture detection can be improved.
Next, in the moisture detection device of the present invention, the moisture determination unit includes at least a moisture content based on information on a correlation between the moisture content attached to the moisture detection element and the change amount of the resistance value. A configuration in which the water state is determined can be adopted.

つまり、被水判定部は、相関関係の情報に基づいて、抵抗変化検出部にて検出した抵抗値の変化状態に対応する被水量を判定する。この被水検出装置は、被水量を少なくとも含む被水状態を判定できる。   That is, the moisture determination unit determines the amount of moisture corresponding to the change state of the resistance value detected by the resistance change detection unit based on the correlation information. This moisture detection apparatus can determine the moisture state including at least the amount of moisture.

これにより、この被水検出装置は、単なる「被水の有無」のみならず、被水量を判定できるため、被水検出箇所での詳細な被水状態を判定できる。
よって、本発明の被水検出装置によれば、被水検出箇所において、被水量を少なくとも含む被水状態を判定できるため、被水の判定精度の低下を抑制できる。
Thereby, since this moisture detection apparatus can determine not only mere "presence / absence of moisture" but also the amount of moisture, it can determine the detailed moisture condition at the detection location.
Therefore, according to the water detection device of the present invention, it is possible to determine a water-containing state that includes at least the amount of water at the water-detection location, and therefore it is possible to suppress a decrease in the determination accuracy of water.

次に、本発明方法は、被水検出箇所における被水状態を検出する被水検出方法であって、発熱抵抗体が先端に埋設された長尺状の絶縁性部材を有する被水検出素子を用いる被水検出方法であり、発熱抵抗体が予め定められた目標温度となるように、発熱抵抗体に通電を行う温度制御工程と、発熱抵抗体における抵抗値の変化状態を検出する抵抗変化検出工程と、抵抗変化検出工程にて検出した抵抗値の変化状態に基づいて、被水検出素子の被水状態を判定する被水判定工程と、を有しており、被水検出素子は、絶縁性部材のうち少なくとも発熱抵抗体の埋設部分における周方向の全周を覆ってなる、厚さが400μm以下の多孔質層を備えること、を特徴とする被水検出方法である。   Next, the method of the present invention is a water detection method for detecting a water exposure state at a water detection location, wherein a water detection element having a long insulating member with a heating resistor embedded at the tip is provided. This is a method of detecting moisture to be used, a temperature control process for energizing the heating resistor so that the heating resistor has a predetermined target temperature, and a resistance change detection for detecting a change state of the resistance value in the heating resistor. And a moisture determination step for determining a moisture condition of the moisture detection element based on the change state of the resistance value detected in the resistance change detection process. It is a wet detection method characterized by including a porous layer having a thickness of 400 μm or less, covering at least the entire circumference in the circumferential direction of the embedded portion of the heat generating resistor in the conductive member.

この被水検出方法においては、被水検出素子が多孔質層を備えるため、付着した水を多孔質層に保持することができる。もし、多孔質ではない平滑な表面を有する部材が露出している場合、その部材に多量の水が飛来すると、水がその部材の表面から弾かれてしまい、少なくとも一部の水については被水検出素子から直ちに離れてしまう。   In this water detection method, since the water detection element includes the porous layer, the attached water can be retained in the porous layer. If a member having a smooth surface that is not porous is exposed, if a large amount of water splashes on the member, the water is repelled from the surface of the member, and at least part of the water is covered with water. Immediately away from the sensing element.

これに対して、本発明方法に用いる被水検出素子は、絶縁性部材のうち少なくとも発熱抵抗体の埋設部分における周方向の全周を覆う多孔質層を備えることで、付着した水の量が多い場合でも多孔質層に水を保持できるため、水が弾かれて被水検出素子から直ちに離れるのを抑制でき、付着した水の量に応じて被水検出素子の温度を変化させることが可能となる。   On the other hand, the water detection element used in the method of the present invention includes a porous layer that covers at least the entire circumference in the circumferential direction of the insulating member in the embedded portion of the heating resistor, so that the amount of attached water is reduced. Even when there are many, water can be retained in the porous layer, so it is possible to suppress water from being splashed and immediately leaving the water detection element, and it is possible to change the temperature of the water detection element according to the amount of attached water It becomes.

また、多孔質層の厚さが400μm以下であることにより、多孔質層に付着した水は、多孔質層を介して絶縁性部材に容易に到達可能となる。温度制御工程において、目標温度に制御されている発熱抵抗体は、多孔質層を介して絶縁性部材に付着した水の影響による温度変化に伴い抵抗値が変化する。抵抗変化検出工程において、発熱抵抗体における抵抗値の変化状態を検出し、被水判定工程において、その抵抗値の変化状態に基づいて被水検出素子の被水状態を判定することで、被水状態を確実に検出できる。   Moreover, when the thickness of the porous layer is 400 μm or less, the water attached to the porous layer can easily reach the insulating member through the porous layer. In the temperature control step, the resistance value of the heating resistor controlled to the target temperature changes with a temperature change due to the influence of water attached to the insulating member via the porous layer. In the resistance change detection step, the change state of the resistance value in the heating resistor is detected, and in the water coverage determination step, the water coverage state of the water detection element is determined based on the change state of the resistance value. The state can be detected reliably.

なお、発熱抵抗体の抵抗値変化状態のうち抵抗値の変化開始時期は、被水検出素子への水付着時期(被水タイミング)に相当するため、被水判定工程では、抵抗値の変化状態に基づいて被水検出素子の被水タイミングを判定できる。   In addition, since the change start time of the resistance value in the resistance value change state of the heating resistor corresponds to the time of water adhesion to the water detection element (water exposure timing), the resistance value change state in the water determination process Based on the above, it is possible to determine the wet timing of the wet detection element.

また、発熱抵抗体の抵抗値は、多孔質層を介して絶縁性部材に付着した水の量(被水量)に応じて様々な変化状態を示す。さらに、発熱抵抗体の抵抗値は、従来技術のようなセンサ素子の素子インピーダンスに比べて、被水に伴う変化量が大きくなる。   In addition, the resistance value of the heating resistor shows various changes depending on the amount of water (water exposure) attached to the insulating member through the porous layer. In addition, the resistance value of the heating resistor has a greater amount of change due to moisture compared to the element impedance of the sensor element as in the prior art.

このため、被水判定工程においては、抵抗値の変化状態に基づいて被水検出素子の被水状態を判定するにあたり、被水の有無のみならず、被水量も定量的に判定することが可能となる。   For this reason, in the moisture determination step, it is possible to quantitatively determine not only the presence / absence of moisture but also the amount of moisture in determining the moisture condition of the moisture detection element based on the change state of the resistance value. It becomes.

つまり、本発明方法を用いることで、従来は別々に測定する必要があった被水タイミングと被水量とを同時に測定することが可能となり、被水タイミングおよび被水量の測定にかかる工数が削減できる。   That is, by using the method of the present invention, it is possible to simultaneously measure the wet timing and the wet amount, which conventionally had to be measured separately, and the man-hour required for measuring the wet timing and the wet amount can be reduced. .

よって、本発明方法の被水検出方法によれば、被水の有無の判定だけでなく、被水量をも精度よく定量化することが可能となる。さらに、本発明方法によれば、被水タイミングおよび被水量の測定にかかる工数を削減できる。   Therefore, according to the water detection method of the method of the present invention, it is possible to quantify not only the presence / absence of water but also the amount of water with high accuracy. Furthermore, according to the method of the present invention, it is possible to reduce the man-hours required for measuring the timing and amount of water.

なお、本発明の被水検出方法においては、多孔質層は、厚さが200μm以下であることが好ましい。
多孔質層の厚さを200μm以下にすることにより、多孔質層に付着した水は、より速やかに絶縁性部材に到達する。
In the wet detection method of the present invention, the porous layer preferably has a thickness of 200 μm or less.
By setting the thickness of the porous layer to 200 μm or less, the water adhering to the porous layer reaches the insulating member more quickly.

これにより、実際の被水時期から発熱抵抗体の抵抗値変化開始までの時間を短縮することができ、被水検出の応答速度を向上できる。
次に、本発明方法の被水検出方法においては、被水判定工程では、被水検出素子に付着した被水量と前記抵抗値の変化量との相関関係の情報に基づいて、被水量を少なくとも含む被水状態を判定することができる。
As a result, it is possible to shorten the time from the actual flooding timing to the start of the resistance value change of the heating resistor, and the response speed of the moisture detection can be improved.
Next, in the moisture detection method of the method of the present invention, in the moisture determination step, at least the amount of moisture is determined based on the information on the correlation between the amount of moisture attached to the moisture detection element and the amount of change in the resistance value. The wet state including can be determined.

つまり、被水判定工程では、相関関係の情報に基づいて、抵抗変化検出部にて検出した抵抗値の変化状態に対応する被水量を判定する。この被水検出方法であれば、被水量を少なくとも含む被水状態を判定できる。   That is, in the moisture determination step, the amount of moisture corresponding to the change state of the resistance value detected by the resistance change detector is determined based on the correlation information. With this moisture detection method, it is possible to determine a moisture state including at least the amount of moisture.

これにより、この被水検出方法では、単なる「被水の有無」のみならず、被水量を判定できるため、被水検出箇所での詳細な被水状態を判定できる。
よって、本発明方法の被水検出方法によれば、被水検出箇所において、被水量を少なくとも含む被水状態を判定できるため、被水の判定精度の低下を抑制できる。
Thereby, in this moisture detection method, since it is possible to determine not only the “presence / absence of moisture” but also the amount of moisture, it is possible to determine the detailed moisture condition at the location of detection of moisture.
Therefore, according to the water detection method of the method of the present invention, it is possible to determine the water exposure state including at least the amount of water at the water detection location, and therefore it is possible to suppress a decrease in the determination accuracy of water exposure.

なお、本発明の被水検出方法においては、目標温度は、300℃以上400℃以下であることが好ましい。
このような温度範囲での使用であれば、被水に伴って過大な熱衝撃が生じるのを抑制でき、被水による被水検出素子の破損を抑制できる。
In the water detection method of the present invention, the target temperature is preferably 300 ° C. or higher and 400 ° C. or lower.
If it is used in such a temperature range, it can suppress that an excessive thermal shock arises with water exposure, and can prevent damage to the water detection element by water exposure.

本発明の被水検出装置または被水検出方法によれば、被水検出箇所における被水状態を確実に検出でき、被水の判定精度の低下を抑制できる。   According to the water detection apparatus or the water detection method of the present invention, it is possible to reliably detect the water condition at the water detection location, and it is possible to suppress a decrease in the determination accuracy of water.

被水検出装置の全体構成図である。It is a whole block diagram of a moisture detection apparatus. 被水検出素子の概略構造を示す斜視図である。It is a perspective view which shows schematic structure of a to-be-watered detection element. 図2の被水検出素子におけるA−A断面図である。It is AA sectional drawing in the to-be-watered detection element of FIG. 被水検出処理の処理内容を表したフローチャートである。It is a flowchart showing the processing content of the moisture detection process. 水の付着に伴うヒータ部の抵抗値変化状態を測定した測定結果である。It is the measurement result which measured the resistance value change state of the heater part accompanying adhesion of water. 被水量と抵抗値変化量ΔRとの相関関係に関する測定結果である。It is a measurement result regarding the correlation between the amount of moisture and the resistance value change amount ΔR. 多孔質層の厚さ寸法が異なる2つの被水検出素子を用いて、被水量と抵抗値変化量ΔRとの相関関係について測定した測定結果である。It is the measurement result which measured about the correlation of the amount of moisture and resistance value variation | change_quantity (DELTA) R using the two moisture detection elements from which the thickness dimension of a porous layer differs.

以下、本発明が適用された実施形態について、図面を用いて説明する。
尚、本発明は、以下の実施形態に何ら限定されるものではなく、本発明の技術的範囲に属する限り種々の形態を採り得ることはいうまでもない。
Embodiments to which the present invention is applied will be described below with reference to the drawings.
In addition, this invention is not limited to the following embodiment at all, and it cannot be overemphasized that various forms may be taken as long as it belongs to the technical scope of this invention.

[1.第1実施形態]
[1−1.全体構成]
図1は、本発明が適用された実施形態としての被水検出装置1の全体構成図である。
[1. First Embodiment]
[1-1. overall structure]
FIG. 1 is an overall configuration diagram of a water detection device 1 as an embodiment to which the present invention is applied.

被水検出装置1は、内燃機関の排気管のうち酸素センサの設置箇所での被水状況を検出する用途に用いられる。
なお、酸素センサは、ボイラや自動車のエンジン等の各種内燃機器の排ガス中の特定ガス(酸素)の濃度を検出するために用いられる。検出したガス濃度は、例えば、各種内燃機関における空燃比フィードバック制御等に使用できる。
The moisture detection apparatus 1 is used for detecting the moisture condition at an oxygen sensor installation location in an exhaust pipe of an internal combustion engine.
The oxygen sensor is used to detect the concentration of a specific gas (oxygen) in the exhaust gas of various internal combustion devices such as boilers and automobile engines. The detected gas concentration can be used, for example, for air-fuel ratio feedback control in various internal combustion engines.

そして、被水検出装置1を用いて内燃機関の始動直後における被水状況を検出した場合、その検出結果(被水状況)は、被水の熱衝撃による酸素センサ素子の破損を抑制するために利用できる。つまり、検出された被水状況に基づいて、被水タイミングで酸素センサ素子が高温状態となるのを避けるように、酸素センサの温度制御(ヒータの温度制御)を行うことで、被水による熱衝撃によって酸素センサ素子が破損するのを抑制できる。   And when the wet condition immediately after the start of the internal combustion engine is detected using the wet detection apparatus 1, the detection result (the wet condition) is for suppressing the damage of the oxygen sensor element due to the thermal shock of the wet water. Available. In other words, the oxygen sensor temperature control (heater temperature control) is performed so as to avoid the oxygen sensor element from reaching a high temperature state at the timing of water exposure based on the detected water exposure situation. It can suppress that an oxygen sensor element is damaged by an impact.

被水検出装置1は、被水検出素子3と、電源装置5と、スイッチ6と、抵抗素子7と、制御部9と、を備えている。
図2に、被水検出素子3の概略構造を示す斜視図を示し、図3に、図2の被水検出素子3におけるA−A断面図を示す。
The water detection device 1 includes a water detection element 3, a power supply device 5, a switch 6, a resistance element 7, and a control unit 9.
FIG. 2 is a perspective view showing a schematic structure of the moisture detection element 3, and FIG. 3 is a cross-sectional view taken along line AA in the moisture detection element 3 of FIG.

なお、図2では、軸線方向(長手方向)における中間部分を省略して被水検出素子3を表すとともに、ヒータ部13などの内部構造を点線で模式的に表している。
被水検出素子3は、絶縁性部材11と、ヒータ部13と、一対の電極端子15と、多孔質層17と、を備える。なお、被水検出素子3の詳細については、後述する。
In FIG. 2, the intermediate portion in the axial direction (longitudinal direction) is omitted to represent the water detection element 3, and the internal structure of the heater unit 13 and the like is schematically represented by a dotted line.
The water detection element 3 includes an insulating member 11, a heater unit 13, a pair of electrode terminals 15, and a porous layer 17. The details of the moisture detection element 3 will be described later.

電源装置5は、所定の出力電圧値(例えば、18[V])で電力供給する電源装置であり、スイッチ6を介して、抵抗素子7および被水検出素子3(詳細には、ヒータ部13)への電力供給を行う。   The power supply device 5 is a power supply device that supplies power at a predetermined output voltage value (for example, 18 [V]), and via the switch 6, the resistance element 7 and the water detection element 3 (in detail, the heater unit 13). ).

スイッチ6は、制御部9からの指令信号に基づいて、ON状態(通電状態)またはOFF状態(遮断状態)に切替可能に構成されている。
なお、電源装置5の出力電圧および抵抗素子7の抵抗値は、被水検出素子3の先端部(詳細には、ヒータ部13)の温度が目標温度となるように、予め適切な値に設定されている。なお、被水検出素子3の目標温度は、熱衝撃による被水検出素子3の破損が生じない温度に設定される。本実施形態では、目標温度は、350[℃]に設定されている。
The switch 6 is configured to be switchable to an ON state (energized state) or an OFF state (blocked state) based on a command signal from the control unit 9.
Note that the output voltage of the power supply device 5 and the resistance value of the resistance element 7 are set to appropriate values in advance so that the temperature of the tip of the moisture detection element 3 (specifically, the heater part 13) becomes the target temperature. Has been. The target temperature of the water detection element 3 is set to a temperature at which the water detection element 3 is not damaged by thermal shock. In the present embodiment, the target temperature is set to 350 [° C.].

制御部9は、被水検出装置1の全体を制御するものであり、被水状態を検出するための各処理を実行する。制御部9は、いわゆるマイクロコンピュータで構成されており、詳細は図示しないが、公知の構成を有し、演算を行うマイクロプロセッサ、プログラムやデータを一時記憶するRAM、プログラムやデータを保持するROM、アナログ信号をデジタル信号に変換するA/D変換回路などを含んで構成されている。   The control unit 9 controls the entire water detection apparatus 1 and executes each process for detecting the water condition. The control unit 9 is configured by a so-called microcomputer, and although not shown in detail, has a known configuration, a microprocessor that performs calculation, a RAM that temporarily stores programs and data, a ROM that stores programs and data, An A / D conversion circuit that converts an analog signal into a digital signal is included.

また、制御部9は、被水検出素子3(詳細には、ヒータ部13)と抵抗素子7との接続点の電位を入力するためのA/D変換部(図示省略)を備えている。この電位は、ヒータ部13の両端電圧に等しい値を示すため、制御部9は、この電位を用いることでヒータ部13の両端電圧を検出可能に構成されている。   In addition, the control unit 9 includes an A / D conversion unit (not shown) for inputting a potential at a connection point between the moisture detection element 3 (specifically, the heater unit 13) and the resistance element 7. Since this potential shows a value equal to the voltage across the heater section 13, the control section 9 is configured to detect the voltage across the heater section 13 using this potential.

制御部9は、被水検出素子3におけるヒータ部13の両端電圧に基づいて、ヒータ部13の抵抗値の変化状態を検出し、その抵抗値変化状態に基づいて被水検出素子3の被水状態を判定する被水判定処理を行う。被水判定処理の処理内容は、後述する。   The control unit 9 detects the change state of the resistance value of the heater unit 13 based on the voltage between both ends of the heater unit 13 in the water detection element 3, and applies water to the water detection element 3 based on the resistance value change state. A moisture determination process for determining the state is performed. The processing content of the water determination process will be described later.

[1−2.被水検出素子3]
図2および図3に示すように、被水検出素子3は、絶縁性部材11と、ヒータ部13と、一対の電極端子15と、多孔質層17と、を備える。
[1-2. Water detection element 3]
As shown in FIGS. 2 and 3, the moisture detection element 3 includes an insulating member 11, a heater portion 13, a pair of electrode terminals 15, and a porous layer 17.

絶縁性部材11は、軸線方向(図2における左右方向)に延びる長尺の平板状に形成されており、アルミナを主体に構成されている。
ヒータ部13は、発熱抵抗体で構成されており、絶縁性部材11の先端側の内部に備えられる。一対の電極端子15は、一対のリード部14を介してヒータ部13に電気的に接続されており、絶縁性部材11の後端側の外部に備えられる。
The insulating member 11 is formed in a long flat plate shape extending in the axial direction (left and right direction in FIG. 2), and is mainly composed of alumina.
The heater unit 13 is composed of a heating resistor and is provided inside the insulating member 11 on the tip side. The pair of electrode terminals 15 are electrically connected to the heater portion 13 via the pair of lead portions 14 and are provided outside the rear end side of the insulating member 11.

多孔質層17は、層厚寸法が200[μm]の多孔質材料で構成されている。また、多孔質層17は、絶縁性部材11のうち少なくともヒータ部13の埋設部分における周方向の全周を覆う形態で構成されている。   The porous layer 17 is made of a porous material having a layer thickness dimension of 200 [μm]. Further, the porous layer 17 is configured to cover at least the entire circumference in the circumferential direction in the embedded portion of the heater portion 13 of the insulating member 11.

つまり、被水検出素子3は、外部の電源装置5から一対の電極端子15を通じてヒータ部13に通電されることで、ヒータ部13が発熱するように構成されている。
なお、被水検出素子3は、例えば、内燃機関の排気管における酸素センサの設置箇所に酸素センサの代わりに設置される。これにより、被水検出素子3は、酸素センサの設置箇所に飛来する水滴(凝縮水など)を捕捉することができ、酸素センサの設置箇所における被水状態を検出することができる。
That is, the moisture detection element 3 is configured such that the heater unit 13 generates heat when the heater unit 13 is energized from the external power supply device 5 through the pair of electrode terminals 15.
In addition, the to-be-watered detection element 3 is installed instead of an oxygen sensor in the installation location of the oxygen sensor in the exhaust pipe of an internal combustion engine, for example. Thereby, the water-detecting element 3 can capture water droplets (condensed water, etc.) flying to the location where the oxygen sensor is installed, and can detect the water-covered state at the location where the oxygen sensor is installed.

また、この被水検出装置1には、被水検出素子3を覆う保護カバーが備えられていないため、被水検出素子3は、多孔質層17が外部に露出する状態で酸素センサの設置箇所に設置される。このため、この設置箇所に飛来した水滴は、直接、被水検出素子3の多孔質層17に付着する。つまり、被水検出素子3は、飛来した水の影響によって温度が確実に変化するとともに、その内部のヒータ部13(発熱抵抗体)の温度が確実に変化する。   Moreover, since this water-detecting device 1 is not provided with a protective cover that covers the water-detecting element 3, the water-detecting element 3 is installed at the location where the oxygen sensor is installed with the porous layer 17 exposed to the outside. Installed. For this reason, the water droplets flying to this installation location are directly attached to the porous layer 17 of the water detection element 3. In other words, the temperature of the moisture detection element 3 is surely changed by the influence of the incoming water, and the temperature of the heater portion 13 (heat generating resistor) inside thereof is surely changed.

また、被水検出素子3は、絶縁性部材11のうち少なくともヒータ部13の埋設部分における周方向の全周を覆う多孔質層17を備えるため、付着した水を多孔質層17に保持することができる。もし、多孔質ではない平滑な表面を有する部材が露出している場合、その部材に多量の水が飛来すると、水がその部材の表面から弾かれてしまい、少なくとも一部の水については被水検出素子から直ちに離れてしまう。   Moreover, since the to-be-water-detected element 3 is equipped with the porous layer 17 which covers the perimeter of the circumferential direction in the embedding part of the heater part 13 among the insulating members 11, it hold | maintains the adhering water in the porous layer 17. Can do. If a member having a smooth surface that is not porous is exposed, if a large amount of water splashes on the member, the water is repelled from the surface of the member, and at least part of the water is covered with water. Immediately away from the sensing element.

これに対して、被水検出素子3は、絶縁性部材11のうち少なくともヒータ部13の埋設部分における周方向の全周を覆う多孔質層17を備えることで、付着した水の量が多い場合でも多孔質層17に水を保持できるため、水が弾かれて被水検出素子3から直ちに離れるのを抑制でき、付着した水の量に応じて被水検出素子3の温度を変化させることが可能となる。   On the other hand, when the moisture detection element 3 includes the porous layer 17 covering the entire circumference in the circumferential direction of at least the embedded portion of the heater portion 13 in the insulating member 11, the amount of attached water is large. However, since water can be retained in the porous layer 17, it is possible to suppress water from being splashed and immediately separated from the water detection element 3, and to change the temperature of the water detection element 3 according to the amount of attached water. It becomes possible.

[1−3.被水検出処理]
次に、制御部9で実行される被水検出処理について説明する。
図4に、被水検出処理の処理内容を表したフローチャートを示す。
[1-3. Water detection process]
Next, the moisture detection process performed by the control unit 9 will be described.
In FIG. 4, the flowchart showing the processing content of the moisture detection process is shown.

なお、被水検出処理は、被水検出装置1が起動されると、制御部9での内部処理として処理が開始される。
被水検出処理が開始されると、まず、S110(Sはステップを表す)では、被水検出素子3のヒータ部13に対する電圧印加を開始する処理を実行する。具体的には、スイッチ6をON状態(通電状態)に制御して、電源装置5からヒータ部13および抵抗素子7に対する通電を開始する。
The water detection process starts as an internal process in the control unit 9 when the water detection apparatus 1 is activated.
When the moisture detection process is started, first, in S110 (S represents a step), a process of starting voltage application to the heater unit 13 of the moisture detection element 3 is executed. Specifically, the switch 6 is controlled to be in an ON state (energization state), and energization from the power supply device 5 to the heater unit 13 and the resistance element 7 is started.

次のS120では、S110でヒータ部13への通電を開始した後、予め定められた温度安定時間が経過したか否かを判定しており、肯定判定の場合にはS130に移行し、否定判定の場合には同ステップを繰り返し実行して温度安定時間が経過するまで待機する。   In the next S120, it is determined whether or not a predetermined temperature stabilization time has elapsed after starting the energization of the heater unit 13 in S110. If the determination is affirmative, the process proceeds to S130, and a negative determination is made. In this case, the same step is repeatedly executed and the process waits until the temperature stabilization time elapses.

なお、温度安定時間は、ヒータ部13への通電開始時を起点として、常温(例えば、20℃)の被水検出素子3が目標温度に到達するまでに要する加熱時間が設定されている。本実施形態では、温度安定時間として300[sec]と設定されているが、これに限らず、被水検出素子3の温度が目標温度で充分に安定する時間を適宜設定すればよい。   Note that the temperature stabilization time is set to a heating time required for the water detection element 3 at room temperature (for example, 20 ° C.) to reach the target temperature from the start of energization to the heater unit 13. In the present embodiment, the temperature stabilization time is set to 300 [sec]. However, the temperature stabilization time is not limited to this, and a time during which the temperature of the moisture detection element 3 is sufficiently stabilized at the target temperature may be set as appropriate.

S120で肯定判定されてS130に移行すると、S130では、測定開始信号の待機処理を起動する。具体的には、被水検出の測定開始時期を表す測定開始信号S1を外部から受信するために、制御部9の信号入力部(図示省略)の状態を、測定開始信号が受信可能な待機状態に設定する。なお、本実施形態では、内燃機関の始動を表す始動信号が内燃機関の制御装置から出力されており、その始動信号を測定開始信号S1として制御部9に入力される。   When an affirmative determination is made in S120 and the process proceeds to S130, a standby process for a measurement start signal is activated in S130. Specifically, in order to receive the measurement start signal S1 representing the measurement start timing of the detection of water from the outside, the state of the signal input unit (not shown) of the control unit 9 is set to the standby state in which the measurement start signal can be received. Set to. In the present embodiment, a start signal indicating the start of the internal combustion engine is output from the control device for the internal combustion engine, and the start signal is input to the control unit 9 as the measurement start signal S1.

次のS140では、内燃機関が始動したか否かを判定しており、肯定判定の場合にはS150に移行し、否定判定の場合には同ステップを繰り返し実行して内燃機関が始動するまで待機する。なお、S140では、内燃機関から測定開始信号S1(始動信号)が入力されたか否かに基づいて、内燃機関が始動したか否かを判定する。   In next step S140, it is determined whether or not the internal combustion engine has been started. If the determination is affirmative, the process proceeds to S150, and if the determination is negative, the same step is repeatedly executed to wait until the internal combustion engine is started. To do. In S140, it is determined whether or not the internal combustion engine has been started based on whether or not the measurement start signal S1 (start signal) has been input from the internal combustion engine.

S140で肯定判定されてS150に移行すると、S150では、被水検出素子3のヒータ部13における抵抗値の変化量(以下、抵抗値変化量ΔRともいう)を測定する処理を実行する。また、S150では、被水検出素子3のヒータ部13における抵抗値の変化状態に基づいて、被水検出素子3への水付着時期(被水タイミング)を測定する処理も実行する。   When an affirmative determination is made in S140 and the process proceeds to S150, in S150, a process of measuring a change amount of the resistance value in the heater unit 13 of the moisture detection element 3 (hereinafter also referred to as a resistance value change amount ΔR) is executed. Moreover, in S150, based on the change state of the resistance value in the heater part 13 of the water detection element 3, the process which measures the water adhesion time (watering timing) to the water detection element 3 is also performed.

なお、ヒータ部13の両端電圧は、ヒータ部13の抵抗値変化に応じて変動する。また、ヒータ部13は、自身の温度変化によって抵抗値が変化する温度特性を有している。このため、被水検出素子3に水が付着すると、ヒータ部13に温度変化が生じて、ヒータ部13の抵抗値が変化すると共にヒータ部13の両端電圧が変化する。つまり、ヒータ部13の両端電圧の変化状態に基づいて、温度変化に伴うヒータ部13の抵抗値変化量を測定できる。   Note that the voltage across the heater section 13 varies according to the change in resistance value of the heater section 13. Moreover, the heater part 13 has a temperature characteristic in which a resistance value changes according to its own temperature change. For this reason, when water adheres to the moisture detection element 3, a temperature change occurs in the heater unit 13, and the resistance value of the heater unit 13 changes and the voltage across the heater unit 13 changes. That is, the amount of change in the resistance value of the heater unit 13 due to the temperature change can be measured based on the change state of the voltage across the heater unit 13.

ここで、図5に、水の付着に伴うヒータ部13の抵抗値変化状態を測定した測定結果を示す。図5では、横軸を時間とし、縦軸をヒータ部13の抵抗値として、抵抗値の変化状態を示している。   Here, in FIG. 5, the measurement result which measured the resistance value change state of the heater part 13 accompanying adhesion of water is shown. In FIG. 5, the horizontal axis represents time, and the vertical axis represents the resistance value of the heater unit 13.

図5では、時間T1が被水検出素子3への水付着時期であり、時間T1よりも早い時期では抵抗値が通常抵抗値R1であるが、時間T1の直後から抵抗値が低下していることが判る。そして、ヒータ部13の抵抗値は、最低抵抗値R2まで低下した後、徐々に上昇して再び通常抵抗値R1まで戻る。   In FIG. 5, the time T1 is the time of water adhesion to the water detection element 3, and the resistance value is the normal resistance value R1 at a time earlier than the time T1, but the resistance value decreases immediately after the time T1. I understand that. Then, the resistance value of the heater unit 13 decreases to the minimum resistance value R2, and then gradually increases to return to the normal resistance value R1 again.

つまり、被水検出素子3は、時間T1よりも早い時期では温度が一定(具体的には、目標温度)であり、時間T1の直後から温度が低下し、ヒータ部13の抵抗値が最低抵抗値R2となる時点で最低温度まで低下する。その後、被水検出素子3は、徐々に温度が上昇して元の目標温度に戻る。   In other words, the temperature of the wet detection element 3 is constant (specifically, the target temperature) at a time earlier than the time T1, the temperature decreases immediately after the time T1, and the resistance value of the heater unit 13 is the lowest resistance. When the value R2 is reached, the temperature drops to the lowest temperature. Thereafter, the temperature of the moisture detection element 3 gradually increases and returns to the original target temperature.

S150では、ヒータ部13の抵抗値変化状態のうち、抵抗値の変化開始時期である時間T1を、被水検出素子3への水付着時期(被水タイミング)と判定する。
このときのヒータ部13の抵抗値変化量ΔR(=R1−R2)は、被水量に応じて変化する。
In S150, among the resistance value change states of the heater unit 13, the time T1, which is the resistance value change start time, is determined as the water adhesion time (water exposure timing) to the water detection element 3.
At this time, the resistance value change amount ΔR (= R1−R2) of the heater unit 13 changes according to the amount of moisture.

ここで、図6に、被水量と抵抗値変化量ΔRとの相関関係に関する測定結果を示す。
図6に示すように、被水検出素子3に付着した水の量(換言すれば、被水量)が大きくなるほど、ヒータ部13の抵抗値変化量ΔRが大きくなることが判る。
Here, in FIG. 6, the measurement result regarding the correlation between the amount of moisture and the resistance value change amount ΔR is shown.
As shown in FIG. 6, it can be seen that the resistance value change amount ΔR of the heater unit 13 increases as the amount of water adhering to the water detection element 3 (in other words, the amount of water) increases.

つまり、S150では、ヒータ部13における両端電圧の変化量(換言すれば、電位差)を測定するとともに、その電位差に基づいてヒータ部13の抵抗値変化量ΔRを測定している。   That is, in S150, the change amount of the voltage across the heater portion 13 (in other words, the potential difference) is measured, and the resistance value change amount ΔR of the heater portion 13 is measured based on the potential difference.

次のS160では、S150で測定したヒータ部13の抵抗値変化量ΔRに基づいて、被水検出素子3に付着した被水量を演算する。
具体的には、図6に示すような被水量と抵抗値変化量ΔRとの相関関係に関するマップ(あるいは計算式など)を用いて、抵抗値変化量ΔRに対応する被水量を演算する。
In next S160, the amount of water adhering to the water detection element 3 is calculated based on the resistance value change amount ΔR of the heater unit 13 measured in S150.
Specifically, the amount of water corresponding to the resistance value change amount ΔR is calculated using a map (or a calculation formula or the like) relating to the correlation between the water amount and the resistance value change amount ΔR as shown in FIG.

次のS170では、ヒータ部13に対する電圧印加を停止する処理を実行する。具体的には、スイッチ6をOFF状態(遮断状態)に制御して、電源装置5からヒータ部13および抵抗素子7に対する通電を停止する。   In the next S170, a process of stopping the voltage application to the heater unit 13 is executed. Specifically, the switch 6 is controlled to be in an OFF state (cut-off state), and energization of the heater unit 13 and the resistance element 7 from the power supply device 5 is stopped.

S170での処理が終了すると、被水検出処理は終了する。
つまり、被水検出処理では、ヒータ部13の抵抗値変化状態に基づいて被水検出素子3への水付着時期(被水タイミング)を測定する処理を行うとともに、被水検出素子3におけるヒータ部13の抵抗値変化量ΔRを測定し、その抵抗値変化量ΔRに基づいて、被水検出素子3に付着した被水量を演算する処理を行う。
When the process in S170 ends, the water detection process ends.
That is, in the moisture detection process, the process of measuring the water adhesion timing (water exposure timing) to the moisture detection element 3 based on the resistance value change state of the heater unit 13 is performed, and the heater unit in the moisture detection element 3 13 is measured, and a process of calculating the amount of water adhering to the water detection element 3 is performed based on the resistance value change ΔR.

被水検出装置1は、上記のような被水検出処理を実行することで、内燃機関の始動直後における酸素センサの設置箇所に関して、被水の有無を判定できるとともに、被水量および被水タイミングを含む被水状態を判定することができる。   The water detection apparatus 1 can determine the presence or absence of water with respect to the location where the oxygen sensor is installed immediately after the start of the internal combustion engine by executing the water detection process as described above, and can also determine the amount of water and the timing of water exposure. The wet state including can be determined.

[1−4.効果]
以上説明したように、本実施形態の被水検出装置1においては、被水検出素子3の多孔質層17が外部に露出する状態で被水検出箇所に備えられることから、飛来した水(凝縮水など)は、保護カバーにより阻害されることなく、被水検出素子3の多孔質層17に直接付着する。このため、保護カバーを有するセンサとは異なり、この被水検出素子3は、飛来した水の影響によって温度が確実に変化するとともに、その内部のヒータ部13(発熱抵抗体)の温度が確実に変化する。
[1-4. effect]
As described above, in the water detection device 1 according to the present embodiment, since the porous layer 17 of the water detection element 3 is provided at the water detection location in a state of being exposed to the outside, Water, etc.) adheres directly to the porous layer 17 of the water detection element 3 without being hindered by the protective cover. For this reason, unlike the sensor having a protective cover, the moisture detection element 3 is surely changed in temperature by the influence of the incoming water, and the temperature of the heater portion 13 (heating resistor) in the inside is surely changed. Change.

また、被水検出素子3は、絶縁性部材11のうち少なくともヒータ部13の埋設部分における周方向の全周を覆う多孔質層17を備えるため、付着した水を多孔質層17に保持することができる。もし、多孔質ではない平滑な表面を有する部材が露出している場合、その部材に多量の水が飛来すると、水がその部材の表面から弾かれてしまい、少なくとも一部の水については被水検出素子から直ちに離れてしまう。   Moreover, since the to-be-water-detected element 3 is equipped with the porous layer 17 which covers the perimeter of the circumferential direction in the embedding part of the heater part 13 among the insulating members 11, it hold | maintains the adhering water in the porous layer 17. Can do. If a member having a smooth surface that is not porous is exposed, if a large amount of water splashes on the member, the water is repelled from the surface of the member, and at least part of the water is covered with water. Immediately away from the sensing element.

これに対して、被水検出素子3は、多孔質層17を備えることで、付着した水の量が多い場合でも多孔質層17に水を保持できるため、水が弾かれて被水検出素子3から直ちに離れるのを抑制でき、付着した水の量に応じて被水検出素子3の温度を変化させることが可能となる。   On the other hand, since the water detection element 3 includes the porous layer 17, water can be retained in the porous layer 17 even when the amount of attached water is large. 3 can be prevented from immediately leaving, and the temperature of the water detection element 3 can be changed according to the amount of attached water.

また、多孔質層17は、層厚寸法が200[μm]の多孔質材料で構成されており、層厚寸法が400[μm]以下であることから、多孔質層17に付着した水は、多孔質層17を介して絶縁性部材11に容易に到達可能となる。   In addition, the porous layer 17 is made of a porous material having a layer thickness dimension of 200 [μm], and the layer thickness dimension is 400 [μm] or less, so that water adhering to the porous layer 17 is It becomes possible to easily reach the insulating member 11 through the porous layer 17.

さらに、被水検出装置1においては、多孔質層17の層厚寸法が200[μm]以下であるため、多孔質層17に付着した水は、より速やかに絶縁性部材11に到達する。これにより、実際の被水時期からヒータ部13の抵抗値変化開始までの時間を短縮することができ、被水検出の応答速度を向上できる。   Furthermore, in the water-detecting device 1, since the layer thickness dimension of the porous layer 17 is 200 [μm] or less, the water adhering to the porous layer 17 reaches the insulating member 11 more quickly. Thereby, the time from the actual flooding timing to the start of the resistance value change of the heater unit 13 can be shortened, and the response speed of the flooding detection can be improved.

そして、電源装置5および抵抗素子7によって目標温度に制御されているヒータ部13(発熱抵抗体)は、被水検出素子3に付着した水の影響による温度変化に伴い、抵抗値が変化する。   The resistance value of the heater unit 13 (heating resistor) that is controlled to the target temperature by the power supply device 5 and the resistance element 7 changes with a temperature change due to the influence of water adhering to the water detection element 3.

被水検出装置1は、被水検出処理のS150において、ヒータ部13における抵抗値の変化状態(詳細には、抵抗値変化量ΔR)を検出し、被水検出処理のS160において、抵抗値の変化状態(詳細には、抵抗値変化量ΔR)に基づいて被水検出素子3の被水状態(詳細には、被水量)を判定することで、被水量を少なくとも含む被水状態を確実に検出できる。   The water detection apparatus 1 detects the change state of the resistance value in the heater unit 13 (specifically, the resistance value change amount ΔR) in S150 of the water detection process, and the resistance value is detected in S160 of the water detection process. By determining the wet state (specifically, the wet amount) of the wet detection element 3 based on the change state (specifically, the resistance value change amount ΔR), the wet state including at least the wet amount can be reliably ensured. It can be detected.

なお、ヒータ部13の抵抗値変化状態のうち抵抗値の変化開始時期(時間T1)は、被水検出素子3への水付着時期(被水タイミング)に相当するため、被水判定処理のS150では、ヒータ部13の抵抗値変化状態に基づいて被水検出素子3の被水タイミングを判定できる。   The resistance value change start time (time T1) in the resistance value change state of the heater unit 13 corresponds to the water adhesion time (water exposure timing) to the water detection element 3, and therefore, S150 of the water determination process. Then, based on the resistance value change state of the heater unit 13, the wet timing of the wet detection element 3 can be determined.

また、ヒータ部13の抵抗値は、多孔質層17を介して絶縁性部材11に付着した水の量(被水量)に応じて様々な変化状態を示す。さらに、発熱抵抗体からなるヒータ部13の抵抗値は、従来技術のようなセンサ素子の素子インピーダンスに比べて、被水に伴う変化量が大きくなる。   Further, the resistance value of the heater unit 13 shows various changes depending on the amount of water (water exposure) attached to the insulating member 11 through the porous layer 17. Further, the resistance value of the heater unit 13 made of a heating resistor has a greater amount of change due to moisture compared to the element impedance of the sensor element as in the prior art.

このため、被水検出装置1は、ヒータ部13の変化状態に基づいて被水検出素子3の被水状態を判定するにあたり、被水の有無のみならず、被水量も定量的に判定することが可能となる。   For this reason, the water detection device 1 quantitatively determines not only the presence / absence of water but also the amount of water in determining the wet state of the water detection element 3 based on the change state of the heater unit 13. Is possible.

つまり、被水検出装置1は、従来は別々に測定する必要があった被水タイミングと被水量とを同時に測定することが可能となり、被水タイミングおよび被水量の測定にかかる工数が削減できる。   In other words, the water detection apparatus 1 can simultaneously measure the water timing and the amount of water that had conventionally been required to be measured separately, and can reduce the number of steps for measuring the water timing and the amount of water.

よって、本実施形態の被水検出装置1によれば、被水の有無の判定だけでなく、被水量をも精度よく定量化することが可能となる。さらに、本実施形態の被水検出装置1によれば、被水タイミングおよび被水量の測定にかかる工数を削減できる。   Therefore, according to the water detection device 1 of the present embodiment, not only the determination of the presence or absence of water but also the amount of water can be accurately quantified. Furthermore, according to the water detection device 1 of the present embodiment, it is possible to reduce the man-hours required for measuring the timing of the water exposure and the amount of water.

また、被水検出装置1は、被水検出処理のS160において、被水量と抵抗値変化量ΔRとの相関関係に関するマップ(あるいは計算式など)を用いて、抵抗値変化量ΔRに対応する被水量を演算する。つまり、被水検出装置1は、被水検出素子3に付着した被水量とヒータ部13の抵抗値変化量ΔRとの相関関係の情報に基づいて、被水量を少なくとも含む被水状態を判定する。   In addition, in S160 of the water detection process, the water detection device 1 uses a map (or a calculation formula or the like) relating to the correlation between the amount of water and the resistance value change ΔR, and uses the map corresponding to the resistance value change ΔR. Calculate the amount of water. In other words, the water detection device 1 determines a water coverage state including at least the water content based on information on the correlation between the water content attached to the water detection element 3 and the resistance value change amount ΔR of the heater unit 13. .

換言すれば、被水検出処理のS160を実行する制御部9は、被水量と抵抗値変化量ΔRとの相関関係に関するマップ(あるいは計算式など)に基づいて、被水検出処理のS150を実行する制御部9にて検出した抵抗値変化量ΔRに対応する被水量を判定する。このため、この被水検出装置1は、被水量を少なくとも含む被水状態を判定することができる。   In other words, the control unit 9 that executes S160 of the water detection process executes S150 of the water detection process based on a map (or a calculation formula or the like) regarding the correlation between the water quantity and the resistance value change amount ΔR. The amount of water corresponding to the resistance value change amount ΔR detected by the control unit 9 is determined. For this reason, this moisture detection apparatus 1 can determine the moisture state including at least the amount of moisture.

これにより、この被水検出装置1は、被水の有無のみならず、被水量を判定できるため、被水検出箇所での詳細な被水状態を判定できる。
よって、本実施形態の被水検出装置1によれば、被水検出箇所において、被水量を少なくとも含む被水状態を判定できるため、被水の判定精度の低下を抑制できる。
Thereby, since this moisture detection apparatus 1 can determine not only the presence or absence of moisture, but the amount of moisture, it can determine the detailed moisture condition in a moisture detection location.
Therefore, according to the moisture detection device 1 of the present embodiment, it is possible to determine the moisture condition including at least the amount of moisture at the moisture detection location, and therefore it is possible to suppress a decrease in the determination accuracy of the moisture.

[1−5.特許請求の範囲との対応関係]
ここで、特許請求の範囲と本実施形態とにおける文言の対応関係について説明する。
ヒータ部13が発熱抵抗体の一例に相当し、絶縁性部材11が絶縁性部材の一例に相当し、電源装置5および抵抗素子7が温度制御部の一例に相当する。
[1-5. Correspondence with Claims]
Here, the correspondence of the words in the claims and the present embodiment will be described.
The heater unit 13 corresponds to an example of a heating resistor, the insulating member 11 corresponds to an example of an insulating member, and the power supply device 5 and the resistance element 7 correspond to an example of a temperature control unit.

被水検出処理のS150を実行する制御部9が抵抗変化検出部の一例に相当し、抵抗値変化量ΔRが「抵抗値の変化状態」の一例に相当し、被水検出処理のS160を実行する制御部9が被水判定部の一例に相当する。   The controller 9 that executes the water detection process S150 corresponds to an example of a resistance change detection unit, the resistance value change amount ΔR corresponds to an example of a “resistance value change state”, and executes the water detection process S160. The control part 9 to perform corresponds to an example of a water determination part.

被水検出処理におけるS110およびS120の実行時期が温度制御工程の一例に相当し、被水検出処理におけるS150の実行時期が抵抗値変化検出工程の一例に相当し、被水検出処理におけるS160の実行時期が被水判定工程の一例に相当する。   The execution time of S110 and S120 in the water detection process corresponds to an example of a temperature control process, the execution time of S150 in the water detection process corresponds to an example of a resistance value change detection process, and the execution of S160 in the water detection process The time corresponds to an example of the water determination step.

[2.多孔質層の厚さ寸法について]
次に、被水検出素子3における多孔質層17の厚さ寸法と抵抗値変化量ΔRとの相関関係について測定した測定結果について説明する。
[2. About the thickness of the porous layer]
Next, measurement results obtained by measuring the correlation between the thickness dimension of the porous layer 17 and the resistance value change amount ΔR in the moisture detection element 3 will be described.

図7は、多孔質層の厚さ寸法が異なる2つの被水検出素子を用いて、被水量と抵抗値変化量ΔRとの相関関係について測定した測定結果である。なお、この測定では、多孔質層の厚さ寸法が200[μm]の被水検出素子(以下、第1素子ともいう)と、多孔質層の厚さ寸法が400[μm]の被水検出素子(以下、第2素子ともいう)と、を用いた。   FIG. 7 shows measurement results obtained by measuring the correlation between the moisture content and the resistance change ΔR using two moisture sensing elements having different thickness dimensions of the porous layer. In this measurement, the moisture detection element (hereinafter also referred to as the first element) having a thickness dimension of the porous layer of 200 [μm] and the moisture detection of a porous layer having a thickness dimension of 400 [μm]. An element (hereinafter also referred to as a second element) was used.

図7に示すように、第1素子は、第2素子に比べて、同一の被水量であっても、抵抗値変化量ΔRが大きくなる。例えば、被水量が1.0[μL]の場合には、第1素子は、第2素子に比べて、差分ΔRaだけ抵抗値変化量ΔRが大きいことが判る。   As illustrated in FIG. 7, the first element has a larger resistance value change amount ΔR than the second element, even if the moisture content is the same. For example, when the amount of moisture is 1.0 [μL], it can be seen that the first element has a larger resistance value change ΔR by the difference ΔRa than the second element.

これは、多孔質層17の厚さ寸法が小さくなるほど、多孔質層17を介して絶縁性部材11に到達する水の量が大きくなり、ヒータ部13の温度変化量が大きくなるためと考えられる。   This is considered to be because the amount of water reaching the insulating member 11 through the porous layer 17 increases as the thickness dimension of the porous layer 17 decreases, and the temperature change amount of the heater unit 13 increases. .

反対に、多孔質層17の厚さ寸法が大きすぎる場合、ヒータ部13の温度変化量が小さくなるとともに抵抗値変化量ΔRが小さくなるため、被水量の検出精度が低下する可能性がある。   On the other hand, when the thickness dimension of the porous layer 17 is too large, the temperature change amount of the heater unit 13 becomes small and the resistance value change amount ΔR becomes small.

なお、本測定に用いた第2素子における抵抗値変化量ΔRの大きさであれば、被水量毎の抵抗値変化量ΔRの差違を判定できるため、被水量の検出は可能である。このため、多孔質層17の厚さ寸法が400[μm]以下であれば、被水量を十分に検出することができる。   In addition, if the resistance value change amount ΔR in the second element used in this measurement is large, it is possible to determine the difference in the resistance value change amount ΔR for each amount of water, and thus it is possible to detect the amount of water. For this reason, if the thickness dimension of the porous layer 17 is 400 [μm] or less, the amount of water can be sufficiently detected.

また、本測定に用いた第1素子における抵抗値変化量ΔRの大きさであれば、被水量毎の抵抗値変化量ΔRの差違がより一層大きくなるため、精度良く被水量を検出することが可能となる。このため、多孔質層17の厚さ寸法が200[μm]以下であれば、被水量の検出精度がより向上する。   In addition, if the resistance value change amount ΔR in the first element used in this measurement is large, the difference in the resistance value change amount ΔR for each water amount becomes even larger, so that the water amount can be detected with high accuracy. It becomes possible. For this reason, if the thickness dimension of the porous layer 17 is 200 [micrometers] or less, the detection accuracy of the amount of moisture will improve more.

[3.他の実施形態]
以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、様々な態様にて実施することが可能である。
[3. Other Embodiments]
As mentioned above, although embodiment of this invention was described, this invention is not limited to the said embodiment, In the range which does not deviate from the summary of this invention, it is possible to implement in various aspects.

例えば、上記実施形態では、多孔質層の厚さ寸法が200[μm]の被水検出素子について説明したが、多孔質層の厚さ寸法はこの数値に限られることはない。つまり、被水検出箇所の環境や用途などに応じて、適切な厚さ寸法の多孔質層を備えることができる。   For example, in the above-described embodiment, the moisture detection element having the porous layer having a thickness of 200 [μm] has been described, but the thickness of the porous layer is not limited to this value. That is, it is possible to provide a porous layer having an appropriate thickness according to the environment or application of the water detection location.

また、ヒータ部13(発熱抵抗体)の目標温度は、350[℃]に限られることはなく、熱衝撃による被水検出素子3の破損が生じない温度範囲(例えば、300〜400[℃])で、任意の数値を採ることができる。なお、ヒータ部13の目標温度は、電源装置5の電圧値や抵抗素子7の抵抗値を変更することで、任意の数値に設定することができる。   Further, the target temperature of the heater unit 13 (heating resistor) is not limited to 350 [° C.], but a temperature range in which the water detection element 3 is not damaged by thermal shock (for example, 300 to 400 [° C.]). ), Any number can be taken. The target temperature of the heater unit 13 can be set to an arbitrary numerical value by changing the voltage value of the power supply device 5 or the resistance value of the resistance element 7.

また、被水検出素子は、上述した長尺平板状の素子に限られることはなく、被水検出箇所に設置できる形状であれば、長尺筒型状の素子や長尺柱型状の素子など任意の形状を採ることができる。   Further, the water-detecting element is not limited to the above-described long flat plate-shaped element, and may be a long cylindrical element or a long columnar element as long as the element can be installed at a water-detecting point. Any shape can be adopted.

また、上記実施形態では、被水検出素子を覆う保護カバーが備えられていない構成について説明したが、保護カバーを備える構成であってもよい良い。ガスセンサは通常、保護カバーを備えた状態で使用されることが多く、被水検出素子3が保護カバーを備えることで当該ガスセンサの態様に近づくため、実際のガスセンサに近い被水状態を再現することができる。   Moreover, although the said embodiment demonstrated the structure which is not provided with the protective cover which covers a to-be-watered detection element, the structure provided with a protective cover may be sufficient. The gas sensor is usually used with a protective cover in many cases, and the water detection element 3 is provided with the protective cover so that it approaches the mode of the gas sensor. Can do.

1…被水検出装置、3…被水検出素子、5…電源装置、7…抵抗素子、9…制御部、11…絶縁性部材、13…ヒータ部、15…電極端子、17…多孔質層。   DESCRIPTION OF SYMBOLS 1 ... Water detection apparatus, 3 ... Water detection element, 5 ... Power supply device, 7 ... Resistance element, 9 ... Control part, 11 ... Insulating member, 13 ... Heater part, 15 ... Electrode terminal, 17 ... Porous layer .

Claims (7)

被水検出箇所における被水状態を検出する被水検出装置であって、
発熱抵抗体が先端に埋設された長尺状の絶縁性部材を有する被水検出素子と、
前記発熱抵抗体が予め定められた目標温度となるように、前記発熱抵抗体に通電を行う温度制御部と、
前記発熱抵抗体における抵抗値の変化状態を検出する抵抗変化検出部と、
前記抵抗変化検出部にて検出した前記抵抗値の変化状態に基づいて、前記被水検出素子の被水状態を判定する被水判定部と、
を備え、
前記被水検出素子は、前記絶縁性部材のうち少なくとも前記発熱抵抗体の埋設部分における周方向の全周を覆ってなる、厚さが400μm以下の多孔質層を備えること、
を特徴とする被水検出装置。
A moisture detection device for detecting a moisture condition at a moisture detection location,
A wet detection element having a long insulating member with a heating resistor embedded at the tip;
A temperature control unit for energizing the heating resistor so that the heating resistor has a predetermined target temperature;
A resistance change detecting unit for detecting a change state of a resistance value in the heating resistor;
Based on the change state of the resistance value detected by the resistance change detection unit, a wetness determination unit that determines the wetness state of the wetness detection element;
With
The water-detecting element includes a porous layer having a thickness of 400 μm or less that covers at least the entire circumference of the insulating member in the circumferential direction of the embedded portion of the heating resistor.
A water detection device characterized by the above.
前記多孔質層は、厚さが200μm以下であること、
を特徴とする請求項1に記載の被水検出装置。
The porous layer has a thickness of 200 μm or less;
The water-detecting device according to claim 1.
前記被水判定部は、前記被水検出素子に付着した被水量と前記抵抗値の変化量との相関関係の情報に基づいて、被水量を少なくとも含む前記被水状態を判定すること、
を特徴とする請求項1または請求項2に記載の被水検出装置。
The water determination unit determines the wet state including at least the amount of water based on information on the correlation between the amount of water attached to the water detection element and the amount of change in the resistance value,
The water-detecting device according to claim 1 or 2, wherein
被水検出箇所における被水状態を検出する被水検出方法であって、
発熱抵抗体が先端に埋設された長尺状の絶縁性部材を有する被水検出素子を用いる被水検出方法であり、
前記発熱抵抗体が予め定められた目標温度となるように、前記発熱抵抗体に通電を行う温度制御工程と、
前記発熱抵抗体における抵抗値の変化状態を検出する抵抗変化検出工程と、
前記抵抗変化検出工程にて検出した前記抵抗値の変化状態に基づいて、前記被水検出素子の被水状態を判定する被水判定工程と、
を有しており、
前記被水検出素子は、前記絶縁性部材のうち少なくとも前記発熱抵抗体の埋設部分における周方向の全周を覆ってなる、厚さが400μm以下の多孔質層を備えること、
を特徴とする被水検出方法。
A water detection method for detecting a water exposure state at a water detection location,
A wet detection method using a wet detection element having a long insulating member with a heating resistor embedded at the tip,
A temperature control step of energizing the heating resistor such that the heating resistor has a predetermined target temperature;
A resistance change detecting step of detecting a change state of a resistance value in the heating resistor;
Based on the change state of the resistance value detected in the resistance change detection step, a water determination step for determining a water exposure state of the water detection element;
Have
The water-detecting element includes a porous layer having a thickness of 400 μm or less that covers at least the entire circumference of the insulating member in the circumferential direction of the embedded portion of the heating resistor.
A method for detecting water exposure.
前記多孔質層は、厚さが200μm以下であること、
を特徴とする請求項4に記載の被水検出方法。
The porous layer has a thickness of 200 μm or less;
The water detection method according to claim 4.
前記被水判定工程では、前記被水検出素子に付着した被水量と前記抵抗値の変化量との相関関係の情報に基づいて、被水量を少なくとも含む前記被水状態を判定すること、
を特徴とする請求項4または請求項5に記載の被水検出方法。
In the moisture determination step, based on the information on the correlation between the amount of moisture adhering to the moisture detection element and the amount of change in the resistance value, determining the moisture condition including at least the amount of moisture;
The method for detecting water exposure according to claim 4 or 5, wherein:
前記目標温度は、300℃以上400℃以下であること、
を特徴とする請求項4から請求項6のうちいずれか1項に記載の被水検出方法。
The target temperature is 300 ° C. or more and 400 ° C. or less,
The water detection method according to any one of claims 4 to 6, wherein:
JP2013131811A 2013-06-24 2013-06-24 Water detection device and water detection method Active JP6077398B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013131811A JP6077398B2 (en) 2013-06-24 2013-06-24 Water detection device and water detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013131811A JP6077398B2 (en) 2013-06-24 2013-06-24 Water detection device and water detection method

Publications (2)

Publication Number Publication Date
JP2014062889A JP2014062889A (en) 2014-04-10
JP6077398B2 true JP6077398B2 (en) 2017-02-08

Family

ID=50618244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013131811A Active JP6077398B2 (en) 2013-06-24 2013-06-24 Water detection device and water detection method

Country Status (1)

Country Link
JP (1) JP6077398B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6680001B2 (en) * 2016-03-10 2020-04-15 株式会社デンソー Liquid detector
JP6451697B2 (en) * 2016-06-14 2019-01-16 トヨタ自動車株式会社 Exhaust sensor control device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5328770U (en) * 1976-08-19 1978-03-11
JPS5525216U (en) * 1978-08-02 1980-02-19
US4506540A (en) * 1983-01-24 1985-03-26 Union Oil Company Of California Liquid sensor and the use thereof in controlling the corrosion of pipelines
JPH0710285Y2 (en) * 1988-09-08 1995-03-08 株式会社フジクラ Precipitation sensor
JPH03199954A (en) * 1989-12-27 1991-08-30 Junkosha Co Ltd Pure-water sensor
JPH04235338A (en) * 1991-01-09 1992-08-24 Anritsu Corp Humidity sensor
JPH08184575A (en) * 1994-12-29 1996-07-16 Tokin Corp Humidity sensor
JP3671728B2 (en) * 1999-03-29 2005-07-13 トヨタ自動車株式会社 Oxygen concentration detector
JP4014513B2 (en) * 2002-02-28 2007-11-28 日本特殊陶業株式会社 CERAMIC HEATER, LAMINATED GAS SENSOR ELEMENT AND ITS MANUFACTURING METHOD, AND GAS SENSOR HAVING LAMINATED GAS SENSOR ELEMENT
JP4583187B2 (en) * 2005-01-27 2010-11-17 京セラ株式会社 Ceramic heater element and detection element using the same
JP5318467B2 (en) * 2008-06-04 2013-10-16 矢崎総業株式会社 Gas sensor
JP5500154B2 (en) * 2011-11-15 2014-05-21 株式会社デンソー Water detection element and water detection sensor

Also Published As

Publication number Publication date
JP2014062889A (en) 2014-04-10

Similar Documents

Publication Publication Date Title
US8720186B2 (en) Control apparatus for gas sensor
JP5062755B2 (en) Sensor control device
JP5798059B2 (en) Engine control device
US8943800B2 (en) Air-fuel ratio control apparatus
JP6243516B2 (en) Humidity detector
JP2006200408A (en) Deterioration detection device for exhaust gas sensor
JP4860503B2 (en) Sensor control device
CN111164280B (en) Method for operating a catalyst system of an internal combustion engine and catalyst system
JP6241360B2 (en) Exhaust gas sensor heater control device
JP6077398B2 (en) Water detection device and water detection method
JP2015081561A (en) Filter fault detection device
JP5927647B2 (en) Gas detector
US20080110769A1 (en) Exhaust gas sensors and methods for measuring concentrations of nox and ammonia and temperatures of the sensors
JP6377534B2 (en) Sensor control device and sensor control method
JP2013189865A (en) Control device for exhaust gas sensor
US10174698B2 (en) Heater control device for exhaust gas sensor
JP4396534B2 (en) Heater control device
JP2001073827A (en) Exhaust gas sensor and its control device
JP4780465B2 (en) Oxygen sensor failure diagnosis device
JP2004360563A (en) Exhaust gas detection device
JP6640652B2 (en) Sensor control device
JP2004340859A (en) Method of determining activation of oxygen sensor
JP2015224892A (en) Gas detector
JP2009121401A (en) Exhaust temperature estimating device for internal combustion engine
JP2005331310A (en) Gas concentration detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170112

R150 Certificate of patent or registration of utility model

Ref document number: 6077398

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250