WO2013161288A1 - Rubber composition for construction vehicle tire and pneumatic tire for construction vehicle using same - Google Patents

Rubber composition for construction vehicle tire and pneumatic tire for construction vehicle using same Download PDF

Info

Publication number
WO2013161288A1
WO2013161288A1 PCT/JP2013/002774 JP2013002774W WO2013161288A1 WO 2013161288 A1 WO2013161288 A1 WO 2013161288A1 JP 2013002774 W JP2013002774 W JP 2013002774W WO 2013161288 A1 WO2013161288 A1 WO 2013161288A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
parts
carbon black
rubber
rubber composition
Prior art date
Application number
PCT/JP2013/002774
Other languages
French (fr)
Japanese (ja)
Inventor
浩史 若松
Original Assignee
横浜ゴム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横浜ゴム株式会社 filed Critical 横浜ゴム株式会社
Priority to CN201380021274.2A priority Critical patent/CN104245815B/en
Priority to JP2014506382A priority patent/JP5626494B2/en
Publication of WO2013161288A1 publication Critical patent/WO2013161288A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L91/00Compositions of oils, fats or waxes; Compositions of derivatives thereof

Definitions

  • the present invention relates to a rubber composition for tires for construction vehicles and a pneumatic tire for construction vehicles using the same, and more specifically, for construction vehicle tires having excellent cut resistance, heat generation and wear resistance.
  • the present invention relates to a rubber composition and a pneumatic tire for construction vehicles using the same.
  • Cap treads for construction vehicle tires that travel on rough roads and heavy loads are required to balance all of the characteristics of cut resistance, low heat generation and wear resistance at a high level.
  • various resins are blended to improve cut resistance (for example, see Patent Document 1), high styrene-butadiene copolymer rubber is blended (for example, see Patent Document 2), and the amount of filler is increased.
  • such means cannot provide low heat build-up, and wear resistance is also deteriorated.
  • the cut resistance and the low heat generation property or the wear resistance are in a trade-off relationship, and there is also a trade-off relationship between the low heat generation property and the wear resistance. Therefore, satisfying the above three characteristics at the same time is recognized as a difficult problem in the industry.
  • an object of the present invention is to provide a rubber composition for tires for construction vehicles having excellent cut resistance, heat generation and abrasion resistance, and a pneumatic tire for construction vehicles using the same.
  • the present invention is as follows. 1.
  • the compounding amount of carbon black (A) having a nitrogen adsorption specific surface area (N 2 SA) of 90 to 130 m 2 / g is 35 to 45 parts by mass with respect to 100 parts by mass of the diene rubber.
  • the amount of carbon black (B) having a nitrogen adsorption specific surface area (N 2 SA) of 60 to 90 m 2 / g is 5 to 15 parts by mass with respect to 100 parts by mass of the diene rubber. 2.
  • 9. 2.
  • a specific amount of carbon black, silica, and aromatic modified terpene resin having a specific specific surface area are blended with a diene rubber having a specific composition, and the amount of carbon black in the filler is set within a specific range. It is possible to provide a rubber composition for tires for construction vehicles having excellent cut resistance, heat generation properties, and abrasion resistance, and a pneumatic tire for construction vehicles using the same.
  • the diene rubber used in the present invention is 10 to 50 parts by mass of styrene-butadiene copolymer rubber (SBR) having a styrene content of 10 to 30% by mass, and 90 to 50 parts by mass of isoprene-based rubber including natural rubber. Consists of parts.
  • SBR styrene-butadiene copolymer rubber
  • the SBR preferably has a vinyl content in butadiene of 60% by mass or more. When the vinyl content is 60% by mass or more, further low exothermic property can be obtained.
  • a more preferable styrene content is 15 to 25% by mass, and a vinyl content is 60 to 70% by mass.
  • the molecular weight of SBR is not particularly limited. Further, when the total amount of the diene rubber is 100 parts by mass, if the amount of SBR is less than 10 parts by mass (that is, the isoprene-based rubber exceeds 90 parts by mass), the cut resistance deteriorates and low heat build-up Can't get. On the contrary, when the blending amount of SBR exceeds 50 parts by mass (that is, isoprene-based rubber is less than 50 parts by mass), low heat build-up cannot be obtained, and wear resistance also deteriorates. In the diene rubber, the more preferable amount of SBR is 20 to 40 parts by mass. In addition to the natural rubber (NR), synthetic isoprene rubber (IR) can be used as the isoprene-based rubber.
  • the SBR has a terminal having a hydroxyl group, an N-alkyl-substituted aminoketone group or an N-alkyl-substituted aminothioketone group at the molecular terminal portion.
  • a modified SBR is preferred.
  • Such terminal-modified SBR is known, and can be produced by, for example, a method described in Japanese Patent Publication No. 3488926, and commercially available products such as Nipol NS116 manufactured by Nippon Zeon Co., Ltd. can also be used.
  • the rubber composition of the present invention uses carbon black (A) having a nitrogen adsorption specific surface area (N 2 SA) of 90 to 130 m 2 / g.
  • the nitrogen adsorption specific surface area (N 2 SA) is a value measured according to JIS K6217-2.
  • a more preferable nitrogen adsorption specific surface area (N 2 SA) is 100 to 120 m 2 / g.
  • the rubber composition of the present invention contains carbon black (B) having a nitrogen adsorption specific surface area (N 2 SA) of 60 m 2 / g or more and less than 90 m 2 / g.
  • N 2 SA nitrogen adsorption specific surface area
  • silica As the silica used in the present invention, any silica conventionally known to be used in a rubber composition for tires such as dry silica, wet silica, colloidal silica and precipitated silica is used alone or in combination of two or more. Can be used.
  • the BET specific surface area (measured in accordance with ISO 5794/1) of silica is preferably 150 to 250 m 2 / g.
  • Aromaatic modified terpene resin examples of the aromatic modified terpene resin blended in the rubber composition of the present invention include terpene resins such as ⁇ -pinene, ⁇ -pinene, dipentene and limonene, and styrene, ⁇ -methylstyrene, vinyltoluene, indene and the like.
  • An aromatic modified terpene resin obtained by polymerizing an aromatic compound is effectively used.
  • the content of the aromatic compound in the aromatic modified terpene resin is preferably 10 to 50% by mass.
  • the softening point of the aromatic modified terpene resin is preferably 100 to 130 ° C. According to the range of the softening point, the effects of the present invention, that is, the cut resistance, the heat generation property, and the wear resistance can be further enhanced.
  • the rubber composition of the present invention can contain various fillers.
  • the filler is not particularly limited and may be appropriately selected depending on the application.
  • other inorganic fillers such as clay, talc, and calcium carbonate can be used.
  • the filler said by this invention means carbon black, a silica, and another inorganic filler.
  • the rubber composition of the present invention comprises 30 to 50 parts by mass of carbon black (A) having a nitrogen adsorption specific surface area (N 2 SA) of 90 to 130 m 2 / g with respect to 100 parts by mass of the diene rubber. 5 to 20 parts by mass of carbon black (B) having an adsorption specific surface area (N 2 SA) of 60 m 2 / g or more and less than 90 m 2 / g, 5 to 20 parts by mass of silica, and a softening point of 100 to 130 ° C.
  • A carbon black
  • B having an adsorption specific surface area (N 2 SA) of 60 m 2 / g or more and less than 90 m 2 / g, 5 to 20 parts by mass of silica, and a softening point of 100 to 130 ° C.
  • the blending amount of carbon black (A) having a 90 to 130 m 2 / g satisfies the following formula. 0.55 ⁇ (mass part of the carbon black (A) / total mass part of the filler) ⁇ 0.65
  • the blending amount of the carbon black (A) having a nitrogen adsorption specific surface area (N 2 SA) of 90 to 130 m 2 / g is less than 30 parts by mass, both the cut resistance and the wear resistance cannot be improved.
  • the blending amount of the aromatic modified terpene resin is less than 1 part by mass, the added amount is too small to achieve the effects of the present invention. Conversely, if it exceeds 10 parts by mass, low exothermic properties cannot be obtained, and wear resistance is also deteriorated.
  • the total amount of carbon black, silica, and other inorganic fillers exceeds 70 parts by mass, the exothermic properties deteriorate. In the above formula, if (mass part of the carbon black (A) / total mass part of the filler) is less than 0.55, the exothermic property deteriorates. On the other hand, if it exceeds 0.65, the exothermic property deteriorates.
  • the compounding amount of carbon black (A) having a nitrogen adsorption specific surface area (N 2 SA) of 90 to 130 m 2 / g is more preferably 35 to 45 parts by mass with respect to 100 parts by mass of the diene rubber.
  • the blending amount of the carbon black (B) having a nitrogen adsorption specific surface area (N 2 SA) of 60 to 90 m 2 / g is more preferably 5 to 15 parts by mass, and 8 to 10 parts by mass with respect to 100 parts by mass of the diene rubber. Part is particularly preferred.
  • the blending amount of silica is more preferably 5 to 15 parts by mass with respect to 100 parts by mass of the diene rubber.
  • the compounding amount of the aromatic modified terpene resin is more preferably 3 to 8 parts by mass with respect to 100 parts by mass of the diene rubber.
  • the total amount of carbon black, silica and other inorganic fillers is more preferably 50 to 65 parts by mass.
  • the rubber composition of the present invention includes construction of a vulcanization or crosslinking agent, a vulcanization or crosslinking accelerator, various oils, an anti-aging agent, a plasticizer, a vulcanization aid, a processing aid, and the like.
  • Various additives that are generally blended in rubber compositions for vehicle tires can be blended, and these additives are kneaded by a general method to form a composition that is used for vulcanization or crosslinking. be able to.
  • the blending amounts of these additives can be set to conventional general blending amounts as long as the object of the present invention is not violated.
  • the rubber composition of the present invention can be used for producing a pneumatic tire according to a conventional method for producing a pneumatic tire. Since the rubber composition of the present invention has excellent cut resistance, heat generation and abrasion resistance, it is particularly preferable to use it for a cap tread of a pneumatic tire for construction vehicles.
  • Cut resistance A needle having a tip angle of 90 °, a length of 40 mm and a diameter of 4 mm was dropped from a height of 150 mm to a load of 29.4 N on a vulcanized rubber test piece having a length of 100 mm, a width of 100 mm and a height of 40 mm.
  • the standard depth is 100, that is, the following formula: (depth of needle penetration of Comparative Example 1) / (depth of needle penetration of other Comparative Examples or Examples) ⁇ 100 Used, expressed as an index. The larger the value, the better the cut resistance.
  • Exothermic property Based on JIS K6394, using a viscoelastic spectrometer manufactured by Toyo Seiki Seisakusho Co., Ltd., tan ⁇ at 60 ° C. was measured under conditions of initial strain 10%, amplitude ⁇ 2%, and frequency 20 Hz. The results were expressed as an index with the standard example being 100. The larger the index, the lower the exothermic property and the better the durability against fracture.
  • Abrasion resistance A vulcanized rubber test piece is compliant with JIS K6264, using a Lambourn abrasion tester (manufactured by Iwamoto Seisakusho Co., Ltd.), temperature 20 ° C., load 39 N, slip rate 30%, time 4 minutes. The amount of wear was measured under the conditions. The results were expressed as an index with the standard example being 100. It shows that it is excellent in abrasion resistance, so that an index
  • the rubber compositions prepared in Examples 1 to 4 have specific amounts of carbon black, silica and aromatic modified terpene resin having a specific surface area in a diene rubber having a specific composition. Since it was blended and the blending amount of carbon black in the filler was set within a specific range, it showed excellent cut resistance, low heat build-up, and wear resistance compared to the standard example. On the other hand, since the compounding quantity of the aromatic modified terpene resin exceeded the upper limit prescribed
  • Comparative Example 3 since the blending amount of carbon black (A) having a nitrogen adsorption specific surface area (N 2 SA) of 90 to 130 m 2 / g is below the lower limit specified in the present invention, cut resistance and abrasion resistance Sex deteriorated. In Comparative Example 4, the exothermic property deteriorated because the blending amount of carbon black (A) having a nitrogen adsorption specific surface area (N 2 SA) of 90 to 130 m 2 / g exceeded the upper limit defined in the present invention. In Comparative Example 5, since carbon black (B) having a nitrogen adsorption specific surface area (N 2 SA) of 60 to 90 m 2 / g was not blended, heat generation was deteriorated.
  • Comparative Example 6 since the blending amount of carbon black (B) having a nitrogen adsorption specific surface area (N 2 SA) of 60 to 90 m 2 / g exceeded the upper limit specified in the present invention, the exothermic property deteriorated. Since Comparative Example 7 did not contain SBR, cut resistance and wear resistance were deteriorated. In Comparative Example 8, since the amount of SBR exceeds the upper limit defined in the present invention, the exothermic property deteriorated. In Comparative Example 9, since the compounding amount of silica exceeded the upper limit specified in the present invention, the heat generation and wear resistance were deteriorated. In Comparative Example 10, since the total amount of fillers exceeded the upper limit defined in the present invention, the heat generation was deteriorated.
  • N 2 SA nitrogen adsorption specific surface area
  • Comparative Example 11 since the carbon black (A) having a nitrogen adsorption specific surface area (N 2 SA) of 90 to 130 m 2 / g was not blended, the heat generation was deteriorated.
  • Comparative Example 12 since the blending amount of carbon black (A) having a nitrogen adsorption specific surface area (N 2 SA) of 90 to 130 m 2 / g exceeds the upper limit of the formula defined in the present invention, the exothermic property is deteriorated. did.
  • Comparative Example 13 since the blending amount of carbon black (A) having a nitrogen adsorption specific surface area (N 2 SA) of 90 to 130 m 2 / g was less than the lower limit of the formula defined in the present invention, the exothermic property was deteriorated. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Tires In General (AREA)

Abstract

A rubber composition for a construction vehicle tire, the rubber composition blending 30 to 50 parts by mass of carbon black (A) having a nitrogen adsorption specific surface area of 90 to 130 m2/g, 5 to 20 parts by mass of carbon black (B) having a nitrogen adsorption specific surface area of 60 to 90 m2/g, 5 to 20 parts by mass of silica, and 1 to 10 parts by mass of an aromatic modified terpene resin having a softening point of 100-130 °C; in relation to 100 parts by mass of a diene-based rubber comprising 10 to 50 parts by mass of a styrene-butadiene copolymer rubber having a styrene content of 10 to 30 mass%, and 50 to 90 parts by mass of an isoprene-based rubber including a natural rubber; the total amount of filler being 70 parts by mass or less, and the blended amount of the carbon black (A) satisfying the formula 0.55 ≤ (parts by mass of the carbon black (A)/total parts by mass of the filler) ≤ 0.65.

Description

建設車両用タイヤ用ゴム組成物およびそれを用いた建設車両用空気入りタイヤRubber composition for tire for construction vehicle and pneumatic tire for construction vehicle using the same
 本発明は、建設車両用タイヤ用ゴム組成物およびそれを用いた建設車両用空気入りタイヤに関するものであり、詳しくは、優れた耐カット性、発熱性、耐摩耗性を有する建設車両用タイヤ用ゴム組成物およびそれを用いた建設車両用空気入りタイヤに関するものである。 TECHNICAL FIELD The present invention relates to a rubber composition for tires for construction vehicles and a pneumatic tire for construction vehicles using the same, and more specifically, for construction vehicle tires having excellent cut resistance, heat generation and wear resistance. The present invention relates to a rubber composition and a pneumatic tire for construction vehicles using the same.
 悪路、重荷重条件での走行を伴う建設車両用タイヤのキャップトレッドにおいては、耐カット性、低発熱性、耐摩耗性のすべての特性を高次元でバランスすることが要求される。
 例えば耐カット性の向上には各種樹脂を配合したり(例えば特許文献1参照)、高スチレン-ブタジエン共重合体ゴムを配合したり(例えば特許文献2参照)、充填剤を増量する等の手段が有効であるが、このような手段では低発熱性が得られず、また耐摩耗性も悪化してしまう。
 このように、耐カット性と低発熱性または耐摩耗性とは二律背反の関係にあり、さらに、低発熱性と耐摩耗性との間にも二律背反の関係が存在する。したがって、前記3つの特性を同時に満足させることは当業界において困難な課題と認識されている。
Cap treads for construction vehicle tires that travel on rough roads and heavy loads are required to balance all of the characteristics of cut resistance, low heat generation and wear resistance at a high level.
For example, various resins are blended to improve cut resistance (for example, see Patent Document 1), high styrene-butadiene copolymer rubber is blended (for example, see Patent Document 2), and the amount of filler is increased. However, such means cannot provide low heat build-up, and wear resistance is also deteriorated.
Thus, the cut resistance and the low heat generation property or the wear resistance are in a trade-off relationship, and there is also a trade-off relationship between the low heat generation property and the wear resistance. Therefore, satisfying the above three characteristics at the same time is recognized as a difficult problem in the industry.
特許第2890328号公報Japanese Patent No. 2890328 特許第2779220号公報Japanese Patent No. 2779220
 したがって本発明の目的は、優れた耐カット性、発熱性、耐摩耗性を有する建設車両用タイヤ用ゴム組成物およびそれを用いた建設車両用空気入りタイヤを提供することにある。 Therefore, an object of the present invention is to provide a rubber composition for tires for construction vehicles having excellent cut resistance, heat generation and abrasion resistance, and a pneumatic tire for construction vehicles using the same.
 本発明者らは鋭意研究を重ねた結果、特定の組成のジエン系ゴムに特定比表面積を有するカーボンブラック、シリカおよび芳香族変性テルペン樹脂を特定量配合し、フィラー中のカーボンブラックの配合量を特定範囲に設定することにより、上記課題を解決できることを見出し、本発明を完成することができた。
 すなわち本発明は以下のとおりである。
 1.スチレン含量が10~30質量%であるスチレン-ブタジエン共重合体ゴム(SBR)10~50質量部、および、天然ゴムを含むイソプレン系ゴム90~50質量部からなるジエン系ゴム100質量部に対し、
 窒素吸着比表面積(NSA)が90~130m/gであるカーボンブラック(A)を30~50質量部、
 窒素吸着比表面積(NSA)が60~90m/gであるカーボンブラック(B)を5~20質量部、
 シリカを5~20質量部、
 軟化点が100~130℃である芳香族変性テルペン樹脂を1~10質量部配合し、
 前記カーボンブラック、シリカおよびその他の無機充填剤からなるフィラーの合計量が70質量部以下であり、かつ
 前記窒素吸着比表面積(NSA)が90~130m/gであるカーボンブラック(A)の配合量が下記式を満たすことを特徴とする建設車両用タイヤ用ゴム組成物。
0.55≦(前記カーボンブラック(A)の質量部/前記フィラーの合計質量部)≦0.65
 2.前記SBRが、ブタジエン中のビニル含量が60質量%以上であることを特徴とする前記1に記載の建設車両用タイヤ用ゴム組成物。
 3.前記SBRが、分子末端部分に水酸基、N-アルキル置換アミノケトン基またはN-アルキル置換アミノチオケトン基を有する末端変性SBRであることを特徴とする前記1に記載の建設車両用タイヤ用ゴム組成物。
 4.前記シリカのBET比表面積(ISO5794/1に準拠して測定)が、150~250m/gであることを特徴とする前記1に記載の建設車両用タイヤ用ゴム組成物。
 5.前記窒素吸着比表面積(NSA)が90~130m/gであるカーボンブラック(A)の配合量が、前記ジエン系ゴム100質量部に対し、35~45質量部であることを特徴とする前記1に記載の建設車両用タイヤ用ゴム組成物。
 6.前記窒素吸着比表面積(NSA)が60~90m/gであるカーボンブラック(B)の配合量が、前記ジエン系ゴム100質量部に対し、5~15質量部であることを特徴とする前記1に記載の建設車両用タイヤ用ゴム組成物。
 7.前記シリカの配合量が、前記ジエン系ゴム100質量部に対し、5~15質量部であることを特徴とする前記1に記載の建設車両用タイヤ用ゴム組成物。
 8.前記芳香族変性テルペン樹脂の配合量が、前記ジエン系ゴム100質量部に対し、3~8質量部であることを特徴とする前記1に記載の建設車両用タイヤ用ゴム組成物。
 9.前記フィラーの合計量が、前記ジエン系ゴム100質量部に対し、50~65質量部であることを特徴とする前記1に記載の建設車両用タイヤ用ゴム組成物。
 10.前記1に記載のゴム組成物をキャップトレッドに使用した建設車両用空気入りタイヤ。
As a result of intensive studies, the inventors have blended a specific amount of carbon black, silica and aromatic modified terpene resin having a specific surface area into a diene rubber having a specific composition, and the amount of carbon black in the filler is determined. It was found that the above problem can be solved by setting the specific range, and the present invention has been completed.
That is, the present invention is as follows.
1. For 100 parts by mass of diene rubber comprising 10-50 parts by mass of styrene-butadiene copolymer rubber (SBR) having a styrene content of 10-30% by mass and 90-50 parts by mass of isoprene-based rubber including natural rubber ,
30 to 50 parts by mass of carbon black (A) having a nitrogen adsorption specific surface area (N 2 SA) of 90 to 130 m 2 / g,
5 to 20 parts by mass of carbon black (B) having a nitrogen adsorption specific surface area (N 2 SA) of 60 to 90 m 2 / g,
5 to 20 parts by mass of silica,
1 to 10 parts by mass of an aromatic modified terpene resin having a softening point of 100 to 130 ° C.,
Carbon black (A) in which the total amount of filler comprising carbon black, silica and other inorganic fillers is 70 parts by mass or less, and the nitrogen adsorption specific surface area (N 2 SA) is 90 to 130 m 2 / g The rubber composition for tires for construction vehicles, characterized in that the blending amount satisfies the following formula.
0.55 ≦ (mass part of the carbon black (A) / total mass part of the filler) ≦ 0.65
2. 2. The rubber composition for tires for construction vehicles according to 1 above, wherein the SBR has a vinyl content in butadiene of 60% by mass or more.
3. 2. The rubber composition for tires for construction vehicles according to 1 above, wherein the SBR is a terminal-modified SBR having a hydroxyl group, an N-alkyl-substituted aminoketone group or an N-alkyl-substituted aminothioketone group at a molecular terminal portion. .
4). 2. The rubber composition for tires for construction vehicles according to 1 above, wherein the silica has a BET specific surface area (measured according to ISO 5794/1) of 150 to 250 m 2 / g.
5. The compounding amount of carbon black (A) having a nitrogen adsorption specific surface area (N 2 SA) of 90 to 130 m 2 / g is 35 to 45 parts by mass with respect to 100 parts by mass of the diene rubber. 2. The rubber composition for tires for construction vehicles according to 1 above.
6). The amount of carbon black (B) having a nitrogen adsorption specific surface area (N 2 SA) of 60 to 90 m 2 / g is 5 to 15 parts by mass with respect to 100 parts by mass of the diene rubber. 2. The rubber composition for tires for construction vehicles according to 1 above.
7). 2. The rubber composition for tires for construction vehicles according to 1 above, wherein the amount of silica is 5 to 15 parts by mass with respect to 100 parts by mass of the diene rubber.
8). 2. The rubber composition for tires for construction vehicles according to 1 above, wherein the amount of the aromatic-modified terpene resin is 3 to 8 parts by mass with respect to 100 parts by mass of the diene rubber.
9. 2. The rubber composition for tires for construction vehicles according to 1 above, wherein the total amount of the filler is 50 to 65 parts by mass with respect to 100 parts by mass of the diene rubber.
10. A pneumatic tire for construction vehicles, wherein the rubber composition according to 1 is used for a cap tread.
 本発明によれば、特定の組成のジエン系ゴムに特定比表面積を有するカーボンブラック、シリカおよび芳香族変性テルペン樹脂を特定量配合し、フィラー中のカーボンブラックの配合量を特定範囲に設定したので、優れた耐カット性、発熱性、耐摩耗性を有する建設車両用タイヤ用ゴム組成物およびそれを用いた建設車両用空気入りタイヤを提供することができる。 According to the present invention, a specific amount of carbon black, silica, and aromatic modified terpene resin having a specific specific surface area are blended with a diene rubber having a specific composition, and the amount of carbon black in the filler is set within a specific range. It is possible to provide a rubber composition for tires for construction vehicles having excellent cut resistance, heat generation properties, and abrasion resistance, and a pneumatic tire for construction vehicles using the same.
 以下、本発明をさらに詳細に説明する。
(ジエン系ゴム)
 本発明で使用されるジエン系ゴムは、スチレン含量が10~30質量%であるスチレン-ブタジエン共重合体ゴム(SBR)10~50質量部、および、天然ゴムを含むイソプレン系ゴム90~50質量部からなる。
 前記SBRにおいて、スチレン含量が前記範囲外では、低発熱性を得ることができない。なお、前記SBRは、ブタジエン中のビニル含量が60質量%以上であることが好ましい。ビニル含量が60質量%以上であることによって、さらなる低発熱性を得ることができる。さらに好ましいスチレン含量は15~25質量%であり、ビニル含量は60~70質量%である。なお、SBRの分子量はとくに制限されない。
 また、ジエン系ゴム全体を100質量部としたときに、SBRの配合量が10質量部未満であると(すなわちイソプレン系ゴムが90質量部超)、耐カット性が悪化し、また低発熱性を得ることができない。逆にSBRの配合量が50質量部を超えると(すなわちイソプレン系ゴムが50質量部未満)、低発熱性を得ることができず、耐摩耗性も悪化する。ジエン系ゴムにおいて、さらに好ましいSBRの配合量は、20~40質量部である。
 なお、イソプレン系ゴムとしては前記の天然ゴム(NR)以外に、合成イソプレンゴム(IR)を使用することができる。
Hereinafter, the present invention will be described in more detail.
(Diene rubber)
The diene rubber used in the present invention is 10 to 50 parts by mass of styrene-butadiene copolymer rubber (SBR) having a styrene content of 10 to 30% by mass, and 90 to 50 parts by mass of isoprene-based rubber including natural rubber. Consists of parts.
In the SBR, when the styrene content is outside the above range, low exothermic properties cannot be obtained. The SBR preferably has a vinyl content in butadiene of 60% by mass or more. When the vinyl content is 60% by mass or more, further low exothermic property can be obtained. A more preferable styrene content is 15 to 25% by mass, and a vinyl content is 60 to 70% by mass. The molecular weight of SBR is not particularly limited.
Further, when the total amount of the diene rubber is 100 parts by mass, if the amount of SBR is less than 10 parts by mass (that is, the isoprene-based rubber exceeds 90 parts by mass), the cut resistance deteriorates and low heat build-up Can't get. On the contrary, when the blending amount of SBR exceeds 50 parts by mass (that is, isoprene-based rubber is less than 50 parts by mass), low heat build-up cannot be obtained, and wear resistance also deteriorates. In the diene rubber, the more preferable amount of SBR is 20 to 40 parts by mass.
In addition to the natural rubber (NR), synthetic isoprene rubber (IR) can be used as the isoprene-based rubber.
 また本発明の効果、すなわち耐カット性、発熱性、耐摩耗性を高めるという観点から、前記SBRは分子末端部分に水酸基、N-アルキル置換アミノケトン基またはN-アルキル置換アミノチオケトン基を有する末端変性SBRであることが好ましい。
 かかる末端変性SBRは知られており、例えば特許公報第3488926号などに記載された方法で製造することができ、日本ゼオン(株)製Nipol NS116などの市販品を用いることもできる。
In addition, from the viewpoint of enhancing the effects of the present invention, that is, cut resistance, heat generation, and abrasion resistance, the SBR has a terminal having a hydroxyl group, an N-alkyl-substituted aminoketone group or an N-alkyl-substituted aminothioketone group at the molecular terminal portion. A modified SBR is preferred.
Such terminal-modified SBR is known, and can be produced by, for example, a method described in Japanese Patent Publication No. 3488926, and commercially available products such as Nipol NS116 manufactured by Nippon Zeon Co., Ltd. can also be used.
(カーボンブラック)
 本発明のゴム組成物は、窒素吸着比表面積(NSA)が90~130m/gであるカーボンブラック(A)を使用する。窒素吸着比表面積(NSA)は、JIS K6217-2に準拠して測定された値である。窒素吸着比表面積(NSA)が90m/g未満であると、耐カット性が悪化し、逆に130m/gを超えると、発熱性が悪化する。更に好ましい窒素吸着比表面積(NSA)は100~120m/gである。
(Carbon black)
The rubber composition of the present invention uses carbon black (A) having a nitrogen adsorption specific surface area (N 2 SA) of 90 to 130 m 2 / g. The nitrogen adsorption specific surface area (N 2 SA) is a value measured according to JIS K6217-2. When the nitrogen adsorption specific surface area (N 2 SA) is less than 90 m 2 / g, the cut resistance deteriorates, and conversely, when it exceeds 130 m 2 / g, the heat generation deteriorates. A more preferable nitrogen adsorption specific surface area (N 2 SA) is 100 to 120 m 2 / g.
 また本発明のゴム組成物は、窒素吸着比表面積(NSA)が60m/g以上90m/g未満であるカーボンブラック(B)を配合する。この窒素吸着比表面積(NSA)が60m/g以上90m/g未満であるカーボンブラック(B)を配合することにより、耐カット性と発熱性のバランスを調整する事が出来るという効果が奏される。 The rubber composition of the present invention contains carbon black (B) having a nitrogen adsorption specific surface area (N 2 SA) of 60 m 2 / g or more and less than 90 m 2 / g. The effect that the balance between cut resistance and heat build-up can be adjusted by blending carbon black (B) having a nitrogen adsorption specific surface area (N 2 SA) of 60 m 2 / g or more and less than 90 m 2 / g. Is played.
(シリカ)
 本発明で使用されるシリカとしては、乾式シリカ、湿式シリカ、コロイダルシリカおよび沈降シリカなど、従来からタイヤ用ゴム組成物において使用することが知られている任意のシリカを単独でまたは2種以上組み合わせて使用できる。
 なお本発明では、本発明の効果がさらに向上するという観点から、シリカのBET比表面積(ISO5794/1に準拠して測定)は、150~250m/gであるのが好ましい。
(silica)
As the silica used in the present invention, any silica conventionally known to be used in a rubber composition for tires such as dry silica, wet silica, colloidal silica and precipitated silica is used alone or in combination of two or more. Can be used.
In the present invention, from the viewpoint of further improving the effects of the present invention, the BET specific surface area (measured in accordance with ISO 5794/1) of silica is preferably 150 to 250 m 2 / g.
(芳香族変性テルペン樹脂)
 本発明のゴム組成物に配合される芳香族変性テルペン樹脂としては、例えば、α-ピネン、β-ピネン、ジペンテン、リモネンなどのテルペン樹脂と、スチレン、α-メチルスチレン、ビニルトルエン、インデンなどの芳香族化合物とを重合させて得られる芳香族変性テルペン樹脂が有効に使用される。当該芳香族化合物の芳香族変性テルペン樹脂中での含有量は、10~50質量%であることが好ましい。また、芳香族変性テルペン樹脂の軟化点は100~130℃が好ましい。この軟化点の範囲によれば、本発明の効果、すなわち耐カット性、発熱性、耐摩耗性を一層高めることができる。
(Aromatic modified terpene resin)
Examples of the aromatic modified terpene resin blended in the rubber composition of the present invention include terpene resins such as α-pinene, β-pinene, dipentene and limonene, and styrene, α-methylstyrene, vinyltoluene, indene and the like. An aromatic modified terpene resin obtained by polymerizing an aromatic compound is effectively used. The content of the aromatic compound in the aromatic modified terpene resin is preferably 10 to 50% by mass. The softening point of the aromatic modified terpene resin is preferably 100 to 130 ° C. According to the range of the softening point, the effects of the present invention, that is, the cut resistance, the heat generation property, and the wear resistance can be further enhanced.
(フィラー)
 本発明のゴム組成物は、各種フィラーを配合することができる。フィラーとしてはとくに制限されず、用途により適宜選択すればよいが、例えば前記のカーボンブラックおよびシリカ以外に、クレー、タルク、炭酸カルシウム等のその他の無機充填剤が挙げられる。なお、本発明で言うフィラーとは、カーボンブラック、シリカおよびその他の無機充填剤を意味する。
(Filler)
The rubber composition of the present invention can contain various fillers. The filler is not particularly limited and may be appropriately selected depending on the application. For example, in addition to the carbon black and silica, other inorganic fillers such as clay, talc, and calcium carbonate can be used. In addition, the filler said by this invention means carbon black, a silica, and another inorganic filler.
(ゴム組成物の配合割合)
 本発明のゴム組成物は、前記のジエン系ゴム100質量部に対し、窒素吸着比表面積(NSA)が90~130m/gであるカーボンブラック(A)を30~50質量部、窒素吸着比表面積(NSA)が60m/g以上90m/g未満であるカーボンブラック(B)を5~20質量部、シリカを5~20質量部、軟化点が100~130℃である芳香族変性テルペン樹脂を1~10質量部配合し、前記カーボンブラック、シリカおよびその他の無機充填剤からなるフィラーの合計量が70質量部以下であり、かつ
 前記窒素吸着比表面積(NSA)が90~130m/gであるカーボンブラック(A)の配合量が下記式を満たすことを特徴とする。
0.55≦(前記カーボンブラック(A)の質量部/前記フィラーの合計質量部)≦0.65
 窒素吸着比表面積(NSA)が90~130m/gであるカーボンブラック(A)の配合量が30質量部未満であると、耐カット性、耐摩耗性を共に改善することができない。逆に50質量部を超えると、発熱性が悪化する。
 窒素吸着比表面積(NSA)が60m/g以上90m/g未満であるカーボンブラック(B)の配合量が5質量部未満であると、耐カット性、耐摩耗性を共に改善することができない。20質量部を超えると、発熱性が悪化する。
 シリカの配合量が5質量部未満であると、耐カット性が悪化する。逆に20質量部を超えると、低発熱性が得られず、耐摩耗性も悪化する。
 芳香族変性テルペン樹脂の配合量が1質量部未満では、添加量が少な過ぎて本発明の効果を奏することができない。逆に10質量部を超えると、低発熱性が得られず、耐摩耗性も悪化する。
 カーボンブラック、シリカおよびその他の無機充填剤の合計量が70質量部を超えると、発熱性が悪化する。
 上記式において、(前記カーボンブラック(A)の質量部/前記フィラーの合計質量部)が0.55未満であると、発熱性が悪化する。また0.65を超えると、発熱性が悪化する。
(Rubber composition ratio)
The rubber composition of the present invention comprises 30 to 50 parts by mass of carbon black (A) having a nitrogen adsorption specific surface area (N 2 SA) of 90 to 130 m 2 / g with respect to 100 parts by mass of the diene rubber. 5 to 20 parts by mass of carbon black (B) having an adsorption specific surface area (N 2 SA) of 60 m 2 / g or more and less than 90 m 2 / g, 5 to 20 parts by mass of silica, and a softening point of 100 to 130 ° C. 1-10 parts by mass of an aromatic modified terpene resin is blended, the total amount of fillers composed of carbon black, silica and other inorganic fillers is 70 parts by mass or less, and the nitrogen adsorption specific surface area (N 2 SA) The blending amount of carbon black (A) having a 90 to 130 m 2 / g satisfies the following formula.
0.55 ≦ (mass part of the carbon black (A) / total mass part of the filler) ≦ 0.65
When the blending amount of the carbon black (A) having a nitrogen adsorption specific surface area (N 2 SA) of 90 to 130 m 2 / g is less than 30 parts by mass, both the cut resistance and the wear resistance cannot be improved. Conversely, when it exceeds 50 mass parts, exothermic property will deteriorate.
When the amount of carbon black (B) having a nitrogen adsorption specific surface area (N 2 SA) of 60 m 2 / g or more and less than 90 m 2 / g is less than 5 parts by mass, both cut resistance and wear resistance are improved. I can't. When it exceeds 20 parts by mass, the exothermic property is deteriorated.
Cut resistance deteriorates that the compounding quantity of silica is less than 5 mass parts. Conversely, if it exceeds 20 parts by mass, low exothermic properties cannot be obtained, and wear resistance is also deteriorated.
When the blending amount of the aromatic modified terpene resin is less than 1 part by mass, the added amount is too small to achieve the effects of the present invention. Conversely, if it exceeds 10 parts by mass, low exothermic properties cannot be obtained, and wear resistance is also deteriorated.
When the total amount of carbon black, silica, and other inorganic fillers exceeds 70 parts by mass, the exothermic properties deteriorate.
In the above formula, if (mass part of the carbon black (A) / total mass part of the filler) is less than 0.55, the exothermic property deteriorates. On the other hand, if it exceeds 0.65, the exothermic property deteriorates.
 窒素吸着比表面積(NSA)が90~130m/gであるカーボンブラック(A)の配合量は、ジエン系ゴム100質量部に対し、35~45質量部がさらに好ましい。
 窒素吸着比表面積(NSA)が60~90m/gであるカーボンブラック(B)の配合量は、ジエン系ゴム100質量部に対し、5~15質量部がさらに好ましく、8~10質量部がとくに好ましい。
 シリカの配合量は、ジエン系ゴム100質量部に対し、5~15質量部がさらに好ましい。
 芳香族変性テルペン樹脂の配合量は、ジエン系ゴム100質量部に対し、3~8質量部がさらに好ましい。
 カーボンブラック、シリカおよびその他の無機充填剤の合計量は、50~65質量部がさらに好ましい。
The compounding amount of carbon black (A) having a nitrogen adsorption specific surface area (N 2 SA) of 90 to 130 m 2 / g is more preferably 35 to 45 parts by mass with respect to 100 parts by mass of the diene rubber.
The blending amount of the carbon black (B) having a nitrogen adsorption specific surface area (N 2 SA) of 60 to 90 m 2 / g is more preferably 5 to 15 parts by mass, and 8 to 10 parts by mass with respect to 100 parts by mass of the diene rubber. Part is particularly preferred.
The blending amount of silica is more preferably 5 to 15 parts by mass with respect to 100 parts by mass of the diene rubber.
The compounding amount of the aromatic modified terpene resin is more preferably 3 to 8 parts by mass with respect to 100 parts by mass of the diene rubber.
The total amount of carbon black, silica and other inorganic fillers is more preferably 50 to 65 parts by mass.
 本発明のゴム組成物には、前記した成分に加えて、加硫又は架橋剤、加硫又は架橋促進剤、各種オイル、老化防止剤、可塑剤、加硫助剤、加工助剤などの建設車両用タイヤ用ゴム組成物に一般的に配合されている各種添加剤を配合することができ、かかる添加剤は一般的な方法で混練して組成物とし、加硫又は架橋するのに使用することができる。これらの添加剤の配合量も、本発明の目的に反しない限り、従来の一般的な配合量とすることができる。 In addition to the above-described components, the rubber composition of the present invention includes construction of a vulcanization or crosslinking agent, a vulcanization or crosslinking accelerator, various oils, an anti-aging agent, a plasticizer, a vulcanization aid, a processing aid, and the like. Various additives that are generally blended in rubber compositions for vehicle tires can be blended, and these additives are kneaded by a general method to form a composition that is used for vulcanization or crosslinking. be able to. The blending amounts of these additives can be set to conventional general blending amounts as long as the object of the present invention is not violated.
 また本発明のゴム組成物は従来の空気入りタイヤの製造方法に従って空気入りタイヤを製造するのに使用することができる。本発明のゴム組成物は、優れた耐カット性、発熱性、耐摩耗性を有することから、これを建設車両用空気入りタイヤのキャップトレッドに使用するのがとくに好ましい。 Further, the rubber composition of the present invention can be used for producing a pneumatic tire according to a conventional method for producing a pneumatic tire. Since the rubber composition of the present invention has excellent cut resistance, heat generation and abrasion resistance, it is particularly preferable to use it for a cap tread of a pneumatic tire for construction vehicles.
 以下、本発明を実施例および比較例によりさらに説明するが、本発明は下記例に制限されるものではない。 Hereinafter, the present invention will be further described with reference to examples and comparative examples, but the present invention is not limited to the following examples.
標準例、実施例1~4および比較例1~11
サンプルの調製
 表1に示す配合(質量部)において、加硫系(加硫促進剤、硫黄)を除く成分を1.7リットルの密閉式バンバリーミキサーで5分間混練した後、ミキサー外に放出させて室温冷却した。続いて、該組成物に加硫系を加えてロールミルで混練し、ゴム組成物を得た。次に得られたゴム組成物を所定の金型中で160℃で20分間プレス加硫して加硫ゴム試験片を調製した。得られた加硫ゴム試験片について以下に示す試験法で物性を測定した。
Standard Examples, Examples 1 to 4 and Comparative Examples 1 to 11
Preparation of sample In the composition (parts by mass) shown in Table 1, the components excluding the vulcanization system (vulcanization accelerator, sulfur) were kneaded for 5 minutes with a 1.7 liter closed Banbury mixer, and then released outside the mixer. And cooled to room temperature. Subsequently, a vulcanization system was added to the composition and kneaded with a roll mill to obtain a rubber composition. Next, the obtained rubber composition was press vulcanized at 160 ° C. for 20 minutes in a predetermined mold to prepare a vulcanized rubber test piece. The physical properties of the obtained vulcanized rubber specimens were measured by the following test methods.
 耐カット性:縦100mm、横100mmおよび高さ40mmの加硫ゴム試験片に、先端の角度が90°、長さ40mmおよび径4mmの針を高さ150mmから荷重29.4Nで落下させ、針の刺さった深さを、標準例を100として、すなわち、次式:(比較例1の針の刺さった深さ)/(他の比較例または実施例の針の刺さった深さ)×100を用いて、指数で表わした。数値が大きいほど、耐カット性が良好である。
 発熱性:JIS K6394に準拠して、(株)東洋精機製作所製の粘弾性スペクトロメーターを用いて、初期歪み10%、振幅±2%、周波数20Hzの条件で60℃におけるtanδを測定した。結果は、標準例を100として指数で表わした。指数が大きいほど低発熱性であり、破壊耐久性に優れることを示す。
 耐摩耗性:加硫ゴム試験片に対し、JIS K6264に準拠して、ランボーン摩耗試験機(岩本製作所社製)を使用して、温度20℃、荷重39N、スリップ率30%、時間4分の条件で摩耗量を測定した。結果は、標準例を100として指数で表わした。指数が大きいほど耐摩耗性に優れることを示す。
 結果を表1に併せて示す。
Cut resistance: A needle having a tip angle of 90 °, a length of 40 mm and a diameter of 4 mm was dropped from a height of 150 mm to a load of 29.4 N on a vulcanized rubber test piece having a length of 100 mm, a width of 100 mm and a height of 40 mm. The standard depth is 100, that is, the following formula: (depth of needle penetration of Comparative Example 1) / (depth of needle penetration of other Comparative Examples or Examples) × 100 Used, expressed as an index. The larger the value, the better the cut resistance.
Exothermic property: Based on JIS K6394, using a viscoelastic spectrometer manufactured by Toyo Seiki Seisakusho Co., Ltd., tan δ at 60 ° C. was measured under conditions of initial strain 10%, amplitude ± 2%, and frequency 20 Hz. The results were expressed as an index with the standard example being 100. The larger the index, the lower the exothermic property and the better the durability against fracture.
Abrasion resistance: A vulcanized rubber test piece is compliant with JIS K6264, using a Lambourn abrasion tester (manufactured by Iwamoto Seisakusho Co., Ltd.), temperature 20 ° C., load 39 N, slip rate 30%, time 4 minutes. The amount of wear was measured under the conditions. The results were expressed as an index with the standard example being 100. It shows that it is excellent in abrasion resistance, so that an index | exponent is large.
The results are also shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
*1:NR(RSS#3)
*2:SBR-1(日本ゼオン(株)製Nipol 1502、スチレン含量=23.5質量%、ブタジエン中のビニル含量=15.0質量%)
*3:SBR-2(旭化成ケミカルズ製アサプレンE10、スチレン含量=42.1質量%、ブタジエン中のビニル含量=34.5質量%)
*5:SBR-4(日本ゼオン(株)製Nipol NS116、スチレン含量=20.1質量%、ブタジエン中のビニル含量=66.5質量%、分子末端部分にN-アルキル置換アミノケトン基を有する末端変性SBR)
*6:カーボンブラック-1(キャボットジャパン(株)製ショウブラックN220、窒素吸着比表面積(NSA)=111m/g)
*7:カーボンブラック-2(キャボットジャパン(株)製ショウブラックN339、窒素吸着比表面積(NSA)=88m/g)
*8:カーボンブラック-3(キャボットジャパン(株)製ショウブラックS118、窒素吸着比表面積(NSA)=135m/g)
*9:シリカ(UNITED SILICA INDUSTRIAL製、ULTRASIL VN-3G、BET比表面積=171m/g)
*10:樹脂-1(ハリマ化成(株)製ハリタックAQ-90A、トール油ロジン)
*11:樹脂-2(ヤスハラケミカル(株)製TO-125、芳香族変性テルペン樹脂、テルペン成分=ジペンテンおよびリモネン、変性芳香族化合物成分=スチレン含有)
*12:酸化亜鉛(正同化学工業(株)製酸化亜鉛3種)
*13:ステアリン酸(日油(株)製)
*14:老化防止剤(住友化学(株)製アンチゲン6C)
*15:シランカップリング剤(エボニックデグッサジャパン(株)製Si69)
*16:オイル(昭和シェル石油(株)製エクストラクト4号S)
*17:硫黄(軽井沢精錬所(株)製油処理硫黄)
*18:加硫促進剤-1(三新化学工業(株)製サンセラーCM-PO)
*19:加硫促進剤-2(三新化学工業(株)製サンセラーD-G)
* 1: NR (RSS # 3)
* 2: SBR-1 (Nipol 1502, manufactured by Nippon Zeon Co., Ltd., styrene content = 23.5% by mass, vinyl content in butadiene = 15.0% by mass)
* 3: SBR-2 (Asaprene E10 manufactured by Asahi Kasei Chemicals Co., Ltd., styrene content = 42.1% by mass, vinyl content in butadiene = 34.5% by mass)
* 5: SBR-4 (Nipol NS116 manufactured by Nippon Zeon Co., Ltd., styrene content = 20.1% by mass, vinyl content in butadiene = 66.5% by mass, terminal having an N-alkyl-substituted aminoketone group at the molecular terminal portion Modified SBR)
* 6: Carbon Black-1 (Cabot Japan K.K. Show Black N220, Nitrogen Adsorption Specific Surface Area (N 2 SA) = 111 m 2 / g)
* 7: Carbon black-2 (show black N339 manufactured by Cabot Japan Co., Ltd., nitrogen adsorption specific surface area (N 2 SA) = 88 m 2 / g)
* 8: Carbon black-3 (show black S118 manufactured by Cabot Japan Co., Ltd., nitrogen adsorption specific surface area (N 2 SA) = 135 m 2 / g)
* 9: Silica (made by UNITED SILICA INDUSTRIAL, ULTRASIL VN-3G, BET specific surface area = 171 m 2 / g)
* 10: Resin-1 (Halitak Chemical Co., Ltd. Haritac AQ-90A, tall oil rosin)
* 11: Resin-2 (TO-125 manufactured by Yashara Chemical Co., Ltd., aromatic modified terpene resin, terpene component = dipentene and limonene, modified aromatic compound component = styrene-containing)
* 12: Zinc oxide (3 types of zinc oxide manufactured by Shodo Chemical Industry Co., Ltd.)
* 13: Stearic acid (manufactured by NOF Corporation)
* 14: Anti-aging agent (Antigen 6C manufactured by Sumitomo Chemical Co., Ltd.)
* 15: Silane coupling agent (Si69 manufactured by Evonik Degussa Japan Co., Ltd.)
* 16: Oil (Extract No. 4 S manufactured by Showa Shell Sekiyu KK)
* 17: Sulfur (Karuizawa Refinery Co., Ltd., refined sulfur)
* 18: Vulcanization accelerator-1 (Sunshin CM-PO manufactured by Sanshin Chemical Industry Co., Ltd.)
* 19: Vulcanization accelerator-2 (Sunsell DG manufactured by Sanshin Chemical Industry Co., Ltd.)
 上記の表1から明らかなように、実施例1~4で調製されたゴム組成物は、特定の組成のジエン系ゴムに特定比表面積を有するカーボンブラック、シリカおよび芳香族変性テルペン樹脂を特定量配合し、フィラー中のカーボンブラックの配合量を特定範囲に設定しているので、標準例に対し、優れた耐カット性、低発熱性、耐摩耗性を示した。
 これに対し、比較例1は、芳香族変性テルペン樹脂の配合量が本発明で規定する上限を超えているので、発熱性、耐摩耗性が悪化した。
 比較例2は、SBRのスチレン含量が本発明で規定する上限を超えているので、発熱性が悪化した。
 比較例3は、窒素吸着比表面積(NSA)が90~130m/gであるカーボンブラック(A)の配合量が本発明で規定する下限を下回っているので、耐カット性、耐摩耗性が悪化した。
 比較例4は、窒素吸着比表面積(NSA)が90~130m/gであるカーボンブラック(A)の配合量が本発明で規定する上限を超えているので、発熱性が悪化した。
 比較例5は、窒素吸着比表面積(NSA)が60~90m/gであるカーボンブラック(B)を配合していないので、発熱性が悪化した。
 比較例6は、窒素吸着比表面積(NSA)が60~90m/gであるカーボンブラック(B)の配合量が本発明で規定する上限を超えているので、発熱性が悪化した。
 比較例7は、SBRを配合していないので、耐カット性、耐摩耗性が悪化した。
 比較例8は、SBRの配合量が本発明で規定する上限を超えているので、発熱性が悪化した。
 比較例9は、シリカの配合量が本発明で規定する上限を超えているので、発熱性、耐摩耗性が悪化した。
 比較例10は、フィラーの合計量が本発明で規定する上限を超えているので、発熱性が悪化した。
 比較例11は、窒素吸着比表面積(NSA)が90~130m/gであるカーボンブラック(A)を配合していないので、発熱性が悪化した。
 比較例12は、窒素吸着比表面積(NSA)が90~130m/gであるカーボンブラック(A)の配合量が本発明で規定する式の上限を超えているので、発熱性が悪化した。
 比較例13は、窒素吸着比表面積(NSA)が90~130m/gであるカーボンブラック(A)の配合量が本発明で規定する式の下限未満であるので、発熱性が悪化した。
As can be seen from Table 1 above, the rubber compositions prepared in Examples 1 to 4 have specific amounts of carbon black, silica and aromatic modified terpene resin having a specific surface area in a diene rubber having a specific composition. Since it was blended and the blending amount of carbon black in the filler was set within a specific range, it showed excellent cut resistance, low heat build-up, and wear resistance compared to the standard example.
On the other hand, since the compounding quantity of the aromatic modified terpene resin exceeded the upper limit prescribed | regulated by this invention in the comparative example 1, exothermic property and abrasion resistance deteriorated.
In Comparative Example 2, since the styrene content of SBR exceeded the upper limit defined in the present invention, the exothermic property deteriorated.
In Comparative Example 3, since the blending amount of carbon black (A) having a nitrogen adsorption specific surface area (N 2 SA) of 90 to 130 m 2 / g is below the lower limit specified in the present invention, cut resistance and abrasion resistance Sex deteriorated.
In Comparative Example 4, the exothermic property deteriorated because the blending amount of carbon black (A) having a nitrogen adsorption specific surface area (N 2 SA) of 90 to 130 m 2 / g exceeded the upper limit defined in the present invention.
In Comparative Example 5, since carbon black (B) having a nitrogen adsorption specific surface area (N 2 SA) of 60 to 90 m 2 / g was not blended, heat generation was deteriorated.
In Comparative Example 6, since the blending amount of carbon black (B) having a nitrogen adsorption specific surface area (N 2 SA) of 60 to 90 m 2 / g exceeded the upper limit specified in the present invention, the exothermic property deteriorated.
Since Comparative Example 7 did not contain SBR, cut resistance and wear resistance were deteriorated.
In Comparative Example 8, since the amount of SBR exceeds the upper limit defined in the present invention, the exothermic property deteriorated.
In Comparative Example 9, since the compounding amount of silica exceeded the upper limit specified in the present invention, the heat generation and wear resistance were deteriorated.
In Comparative Example 10, since the total amount of fillers exceeded the upper limit defined in the present invention, the heat generation was deteriorated.
In Comparative Example 11, since the carbon black (A) having a nitrogen adsorption specific surface area (N 2 SA) of 90 to 130 m 2 / g was not blended, the heat generation was deteriorated.
In Comparative Example 12, since the blending amount of carbon black (A) having a nitrogen adsorption specific surface area (N 2 SA) of 90 to 130 m 2 / g exceeds the upper limit of the formula defined in the present invention, the exothermic property is deteriorated. did.
In Comparative Example 13, since the blending amount of carbon black (A) having a nitrogen adsorption specific surface area (N 2 SA) of 90 to 130 m 2 / g was less than the lower limit of the formula defined in the present invention, the exothermic property was deteriorated. .

Claims (10)

  1.  スチレン含量が10~30質量%であるスチレン-ブタジエン共重合体ゴム(SBR)10~50質量部、および、天然ゴムを含むイソプレン系ゴム90~50質量部からなるジエン系ゴム100質量部に対し、
     窒素吸着比表面積(NSA)が90~130m/gであるカーボンブラック(A)を30~50質量部、
     窒素吸着比表面積(NSA)が60~90m/gであるカーボンブラック(B)を5~20質量部、
     シリカを5~20質量部、
     軟化点が100~130℃である芳香族変性テルペン樹脂を1~10質量部配合し、
     前記カーボンブラック、シリカおよびその他の無機充填剤からなるフィラーの合計量が70質量部以下であり、かつ
     前記窒素吸着比表面積(NSA)が90~130m/gであるカーボンブラック(A)の配合量が下記式を満たすことを特徴とする建設車両用タイヤ用ゴム組成物。
    0.55≦(前記カーボンブラック(A)の質量部/前記フィラーの合計質量部)≦0.65
    For 100 parts by mass of diene rubber comprising 10-50 parts by mass of styrene-butadiene copolymer rubber (SBR) having a styrene content of 10-30% by mass and 90-50 parts by mass of isoprene-based rubber including natural rubber ,
    30 to 50 parts by mass of carbon black (A) having a nitrogen adsorption specific surface area (N 2 SA) of 90 to 130 m 2 / g,
    5 to 20 parts by mass of carbon black (B) having a nitrogen adsorption specific surface area (N 2 SA) of 60 to 90 m 2 / g,
    5 to 20 parts by mass of silica,
    1 to 10 parts by mass of an aromatic modified terpene resin having a softening point of 100 to 130 ° C.,
    Carbon black (A) in which the total amount of filler comprising carbon black, silica and other inorganic fillers is 70 parts by mass or less, and the nitrogen adsorption specific surface area (N 2 SA) is 90 to 130 m 2 / g The rubber composition for tires for construction vehicles, characterized in that the blending amount satisfies the following formula.
    0.55 ≦ (mass part of the carbon black (A) / total mass part of the filler) ≦ 0.65
  2.  前記SBRが、ブタジエン中のビニル含量が60質量%以上であることを特徴とする請求項1に記載の建設車両用タイヤ用ゴム組成物。 The rubber composition for tires for construction vehicles according to claim 1, wherein the SBR has a vinyl content in butadiene of 60% by mass or more.
  3.  前記SBRが、分子末端部分に水酸基、N-アルキル置換アミノケトン基またはN-アルキル置換アミノチオケトン基を有する末端変性SBRであることを特徴とする請求項1に記載の建設車両用タイヤ用ゴム組成物。 2. The rubber composition for tires for construction vehicles according to claim 1, wherein the SBR is a terminal-modified SBR having a hydroxyl group, an N-alkyl-substituted aminoketone group or an N-alkyl-substituted aminothioketone group at a molecular terminal portion. object.
  4.  前記シリカのBET比表面積(ISO5794/1に準拠して測定)が、150~250m/gであることを特徴とする請求項1に記載の建設車両用タイヤ用ゴム組成物。 The rubber composition for tires for construction vehicles according to claim 1, wherein the silica has a BET specific surface area (measured in accordance with ISO 5794/1) of 150 to 250 m 2 / g.
  5.  前記窒素吸着比表面積(NSA)が90~130m/gであるカーボンブラック(A)の配合量が、前記ジエン系ゴム100質量部に対し、35~45質量部であることを特徴とする請求項1に記載の建設車両用タイヤ用ゴム組成物。 The compounding amount of carbon black (A) having a nitrogen adsorption specific surface area (N 2 SA) of 90 to 130 m 2 / g is 35 to 45 parts by mass with respect to 100 parts by mass of the diene rubber. The rubber composition for tires for construction vehicles according to claim 1.
  6.  前記窒素吸着比表面積(NSA)が60~90m/gであるカーボンブラック(B)の配合量が、前記ジエン系ゴム100質量部に対し、5~15質量部であることを特徴とする請求項1に記載の建設車両用タイヤ用ゴム組成物。 The amount of carbon black (B) having a nitrogen adsorption specific surface area (N 2 SA) of 60 to 90 m 2 / g is 5 to 15 parts by mass with respect to 100 parts by mass of the diene rubber. The rubber composition for tires for construction vehicles according to claim 1.
  7.  前記シリカの配合量が、前記ジエン系ゴム100質量部に対し、5~15質量部であることを特徴とする請求項1に記載の建設車両用タイヤ用ゴム組成物。 2. The rubber composition for tires for construction vehicles according to claim 1, wherein the amount of silica is 5 to 15 parts by mass with respect to 100 parts by mass of the diene rubber.
  8.  前記芳香族変性テルペン樹脂の配合量が、前記ジエン系ゴム100質量部に対し、3~8質量部であることを特徴とする請求項1に記載の建設車両用タイヤ用ゴム組成物。 The rubber composition for tires for construction vehicles according to claim 1, wherein the amount of the aromatic modified terpene resin is 3 to 8 parts by mass with respect to 100 parts by mass of the diene rubber.
  9.  前記フィラーの合計量が、前記ジエン系ゴム100質量部に対し、50~65質量部であることを特徴とする請求項1に記載の建設車両用タイヤ用ゴム組成物。 2. The rubber composition for a tire for a construction vehicle according to claim 1, wherein the total amount of the filler is 50 to 65 parts by mass with respect to 100 parts by mass of the diene rubber.
  10.  請求項1に記載のゴム組成物をキャップトレッドに使用した建設車両用空気入りタイヤ。 A pneumatic tire for construction vehicles using the rubber composition according to claim 1 for a cap tread.
PCT/JP2013/002774 2012-04-26 2013-04-24 Rubber composition for construction vehicle tire and pneumatic tire for construction vehicle using same WO2013161288A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380021274.2A CN104245815B (en) 2012-04-26 2013-04-24 Construction vehicle rubber composition for tire and use its construction vehicle pneumatic tyre
JP2014506382A JP5626494B2 (en) 2012-04-26 2013-04-24 Rubber composition for tire for construction vehicle and pneumatic tire for construction vehicle using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012100597 2012-04-26
JP2012-100597 2012-04-26

Publications (1)

Publication Number Publication Date
WO2013161288A1 true WO2013161288A1 (en) 2013-10-31

Family

ID=49482631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/002774 WO2013161288A1 (en) 2012-04-26 2013-04-24 Rubber composition for construction vehicle tire and pneumatic tire for construction vehicle using same

Country Status (3)

Country Link
JP (1) JP5626494B2 (en)
CN (1) CN104245815B (en)
WO (1) WO2013161288A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015164985A (en) * 2014-03-03 2015-09-17 横浜ゴム株式会社 Rubber composition for tire tread
WO2016021089A1 (en) * 2014-08-04 2016-02-11 東洋ゴム工業株式会社 Rubber composition and pneumatic tire
JP2016175958A (en) * 2015-03-18 2016-10-06 横浜ゴム株式会社 Pneumatic tire for construction vehicle
JP2016196565A (en) * 2015-04-03 2016-11-24 横浜ゴム株式会社 Rubber composition and pneumatic tire using the same
WO2017217244A1 (en) * 2016-06-17 2017-12-21 株式会社ブリヂストン Heavy-duty tire
US10626253B2 (en) 2013-05-02 2020-04-21 The Yokohama Rubber Co., Ltd. Tire rubber composition
WO2022080133A1 (en) * 2020-10-14 2022-04-21 株式会社ブリヂストン Rubber composition for tire tread, and tire
WO2022130994A1 (en) * 2020-12-14 2022-06-23 横浜ゴム株式会社 Rubber composition
EP4129713A4 (en) * 2020-03-23 2023-09-13 Bridgestone Corporation Rubber composition and tire

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102131424B1 (en) * 2018-10-29 2020-07-08 한국타이어앤테크놀로지 주식회사 Rubber composition for tire tread and tire manufactured by using the same

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0790122A (en) * 1993-09-20 1995-04-04 Yokohama Rubber Co Ltd:The Tire tread rubber composition
JPH0853002A (en) * 1994-08-12 1996-02-27 Yokohama Rubber Co Ltd:The Pneumatic tyre
JPH0892420A (en) * 1994-09-27 1996-04-09 Toyo Tire & Rubber Co Ltd Rubber composition for tire tread
JPH1149893A (en) * 1997-08-06 1999-02-23 Yokohama Rubber Co Ltd:The Rubber composition for tire tread
JP2007302716A (en) * 2006-05-08 2007-11-22 Yokohama Rubber Co Ltd:The Rubber composition and pneumatic tire by using the same
JP2008297493A (en) * 2007-06-01 2008-12-11 Yokohama Rubber Co Ltd:The Rubber composition for tire
JP2009007422A (en) * 2007-06-26 2009-01-15 Bridgestone Corp Rubber composition and tire
JP2010077217A (en) * 2008-09-24 2010-04-08 Sumitomo Rubber Ind Ltd Rubber composition and tire
JP2010084059A (en) * 2008-10-01 2010-04-15 Sumitomo Rubber Ind Ltd Rubber composition for tire
JP2011246561A (en) * 2010-05-26 2011-12-08 Yokohama Rubber Co Ltd:The Rubber composition for tire tread
JP2011252124A (en) * 2010-06-04 2011-12-15 Yokohama Rubber Co Ltd:The Rubber composition for tire
JP2012007145A (en) * 2010-05-27 2012-01-12 Yokohama Rubber Co Ltd:The Rubber composition for tire

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0790122A (en) * 1993-09-20 1995-04-04 Yokohama Rubber Co Ltd:The Tire tread rubber composition
JPH0853002A (en) * 1994-08-12 1996-02-27 Yokohama Rubber Co Ltd:The Pneumatic tyre
JPH0892420A (en) * 1994-09-27 1996-04-09 Toyo Tire & Rubber Co Ltd Rubber composition for tire tread
JPH1149893A (en) * 1997-08-06 1999-02-23 Yokohama Rubber Co Ltd:The Rubber composition for tire tread
JP2007302716A (en) * 2006-05-08 2007-11-22 Yokohama Rubber Co Ltd:The Rubber composition and pneumatic tire by using the same
JP2008297493A (en) * 2007-06-01 2008-12-11 Yokohama Rubber Co Ltd:The Rubber composition for tire
JP2009007422A (en) * 2007-06-26 2009-01-15 Bridgestone Corp Rubber composition and tire
JP2010077217A (en) * 2008-09-24 2010-04-08 Sumitomo Rubber Ind Ltd Rubber composition and tire
JP2010084059A (en) * 2008-10-01 2010-04-15 Sumitomo Rubber Ind Ltd Rubber composition for tire
JP2011246561A (en) * 2010-05-26 2011-12-08 Yokohama Rubber Co Ltd:The Rubber composition for tire tread
JP2012007145A (en) * 2010-05-27 2012-01-12 Yokohama Rubber Co Ltd:The Rubber composition for tire
JP2011252124A (en) * 2010-06-04 2011-12-15 Yokohama Rubber Co Ltd:The Rubber composition for tire

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10626253B2 (en) 2013-05-02 2020-04-21 The Yokohama Rubber Co., Ltd. Tire rubber composition
JP2015164985A (en) * 2014-03-03 2015-09-17 横浜ゴム株式会社 Rubber composition for tire tread
WO2016021089A1 (en) * 2014-08-04 2016-02-11 東洋ゴム工業株式会社 Rubber composition and pneumatic tire
JP2016175958A (en) * 2015-03-18 2016-10-06 横浜ゴム株式会社 Pneumatic tire for construction vehicle
JP2016196565A (en) * 2015-04-03 2016-11-24 横浜ゴム株式会社 Rubber composition and pneumatic tire using the same
CN109311354A (en) * 2016-06-17 2019-02-05 株式会社普利司通 Tyre for heavy load
WO2017217244A1 (en) * 2016-06-17 2017-12-21 株式会社ブリヂストン Heavy-duty tire
CN109311354B (en) * 2016-06-17 2020-11-27 株式会社普利司通 Heavy load tire
EP4129713A4 (en) * 2020-03-23 2023-09-13 Bridgestone Corporation Rubber composition and tire
WO2022080133A1 (en) * 2020-10-14 2022-04-21 株式会社ブリヂストン Rubber composition for tire tread, and tire
JP7429179B2 (en) 2020-10-14 2024-02-07 株式会社ブリヂストン Rubber composition for tire tread and tire
WO2022130994A1 (en) * 2020-12-14 2022-06-23 横浜ゴム株式会社 Rubber composition
JP2022093773A (en) * 2020-12-14 2022-06-24 横浜ゴム株式会社 Rubber composition
JP7140179B2 (en) 2020-12-14 2022-09-21 横浜ゴム株式会社 rubber composition

Also Published As

Publication number Publication date
CN104245815B (en) 2016-01-20
JP5626494B2 (en) 2014-11-19
CN104245815A (en) 2014-12-24
JPWO2013161288A1 (en) 2015-12-21

Similar Documents

Publication Publication Date Title
JP5626494B2 (en) Rubber composition for tire for construction vehicle and pneumatic tire for construction vehicle using the same
JP4294070B2 (en) Rubber composition for tire
JP5376008B2 (en) Rubber composition for tire
JP5234203B2 (en) Rubber composition for tire
US8697793B2 (en) Rubber composition for use in tires
JP5737324B2 (en) Rubber composition for tire
JP5999167B2 (en) Rubber composition for tire tread
JP5900036B2 (en) Rubber composition for tire tread
JP5321751B2 (en) Rubber composition for tire, pneumatic tire, and method for producing rubber composition for tire
JP2012007145A (en) Rubber composition for tire
US10808107B2 (en) Rubber composition for tire
JP2008138086A (en) Rubber composition for tire tread
JP2005146115A (en) Tire tread rubber composition
JP2016003274A (en) Rubber composition and pneumatic tire using the same
JP6245033B2 (en) Rubber composition and pneumatic tire using the same
JP2016006135A (en) Rubber composition and pneumatic tire using the same
JP7009768B2 (en) Rubber composition and tires
JP7159566B2 (en) Rubber composition for tire
JP2016113482A (en) Rubber composition for tire tread and pneumatic tire
JP5920544B2 (en) Rubber composition for tire
US10913840B2 (en) Rubber composition and tire
KR20180040715A (en) Rubber compositions for tires
JP6862894B2 (en) Rubber composition for tires
JP6972919B2 (en) Rubber composition for tires
JP7485976B2 (en) Rubber composition for tires

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380021274.2

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2014506382

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13781197

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13781197

Country of ref document: EP

Kind code of ref document: A1