WO2013160075A2 - Verfahren und vorrichtung zur bestimmung und/oder ansteuerung einer position eines elektromotors, insbesondere in einem kupplungsbetätigungssystem eines kraftfahrzeuges - Google Patents

Verfahren und vorrichtung zur bestimmung und/oder ansteuerung einer position eines elektromotors, insbesondere in einem kupplungsbetätigungssystem eines kraftfahrzeuges Download PDF

Info

Publication number
WO2013160075A2
WO2013160075A2 PCT/EP2013/057059 EP2013057059W WO2013160075A2 WO 2013160075 A2 WO2013160075 A2 WO 2013160075A2 EP 2013057059 W EP2013057059 W EP 2013057059W WO 2013160075 A2 WO2013160075 A2 WO 2013160075A2
Authority
WO
WIPO (PCT)
Prior art keywords
electric motor
sensor
rotor
stator
position signal
Prior art date
Application number
PCT/EP2013/057059
Other languages
English (en)
French (fr)
Other versions
WO2013160075A3 (de
Inventor
Markus Dietrich
Original Assignee
Schaeffler Technologies AG & Co. KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies AG & Co. KG filed Critical Schaeffler Technologies AG & Co. KG
Priority to DE112013002221.4T priority Critical patent/DE112013002221A5/de
Priority to CN201380019137.5A priority patent/CN104205613B/zh
Publication of WO2013160075A2 publication Critical patent/WO2013160075A2/de
Publication of WO2013160075A3 publication Critical patent/WO2013160075A3/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/06Control by electric or electronic means, e.g. of fluid pressure
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/06Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices
    • H02K29/08Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices using magnetic effect devices, e.g. Hall-plates, magneto-resistors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2300/00Special features for couplings or clutches
    • F16D2300/18Sensors; Details or arrangements thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/102Actuator
    • F16D2500/1021Electrical type
    • F16D2500/1023Electric motor
    • F16D2500/1024Electric motor combined with hydraulic actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/302Signal inputs from the actuator
    • F16D2500/3026Stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/50Problem to be solved by the control system
    • F16D2500/501Relating the actuator
    • F16D2500/5012Accurate determination of the clutch positions, e.g. treating the signal from the position sensor, or by using two position sensors for determination
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/50Problem to be solved by the control system
    • F16D2500/501Relating the actuator
    • F16D2500/5018Calibration or recalibration of the actuator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2203/00Indexing scheme relating to controlling arrangements characterised by the means for detecting the position of the rotor
    • H02P2203/03Determination of the rotor position, e.g. initial rotor position, during standstill or low speed operation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2203/00Indexing scheme relating to controlling arrangements characterised by the means for detecting the position of the rotor
    • H02P2203/05Determination of the rotor position by using two different methods and/or motor models

Definitions

  • the invention relates to a method for determining and / or controlling a position of an electric motor, in particular in a clutch actuation system of a motor vehicle, wherein the position of a rotor of the electric motor is removed from a, arranged outside a rotational axis of the electric motor to a stator of the electric motor sensor, wherein the position signal picked up by the sensor system is evaluated by an evaluation unit and a device for carrying out the method.
  • the position of the rotor measured by a sensor system must be balanced with the position desired by the rotor of the electric motor.
  • the rotor position is detected by means of three mutually offset magnetic field switches in the form of Hall sensors.
  • the flanks supplied by the magnetic field switches are used as a position signal and matched with the signals of the phase voltage of the three different phases of the electric motor.
  • a high position resolution is necessary.
  • the rotor of the electric motor has only a limited number of pole pairs, from which a predetermined number of edges of the magnetic field switch can be used for position determination.
  • a resolution is required to ensure the overall system function, ie the position determination and simultaneous control of the electric motor, which by far exceeds the number of edges provided by the magnetic field switches, which occurs especially in highly dynamically operated electric motors.
  • the invention is therefore based on the object of specifying a method for determining and / or controlling a position of an electric motor, in which the electric motor can be operated highly dynamically and still a high position resolution of the rotor position can be achieved.
  • this object is achieved in that during a sinusoidal control of the electric motor, a position signal output by the sensor system is made plausible by means of at least one position signal detected during a block drive of the electric motor.
  • At least one intermediate position is detected which lies between the switching edges which occur as a result of the pole change of the rotor during the block drive and which are used as position signals. This increases the resolution.
  • At least one pole pair of the rotor is sensed in high-resolution during the sinusoidal control by the sensors.
  • a period of a linear oscillation is recorded above the pole pair, which can be directly assigned to the positions recorded during the block control. Since the analog position signal detected during the sine-wave control is always strictly monotonic between two positions (commutation points) detected during the block control, any number of intermediate positions can be detected.
  • the commutation points of the position signal obtained by the block control lie in a minimum or a maximum of the position signal detected by the sensor during the sinusoidal control of the electric motor. This ensures that the analog position signal is always strictly monotone, which is why ambiguity in the evaluation of the rotor position are prevented and always a direct assignment of the analog position signal to a fixed position of the rotor is possible.
  • the electric motor is operated at high speeds with a block drive and at low speeds with a sine drive.
  • the advantages of fast sensing by means of magnetic field switches during block control at high speeds are used as well as slow speed, a position readjustment by means of a linear sensor during the sinusoidal control.
  • the information obtained during operation at high speeds from the block drive for plausibility of the analog position signal of the linear sensor are evaluated.
  • a switching threshold between block control and sinusoidal control as a function of a delay time of the sensor is determined.
  • This delay time represents a time delay between the detection of the position information by the sensor until the processing of this position information in an evaluation unit. It is dependent on the dead time of the sensor or the output frequency and / or the processing time of the evaluation.
  • a development of the invention relates to a device for determining and / or controlling a position of an electric motor, in particular in a clutch actuation system of a motor vehicle, in which a rotor of the electric motor has a fixed predetermined number of pole pairs, which are magnetized alternately in opposite directions and with a stator acting on an air gap, wherein on the stator, a position signal is removed by means of a arranged outside a rotational axis of the electric motor to the stator sensor, the sensor having three magnetic field switch for determining the position of the rotor.
  • a, at least one pair of pole sensing linear sensor is arranged on the stator whose position signal is plausibilized by an evaluation unit by means of the detected in a block drive of the three magnetic field switch position signal.
  • the three magnetic field switches are electrically aligned at a distance of 120 ° from the stator, while the linear sensor is arranged offset by 30 ° electrically offset to one of the three magnetic field switches on the stator.
  • This arrangement of the linear sensor ensures that the switching edges of the magnetic field switches always lie in a maximum or a minimum of the analog position signal recorded by the linear sensor. By this arrangement, the ambiguity of position signals is suppressed.
  • the linear sensor and the three magnetic field switches are arranged opposite a sensor ring which has the same number of pole pairs as the rotor and is aligned with it.
  • the sensor can be easily arranged outside the axis of rotation of the electric motor, wherein the electric motor is designed as an external rotor.
  • linear magnetic field switch To simplify the arrangement of the linear sensor is formed by two 90 ° electrically offset linear magnetic field switch. Since these linear magnetic field switches represent very simple sensors, a substantial cost reduction is possible. Nevertheless, the ambiguity, temperature drift and magnetic field dependency issues are reliably eliminated by the use of linear magnetic field switches.
  • Figure 1 a simplified representation of a clutch actuation system for
  • Figure 2 a sensor ring with associated sensors
  • FIG. 3 Course of the position signal over an electrical period.
  • a clutch actuating system 1 for an automated clutch is shown in simplified form.
  • the clutch actuation system 1 is assigned to a friction clutch 2 in a drive train of a motor vehicle and comprises a master cylinder 3, which is connected to a slave cylinder 5 via a hydraulic line 4, also referred to as a pressure line.
  • a slave piston 6 is movable back and forth, which actuates the friction clutch 2 via an actuator 7 and with the interposition of a bearing 8.
  • the master cylinder 3 is connectable via a connection opening with a surge tank 9.
  • a master piston 10 is movable. From the master piston 10 is a piston rod 1 1, which is translationally movable in the longitudinal direction together with the master piston 10.
  • the piston rod 1 1 of the master cylinder 3 is coupled via a threaded spindle 12 with an electric motor actuator 13.
  • the electromotive actuator 13 includes a commutated DC electric motor 14 and an evaluation unit 15.
  • the threaded spindle 12 sets a rotational movement of the electric motor 14 in a longitudinal movement of the piston rod 1 1 and the master cylinder piston 10 to.
  • the friction clutch 2 is automatically actuated by the electric motor 14, the threaded spindle 12, the master cylinder 3 and the slave cylinder 5.
  • FIG. 2 shows a sensor ring 17, which has the same number of pole pairs as the rotor of the electric motor 14 and which is aligned with the rotor (not shown).
  • the sensor ring 17 comprises, for example, 1 1 magnetic poles N, S, which are distributed over 360 ° and which have 22 Polüber sau, which serve as switching positions for three trained as a Hall switch magnetic switch 18, 19, 20, whereby 66 switching edges to the evaluation 15 are issued.
  • the magnetic field switches 18, 19, 20 are arranged opposite the sensor ring 17 on the stator and each offset by 120 ° to each other electrically.
  • a linear sensor 21 is attached to the stator 30 ° offset from the magnetic switch 20.
  • the magnetic field switches 18, 19, 20 cooperate with the magnetic poles of the sensor ring 17.
  • the magnetic field switches 18, 19, 20 are connected to measurement signal inputs of the evaluation unit 15.
  • the electric motor 14 is now controlled speed-dependent. At high speeds, which are for example between 200 to 250 revolutions per minute, the electric motor 14 is controlled by the evaluation unit 15 by means of a direct block drive, which is also referred to as block commutation. Under a block drive is understood that the electric motor 14, which has three phases U, V, W is controlled so that always one phase U, V, W is de-energized, while the other two phases U, V, W are energized ,
  • the electric motor 14 is driven at a speed which is less than 200 revolutions per minute.
  • the linear sensor 21 supplies a sinusoidal output voltage A as a position signal during one revolution of the electric motor 14 through 360 °. In this case, only a single pole pair S, N arranged on the sensor ring 17 is sensed by the linear sensor 21 in high-resolution.
  • the position data obtained during the block control which correspond to the six commutation points k- 1 , k 2 , k 3 , k 4 , k 5 , k 6 of the three magnetic field switches 18, 19, 20, are determined by the evaluation unit 15 with the period of the output signal A of the linear sensor 21 compared.
  • the sinusoidal output signal A of the linear sensor 21 is placed over the six commutation points k- 1 , k 2 , k 3 , k 4 , k 5 , k 6 of the magnetic field switches 18, 19, 20 that the commutation point k 2 in a maximum and the commutation point k 5 lies in a minimum of the linear signal waveform of the output signal A of the linear sensor 21.
  • the output signal A of the linear sensor 21 in a commutation step is always strictly monotone, which is illustrated by the dashed line B. Because of this strictly monotonous course of the output signal A in a commutation step, an unambiguous assignment of the position of the pole pair N, S to the stator can be made, so that in addition to the existing by the number of pole pairs N, S position information any number of other intermediate positions can be generated. This is particularly advantageous if the position determination yields, for example, only 66 increments, but the system requires, for example, 220 increments for the control of the electric motor 14.
  • the analog output signal A of the linear sensor 21 is output via a signal having a level, for example a PWM signal. Due to the fact that the evaluation unit 15 is not arranged directly on site on the linear sensor 21, disturbances on the output signal A may occur due to the digitization of the output signal
  • A (jumping between two voltages) can be reduced.
  • a switching threshold between the block drive and the sine drive in dependence on a delay time of the linear sensor 21 is performed.
  • the time delay between the detection of the position information on the linear sensor 21 and the conversion of the position information in the evaluation unit 15 is considered as the delay time, taking into account in particular the dead time of the linear sensor 21 as well as the output frequency and / or the processing time of the evaluation unit 15. This ensures that the efficiency of the electric motor 14 is reliably increased and no incorrect commutation times are selected.
  • two simple linear magnetic field switches designed as linear-Hall are used, which are arranged offset by 90 ° to each other electrically. This is particularly useful for a longer distance between the north and south pole of the pole pairs, the two linear halls are always active alternately.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Bestimmung und/oder Ansteuerung einer Position eines Elektromotors, insbesondere in einem Kupplungsbetätigungssystem eines Kraftfahrzeuges, bei welchem die Position eines Rotors des Elektromotors (14) von einer, außerhalb einer Drehachse des Elektromotors an einem Stator des Elektromotors angeordneten Sensorik abgenommen wird, wobei das von der Sensorik abgenommene Positionssignal von einer Auswerteeinheit ausgewertet wird. Bei einem Verfahren, bei welchem eine sehr hohe Positionsauflösung des Rotors des Elektromotors gewährleistet wird, wird das während einer Sinusansteuerung des Elektromotors von der Sensorik abgegebene Positionssignal mittels mindestens einem, während einer Blockansteuerung des Elektromotors erfassten Positionssignal plausibilisiert.

Description

Verfahren und Vorrichtung zur Bestimmung und/oder Ansteuerung einer Position eines Elektromotors, insbesondere in einem Kupplungsbetätigungssystem eines Kraftfahrzeuges
Die Erfindung betrifft ein Verfahren zur Bestimmung und/oder Ansteuerung einer Position eines Elektromotors, insbesondere in einem Kupplungsbetätigungssystem eines Kraftfahrzeuges, bei welchem die Position eines Rotors des Elektromotors von einer, außerhalb einer Drehachse des Elektromotors an einem Stator des Elektromotors angeordneten Sensorik abgenommen wird, wobei das von der Sensorik abgenommene Positionssignal von einer Auswerteeinheit ausgewertet wird sowie eine Vorrichtung zur Durchführung des Verfahrens.
In modernen Kraftfahrzeugen, insbesondere Personenkraftwagen, werden zunehmend automatisierte Kupplungen eingesetzt, wie sie in der DE 10 201 1 014 936 A1 beschrieben sind. Der Einsatz solcher Kupplungen hat den Vorteil des verbesserten Fahrkomforts und führt dazu, dass häufiger in Gängen mit langer Übersetzung gefahren werden kann. Die dabei verwendeten Kupplungen sind in hydraulischen Kupplungssystemen eingesetzt, bei welchen ein elektrohydraulischer Aktor, der von einem elektrisch kommutierten Motor angetrieben wird, über eine Hydraulikleitung mit der Kupplung verbunden ist.
Um den Fahrkomfort im Fahrzeug zu verbessern, muss die von einer Sensorik gemessene Position des Rotors mit der von dem Rotor des Elektromotors gewünschten Position abgeglichen werden. Üblicherweise wird die Rotorlage anhand von drei versetzt zueinander geschalteten Magnetfeldschaltern in Form von Hall-Sensoren erfasst. Die von den Magnetfeldschaltern gelieferten Flanken werden als Positionssignal genutzt und mit den Signalen der Phasenspannung der drei verschiedenen Phasen des Elektromotors abgeglichen.
Insbesondere bei Elektromotoren, bei welchen die Sensoren außerhalb der Drehachse des Elektromotors angeordnet sind, ist eine hohe Positionsauflösung notwendig. Der Rotor des Elektromotors weist nur eine begrenzte Anzahl von Polpaaren auf, aus welchen eine vorgegebene Anzahl von Flanken der Magnetfeldschalter zur Positionsbestimmung genutzt werden können. Es gibt Fälle, wo zur Gewährleistung der Gesamtsystemfunktion, also der Positionsbestimmung und gleichzeitiger Ansteuerung des Elektromotors eine Auflösung gefordert ist, die die Anzahl der Flanken, die durch die Magnetfeldschalter bereitgestellt werden, bei weitem überschreiten, was insbesondere bei hochdynamisch betriebenen Elektromotoren auftritt.
Der Erfindung liegt somit die Aufgabe zugrunde, ein Verfahren zur Bestimmung und/oder Ansteuerung einer Position eines Elektromotors anzugeben, bei welchem der Elektromotor hochdynamisch betrieben werden kann und trotzdem eine hohe Positionsauflösung der Rotorposition erreicht werden kann.
Erfindungsgemäß wird die Aufgabe dadurch gelöst, das während einer Sinusansteuerung des Elektromotors ein von der Sensorik abgegebenes Positionssignal mittels mindestens einem, während einer Blockansteuerung des Elektromotors erfassten Positionssignal plausibilisiert wird. Dies hat den Vorteil, dass aufgrund der von der Sensorik während der Blockansteuerung erfassten festen Positionen das während der Sinusansteuerung ausgegebene Positionssignal in beliebig viele Zwischenpositionen zerlegt werden kann, welche zur Ansteuerung des Elektromotors genutzt werden können. Somit lässt sich der Konflikt zwischen der begrenzten Anzahl von Polpaaren des Rotors und der gewünschten hohen Auflösung zur Ansteuerung des Elektromotors überwinden.
Vorteilhafterweise wird mindestens eine Zwischenposition erfasst, welche zwischen den, durch den Polwechsel des Rotors während der Blockansteuerung auftretenden Schaltflanken, die als Positionssignale genutzt werden, liegt. Dadurch wird die Auflösung erhöht.
In einer Weiterbildung wird während der Sinusansteuerung durch die Sensorik mindestens ein Polpaar des Rotors hochauflösend sensiert. Über dem Polpaar wird dabei eine Periode einer linearen Schwingung aufgenommen, welche direkt den während der Blockansteuerung aufgenommenen Positionen zugeordnet werden kann. Da das während der Sinusansteuerung er- fasste analoge Positionssignal zwischen zwei, während der Blockansteuerung erfassten Positionen (Kommutierungspunkte) immer streng monoton ist, lassen sich beliebig viele Zwischenpositionen detektieren.
In einer Ausgestaltung liegen die, durch die Blockansteuerung gewonnenen Kommutierungspunkte des Positionssignals in einem Minimum oder einem Maximum des von der Sensorik während der Sinusansteuerung des Elektromotors detektierten Positionssignals. Dadurch wird gewährleistet, dass das analoge Positionssignal immer streng monoton ist, weshalb Zweideutigkeiten bei der Auswertung der Rotorposition unterbunden werden und immer eine direkte Zuordnung des analogen Positionssignals zu einer festen Position des Rotors möglich ist.
In einer Variante wird der Elektromotor bei hohen Drehzahlen mit einer Blockansteuerung und bei kleinen Drehzahlen mit einer Sinusansteuerung betrieben. Dabei werden die Vorteile der schnellen Sensierung mittels Magnetfeldschaltern während der Blockansteuerung bei hohen Drehzahlen genauso genutzt wie bei langsamen Drehzahlen eine Positionsnachregelung mittels einem Linearsensor während der Sinusansteuerung. Insbesondere bei niedrigen Drehzahlen werden die während des Betriebes mit hohen Drehzahlen gewonnenen Informationen aus der Blockansteuerung zur Plausibilisierung des analogen Positionssignals des Linearsensors ausgewertet.
Vorteilhafterweise wird eine Umschaltschwelle zwischen Blockansteuerung und Sinusansteuerung in Abhängigkeit von einer Verzögerungszeit der Sensorik bestimmt. Diese Verzögerungszeit stellt dabei einen Zeitverzug zwischen der Erfassung der Positionsinformation durch die Sensorik bis zur Verarbeitung dieser Positionsinformation in einer Auswerteeinheit dar. Sie ist abhängig von der Totzeit der Sensorik bzw. der Ausgabefrequenz und/oder der Verarbeitungszeit der Auswerteeinheit.
Die Verzögerungszeit stellt sicher, dass die Ansteuerung des Elektromotors im Ergebnis der gewonnenen Positionsinformationen durch die Sensorik immer zum richtigen Zeitpunkt erfolgt. Eine Weiterbildung der Erfindung betrifft eine Vorrichtung zur Bestimmung und/oder Ansteuerung einer Position eines Elektromotors, insbesondere in einem Kupplungsbetätigungssystem eines Kraftfahrzeuges, bei welchem ein Rotor des Elektromotors eine fest vorgegebene Anzahl von Polpaaren aufweist, die abwechselnd in zueinander entgegen gesetzter Richtung magnetisiert sind und mit einem Stator über einen Luftspalt zusammenwirken, wobei am Stator ein Positionssignal mittels eines außerhalb einer Drehachse des Elektromotors an dem Stator angeordneten Sensorik abgenommen wird, wobei die Sensorik drei Magnetfeldschalter zur Bestimmung der Position des Rotors aufweist. Bei einer Vorrichtung, welche eine hohe Positionsauflösung gewährleistet, ist ein, mindestens ein Polpaar sensierender Linearsensor auf dem Stator angeordnet, dessen Positionssignal durch eine Auswerteeinheit mittels des in einer Blockansteuerung der drei Magnetfeldschalter erfassten Positionssignals plausibilisiert wird. Dies hat den Vorteil, dass die Gesamtsystemfunktion, welche in der Ansteuerung des Elektromotors als auch in der Positionsbestimmung des Rotors des Elektromotors besteht, zuverlässig gewährleistet wird. Dies gilt insbesondere dann, wenn eine Auflösung erforderlich ist, welche höher ist als die von den Magnetfeldschaltern durch deren Flanken bereitgestellten Positionsinformationen. Der Elektromotor kann somit hochdynamisch betrieben werden und trotzdem eine sehr hohe Positionsauflösung erreicht werden.
Vorteilhafterweise sind die drei Magnetfeldschalter im Abstand von 120° elektrisch am Stator ausgerichtet, während der Linearsensor um 30° elektrisch versetzt zu einem der drei Magnetfeldschalter am Stator angeordnet ist. Durch diese Anordnung des Linearsensors wird sichergestellt, dass die Schaltflanken der Magnetfeldschalter immer in einem Maximum oder einem Minimum des von dem Linearsensor aufgenommenen analogen Positionssignals liegen. Durch diese Anordnung wird die Doppeldeutigkeit von Positionssignalen unterbunden.
In einer Ausgestaltung sind der Linearsensor und die drei Magnetfeldschalter gegenüber einem Sensorring angeordnet, welcher dieselbe Anzahl von Polpaaren aufweist wie der Rotor und zu diesem ausgerichtet ist. Durch diese Ausgestaltung kann die Sensorik einfach außerhalb der Drehachse des Elektromotors angeordnet werden, wobei der Elektromotor dabei als Außenläufer ausgebildet ist.
Zur Vereinfachung der Anordnung ist der Linearsensor durch zwei um 90° elektrisch versetzte Linear-Magnetfeldschalter gebildet. Da diese Linear-Magnetfeldschalter sehr einfache Sensoren darstellen, ist eine weitgehende Kostenreduzierung möglich. Trotzdem wird die Thematik Mehrdeutigkeit, Temperaturdrift und Magnetfeldabhängigkeit zuverlässig durch den Einsatz der Linear-Magnetfeldschalter eliminiert.
Die Erfindung lässt zahlreiche Ausführungsformen zu. Eine davon soll anhand der in der Zeichnung dargestellten Figuren näher erläutert werden.
Es zeigen:
Figur 1 : eine vereinfachte Darstellung eines Kupplungsbetätigungssystems zur
Betätigung einer automatisierten Reibungskupplung
Figur 2: einen Sensorring mit zugeordneten Sensoren
Figur 3: Verlauf des Positionssignals über eine elektrische Periode. ln Figur 1 ist ein Kupplungsbetätigungssystem 1 für eine automatisierte Kupplung vereinfacht dargestellt. Das Kupplungsbetätigungssystem 1 ist in einem Antriebsstrang eines Kraftfahrzeuges einer Reibungskupplung 2 zugeordnet und umfasst einen Geberzylinder 3, der über eine auch als Druckleitung bezeichnete Hydraulikleitung 4 mit einem Nehmerzylinder 5 verbunden ist. In dem Nehmerzylinder 5 ist ein Nehmerkolben 6 hin und her bewegbar, der über ein Betätigungsorgan 7 und unter Zwischenschaltung eines Lagers 8 die Reibungskupplung 2 betätigt.
Der Geberzylinder 3 ist über eine Verbindungsöffnung mit einem Ausgleichsbehälter 9 verbindbar. In dem Geberzylinder 3 ist ein Geberkolben 10 bewegbar. Von dem Geberkolben 10 geht eine Kolbenstange 1 1 aus, die in Längsrichtung zusammen mit dem Geberkolben 10 translatorisch bewegbar ist. Die Kolbenstange 1 1 des Geberzylinders 3 ist über eine Gewindespindel 12 mit einem elektromotorischen Stellantrieb 13 gekoppelt. Der elektromotorische Stellantrieb 13 umfasst einen als kommutierten Gleichstrommotor ausgebildeten Elektromotor 14 und eine Auswerteeinheit 15. Die Gewindespindel 12 setzt eine Drehbewegung des Elektromotors 14 in eine Längsbewegung der Kolbenstange 1 1 bzw. des Geberzylinderkolbens 10 um. Die Reibungskupplung 2 wird durch den Elektromotor 14, die Gewindespindel 12, den Geberzylinder 3 und den Nehmerzylinder 5 automatisiert betätigt.
In dem elektromotorischen Stellantrieb 13 ist eine Sensorik 16 integriert, wie sie in Figur 2 dargestellt ist. Figur 2 zeigt dabei einen Sensorring 17, welcher die gleiche Anzahl von Polpaaren wie der Rotor des Elektromotors 14 aufweist und welcher am nicht weiter dargestellten Rotor ausgerichtet ist. Der Sensorring 17 umfasst beispielsweise 1 1 Magnetpole N, S, die ü- ber 360° verteilt sind und welche 22 Polübergänge besitzen, die als Schaltpositionen für drei als Hall-Schalter ausgebildete Magnetfeldschalter 18, 19, 20 dienen, wodurch 66 Schaltflanken an die Auswerteeinheit 15 ausgegeben werden. Die Magnetfeldschalter 18, 19, 20 sind gegenüber dem Sensorring 17 am Stator angeordnet und jeweils um 120° elektrisch zueinander versetzt. Zusätzlich ist ein Linearsensor 21 um 30° versetzt zu dem Magnetfeldschalter 20 an dem Stator befestigt.
Die Magnetfeldschalter 18, 19, 20 wirken dabei mit den Magnetpolen des Sensorrings 17 zusammen. Zur Bestimmung der Relativposition zwischen dem Rotor bzw. dem Sensorring 17 und dem Stator sowie zur Steuerung der Kommutierung der Wicklungen des Elektromotors 14 in Abhängigkeit von der gemessenen Relativposition sind die Magnetfeldschalter 18, 19, 20 mit Messsignaleingängen der Auswerteeinheit 15 verbunden. Der Elektromotor 14 wird nun drehzahlabhängig angesteuert. Bei hohen Drehzahlen, welche beispielsweise zwischen 200 bis 250 Umdrehungen pro Minute liegen, wird der Elektromotor 14 von der Auswerteeinheit 15 mittels einer direkten Blockansteuerung, welche auch als Blockkommutierung bezeichnet wird, angesteuert. Unter einer Blockansteuerung wird verstanden, dass der Elektromotor 14, welcher über drei Phasen U, V, W verfügt, so angesteuert wird, dass immer eine Phase U, V, W stromlos ist, während die anderen beiden Phasen U, V, W bestromt werden.
Während dieser Blockansteuerung werden von der Auswerteeinheit 15 die durch die
Magnetfeldschalter 18, 19, 20 erzeugten Kommutierungspunkte k-ι, k2, k3, k4, k5, k6 hinsichtlich der Position des Rotors gegenüber dem Stator detektiert. In einem zweiten Schritt wird der Elektromotor 14 mit einer Drehzahl angesteuert, welche kleiner ist als 200 Umdrehungen pro Minute. Bei dieser Drehzahl erfolgt eine Sinusansteuerung der Phasen des Elektromotors 14. Wie in Figur 3 dargestellt ist, liefert der Linearsensor 21 dabei eine sinusförmige Ausgangsspannung A als Positionssignal während eines Umlaufes des Elektromotors 14 um 360°. Dabei wird durch den Linearsensor 21 nur ein einziges an dem Sensorring 17 angeordnetes Polpaar S, N hochauflösend sensiert. Die während der Blockansteuerung gewonnenen Positionsdaten, welche den sechs Kommutierungspunkten k-ι, k2, k3, k4, k5, k6 der drei Magnetfeldschalter 18, 19, 20 entsprechen, werden dabei von der Auswerteeinheit 15 mit der Periode des Ausgangssignales A des Linearsensors 21 verglichen. Dabei wird das sinusförmige Ausgangssignal A des Linearsensors 21 so über die sechs Kommutierungspunkte k-ι, k2, k3, k4, k5, k6 der Magnetfeldschalter 18, 19, 20 gelegt, dass der Kommutierungspunkt k2 in einem Maximum und der Kommutierungspunkt k5 in einem Minimum des linearen Signalverlaufes des Ausgangssignals A des Linearsensors 21 liegt. Durch einen solchen Abgleich ist das Ausgangssignal A des Linearsensors 21 in einem Kommutierungsschritt immer streng monoton, was durch die gestrichelte Linie B verdeutlicht wird. Aufgrund dieses streng monotonen Verlaufes des Ausgangssignals A in einem Kommutierungsschritt kann eine eindeutige Zuordnung der Position des Polpaares N, S zum Stator vorgenommen werden, so dass zusätzlich zu den durch die Anzahl der Polpaare N, S vorhandenen Positionsangaben beliebig viele weitere Zwischenpositionen erzeugt werden können. Dies ist insbesondere dann von Vorteil, wenn die Positionsermittlung beispielsweise nur 66 Inkremente ergibt, das System aber für die Ansteuerung des Elektromotors 14 beispielsweise 220 Inkremente benötigt. Aus dem Vergleich des Ausgangssignals A des Linearsensors 21 mit den Kommutierungspunkten k-ι, k2, k3, k4, k5, k6 der Magnetfeldschalter 18, 19, 20 können somit beliebige Zwischenpositionen eingestellt und ausgewertet werden. Vorteilhafterweise wird das analoge Ausgangssignal A des Linearsensors 21 über ein Signal mit einem Pegel, beispielsweise ein PWM-Signal, ausgegeben. Dadurch, dass die Auswerteeinheit 15 nicht direkt vor Ort am Linearsensor 21 angeordnet ist, können Störungen auf dem Ausgangssignal A auftreten, welche durch die Digitalisierung des Ausgangssignals
A(Springen zwischen zwei Spannungen) reduziert werden.
Um bei der Ansteuerung des Elektromotors 14 die Bestromung genau zum richtigen Zeitpunkt zu gewährleisten, wird eine Umschaltschwelle zwischen der Blockansteuerung und der Sinusansteuerung in Abhängigkeit von einer Verzögerungszeit des Linearsensors 21 durchgeführt. Unter der Verzögerungszeit wird der Zeitverzug zwischen der Erfassung der Positionsinformation am Linearsensor 21 bis zur Umsetzung der Positionsinformation in der Auswerteeinheit 15 angesehen, wobei insbesondere die Totzeit des Linearsensors 21 genauso wie auch die Ausgabefrequenz und/oder die Verarbeitungszeit der Auswerteeinheit 15 berücksichtigt werden. Damit wird sichergestellt, dass der Wirkungsgrad des Elektromotors 14 zuverlässig erhöht wird und keine falschen Kommutierungszeitpunkte gewählt werden.
In einer besonders kostengünstigen Variante werden anstelle des analogen Linearsensors 21 zwei einfache als Linear-Halls ausgebildete Linear-Magnetfeldschalter eingesetzt, welche um 90° elektrisch zueinander versetzt angeordnet sind. Dies ist insbesondere bei einem längeren Abstand zwischen Nord- und Südpol der Polpaare von Nutzen, wobei die zwei Linear-Halls immer abwechselnd aktiv sind.
Aufgrund des vorgeschlagenen Verfahrens sind eine Positionsbestimmung und die
Ansteuerung eines Elektromotors 14 möglich, bei welchem die Sensorik Off-Axis, d.h. außerhalb der Drehachse des Elektromotors 14, angebracht ist. Dabei wird die Gesamtsystemfunktion jederzeit bei hoher Positionsauflösung gewährleistet. Der Elektromotor 14 kann dabei hochdynamisch betrieben werden, wobei immer eine sehr hohe Positionsauflösung der Rotorposition erreicht wird. Bezugszeichenliste a. Kupplungsbetätigungssystem
b. Reibungskupplung
c. Geberzylinder
d. Hydraulikleitung
e. Nehmerzylinder
f. Nehmerkolben
g. Betätigungsorgan
h. Lager
i. Ausgleichsbehälter
j. Geberkolben
k. Kolbenstange
I. Gewindespindel
m. Stellantrieb
n. Elektromotor
o. Auswerteeinheit
p. Sensorik
q. Sensorring
r. Magnetfeldschalter
s. Magnetfeldschalter
t. Magnetfeldschalter
u. Linearsensor
N Pol
S Pol

Claims

Patentansprüche
1 . Verfahren zur Bestimmung und/oder Ansteuerung einer Position eines Elektromotors, insbesondere in einem Kupplungsbetatigungssystem eines Kraftfahrzeuges, bei welchem die Position eines Rotors des Elektromotors (14) von einer, außerhalb einer Drehachse des Elektromotors (14) an einem Stator des Elektromotors (14) angeordneten Sensorik (16) abgenommen wird, wobei das von der Sensorik (16) abgenommene Positionssignal von einer Auswerteeinheit (15) ausgewertet wird, dadurch gekennzeichnet, dass das während einer Sinusansteuerung des Elektromotors (14) von der Sensorik (16) abgegebene Positionssignal (A) mittels mindestens einem, während einer Blockansteuerung des Elektromotors (14) erfassten Positionssignal (k^ k2, k3, k4, k5, k6) plausibilisiert wird.
2. Verfahren nach Anspruch 1 dadurch gekennzeichnet, dass mindestens eine Zwischenposition erfasst wird, welche zwischen den, durch den Polwechsel des Rotors während der Blockansteuerung auftretenden Schaltflanken, die als Positionssignale (k-ι, k2, k3, k4, k5, k6) genutzt werden, liegt.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass während der Sinusansteuerung durch die Sensorik (16) mindestens ein Polpaar (N, S) des Rotors hochauflösend sensiert wird.
4. Verfahren nach Anspruch 1 , 2 oder 3, dadurch gekennzeichnet, dass die, durch die Blockansteuerung gewonnenen Kommutierungspunkte (k-ι, k2, k3, k4, k5, k6) des Positionssignals in einem Minimum oder einem Maximum des von der Sensorik (16) während der Sinusansteuerung des Elektromotors (14) detektierten Positionssignals (A) liegen.
5. Verfahren nach mindestens einem der vorhergehenden Ansprüche dadurch gekennzeichnet, dass der Elektromotor (14) bei hohen Drehzahlen mit der Blockansteuerung und bei kleinen Drehzahlen mit der Sinusansteuerung betrieben wird.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass eine Umschaltschwelle zwischen Blockansteuerung und Sinusansteuerung in Abhängigkeit von einer Verzögerungszeit der Sensorik (16) bestimmt wird.
7. Vorrichtung zur Bestimmung und/oder Ansteuerung einer Position eines Elektromotors, insbesondere in einem Kupplungsbetätigungssystem eines Kraftfahrzeuges, bei welcher ein Rotor des Elektromotors (14) eine fest vorgegebene Anzahl von Polpaaren (N, S) aufweist, die abwechselnd in zueinander entgegen gesetzter Richtung magnetisiert sind und mit einem Stator über einen Luftspalt zusammenwirken, wobei am Stator ein Positionssignal mittels einer außerhalb einer Drehachse des Elektromotors (14) an dem Stator angeordneten Sensorik (16) abgenommen wird, wobei die Sensorik (16) drei Magnetfeldschalter (18, 19, 20) zur Bestimmung der Position des Rotors aufweist, dadurch gekennzeichnet, dass ein, wenigstens ein Polpaar (N, S) des Rotors sensierender Linearsensor (21 ) auf dem Stator angeordnet ist, dessen Positionssignal (A) durch eine Auswerteeinheit (15) mittels der in einer Blockansteuerung von den drei Magnetfeldschalter (18, 19, 20) erfass- ten Positionssignale (k^ k2, k3, k4, k5, k6) plausibilisiert wird.
8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass die drei Magnetfeldschalter (18, 19, 20) im Abstand von 120° elektrisch am Stator ausgerichtet sind, während der Linearsensor (21 ) um 30° elektrisch versetzt zu einem der Magnetfeldschalter (20) am Stator angeordnet ist.
9. Vorrichtung nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass der Linearsensor (21 ) und die drei Magnetfeldschalter (18, 19, 20) gegenüber einem Sensorring (17) angeordnet sind, welcher dieselbe Anzahl von Polpaaren (N, S) aufweist, wie der Rotor und zu diesem ausgerichtet ist.
10. Vorrichtung nach Anspruch 7, 8 oder 9, dadurch gekennzeichnet, dass der Linearsensor (21 ) durch zwei um 90° elektrisch zueinander versetzte Linear-Magnetfeldschalter gebildet ist.
PCT/EP2013/057059 2012-04-25 2013-04-04 Verfahren und vorrichtung zur bestimmung und/oder ansteuerung einer position eines elektromotors, insbesondere in einem kupplungsbetätigungssystem eines kraftfahrzeuges WO2013160075A2 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112013002221.4T DE112013002221A5 (de) 2012-04-25 2013-04-04 Verfahren und Vorrichtung zur Bestimmung und/oder Ansteuerung einer Position eines Elektromotors, insbesondere in einem Kupplungsbetätigungssystem eines Kraftfahrzeuges
CN201380019137.5A CN104205613B (zh) 2012-04-25 2013-04-04 用于确定电动机的位置的、尤其是在机动车的离合器操纵系统中的电动机的位置的方法和设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012206756 2012-04-25
DE102012206756.6 2012-04-25

Publications (2)

Publication Number Publication Date
WO2013160075A2 true WO2013160075A2 (de) 2013-10-31
WO2013160075A3 WO2013160075A3 (de) 2014-01-16

Family

ID=48050698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/057059 WO2013160075A2 (de) 2012-04-25 2013-04-04 Verfahren und vorrichtung zur bestimmung und/oder ansteuerung einer position eines elektromotors, insbesondere in einem kupplungsbetätigungssystem eines kraftfahrzeuges

Country Status (3)

Country Link
CN (1) CN104205613B (de)
DE (2) DE102013205905A1 (de)
WO (1) WO2013160075A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016023547A3 (de) * 2014-08-15 2016-04-14 Schaeffler Technologies AG & Co. KG Verfahren zum schutz einer kupplungsaktorik eines kupplungsbetätigungssystems, vorzugsweise für ein kraftfahrzeug

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015216509A1 (de) * 2015-08-28 2017-03-02 Schaeffler Technologies AG & Co. KG Winkelmesseinrichtung für einen rotatorisch angetriebenen Linearaktor
DE102016207643A1 (de) 2016-05-03 2017-11-09 Schaeffler Technologies AG & Co. KG Verfahren zum Bestimmen einer Position eines Läufers einer elektrischen Maschine
DE102016212175A1 (de) * 2016-07-05 2018-01-11 Schaeffler Technologies AG & Co. KG Verfahren und Vorrichtung zur Bestimmung und/oder Ansteuerung einer Position eines elektrisch-kommutierbaren Elektromotors, insbesondere für ein Kupplungsbetätigungssystem eines Fahrzeuges
DE102016214948A1 (de) 2016-08-11 2018-02-15 Schaeffler Technologies AG & Co. KG Verfahren zum Justieren einer Aktuatoreinrichtung mit einer Magnetsensorvorrichtung und einem Aktuator und Aktuatoreinrichtung mit einem Aktuator und einer Magnetsensorvorrichtung
DE102016214947A1 (de) * 2016-08-11 2018-02-15 Schaeffler Technologies AG & Co. KG Verfahren zum gegenseitigen Justierten einer Magnetsensorvorrichtung und eines Aktuators und Aktuatoreinrichtung mit einem Aktuator und einer Magnetsensorvorrichtung
DE102016214949A1 (de) 2016-08-11 2018-02-15 Schaeffler Technologies AG & Co. KG Verfahren zum justierten Befestigen einer Magnetsensorvorrichtung an einem Aktuator und Aktuatoreinrichtung mit einem Aktuator und einer Magnetsensorvorrichtung
DE102016219623A1 (de) 2016-10-10 2018-04-12 Schaeffler Technologies AG & Co. KG Verfahren zur Störunterdrückung bei der Ermittlung einer Beschleunigung, Drehzahl und/oder einer Winkelposition eines drehenden Bauteils mittels eines Resolvers
DE102016220188A1 (de) 2016-10-17 2018-04-19 Schaeffler Technologies AG & Co. KG Verfahren zur Korrektur von Messabweichungen eines Sinus-Cosinus-Rotationssensors
US10804824B2 (en) * 2016-11-22 2020-10-13 Schaeffler Technologies AG & Co. KG Method and circuit arrangement for determining the position of a rotor in an electric motor
DE102016223938B4 (de) 2016-12-01 2018-06-14 Schaeffler Technologies AG & Co. KG Verfahren zur Demodulation von Signalen eines Sinus-Cosinus-Rotationssensors
DE112017006412T5 (de) * 2016-12-21 2019-08-29 Dana Automotive Systems Group, Llc Hall-Effekt-Sensor-Signalversatzkorrektur in Phasenkommutierung
DE102017114343A1 (de) * 2017-06-28 2019-01-03 Schaeffler Technologies AG & Co. KG Verfahren zur Sicherung von Korrekturparametern einer Aktoreinheit, vorzugsweise für ein Kupplungsbetätigungssystem eines Fahrzeuges
DE102018110075A1 (de) 2018-04-26 2019-10-31 Schaeffler Technologies AG & Co. KG Verfahren und Vorrichtung zur Einstellung einer Verstärkung an einem verbauten Magnetfeldsensor
CN110608241A (zh) * 2018-06-15 2019-12-24 舍弗勒技术股份两合公司 动力耦合控制系统
DE102018215783A1 (de) * 2018-09-18 2020-03-19 Robert Bosch Gmbh Positionserfassungssystem und Verfahren zur Erfassung einer Bewegung einer Maschine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011014936A1 (de) 2010-04-08 2011-12-15 Schaeffler Technologies Gmbh & Co. Kg Steuereinrichtung und Verfahren zum Steuern

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6538403B2 (en) * 2000-01-07 2003-03-25 Black & Decker Inc. Brushless DC motor sensor control system and method
DE10058623A1 (de) * 2000-11-25 2002-06-13 Daimler Chrysler Ag Verfahren zur Ermittlung der Winkellage einer drehbaren Welle und Vorrichtung zur Durchführung des Verfahrens
DE10253388B4 (de) * 2002-11-15 2005-05-12 Minebea Co., Ltd. Verfahren zum Justieren einer Sensorvorrichtung zur Bestimmung der Drehlage eines Rotors eines elektronisch kommutierten Motors
DE102004011125A1 (de) * 2004-03-08 2005-09-29 Valeo Schalter Und Sensoren Gmbh Lenkwinkelsensor
CN101454965B (zh) * 2006-06-23 2012-11-21 三菱电机株式会社 无刷电动机装置
KR100809695B1 (ko) * 2006-08-08 2008-03-06 삼성전자주식회사 적응적 스핀들 모터 초기 구동 방법 및 이를 이용한 디스크드라이브
DE112010001147B4 (de) * 2009-03-12 2021-12-02 Schaeffler Technologies AG & Co. KG Verfahren und Vorrichtung zum Betreiben einer Antriebseinrichtung zum Verstellen einer automatisierten Kupplung
DE102011105502A1 (de) * 2010-07-08 2012-01-12 Schaeffler Technologies Gmbh & Co. Kg Verfahren zum Abgleich eines Phasenversatzes zwischen einem Rotorlagesensor und der Rotorlage eines elektrisch kommutierten Motors

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011014936A1 (de) 2010-04-08 2011-12-15 Schaeffler Technologies Gmbh & Co. Kg Steuereinrichtung und Verfahren zum Steuern

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016023547A3 (de) * 2014-08-15 2016-04-14 Schaeffler Technologies AG & Co. KG Verfahren zum schutz einer kupplungsaktorik eines kupplungsbetätigungssystems, vorzugsweise für ein kraftfahrzeug
KR20170042692A (ko) * 2014-08-15 2017-04-19 섀플러 테크놀로지스 아게 운트 코. 카게 바람직하게 자동차를 위한 클러치 작동 시스템용 클러치 액추에이터 장치의 보호 방법
CN106574673A (zh) * 2014-08-15 2017-04-19 舍弗勒技术股份两合公司 用于保护优选用于机动车的离合器操纵系统的离合器促动器的方法
CN106574673B (zh) * 2014-08-15 2019-02-01 舍弗勒技术股份两合公司 用于保护优选用于机动车的离合器操纵系统的离合器执行器的方法
KR102460955B1 (ko) * 2014-08-15 2022-11-01 섀플러 테크놀로지스 아게 운트 코. 카게 바람직하게 자동차를 위한 클러치 작동 시스템용 클러치 액추에이터 장치의 보호 방법

Also Published As

Publication number Publication date
CN104205613B (zh) 2018-02-06
DE102013205905A1 (de) 2013-10-31
DE112013002221A5 (de) 2015-01-15
WO2013160075A3 (de) 2014-01-16
CN104205613A (zh) 2014-12-10

Similar Documents

Publication Publication Date Title
WO2013160075A2 (de) Verfahren und vorrichtung zur bestimmung und/oder ansteuerung einer position eines elektromotors, insbesondere in einem kupplungsbetätigungssystem eines kraftfahrzeuges
EP2923103B1 (de) Verfahren zur bestimmung und/oder ansteuerung einer position eines elektromotors
DE102013213948A1 (de) Verfahren zur Bestimmung einer Position eines Elektromotors, insbesondere in einem Kupplungsbetätigungssystem eines Kraftfahrzeuges
DE102016212175A1 (de) Verfahren und Vorrichtung zur Bestimmung und/oder Ansteuerung einer Position eines elektrisch-kommutierbaren Elektromotors, insbesondere für ein Kupplungsbetätigungssystem eines Fahrzeuges
DE102013211041A1 (de) Verfahren und Vorrichtung zur Bestimmung einer Position eines Elektromotors, insbesondere in einem Kupplungsbetätigungssystem eines Kraftfahrzeuges
WO2013186001A1 (de) Magnetgeberring einer rotorlagesensorik eines elektrisch kommutierten elektromotors
DE102013203388B3 (de) Rotorlagegeber für eine elektronisch kommutierte elektrische Maschine mit einem Referenzgeber
WO2016041556A1 (de) Sensorikeinheit zur bestimmung einer rotorlage eines elektromotors und ein elektromotor, vozugsweise für einen kupplungsaktor eines kupplungsbetätigungssystems eines kraftfahrzeuges
WO2011092320A2 (de) Sensoreinheit zur befestigung an einer elektrischen maschine sowie motorsystem
WO2011054329A1 (de) Verfahren zur schlupfregelung einer reibungskupplung und kupplungsaktor hierzu
WO2018036582A1 (de) Kraftfahrzeugaktor mit hochauflösendem absolutsensor
DE102014213620A1 (de) Verfahren zur Bestimmung eines Position eines sich linear bewegenden Aktorgetriebes in einem Aktorsystem, insbesondere einem Kupplungsbetätigungssystem eines Kraftfahrzeuges und ein Aktorsystem
EP3160785B1 (de) Verfahren zum betreiben einer antriebseinrichtung eines kraftfahrzeugs sowie entsprechende antriebseinrichtung
DE102016207643A1 (de) Verfahren zum Bestimmen einer Position eines Läufers einer elektrischen Maschine
DE102016206714A1 (de) Verfahren zum Ermitteln einer absoluten Winkellage einer rotierenden Welle
DE102012109119B4 (de) Vorrichtung zur Erfassung von Informationen über Lenkvorgänge und das Erfassungsverfahren dafür
DE102015207491A1 (de) Verfahren zum Betrieb einer elektrischen Maschine und Antrieb
DE102016211837A1 (de) Verfahren zur Bestimmung einer Position eines Rotors eines kommutierten Elektromotors, insbesondere für ein Kupplungsbetätigungssystem eines Fahrzeuges
DE102008000707A1 (de) Verfahren zum Positionieren eines Rotors eines Elektromotors
DE102013201241A1 (de) Verfahren und Einrichtung zur Bestimmung der Position des Rotors bei einem bürstenlosen Gleichstrommotor
WO2013092369A1 (de) Vorrichtung und verfahren zum bestimmen einer position eines elements
DE102014225964A1 (de) Verfahren zur Bestimmung einer Position eines Rotors eines Elektromotors, insbesondere für ein Kupplungsbetätigungssystem eines Kraftfahrzeuges
EP3772171B1 (de) Ec-motor mit reduziertem energieverbrauch im stillstand-modus
EP3081791B1 (de) Verfahren zur bestimmung der abstellposition einer welle einer brennkraftmaschine
DE102021133572A1 (de) Verfahren zum Steuern einer Ausgangswelle bei einer Antriebseinheit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13714904

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 112013002221

Country of ref document: DE

Ref document number: 1120130022214

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13714904

Country of ref document: EP

Kind code of ref document: A2