WO2013159851A1 - Système hybride à système hydraulique - Google Patents
Système hybride à système hydraulique Download PDFInfo
- Publication number
- WO2013159851A1 WO2013159851A1 PCT/EP2013/000626 EP2013000626W WO2013159851A1 WO 2013159851 A1 WO2013159851 A1 WO 2013159851A1 EP 2013000626 W EP2013000626 W EP 2013000626W WO 2013159851 A1 WO2013159851 A1 WO 2013159851A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- engine
- hydraulic
- hybrid system
- valve
- pressure sensor
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/08—Prime-movers comprising combustion engines and mechanical or fluid energy storing means
- B60K6/12—Prime-movers comprising combustion engines and mechanical or fluid energy storing means by means of a chargeable fluidic accumulator
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/04—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
- B60W10/06—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/10—Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
- B60W10/101—Infinitely variable gearings
- B60W10/103—Infinitely variable gearings of fluid type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/24—Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/30—Conjoint control of vehicle sub-units of different type or different function including control of auxiliary equipment, e.g. air-conditioning compressors or oil pumps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W20/00—Control systems specially adapted for hybrid vehicles
- B60W20/10—Controlling the power contribution of each of the prime movers to meet required power demand
- B60W20/15—Control strategies specially adapted for achieving a particular effect
- B60W20/19—Control strategies specially adapted for achieving a particular effect for achieving enhanced acceleration
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/38—Control of exclusively fluid gearing
- F16H61/40—Control of exclusively fluid gearing hydrostatic
- F16H61/4078—Fluid exchange between hydrostatic circuits and external sources or consumers
- F16H61/4096—Fluid exchange between hydrostatic circuits and external sources or consumers with pressure accumulators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/08—Prime-movers comprising combustion engines and mechanical or fluid energy storing means
- B60K6/12—Prime-movers comprising combustion engines and mechanical or fluid energy storing means by means of a chargeable fluidic accumulator
- B60K2006/126—Prime-movers comprising combustion engines and mechanical or fluid energy storing means by means of a chargeable fluidic accumulator the hydraulic accumulator starts the engine
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Y—INDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
- B60Y2200/00—Type of vehicle
- B60Y2200/40—Special vehicles
- B60Y2200/41—Construction vehicles, e.g. graders, excavators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/62—Hybrid vehicles
Definitions
- Hydrostatic drive machines consist of an internal combustion engine, several hydraulic pumps, lines, valves, controls, motors and hydraulic cylinders. Such systems are for. B. known from DE 1020 09 824 B4. The excess energy is stored in an electric battery.
- the object of the present invention is to obviate the above drawbacks and to provide a hybrid system which efficiently bypasses existing inventories, particularly with regard to optimizing the operating points of the engine with particular regard to fuel consumption, dynamic engine behavior, noise level and wear.
- the object is achieved by a hybrid system according to claim 1 or by a method according to claim 10.
- the excess energy or engine power is stored in lean load phases of the internal combustion engine for dispensing or increasing the available system power, in phases with high or excessive power requirements in hydraulic accumulators.
- the optimization consists in the fact that for a short time more power is available in the system than the combustion engine can deliver at the current operating point. Therefore, the system is more powerful and the behavior is more dynamic under load changes.
- the braking power of the system or of the engine can be increased, and the engine's towing can be avoided or reduced. The occurring maximum speeds on the internal combustion engine can be significantly reduced. In low load phases, the free engine power is then available for the storage charging.
- the system consists of an internal combustion engine with built-in or integrated hydraulic pumps for working and / or driving circuit, an engine control unit for electronic engine and injection control, a hydraulic control unit for controlling the hydraulic consumers, hydraulic control modules, actuators and valves, a pressure-holding valve, at least one reversing valve and at least one hydraulic pressure accumulator.
- the engine control unit records engine-specific measured values. These include the coolant temperature, the charge air pressure, the load torque, the injection quantity, the engine speed, the rail pressure, the fuel pressure and the speed setpoint. On the basis of these measured values, manipulated variables for motor control are determined in the control unit with the help of parameters, characteristic curves and maps. The respective operating point of the motor is determined and set in this way.
- the engine control unit has further measured values such as the hydraulic pressure in the hydraulic accumulator, the hydraulic pressure and temperature of the working circuit, the hydraulic pressure and temperature of the traction drive, and the swivel angle of the working and driving pumps. From the hydraulic control unit information about the state, such. As the operating point, the respective hydraulic components and the requested load supplied by the components to the engine control unit. In the engine control unit, the control of the charging and discharging processes of the pressure accumulator takes place as required in dependence on the above-mentioned data.
- the charging (Loading, Fig. 2) of the memory is initiated by opening the valve A in the working group and / or the valve B in the driving circle.
- the control is effected in dependence on the ratio of the hydraulic pressures to Pspeise P Sp Eicher of the torques M verrecichegbar st to M) and in function of the engine temperature T K, and the hydraulic temperature T Sp else. as shown in Figure 2.
- the engine control unit checks on the basis of further characteristic values whether a loading (FIG. 2) makes sense.
- the loading may be activated or deactivated by the engine control unit when the engine is in an unfavorable operating point, e.g. B. with regard to the fuel consumption, the emission behavior, the boost pressure, the noise level and the measured values and information of the hydraulic control unit is located and can be achieved by switching the function of a more suitable operating point.
- an unfavorable operating point e.g. B. with regard to the fuel consumption, the emission behavior, the boost pressure, the noise level and the measured values and information of the hydraulic control unit is located and can be achieved by switching the function of a more suitable operating point.
- the loading (FIG. 2) can also be steplessly regulated via a control valve in order to realize a gentler switching on / off of the engine load.
- the discharge (Boost, Fig. 3) of the memory is initiated by opening the valve A in the working group and / or the valve B in the circle.
- the control is effected in dependence on the ratio of the hydraulic pressures to Pspeise P Sp Eicher of the torques M F O ver gbar to M
- the engine control unit checks on the basis of further characteristic values whether a boost (FIG. 3) makes sense.
- valve A and / or valve B is opened until the accumulator is discharged, or one of the conditions is no longer fulfilled.
- ie M V available f ⁇ M
- St (f safety factor, eg 0.9)
- valve A and / or valve B is opened until the accumulator is discharged, or one of the requirements is no longer met.
- valve A and / or valve B is opened until the memory is discharged, or one of the requirements is no longer met.
- valve A and / or valve B At high pressure drop of the feed pressure by fast load switching in the hydraulic circuit, d. H. PGradient> P (adjustable feed pressure gradient factor), valve A and / or valve B will be opened until the tank is discharged or one of the requirements is no longer met.
- boosting may be activated / deactivated by the engine control unit when the engine is operating at an unfavorable operating point (eg, with respect to such parameters as fuel economy, emissions, boost pressure, noise level, readings, and hydraulic controller information ) and by switching the function a more suitable operating point can be achieved.
- an unfavorable operating point eg, with respect to such parameters as fuel economy, emissions, boost pressure, noise level, readings, and hydraulic controller information
- the loading function (FIG. 6) can be activated in order to increase the output torque and thus the boost pressure. This is typically done just before a large torque request is required by the hydraulics. Due to the associated increase in boost pressure, the turbocharger reacts much better when the hydraulic load is applied.
- the boost function (Fig. 1, Fig. 5) can be activated and at the same time the reversing valve 7 are opened. Then, the hydraulic pump 2 acts as a motor and can significantly improve the dynamic behavior of the overall system by providing the crankshaft of the internal combustion engine 1 or its ring gear on the flywheel. stored energy from the hydraulic accumulator 8 in the internal combustion engine 1 initiates.
- the boosting via a control valve can also be controlled continuously to realize a smoother turning on / off of the engine load.
- a starter support (Starting) can also be done via the stored energy in the hydraulic accumulator 8 by means of the hydraulic pump 2.
- the unloading of the memory is initiated by opening the valve A in the working group and / or the valve B in the car.
- the control is Pspeise to P Sp eicher depending on the ratio of the hydraulic pressures of the torques M verdragitbar to M
- valve A and / or B and the reversing valve are actuated and the hydraulic pump is used as a starter motor for the internal combustion engine.
- the energy from the accumulator (8) can be supplied in the same form to assist the starter in cranking the engine as long as the engine speed is less than the idle speed (n ) st ⁇ n Lee r) -
- the Starting support can take over an automatic Star Stop function. If the motor is idling for a parameterizable time t, the motor is then automatically stopped. If the engine speed is equal to zero and the driver / operator of the device steps on the accelerator pedal, valve A and / or valve B and the reversing valve 7 are actuated automatically and the hydraulic pump is used as a starter motor for the internal combustion engine 1. uses. This leads to high savings in fuel consumption. In addition, the start of the engine 1 happens without burdening the electric starter of the engine. The number of charging / discharging cycles of the hydraulic accumulator in the lifetime is usually higher than the number of possible starting operations in the electric starter.
- the internal combustion engine only heats up very slowly to the actual operating temperature. In this cold phase, the wear of the engine is high and the fuel consumption is not optimal. By repeatedly charging / discharging the hydraulic accumulator dynamic loads can be generated, which bring the engine up to operating temperature faster.
- the performance of the working machine can advantageously be increased, the fuel consumption and the wear of the engine are reduced and the engine utilization is optimized. Due to the temporary extra power, downsizing can be carried out, which means as much as, an engine with less displacement can be used, which is energetically more favorable.
- the application principle can be used in all systems with combustion or gas engine in conjunction with hydraulic consumers and hydrostatic drives.
- Tspeise temperature in the hydraulic supply circuit
- T max maximum permissible temperature in the hydraulic accumulator
- T min minimum permissible temperature in the hydraulic accumulator
- ni st current speed of the internal combustion engine
- T max maximum permissible coolant temperature for function
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- Transportation (AREA)
- General Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
- Operation Control Of Excavators (AREA)
- Fluid-Pressure Circuits (AREA)
Abstract
Système hybride constitué d'un moteur à combustion interne (1) à pompes hydrauliques (2) ajoutées et/ou intégrées destinées à l'alimentation de récepteurs (5) et/ou d'une unité d'entraînement (12), d'au moins un appareil de commande de moteur (3) pour la régulation électronique du moteur et/ou de l'injection, d'au moins un appareil de commande hydraulique (4) pour la commande d'au moins un récepteur hydraulique (5), d'au moins une soupape de retenue de pression (6), d'au moins une soupape d'inversion (7) et d'au moins un accumulateur de pression (8) hydraulique.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015507397A JP6346168B2 (ja) | 2012-04-26 | 2013-03-02 | 油圧ハイブリッド |
US14/396,785 US10040343B2 (en) | 2012-04-26 | 2013-03-02 | Hydraulic hybrid |
EP13709764.8A EP2841290A1 (fr) | 2012-04-26 | 2013-03-02 | Système hybride à système hydraulique |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102012008192.8 | 2012-04-26 | ||
DE201210008192 DE102012008192A1 (de) | 2012-04-26 | 2012-04-26 | Hydraulikhybrid |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013159851A1 true WO2013159851A1 (fr) | 2013-10-31 |
Family
ID=47891582
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2013/000626 WO2013159851A1 (fr) | 2012-04-26 | 2013-03-02 | Système hybride à système hydraulique |
Country Status (5)
Country | Link |
---|---|
US (1) | US10040343B2 (fr) |
EP (1) | EP2841290A1 (fr) |
JP (1) | JP6346168B2 (fr) |
DE (1) | DE102012008192A1 (fr) |
WO (1) | WO2013159851A1 (fr) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015121088A (ja) * | 2013-12-20 | 2015-07-02 | ハム アーゲーHamm AG | 特に自走式建設機械、特にコンパクタのための駆動システム |
WO2015117960A1 (fr) * | 2014-02-04 | 2015-08-13 | Dana Italia Spa | Mode de puissance hybride et chaîne cinématique hybride à configuration en série |
EP2886381B1 (fr) | 2013-12-20 | 2017-09-13 | Hamm AG | Système d'entraînement, en particulier pour un engin automobile, en particulier un rouleau compresseur |
US9932028B2 (en) | 2014-02-04 | 2018-04-03 | Dana Italia Spa | Controller for a series hydraulic hybrid transmission |
US10215276B2 (en) | 2014-02-04 | 2019-02-26 | Dana Italia Spa | Series parallel hydraulic hybrid architecture |
US10215199B2 (en) | 2014-02-04 | 2019-02-26 | Dana Italia Spa | Travel and work functions integrated into a hydraulic hybrid system |
US10214102B2 (en) | 2014-10-02 | 2019-02-26 | Dana Italia Spa | Dual drive hybrid driveline |
US10220697B2 (en) | 2014-02-04 | 2019-03-05 | Dana Italia Spa | Powerboost hub |
US10247205B2 (en) | 2014-02-04 | 2019-04-02 | Dana Italia Spa | Accumulator racks |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102013213588B4 (de) * | 2013-07-11 | 2019-03-07 | Deere & Company | Landwirtschaftliche Arbeitsmaschine mit pneumatischem Druckspeicher zur Pufferung kurzzeitiger Spitzenlasten |
DE102014001369B4 (de) * | 2014-02-03 | 2021-07-01 | Liebherr-Hydraulikbagger Gmbh | Mobile hydraulische Baumaschine |
SE542526C2 (en) | 2015-10-19 | 2020-06-02 | Husqvarna Ab | Energy buffer arrangement and method for remote controlled demolition robot |
SE542525C2 (en) | 2015-10-19 | 2020-06-02 | Husqvarna Ab | Automatic tuning of valve for remote controlled demolition robot |
SE539241C2 (en) | 2015-10-19 | 2017-05-23 | Husqvarna Ab | Adaptive control of hydraulic tool on remote demolition robot |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6009708A (en) * | 1996-12-03 | 2000-01-04 | Shin Caterpillar Mitsubishi Ltd. | Control apparatus for construction machine |
US20070227802A1 (en) * | 2004-04-09 | 2007-10-04 | O'brien James A Ii | Hybrid earthmover |
DE102006046127A1 (de) * | 2006-09-28 | 2008-04-03 | Robert Bosch Gmbh | Energiespeichereinheit |
DE10209824B4 (de) | 2001-03-12 | 2008-05-29 | Komatsu Ltd. | Hybridantrieb |
WO2009073128A2 (fr) * | 2007-11-30 | 2009-06-11 | Caterpillar Inc. | Système et procédé de distribution de couple |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05287774A (ja) * | 1992-04-09 | 1993-11-02 | Komatsu Ltd | 油圧式掘削機のエネルギー再生装置 |
KR100325222B1 (ko) * | 1999-07-28 | 2002-03-04 | 이계안 | 차량용 자동 변속기의 피스톤 스트로크 동작 검출 장치 및 그 방법 |
JP4560919B2 (ja) * | 2000-08-30 | 2010-10-13 | 株式会社アドヴィックス | 車両の液圧ブレーキ装置 |
US7322800B2 (en) * | 2004-04-16 | 2008-01-29 | Borgwarner Inc. | System and method of providing hydraulic pressure for mechanical work from an engine lubricating system |
DE102006019672B4 (de) * | 2006-04-27 | 2013-11-14 | Robert Bosch Gmbh | Hydraulikfluidspeicher mit integrierter Hochdruck- und Niederdruckkammer |
JP2008045309A (ja) * | 2006-08-11 | 2008-02-28 | Shin Caterpillar Mitsubishi Ltd | 作業機械における制御システム |
US8387386B2 (en) * | 2006-11-14 | 2013-03-05 | Ford Global Technologies, Llc | Combination rankine cycle system and hydraulic accumulator system |
US7795752B2 (en) | 2007-11-30 | 2010-09-14 | Caterpillar Inc | System and method for integrated power control |
US7908852B2 (en) * | 2008-02-28 | 2011-03-22 | Caterpillar Inc. | Control system for recovering swing motor kinetic energy |
US20130206533A1 (en) * | 2010-02-05 | 2013-08-15 | Ricardo, Inc. | Hydraulic control system for a dual clutch transmission |
WO2013093511A1 (fr) * | 2011-12-23 | 2013-06-27 | Jc Bamford Excavators Ltd | Système hydraulique comprenant un dispositif de stockage de l'énergie cinétique |
US9863293B2 (en) * | 2012-08-01 | 2018-01-09 | GM Global Technology Operations LLC | Variable valve actuation system including an accumulator and a method for controlling the variable valve actuation system |
US20140379241A1 (en) * | 2013-06-20 | 2014-12-25 | GM Global Technology Operations LLC | Hydraulic accumulator temperature estimation for controlling automatic engine stop/start |
-
2012
- 2012-04-26 DE DE201210008192 patent/DE102012008192A1/de not_active Ceased
-
2013
- 2013-03-02 WO PCT/EP2013/000626 patent/WO2013159851A1/fr active Application Filing
- 2013-03-02 JP JP2015507397A patent/JP6346168B2/ja active Active
- 2013-03-02 US US14/396,785 patent/US10040343B2/en active Active
- 2013-03-02 EP EP13709764.8A patent/EP2841290A1/fr not_active Withdrawn
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6009708A (en) * | 1996-12-03 | 2000-01-04 | Shin Caterpillar Mitsubishi Ltd. | Control apparatus for construction machine |
DE10209824B4 (de) | 2001-03-12 | 2008-05-29 | Komatsu Ltd. | Hybridantrieb |
US20070227802A1 (en) * | 2004-04-09 | 2007-10-04 | O'brien James A Ii | Hybrid earthmover |
DE102006046127A1 (de) * | 2006-09-28 | 2008-04-03 | Robert Bosch Gmbh | Energiespeichereinheit |
WO2009073128A2 (fr) * | 2007-11-30 | 2009-06-11 | Caterpillar Inc. | Système et procédé de distribution de couple |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2886381B1 (fr) | 2013-12-20 | 2017-09-13 | Hamm AG | Système d'entraînement, en particulier pour un engin automobile, en particulier un rouleau compresseur |
EP2891791A1 (fr) * | 2013-12-20 | 2015-07-08 | Hamm AG | Système d'entraînement, en particulier pour un engin automobile, en particulier un rouleau compresseur |
EP3839241A1 (fr) * | 2013-12-20 | 2021-06-23 | Hamm AG | Système d'entraînement, en particulier pour une machine de construction auto-propulsée, en particulier rouleau compresseur |
US10059184B2 (en) | 2013-12-20 | 2018-08-28 | Hamm Ag | Drive system, in particular for a self-propelled construction machine, in particular a soil compactor |
JP2015121088A (ja) * | 2013-12-20 | 2015-07-02 | ハム アーゲーHamm AG | 特に自走式建設機械、特にコンパクタのための駆動システム |
JP2017512944A (ja) * | 2014-02-04 | 2017-05-25 | ダナ イタリア エスピーエー | 直列ハイブリッドを含むハイブリッドパワーモード |
US9802469B2 (en) | 2014-02-04 | 2017-10-31 | Dana Italia Spa | Hybrid powermode with series hybrid |
US9932028B2 (en) | 2014-02-04 | 2018-04-03 | Dana Italia Spa | Controller for a series hydraulic hybrid transmission |
CN105960362A (zh) * | 2014-02-04 | 2016-09-21 | 意大利德纳股份有限公司 | 利用串联型混合的混合动力模式 |
US10215276B2 (en) | 2014-02-04 | 2019-02-26 | Dana Italia Spa | Series parallel hydraulic hybrid architecture |
US10215199B2 (en) | 2014-02-04 | 2019-02-26 | Dana Italia Spa | Travel and work functions integrated into a hydraulic hybrid system |
US10220697B2 (en) | 2014-02-04 | 2019-03-05 | Dana Italia Spa | Powerboost hub |
CN105960362B (zh) * | 2014-02-04 | 2019-03-26 | 意大利德纳股份有限公司 | 利用串联型混合的混合动力模式 |
US10247205B2 (en) | 2014-02-04 | 2019-04-02 | Dana Italia Spa | Accumulator racks |
WO2015117960A1 (fr) * | 2014-02-04 | 2015-08-13 | Dana Italia Spa | Mode de puissance hybride et chaîne cinématique hybride à configuration en série |
US10214102B2 (en) | 2014-10-02 | 2019-02-26 | Dana Italia Spa | Dual drive hybrid driveline |
Also Published As
Publication number | Publication date |
---|---|
US10040343B2 (en) | 2018-08-07 |
EP2841290A1 (fr) | 2015-03-04 |
JP6346168B2 (ja) | 2018-06-20 |
DE102012008192A1 (de) | 2013-10-31 |
JP2015533201A (ja) | 2015-11-19 |
US20150113969A1 (en) | 2015-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013159851A1 (fr) | Système hybride à système hydraulique | |
EP2308795B1 (fr) | Dispositif hydraulique et procédé de fonctionnement dans une machine de travail mobile | |
EP2137039B1 (fr) | Chaîne cinématique hybride | |
DE102009037195B4 (de) | Steuerungssystem und Verfahren zur Drehmomentverwaltung bei einem Hybridfahrzeug, das mit variabler Zylinderabschaltung ausgestattet ist | |
DE112008002096B4 (de) | Aufladungsunterstützungssystem | |
EP2840252B1 (fr) | Moteur hydrostatique | |
DE102015113712A1 (de) | System und Verfahren zum regenerativen Bremsen | |
JP2021073128A (ja) | ハイブリッドドライブトレイン | |
DE102005008156A1 (de) | Verfahren zum Betreiben eines Hybridantriebsystems und Vorrichtung zur Durchführung des Verfahrens | |
WO2013174564A1 (fr) | Procédé et dispositif de commande d'un moteur a combustion interne | |
EP2609314B1 (fr) | Système de commande de puissance pour un moteur d'entraînement d'un véhicule automobile | |
DE102008058669A1 (de) | Verfahren zur Steuerung der Rekuperationsstärke bzw. des Rekuperationsmoments einer elektrischen Maschine eines Hybrid- oder Elektrofahrzeugs | |
EP2790943B1 (fr) | Procédé de contrôle d'un système d'entraînement hybride hydraulique | |
DE102005043370B3 (de) | Verfahren zur Verzögerungsregelung eines Kraftfahrzeugs | |
DE102014109152A1 (de) | Hydrostatisches Antriebssystem einer mobilen Arbeitsmaschine | |
EP2962883B9 (fr) | Système d'entraînement hydrostatique | |
EP1531074B1 (fr) | Véhicule hybride avec régulateur de vitesse | |
DE102018213642A1 (de) | Verfahren und Vorrichtung zum Betreiben eines Antriebssystems mit einem Verbrennungsmotor | |
DE102021207091A1 (de) | Hydrostatischer Fahrantrieb im offenen Kreis | |
DE10318738A1 (de) | Steuerung eines Elektromotors | |
DE102014118139A1 (de) | Hydrostatisches Antriebssystem | |
DE102013017899A1 (de) | Vorrichtung zur Leistungsergänzung einer Verbrennungskraftmaschine | |
DE102012208895A1 (de) | Hybridfahrzeug und Verfahren zur Steuerung und Regelung von mehreren Kraftmaschinen eines Hybridfahrzeugs | |
DE102016009350A1 (de) | Verfahren zum Betreiben eines in einem Segelbetrieb betreibbaren Kraftfahrzeugs | |
DE102015119471A1 (de) | Hydrostatisches Antriebssystem |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13709764 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013709764 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2015507397 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14396785 Country of ref document: US |