WO2013159529A1 - 高含盐有机废水的超临界水氧化处理系统 - Google Patents

高含盐有机废水的超临界水氧化处理系统 Download PDF

Info

Publication number
WO2013159529A1
WO2013159529A1 PCT/CN2012/085881 CN2012085881W WO2013159529A1 WO 2013159529 A1 WO2013159529 A1 WO 2013159529A1 CN 2012085881 W CN2012085881 W CN 2012085881W WO 2013159529 A1 WO2013159529 A1 WO 2013159529A1
Authority
WO
WIPO (PCT)
Prior art keywords
outlet
inlet
heat exchanger
buffer
volumetric heat
Prior art date
Application number
PCT/CN2012/085881
Other languages
English (en)
French (fr)
Inventor
王树众
徐东海
唐兴颖
公彦猛
张洁
王玉珍
Original Assignee
西安交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安交通大学 filed Critical 西安交通大学
Priority to US14/396,732 priority Critical patent/US9328008B2/en
Publication of WO2013159529A1 publication Critical patent/WO2013159529A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/06Treatment of sludge; Devices therefor by oxidation
    • C02F11/08Wet air oxidation
    • C02F11/086Wet air oxidation in the supercritical state
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/38Treatment of water, waste water, or sewage by centrifugal separation
    • C02F1/385Treatment of water, waste water, or sewage by centrifugal separation by centrifuging suspensions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/20Treatment of water, waste water, or sewage by degassing, i.e. liberation of dissolved gases
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/06Treatment of sludge; Devices therefor by oxidation
    • C02F11/08Wet air oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F2001/5218Crystallization
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied

Definitions

  • the invention relates to a system for harmlessly treating organic wastewater with high salt content (inorganic salt content of 5wt% ⁇ 30wt%) by using supercritical water as a reaction medium.
  • SCWO Supercritical Water Oxidation
  • SCWO is a special property of using supercritical water as a good solvent for both organic matter and oxidant. Under the premise of providing sufficient oxidant, the organic matter reacts homogeneously in an oxygen-rich environment. The organic matter is thoroughly destroyed and converted into harmless small molecule compounds and inorganic salts such as H 2 0 and C0 2 .
  • SCWO is mainly used for high-toxicity, high-concentration, biodegradable organic wastewater with high efficiency and harmless treatment. It has no secondary pollution, can achieve self-heating, has low operating cost when optimizing energy recovery, and has economic advantages. It replaces traditional incineration method. Has a bright future. Therefore, the development of SCWO has received extensive attention at home and abroad.
  • High concentration of biodegradable organic wastewater contains a large amount of inorganic salts, and the mass content is as high as 5wt% ⁇ 30wt%.
  • Some inorganic salts have recycling value.
  • the solubility of inorganic salts in supercritical water is significantly reduced, usually less than 100 mg/L.
  • the solubility of Na 2 S0 4 , CaCl 2 , NaCl, and KC1 in supercritical water at 400 ° C and 25 MPa does not exceed lg/L.
  • the viscous salt precipitated during the supercritical water oxidation of organic wastewater is agglomerated and deposited on the inner surface of the reactor.
  • the object of the present invention is to overcome the problem of salt deposition and high running cost when designing a high-salt organic wastewater SCWO system, and provide an improved supercritical water oxidation treatment system, which can be widely applied to high-efficiency and low-cost of high-salt organic wastewater. Harmless treatment.
  • a supercritical water oxidation treatment system for high-salt organic wastewater comprising: a pre-desalting portion, a supercritical water treatment desalting portion, a mixed reaction portion, and a separation and recovery portion, wherein: the pre-desalting portion comprises a first tubular exchange
  • the heat exchanger and the second tubular heat exchanger the inlet of the tube side of the first tubular heat exchanger is connected to the high-salt wastewater, and the outlet of the tube side of the first tubular heat exchanger is connected to the inlet of the cooling crystallizer to cool the crystal
  • the top outlet of the vessel is connected to the inlet of a storage tank for storing organic waste water
  • the bottom outlet of the cooling crystallizer is connected to the inlet of the filtration centrifuge
  • the top outlet of the filtration centrifuge is connected to the storage tank
  • the bottom outlet of the filtration centrifuge is drained of salt.
  • the first tubular heat exchanger and the second tubular heat exchanger have a glycol solution on the shell side,
  • the supercritical water treatment desalination part comprises a heating furnace, the inlet of the heating furnace is connected to the outlet of the storage tank, the middle outlet of the heating furnace is connected to the inlet of the hydrocyclone, and the top outlet of the hydrocyclone is connected to the middle inlet of the heating furnace, the heating furnace The outlet is connected to the mixer inlet, and the bottom outlet of the hydrocyclone is connected to the desalination device;
  • the mixed reaction portion includes a first volumetric heat exchanger, the inlet of the first volumetric heat exchanger tube side is connected to the outlet of the second tubular heat exchanger tube side, and the outlet of the first volumetric heat exchanger tube side is connected a buffer inlet, an outlet of the first buffer connected to the inlet of the mixer, an outlet of the mixer connected to the inlet of the tubular reactor, and an outlet of the tubular reactor connected to the inlet of the tube side of the volumetric heat exchanger;
  • the separation and recovery section comprises a high pressure vapor-liquid separator, the inlet connection volume of the high-pressure vapor-liquid separator
  • the outlet of the tube side of the heat exchanger, the top outlet of the high pressure vapor-liquid separator is connected to the inlet of the tube side of the fourth volumetric heat exchanger, and the outlet of the tube side of the fourth volumetric heat exchanger is connected to the inlet of the purification tower, and the top of the purification tower
  • the outlet is connected to the inlet of the second buffer, the outlet of the second buffer is connected to the inlet of the high pressure compressor, the outlet of the high pressure compressor is connected to the inlet of the first buffer; the outlet of the bottom of the high pressure vapor separator is connected to the first volumetric heat exchanger shell
  • the inlet of the side of the first volumetric heat exchanger is connected to the subsequent processing unit; the inlet of the volumetric heat exchanger is connected to the softening water device; the outlet of the volumetric heat exchanger is outputted by the outlet steam; the purification tower
  • the demineralizer device comprises a demineralized water tank, the outlet of the demineralized water tank is connected to the inlet of the stacker side of the volumetric heat exchanger by a low pressure variable frequency pump, and the outlet of the volumetric heat exchanger is outputted by the side outlet.
  • the volumetric heat exchanger group can be composed of two volumetric heat exchangers connected in series.
  • the desalination device comprises a buffer oxidizer, the inlet of the top of the buffer oxidizer is connected to the bottom outlet of the hydrocyclone, the bottom outlet of the buffer oxidizer is connected with the inlet of the top of the expansion vessel, and the outlet of the bottom of the expansion vessel is connected with the inlet of the top of the storage tank, the salt storage tank
  • the bottom outlet discharges the inorganic salt.
  • the bottom outlet of the high pressure vapor-liquid separator and the inlet of the first volumetric heat exchanger are connected by a back pressure port, an open header tank and a low pressure water pump.
  • the sludge outlet end in the subsequent processing unit is connected to the hopper inlet through a connecting pipe.
  • the outlet on the tube side of the first volumetric heat exchanger is also connected to the inlet of the top of the buffer oxidizer.
  • the outlet at the top of the oxidizing buffer is connected to the outlet at the top of the hydrocyclone.
  • high-salt wastewater 10 ⁇ % ⁇ 30 ⁇ % organic wastewater (referred to as high-salt wastewater).
  • the solubility of such inorganic salts decreases with temperature, accounting for about one-third of the total water, and the other salt is 5wt% ⁇ 10wt% organic.
  • the high-salt wastewater can be cooled and crystallized by the liquid oxygen cold energy in the system to reduce the concentration of inorganic salts in the wastewater, thereby reducing the inorganic salt concentration of the mixed wastewater formed by the two wastewaters to 5 wt% to 10 wt%.
  • the mixed wastewater is pressurized by a high-pressure metering pump and sent to a heating furnace for preheating.
  • the heat exchange coil in the heating furnace of the system is arranged in two stages (low temperature section and high temperature section), and the low temperature section outlet (middle outlet of the heating furnace) reaches the fluid Supercritical water temperature, after entering the hydrocyclone, the granularity in the reaction fluid can be determined by centrifugal separation.
  • the outlet fluid at the top of the hydrocyclone enters the high temperature section of the heating furnace, thereby ensuring the heat transfer coefficient of the heat exchange coil in the high temperature section, effectively preventing the hydrocyclone Blockage of subsequent lines and reactors.
  • Separating the bottom of the hydrocyclone The solid inorganic salt is spirally transported to the buffer oxidizer by the motor on the hydrocyclone. When the buffer oxidizer is filled with the solid inorganic salt, the cut-off enthalpy on the top inlet line of the buffer oxidizer is closed, and the upper part of the hydrocyclone is closed.
  • the solid inorganic salt particles settle to the lower part of the oxidation buffer, and the supercritical fluid substantially free of solid inorganic salts in the upper portion of the oxidation buffer enters the top outlet pipe of the hydrocyclone.
  • the system utilizes the cold energy of liquid oxygen to cool and crystallize the high-salt wastewater, reduce the salt content of the mixed wastewater, and then utilize the characteristics of the supercritical water to perform the desalination treatment of the mixed wastewater through the hydrocyclone, thereby effectively avoiding the hydraulic power. Blockage of equipment such as the follow-up line of the cyclone and the reactor.
  • the system uses the cold energy of liquid oxygen to cool the crystallization of high-salt wastewater, recovering valuable inorganic salts, and then generating economic benefits.
  • the system uses a high oxidation coefficient (3.0 ⁇ 4.0), and separates and recycles excess oxygen by setting a fourth volumetric heat exchanger, cooling unit, purification tower, second buffer, and high pressure compressor. , Separation of C0 2 liquid for sale can obtain certain benefits.
  • Figure 1 is a schematic view showing the structure of the system of the present invention.
  • 1 is the storage tank
  • 2 is the high pressure piston pump
  • 3 is the heating furnace
  • 4 is the hydrocyclone
  • 5 is the buffer oxidizer
  • 6 is the expansion vessel
  • 7 is the salt storage tank
  • 8 is the high salt wastewater pool
  • 9 is a low pressure pump
  • 10 For the first casing heat exchanger
  • 11 for the ethylene glycol solution tank
  • 12 for the low pressure centrifugal pump
  • 13 for the second casing heat exchanger
  • 14 for the liquid oxygen storage tank
  • 15 for the low temperature liquid oxygen pump
  • 16 In order to cool the crystallizer, 17 is a diaphragm pump, 18 is a filter centrifuge, 19 is a first volumetric heat exchanger
  • 20 is a first buffer
  • 21 is a mixer
  • 22 is a tubular reactor
  • 23 is a second volume.
  • Heat exchanger, 24 is a third volumetric heat exchanger, 25 is a high pressure vapor-liquid separator, 26 is a fourth volumetric heat exchanger, 27 is a cooling unit, 28 is a purification tower, 29 is a second buffer, 30 is a high pressure compressor, 31 is a C0 2 storage tank, 32 is a softened water tank, 33 is a low pressure variable frequency pump, 34 is a back pressure ⁇ , 35 is an open liquid collecting tank, 36 is a low pressure water pump, 37 is a subsequent processing unit, V1 ⁇ V5 is the electric cut-off ⁇ , V6 ⁇ V10 is the electric adjustment ⁇ , and VII is the electric decompression ⁇ .
  • the outlet end of the storage tank 1 is connected to the inlet end of the high pressure piston pump 2, the outlet end of the high pressure piston pump 2 is connected to the inlet end of the heating furnace 3, and the intermediate outlet end of the heating furnace 3 is connected to the inlet end of the hydrocyclone 4.
  • the top outlet end of the hydrocyclone 4 is connected to the intermediate inlet end of the heating furnace 3, and the outlet end of the heating furnace 3 is connected to the inlet end of the mixer 21.
  • the outlet end of the high-salt wastewater tank 8 is connected to the inlet end of the low-pressure pump 9, and the outlet end of the low-pressure pump 9 is connected to the inlet end of the tube side of the first sleeve-type heat exchanger 10, and the outlet of the tube side of the first sleeve-type heat exchanger 10
  • the end is in communication with the inlet end of the cooling crystallizer 16, the top outlet end of the cooling crystallizer 16 is connected to the inlet end of the storage tank 1, and the bottom outlet end of the cooling crystallizer 16 is connected to the inlet end of the filtration centrifuge 18.
  • the outlet end of the ethylene glycol solution tank 11 is connected to the inlet end of the low-pressure centrifugal pump 12, the outlet end of the low-pressure centrifugal pump 12 is connected to the shell-side inlet end of the second sleeve-type heat exchanger 13, and the shell side of the second sleeve-type heat exchanger 13 is The outlet end is connected to the shell side inlet end of the first sleeve heat exchanger 10, and the first sleeve type heat exchanger 10 shell The side outlet end is connected to the inlet end of the ethylene glycol solution tank 11.
  • the inlet of the cryogenic liquid oxygen pump 15 is connected to the liquid oxygen storage tank 14, the outlet is connected to the inlet end of the tube side of the second sleeve heat exchanger 13, and the outlet end of the second sleeve type heat exchanger 13 is first.
  • the inlet end of the tube side of the volumetric heat exchanger 19 is connected, the outlet end of the tube side of the first volumetric heat exchanger 19 is connected to the inlet end of the first buffer 20, the outlet end of the first buffer 20 and the inlet of the mixer 21. End connection.
  • the outlet end of the mixer 21 is connected to the inlet end of the tubular reactor 22, the outlet end of the tubular reactor 22 is connected to the tube side inlet end of the second volumetric heat exchanger 23, and the outlet end of the second volumetric heat exchanger 23 is connected to the tube side.
  • the third volumetric heat exchanger 24 is connected at the inlet side of the tube side, and the outlet end of the third volumetric heat exchanger 24 is connected to the inlet end of the high pressure vapor-liquid separator 25, and the top outlet end and the fourth volume of the high pressure vapor-liquid separator 25
  • the tube-side inlet end of the heat exchanger 26 is connected, the tube-side outlet end of the fourth volumetric heat exchanger 26 is connected to the inlet end of the purification tower 28, and the top outlet end of the purification tower 28 is connected to the inlet end of the second buffer 29, the second buffer
  • the outlet end of the compressor 29 is connected to the inlet end of the high pressure compressor 30, and the outlet end of the high pressure compressor 30 is connected to the inlet line of the first damper 20.
  • the bottom outlet end of the high pressure vapor-liquid separator 25 is connected to the inlet end of the back pressure port 34, the outlet end of the back pressure port 34 is connected to the inlet end of the open header tank 35, and the outlet end of the open header tank 35 is connected to the inlet end of the low pressure water pump 36.
  • the outlet end of the low pressure water pump 36 is connected to the shell side inlet end of the first volumetric heat exchanger 19, the shell side outlet end of the first volumetric heat exchanger 19 is connected to the inlet end of the subsequent processing unit 37, and the outlet end of the subsequent processing unit 37 is liquid. No pollution emissions.
  • the bottom outlet of the hydrocyclone 4 is connected to the top inlet end of the buffer oxidizer 5, the bottom outlet end of the buffer oxidizer 5 is connected to the top inlet end of the expansion vessel 6, and the bottom outlet end of the expansion vessel 6 is connected to the top inlet end of the brine storage tank 7, the salt storage tank
  • the inorganic salts excluded from the bottom outlet end of 40 are disposed of in landfill.
  • the outlet end of the softened water tank 32 is connected to the inlet end of the low-voltage variable frequency pump 33, the outlet end of the low-pressure variable frequency pump 33 is connected to the inlet side of the shell side of the third volumetric heat exchanger 24, and the outlet end of the third volumetric heat exchanger 24 is the second outlet end and the second end.
  • the shell-side inlet end of the volumetric heat exchanger 23 is connected, and the shell-side outlet end of the second volumetric heat exchanger 23 outputs steam.
  • the outlet end of the low-voltage variable-frequency pump 33 which produces sludge is connected to the inlet end of the hopper 1 through a connecting pipe.
  • the outlet end of the first positive displacement heat exchanger 19 is also connected to the inlet end of the top of the buffer oxidizer 5.
  • the outlet end of the top of the buffer oxidizer 5 is connected to the line at the top outlet end of the hydrocyclone 4 via an electric cut-off ⁇ V2.
  • the fourth volumetric heat exchanger 26 has a shell side inlet end connected to the outlet end of the cooling unit 27, and a fourth volumetric heat exchanger 26 shell side outlet end connected to the inlet end of the cooling unit 27.
  • the working principle of the supercritical water oxidation treatment system of the high-salt organic wastewater shown in Figure 1 is as follows: 1) The high-salt wastewater in the high-salt wastewater tank 8 (the inorganic salt is dissolved in the wastewater, and the solubility decreases with the decrease of temperature, the organic The salt content of wastewater is 10wt% ⁇ 30wt%, accounting for about one-third of the total water) The tube side transported to the first tube-type heat exchanger 10 via the low-pressure pump 9 is cooled by the ethylene glycol solution, and then enters the cooling crystallizer 16 to crystallize and precipitate to the lower portion of the cooling crystallizer, and the top of the crystallizer 16 is cooled for desalination.
  • the organic wastewater enters the storage tank 1 and is mixed with the wastewater having a salt content of 5 wt% to 10 wt%, thereby reducing the inorganic salt concentration of the mixed wastewater formed by the two wastewaters to 5 wt% to 10 wt%.
  • the solid inorganic salt separated at the bottom of the cooling crystallizer 16 is transported through a diaphragm pump 17 to a filtration centrifuge 18, and the inorganic salt precipitated by crystallization is separated from the bottom of the filtration centrifuge 18 by filtration centrifugation, if the inorganic salt group
  • the points are relatively single and can be sold to obtain a certain amount of income.
  • the top fluid of the filter centrifuge 18 enters the sump 1.
  • the pump 12 is transported, enters the second jacketed heat exchanger 13 and is cooled by liquid oxygen from the cryogenic liquid oxygen pump 15 on the side of the shell side, and then enters the shell side of the first sleeved heat exchanger 10 to cool the high-salt wastewater.
  • the ethylene glycol solution tank 11 is subjected to low pressure centrifugation.
  • the pump 12 is transported, enters the second jacketed heat exchanger 13 and is cooled by liquid oxygen from the cryogenic liquid oxygen pump 15 on the side of the shell side, and then enters the shell side of the first sleeved heat exchanger 10 to cool the high-salt wastewater.
  • the ethylene glycol solution tank 11 is subjected to low pressure centrifugation.
  • the temperature of the high-salt wastewater can be lowered by the liquid oxygen cooling energy as an oxidizing agent in the system, and the inorganic salt is crystallized.
  • the pre-desalting of high-salt wastewater is carried out, which effectively reduces the salt content of the mixed waste water, thereby reducing the risk of clogging of the reactor in the system.
  • the use of the system's own cold energy to remove inorganic salts in high-salt wastewater when the inorganic salt component is relatively single, the separated inorganic salts can be sold to obtain certain economic benefits.
  • the mixed wastewater in the storage tank 1 is pressurized and transported to the low temperature section of the heating furnace 3 by the high pressure piston pump 2 for preheating, and the heating power of the heating furnace 3 is adjusted to make the intermediate outlet A of the heating furnace 3 be processed.
  • the fluid temperature reaches the supercritical water temperature (about 400 ° C), and then the fluid enters the hydrocyclone 4, and the inorganic salt precipitated under the supercritical condition is separated by centrifugal separation of the hydrocyclone 4, after separation
  • the feed fluid enters the high temperature section of the heating furnace 3 for further preheating, reaches the preheating temperature, flows out from the outlet of the heating furnace 3, and enters the mixer 21.
  • the high-salt mixed wastewater is pressurized by the high-pressure metering pump 2 and the furnace 3 is preheated to reach a supercritical water state, the inorganic salt is precipitated under the conditions, and the solid inorganic salt is further separated by the centrifugal separation of the hydrocyclone 4.
  • the liquid oxygen of the liquid oxygen storage tank 14 is pressurized and flow-regulated by the low-temperature liquid oxygen pump 15, and then enters the second side of the tube-type heat exchanger 13 to be preheated and vaporized by the ethylene glycol solution on the shell side, and then enters the first One volume
  • the tube side of the heat exchanger 19 is preheated by the low temperature fluid (about 50 ° C) after the shell side reaction, and then enters the first buffer 20 when the gas pressure PIC (201 ) in the first buffer 20 reaches the system pressure.
  • the electric cut-off ⁇ V6 is turned on, and the oxygen is further introduced into the mixer 21 to be mixed with the pre-heated mixed wastewater.
  • the mixed reaction fluid in the mixer 21 enters the tubular reactor 22, and after the tubular reactor 22 is sufficiently reacted, the high-temperature fluid after the reaction enters the tube side of the second volumetric heat exchanger 23 and is cooled by the softened water on the shell side. Then, the tube side of the third volumetric heat exchanger 24 is cooled by the shell side low temperature softening tree water to about 50 Torr, and then enters the high pressure vapor-liquid separator 25 for vapor-liquid separation.
  • the excess oxygen and the reaction product gas (mainly C0 2 ) separated from the upper portion of the high pressure vapor-liquid separator 25 enter the fourth volumetric heat exchanger 26 and are cooled by the cooling water from the cooling unit 27 on the shell side, and the C0 2 gas is
  • the vapor-liquid two-phase fluid enters the purification tower 28 after liquefaction.
  • the oxygen at the top of the purification tower 28 is buffered by the second buffer 29 and enters the high pressure compressor 30. After the high pressure compressor 30 is pressurized, the excess oxygen of the system is sent to the first buffer 20, and the reactor is re-entered to participate in the reaction.
  • the C0 2 liquid at the bottom of the purification tower 28 is depressurized by the electric decompression crucible VII and stored in the CO 2 storage tank 31, and the liquid level of the purification tower 28 is controlled by electrically adjusting the opening degree of the crucible V10.
  • the excess oxygen in the recovery system is separated by the high pressure vapor-liquid separator 25, the fourth volumetric heat exchanger 26, the cooling unit 27, the second buffer 29, the high pressure compressor 30, and the C0 2 storage tank 31, so that the system has
  • the higher oxidation coefficient (3.0 ⁇ 4.0) effectively guarantees the harmless removal efficiency of supercritical water oxidation of organic wastewater, and at the same time guarantees lower operating cost.
  • the main gaseous product C0 2 can be separated and collected, and the sale can obtain certain economic benefits.
  • the bottom of the high-pressure vapor-liquid separator 25 first enters the back pressure ⁇ 34, reduces the fluid pressure to normal pressure, and the depressurized fluid enters the open header tank 35 to separate the gas product, and the liquid is transported to the first stage through the low-pressure water pump 36.
  • the shell side of the one-volume heat exchanger 19 goes to the preheating tube side oxygen, and then enters the subsequent processing unit 37 to be discharged after the simple treatment, wherein a small amount of sludge generated by the subsequent processing unit 37 enters the storage tank 1.
  • the high-salt organic wastewater is treated under relatively low reaction temperature and residence time conditions, and the conventional treatment method is coupled under relatively low organic matter removal rate conditions. Under the premise of effectively reducing the operating cost of the system, the final discharge requirements for wastewater treatment are guaranteed.
  • the electric cut-off ⁇ V1 ⁇ V3 is turned off, the electric regulating ⁇ V6 is turned on, the oxygen introduced from the oxygen transport line is supplied to the oxidizing buffer 5, and then the VI and the VI are turned on.
  • V2 the high-salt fluid separated by the hydrocyclone 4 is spirally transported into the oxidation buffer 5, reacted with oxygen in the oxidation buffer 5, and the organic pollutants therein are harmlessly removed to ensure the storage pool.
  • the inorganic salt in 7 contains no organic matter, and these inorganic salts are taken out from the salt storage tank 7 for landfill disposal at intervals.
  • the inorganic salt in the wastewater can be mixed by utilizing the characteristics of the supercritical water, thereby effectively removing the tubular reactor 22
  • the inorganic salt avoids the clogging of the subsequent lines of the hydrocyclone 4 and the tubular reactor 22 and the like.
  • the low-temperature softened water in the softened water tank 32 is sent through the low-pressure variable frequency pump 33, enters the fluid after the reaction on the side of the cooling tube side of the shell of the third volumetric heat exchanger 24, and then enters the shell-side cooling tube of the second volumetric heat exchanger 23.
  • the high-temperature fluid after the side reaction, the outlet end of the second volumetric heat exchanger 23 outputs steam.
  • the steam pressure (about 0.8 MPa) is regulated by electric regulation V7, and the softened water flow of steam is regulated by electric regulation ⁇ V8.
  • the excess fluid output from the low-pressure variable frequency pump 33 is returned to the softened water tank 32 via the electric adjustment ⁇ V9.
  • the softening water tank 32 the low-pressure variable frequency pump 33, the second volumetric heat exchanger 23, and the third volumetric heat exchanger 24 the heat of the high-temperature fluid after the reaction can be recovered and sold in the form of steam, thereby obtaining a profit. , effectively reduce the operating costs of the entire system.

Abstract

一种高含盐有机废水的超临界水氧化处理系统,通过液氧的冷能将高盐废水进行冷却结晶,降低废水中无机盐的质量浓度。在超临界水条件下利用水力旋流器(4)脱除废水中析出的大量固体盐颗粒,有效防止水力旋流器(4)后续管路及管式反应器(22)的堵塞。通过在水力旋流器(4)下部设置脱盐装置可连续将无机盐从系统脱除。此外,通过分离回收部分,回收过量的氧气和CO2产物气体;通过设置简单的后续处理单元(37),降低超临界水氧化反应时间和反应温度;通过设置软化水装置,系统以蒸汽的形式回收反应后高温流体的热量,有效降低了系统的运行成本。

Description

高含盐有机废水的超临界水氧化处理系统 技术领域
本发明涉及一种利用超临界水作为反应介质对高含盐 (无机盐含量为 5wt%~30wt% ) 有机废水进行无害化处理的系统。 背景技术
超临界水是指温度和压力均高于其临界点 (T=374.15 °C, P=22.12MPa) 的特殊状态的水。 超临界水兼具液态和气态水的性质, 该状态下只有少量的 氢键存在, 介电常数近似于极性有机溶剂, 具有高的扩散系数和低的黏度。 有机物、 氧气与超临界水互溶, 从而使非均相反应变为均相反应, 大大减小 了传质阻力, 而无机盐在超临界水中的溶解度极低, 很容易被分离出来。
超临界水氧化技术 (Supercritical Water Oxidation, 简称 SCWO ) 是利用 超临界水对有机物和氧化剂都是良好溶剂的特殊性质, 在提供充足氧化剂的 前提下, 有机物在富氧环境中进行均相反应, 迅速、 彻底地将有机物深度破 坏, 转化成 H20、 C02等无害化小分子化合物和无机盐。 SCWO主要应用于 高毒性、 高浓度、 难生化降解有机废水的高效无害化处理, 无二次污染, 能 够实现自热, 能量回收优化时运行成本低, 具有经济优势, 在取代传统焚烧 法方面具有光明的发展前景。 因此, SCWO 的发展在国内外受到广泛关注, 美国国家关键技术六大领域之一"能源与环境"指出, 21 世纪最有前途的有机 废物处理技术之一是超临界水氧化技术。 目前, 国外已有少量商业化 SCW0装 置正在运行, 而国内大多还处在实验研究阶段, 仅出现个别中试装置。
高浓度难生化降解有机废水 (如农药废水) 通过含有大量的无机盐, 质 量含量甚至高达 5wt%~30wt%, 部分无机盐具有回收利用价值。 而无机盐在 超临界水中的溶解度显著降低, 通常小于 100mg/L。 例如 Na2S04、 CaCl2、 NaCl和 KC1在 400°C、 25MPa的超临界水中的溶解度不超过 lg/L。 有机废水 超临界水氧化过程中析出的黏性盐在反应器内表面团聚、 沉积, 当盐沉积失 去控制时反应器会被堵塞, 特别是在低流速条件下析出较大颗粒的黏性盐时 更容易造成反应器的堵塞。 当堵塞发生时, 整套装置必须停机、 冲洗和再启 动, 这就降低了 SCWO装置运行的可靠性, 增加了运行成本。 此外, 无机盐 特别是含氯离子无机盐的沉积也会加快反应器、 输运管路等部位的腐蚀速率, 导致换热器中换热面的传热恶化。 高温高压富氧的反应环境致使 SCWO装置 运行成本较高, 这些问题极大地限制了 SCWO的推广应用。
鉴于有机废水 SCWO过程中复杂的进料特性和苛刻反应条件, 现有的除 盐方法 (电渗析、 反渗透、 离子交换、 电吸附等) 难以用在高含盐有机废水
SCWO系统中,高含盐有机废水 SCWO系统的可靠运行需要更为简单、高效、 方便的除盐设备和脱盐方法。因此,针对高含盐有机废水 SCWO系统的开发, 需要解决反应器中盐沉积引起的堵塞问题, 并能够有效降低 SCWO的运行成 本。 发明内容
本发明的目的是克服高含盐有机废水 SCWO系统设计时面临盐沉积和高 运行成本问题, 提供一种改进的超临界水氧化处理系统, 可以广泛应用于高 含盐有机废水的高效、 低成本无害化处理。
为达到以上目的, 本发明是采取如下技术方案予以实现的:
一种高含盐有机废水的超临界水氧化处理系统, 其特征在于: 包括 预脱盐部分、 超临界水处理脱盐部分、 混合反应部分和分离回收部分, 其中: 预脱盐部分包括第一管式换热器和第二管式换热器, 所述第一管式换热 器管侧的入口通入高盐废水, 第一管式换热器管侧的出口连接冷却结晶器的 入口, 冷却结晶器的顶部出口与一个储存有机废水的储料池的入口相连, 冷 却结晶器的底部出口与过滤离心机的入口相连, 过滤离心机的顶部出口连接 储料池, 过滤离心机的底部出口排盐; 第一管式换热器和第二管式换热器壳 侧通有乙二醇溶液, 第二管式换热器管侧的入口通入液氧;
所述超临界水处理脱盐部分包括加热炉, 该加热炉的入口连接储料池的 出口, 加热炉中间出口连接水力旋流器的入口, 水力旋流器顶部出口连接加 热炉中间入口, 加热炉出口连接混合器入口, 水力旋流器底部出口连接脱盐 装置;
混合反应部分包括第一容积式换热器, 该第一容积式换热器管侧的入口 连接第二管式换热器管侧的出口, 第一容积式换热器管侧的出口连接第一缓 冲器的入口, 第一缓冲器的出口连接混合器的入口, 混合器的出口连接管式 反应器的入口, 管式反应器出口连接容积式换热器组管侧的入口;
分离回收部分包括高压汽液分离器, 该高压汽液分离器的入口连接容积 式换热器组管侧的出口, 高压汽液分离器顶部出口连接第四容积式换热器管 侧的入口, 第四容积式换热器管侧的出口连接提纯塔的入口, 提纯塔顶部出 口连接第二缓冲器的入口, 第二缓冲器的出口与高压压缩机入口连接, 高压 压缩机出口连接第一缓冲器的入口; 高压汽液分离器底部出口连接第一容积 式换热器壳侧的入口, 第一容积式换热器壳侧的出口连接后续处理单元; 容 积式换热器组壳侧的入口连接软化水装置; 容积式换热器组壳侧的出口输出 蒸汽; 提纯塔底部出口排出 co2
上述系统中, 可以进一歩改进的技术方案为:
所述的软化水装置包括软化水箱, 该软化水箱的出口通过低压变频泵连 接容积式换热器组壳侧的入口, 容积式换热器组壳侧出口输出蒸汽。 所述的 容积式换热器组可由两个容积式换热器串联组成。
所述的脱盐装置包括缓冲氧化器, 该缓冲氧化器顶部的入口连接水力旋 流器底部出口, 缓冲氧化器底部出口与扩容器顶部入口连接, 扩容器底部出 口与储盐池顶部入口连接, 储盐池底部出口排出无机盐。
所述高压汽液分离器底部出口与第一容积式换热器壳侧入口之间通过背 压闽、 敞口集液箱和低压水泵连接。
所述的后续处理单元中的污泥出口端通过连接管道与储料池入口连接。 所述的第一容积式换热器管侧的出口还连接缓冲氧化器顶部的入口。 所述的氧化缓冲器顶部的出口连接水力旋流器顶部的出口。
与现有技术相比, 本发明系统突出的优点是:
1、 有两股含盐有机废水作为超临界水氧化处理进料, 其中一股含盐量
10^%~30^%有机废水(简称高盐废水), 此类无机盐随温度的降低溶解度降 低, 约占总水量的三分之一, 另一股含盐量为 5wt%~10wt%有机废水。 利用 系统中液氧冷能将高盐废水进行冷却结晶, 降低废水中无机盐的质量浓度, 进而降低两股废水所形成混合废水的无机盐浓度至 5wt%~10wt%。 混合废水 经过高压计量泵加压后输送到加热炉进行预热, 本系统加热炉中的换热盘管 分两段布置 (低温段和高温段), 低温段出口 (加热炉中间出口) 流体达到超 临界水温度, 进入水力旋流器后利用离心分离作用可以将反应流体中颗粒度
10微米以上的大量固体盐颗粒分离出来, 经过脱盐处理后水力旋流器顶部出 口流体再进入加热炉的高温段, 进而可以保证高温段换热盘管的换热系数, 有效防止水力旋流器后续管路及反应器的堵塞。 同时将水力旋流器底部分离 出的固体无机盐利用水力旋流器上的电机螺旋输送到缓冲氧化器中, 当缓冲 氧化器充满固体无机盐时, 关闭缓冲氧化器顶部入口管路上的截止闽, 关闭 水力旋流器上部的输送电机, 缓慢开启缓冲氧化器下部的截止闽, 启动缓冲 氧化器上的螺旋输送电机, 将缓冲氧化器中的固体无机盐输送到扩容器中, 含固体无机盐流体在扩容器内膨胀, 产生的蒸汽进入储料池, 热量回收利用, 分离出的固体无机盐进入储盐池, 间隔一段时间从储盐池中取出再进行填埋 处置。 此外, 利用水力旋流器分离出的高含盐流体经螺旋输送进入氧化缓冲 器后, 在氧化缓冲器中与先前从氧气输运管路引入的氧气进行反应, 将其中 的有机污染物无害化去除。 过饱和高含盐流体进入氧化缓冲器后, 固体无机 盐颗粒沉降到氧化缓冲器下部, 氧化缓冲器上部基本不含固体无机盐的超临 界流体进入水力旋流器顶部出口管道。
因此, 本系统利用液氧的冷能对高盐废水冷却结晶处理, 降低混合废水 的含盐量, 然后再利用超临界水的特性通过水力旋流器进行混合废水的脱盐 处理, 从而有效避免水力旋流器后续管路及反应器等设备的堵塞。
2、 为降低高含盐有机废水超临界水氧化处理系统的运行成本, 系统利用 液氧的冷能去冷却结晶高盐废水, 回收可能有价值的无机盐, 进而产生经济 收益。 为保证高的有机物去除率, 系统采用高氧化系数 (3.0~4.0) , 通过设 置第四容积式换热器、 冷却机组、 提纯塔、 第二缓冲器、 高压压缩机分离回 收再利用过量的氧气, 分离出 C02液体出售可以获得一定的收益。 通过设置软 化水箱、 低压变频泵、 第二容积式换热器、 第三容积式换热器将反应后的高 温流体换热产生饱和蒸汽, 对外输出产生收益。 通过降低反应时间和反应温 度, 降低有机废水超临界水氧化的去除率, 同时辅助简单的后续处理单元, 在满足混合废水整体处理达标排放要求的前提下, 有效降低系统的运行成本。 这些方法的耦合使用都能够有效降低高含盐有机废水超临界水氧化处理系统 的运行成本。 附图说明
下面结合附图及具体实施方式对本发明作进一歩的详细说明。
图 1是本发明系统的结构示意图。
图中: 1 为储料池、 2 为高压柱塞泵、 3 为加热炉、 4为水力旋流器、 5 为缓冲氧化器、 6为扩容器、 7为储盐池、 8为高盐废水池、 9为低压泵、 10 为第一套管式换热器、 11为乙二醇溶液箱、 12为低压离心泵、 13为第二套管 式换热器、 14为液氧贮槽、 15为低温液氧泵、 16为冷却结晶器、 17为隔膜 泵、 18为过滤离心机、 19为第一容积式换热器、 20为第一缓冲器、 21为混 合器、 22为管式反应器、 23为第二容积式换热器、 24为第三容积式换热器、 25为高压汽液分离器、 26为第四容积式换热器、 27为冷却机组、 28为提纯 塔、 29为第二缓冲器、 30为高压压缩机、 31为 C02储罐、 32为软化水箱、 33为低压变频泵、 34为背压闽、 35为敞口集液箱、 36 低压水泵、 37为后续 处理单元, V1~V5为电动截止闽, V6~V10为电动调节闽, VII为电动减压闽。
图 1中的图例和仪表代码含义见表 1
表 1
Figure imgf000007_0001
具体实施方式
参照图 1, 储料池 1出口端与高压柱塞泵 2入口端连接, 高压柱塞泵 2出 口端与加热炉 3入口端连接, 加热炉 3中间出口端与水力旋流器 4入口端连 接, 水力旋流器 4顶部出口端与加热炉 3中间入口端连接, 加热炉 3出口端 与混合器 21入口端连接。 高盐废水池 8出口端与低压泵 9入口端连接, 低压 泵 9出口端与第一套管式换热器 10管侧的入口端连接,第一套管式换热器 10 管侧的出口端与冷却结晶器 16的入口端连通, 冷却结晶器 16顶部出口端与 储料池 1的入口端相连, 冷却结晶器 16底部出口端与过滤离心机 18的入口 端相连。 乙二醇溶液箱 11 出口端与低压离心泵 12入口端连接, 低压离心泵 12出口端与第二套管式换热器 13壳侧入口端连接, 第二套管式换热器 13壳 侧出口端与第一套管式换热器 10壳侧入口端连接, 第一套管式换热器 10壳 侧出口端与乙二醇溶液箱 11入口端连接。 低温液氧泵 15的入口与液氧贮槽 14连接, 出口与第二套管式换热器 13管侧的入口端连接, 第二套管式换热器 13管侧的出口端与第一容积式换热器 19管侧的入口端连接,第一容积式换热 器 19管侧的出口端与第一缓冲器 20的入口端连接, 第一缓冲器 20的出口端 与混合器 21入口端连接。 混合器 21出口端与管式反应器 22入口端连接, 管 式反应器 22出口端与第二容积式换热器 23管侧入口端连接, 第二容积式换 热器 23管侧出口端与第三容积式换热器 24管侧入口端连接, 第三容积式换 热器 24管侧出口端与高压汽液分离器 25入口端连接, 高压汽液分离器 25顶 部出口端与第四容积式换热器 26管侧入口端连接, 第四容积式换热器 26管 侧出口端与提纯塔 28入口端连接, 提纯塔 28顶部出口端与第二缓冲器 29入 口端连接, 第二缓冲器 29出口端与高压压缩机 30入口端连接, 高压压缩机 30出口端与第一缓冲器 20入口管路连接。 高压汽液分离器 25底部出口端与 背压闽 34入口端连接, 背压闽 34出口端与敞口集液箱 35入口端连接, 敞口 集液箱 35出口端与低压水泵 36入口端连接, 低压水泵 36出口端与第一容积 式换热器 19壳侧入口端连接, 第一容积式换热器 19壳侧出口端与后续处理 单元 37入口端连接, 后续处理单元 37出口端进行液体无污染排放。 水力旋 流器 4底部出口与缓冲氧化器 5顶部入口端连接, 缓冲氧化器 5底部出口端 与扩容器 6顶部入口端连接, 扩容器 6底部出口端与储盐池 7顶部入口端连 接, 储盐池 40底部出口端排除的无机盐进行填埋处置。 软化水箱 32出口端 与低压变频泵 33入口端连接, 低压变频泵 33出口端与第三容积式换热器 24 壳侧入口端连接, 第三容积式换热器 24壳侧出口端与第二容积式换热器 23 壳侧入口端连接, 第二容积式换热器 23壳侧出口端输出蒸汽。
图 1系统中, 低压变频泵 33出口端还有一路通过电动调节闽 V9与软化 水箱入口端连接。 后续处理单元 37产生污泥的出口端通过连接管道与储料池 1入口端连接。 第一容积式换热器 19管侧的出口端还有一路与缓冲氧化器 5 顶部的入口端连接。缓冲氧化器 5顶部的出口端通过电动截止闽 V2与水力旋 流器 4顶部出口端的管路连接。 第四容积式换热器 26壳侧入口端与冷却机组 27出口端连接,第四容积式换热器 26壳侧出口端与冷却机组 27入口端连接。
图 1所示高含盐有机废水的超临界水氧化处理系统工作原理如下: 1 ) 高盐废水池 8中的高盐废水 (无机盐溶解在废水中, 随温度的降低溶 解度降低, 该股有机废水含盐量为 10wt%~30wt%, 约占总水量的三分之一) 经过低压泵 9输运到第一套管式换热器 10的管侧被乙二醇溶液冷却, 然后进 入冷却结晶器 16结晶析出沉淀到冷却结晶器的下部, 冷却结晶器 16顶部进 行脱盐后的有机废水进入储料池 1 与含盐量为 5wt%~10wt%的废水混合, 进 而降低两股废水所形成混合废水的无机盐浓度至 5wt%~10wt%。 冷却结晶器 16底部分离出的固体无机盐经过隔膜泵 17输运到过滤离心机 18中, 经过过 滤离心分离作用将结晶析出的无机盐从过滤离心机 18的底部分离出来, 若该 无机盐组分相对单一, 可以进行出售从而获得一定的收益。 过滤离心机 18的 顶部流体进入储料池 1。冷却高盐废水采用系统中反应物质液氧的冷能, 通过 利用中间换热介质乙二醇溶液进行换热, 具体过程可以描述为来自乙二醇溶 液箱 11中的乙二醇溶液经过低压离心泵 12输运, 进入第二套管式换热器 13 壳侧被管侧来自低温液氧泵 15的液氧冷却, 再进入第一套管式换热器 10壳 侧冷却高盐废水, 最后再回到乙二醇溶液箱 11。
因此, 通过系统中作为氧化剂的液氧冷能可以降低高盐废水的温度, 进 而结晶析出无机盐。 一方面, 对高盐废水进行了预脱盐, 有效降低了混合废 水的含盐量, 从而降低了系统中反应器的堵塞风险。 另一方面, 利用系统中 自有的冷能去脱除高盐废水中的无机盐, 当这种无机盐组分相对单一时, 所 分离出的无机盐可以出售获得一定的经济收益。
2)储料池 1中的混合废水经过高压柱塞泵 2加压输运到加热炉 3的低温 段进行预热, 通过调控加热炉 3的加热功率, 使加热炉 3中间出口 A位置处 理的流体温度达到超临界水温度 (约 400°C ), 然后这股流体进入水力旋流器 4, 利用水力旋流器 4的离心分离作用, 将超临界条件下析出的无机盐分离出 来, 分离后的进料流体进入加热炉 3 的高温段进行进一歩预热, 达到预热温 度后从加热炉 3的出口流出, 再进入混合器 21。
因此, 高含盐混合废水通过高压计量泵 2加压和加热炉 3预热后达到超 临界水状态, 无机盐在此条件下析出, 再利用水力旋流器 4 的离心分离作用 将固体无机盐分离出来, 将颗粒度 10微米以上的大量固体盐颗粒分离出来, 经过脱盐处理后流体的含盐质量分数可以降低 90%, 再从水力旋流器 4顶部 出口流出进入加热炉 3的高温段, 进而可以保证高温段换热盘管的换热系数, 有效防止水力旋流器后续管路及设备(混合器 21,特别是反应器 22)的堵塞。
3 ) 液氧贮槽 14的液体氧气经过低温液氧泵 15加压和流量调节后, 进入 第二套管式换热器 13管侧被壳侧的乙二醇溶液预热汽化, 然后进入第一容积 式换热器 19管侧被壳侧反应后的低温流体(约 50°C )预热, 再进入第一缓冲 器 20, 当第一缓冲器 20中的气体压力 PIC (201 ) 达到系统压力时, 开启电 动截止闽 V6, 氧气再进入混合器 21与预热后的混合废水进行混合。
混合器 21中混合后的反应流体进入管式反应器 22, 在管式反应器 22中 充分反应后, 反应后的高温流体进入第二容积式换热器 23管侧被壳侧的软化 水冷却,然后进入第三容积式换热器 24管侧被壳侧低温软化树水冷却到 50 Ό 左右, 再进入高压汽液分离器 25进行汽液分离。 高压汽液分离器 25上部分 离出的过量氧气和反应生成气体产物 (主要为 C02) 进入第四容积式换热器 26管侧被壳侧来自冷却机组 27的冷却水冷却, C02气体被液化后汽液两相流 体进入提纯塔 28。 提纯塔 28顶部氧气进入第二缓冲器 29缓冲后进入高压压 缩机 30,经过高压压缩机 30加压后系统反应过量的氧气被输送到第一缓冲器 20, 重新进入反应器参与反应。 提纯塔 28底部的 C02液体经过电动减压闽 VII减压后储存于 C02储罐 31,通过电动调节闽 V10的开度来控制提纯塔 28 的液位。
因此, 通过高压汽液分离器 25、 第四容积式换热器 26、 冷却机组 27、 第 二缓冲器 29、高压压缩机 30、 C02储罐 31分离回收系统中过量的氧气, 使系 统具有较高的氧化系数 (3.0~4.0), 有效保证了有机废水的超临界水氧化无害 化去除效率, 同时能够保证具有较低的运行成本。 此外, 可以将主要的气体 产物 C02分离收集, 出售可以获得一定的经济收益。
4) 高压汽液分离器 25底部流体先进入背压闽 34, 将流体压力降低到常 压, 降压后的流体进入敞口集液箱 35分离出气体产物, 液体经过低压水泵 36 输送到第一容积式换热器 19壳侧去预热管侧氧气,然后进入后续处理单元 37 经简单处理后达标排放,其中后续处理单元 37产生的少量污泥进入储料池 1。
因此, 通过在超临界水氧化系统中设置后续处理单元 37, 在相对低的反 应温度和停留时间条件下处理高含盐有机废水, 在相对低的有机物去除率条 件下耦合采用常规处理方法, 在有效降低系统运行成本的前提下, 保证了废 水处理最终达标排放要求。
5) 当电动截止闽 V3关闭, 电动调节闽 V6关闭, 电动截止闽 VI和 V2 开启时, 利用水力旋流器 4上的电机将水力旋流器 4底部分离出的固体无机 盐螺旋输送到缓冲氧化器 5中并沉淀到下部, 氧化缓冲器 5上部基本不含固 体无机盐的超临界流体进入水力旋流器 4顶部出口管道。 当缓冲氧化器 5充 满固体无机盐时, 关闭水力旋流器 4上部的输送电机, 关闭缓冲氧化器 5顶 部进出口管路上的电动截止闽 VI和 V2, 缓慢开启缓冲氧化器 5下部出口电 动截止闽 V4, 启动缓冲氧化器 5上的螺旋输送电机, 将缓冲氧化器 5中的固 体无机盐输送到扩容器 6中, 含固体无机盐流体在扩容器 6内膨胀, 产生的 蒸汽进入储料池 1,热量回收利用,分离出的固体无机盐进入储盐池 7。此外, 固体无机盐被输运到氧化缓冲器 5之前, 先关闭电动截止闽 V1~V3, 开启电 动调节闽 V6, 从氧气输运管路引入的氧气至氧化缓冲器 5 中, 然后开启 VI 和 V2, 利用水力旋流器 4分离出的高含盐流体经螺旋输送进入氧化缓冲器 5 后, 在氧化缓冲器 5 中与氧气进行反应, 将其中的有机污染物无害化去除, 保证储盐池 7中的无机盐不含有机物, 间隔一段时间从储盐池 7中取出这些 无机盐进行填埋处置。
因此, 系统通过设置水力旋流器 4、 氧化缓冲器 5、 扩容器 6和储盐池 7, 可以利用超临界水的特性将混合废水中的无机盐, 从而在管式反应器 22前有 效脱除无机盐, 避免从而有效避免水力旋流器 4后续管路及管式反应器 22等 设备的堵塞。
6) 软化水箱 32中的低温软化水经过低压变频泵 33输送, 进入第三容积 式换热器 24壳侧冷却管侧反应后的流体, 再进入第二容积式换热器 23壳侧 冷却管侧反应后的高温流体, 第二容积式换热器 23壳侧出口端输出蒸汽。 通 过电动调节 V7调控产生蒸汽的压力 (约 0.8MPa), 通过电动调节闽 V8调节 产生蒸汽的软化水流量。 在保证进入 V8 的软化水流量前提下, 低压变频泵 33输出的多余流体经过电动调节闽 V9返回到软化水箱 32中。
因此, 通过设置软化水箱 32、 低压变频泵 33、 第二容积式换热器 23和 第三容积式换热器 24, 可以将反应后高温流体的热量以蒸汽的形式进行回收 出售, 从而获得收益, 有效降低整个系统的运行成本。

Claims

权 利 要 求 书
1、 一种高含盐有机废水的超临界水氧化处理系统, 其特征在于: 包括 预脱盐部分、 超临界水处理脱盐部分、 混合反应部分和分离回收部分, 其中: 预脱盐部分包括第一管式换热器和第二管式换热器, 所述第一管式换热 器管侧的入口连接高盐废水, 第一管式换热器管侧的出口连接冷却结晶器的 入口, 冷却结晶器的顶部出口与一个储存有机废水的储料池的入口相连, 冷 却结晶器的底部出口与过滤离心机的入口相连, 过滤离心机的顶部出口连接 储料池, 过滤离心机的底部出口排盐; 第一管式换热器和第二管式换热器壳 侧通有乙二醇溶液, 第二管式换热器管侧的入口通入液氧;
所述超临界水处理脱盐部分包括加热炉, 该加热炉的入口连接储料池的 出口, 加热炉中间出口连接水力旋流器的入口, 水力旋流器顶部出口连接加 热炉中间入口, 加热炉出口连接混合器入口, 水力旋流器底部出口连接脱盐 装置;
混合反应部分包括第一容积式换热器, 该第一容积式换热器管侧的入口 连接第二管式换热器管侧的出口, 第一容积式换热器管侧的出口连接第一缓 冲器的入口, 第一缓冲器的出口连接混合器的入口, 混合器的出口连接管式 反应器的入口, 管式反应器出口连接容积式换热器组管侧的入口;
分离回收部分包括高压汽液分离器, 该高压汽液分离器的入口连接容积 式换热器组管侧的出口, 高压汽液分离器顶部出口连接第四容积式换热器管 侧的入口, 第四容积式换热器管侧的出口连接提纯塔的入口, 提纯塔顶部出 口连接第二缓冲器的入口, 第二缓冲器的出口与高压压缩机入口连接, 高压 压缩机出口连接第一缓冲器的入口; 高压汽液分离器底部出口连接第一容积 式换热器壳侧的入口, 第一容积式换热器壳侧的出口连接后续处理单元; 容 积式换热器组壳侧的入口连接软化水装置; 容积式换热器组壳侧的出口输出 蒸汽; 提纯塔底部出口排出 C02
2、 如权利要求 1所述的高含盐有机废水的超临界水氧化处理系统, 其特 征在于: 所述的软化水装置包括软化水箱, 该软化水箱的出口通过低压变频 泵连接容积式换热器组壳侧的入口, 容积式换热器组壳侧出口输出蒸汽。
3、 如权利要求 2所述的高含盐有机废水的超临界水氧化处理系统, 其特 征在于: 所述的容积式换热器组由两个容积式换热器串联组成。
4、 如权利要求 1所述的高含盐有机废水的超临界水氧化处理系统, 其特 征在于: 所述的脱盐装置包括缓冲氧化器, 该缓冲氧化器顶部的入口连接水 力旋流器底部出口, 缓冲氧化器底部出口与扩容器顶部入口连接, 扩容器底 部出口与储盐池顶部入口连接, 储盐池底部出口排出无机盐。
5、 如权利要求 1所述的高含盐有机废水的超临界水氧化处理系统, 其特 征在于: 所述高压汽液分离器底部出口与第一容积式换热器壳侧入口之间通 过背压闽、 敞口集液箱和低压水泵连接。
6、 如权利要求 1所述的高含盐有机废水的超临界水氧化处理系统, 其特 征在于: 所述的后续处理单元中的污泥出口端通过连接管道与储料池入口连 接。
7、 如权利要求 1所述的高含盐有机废水的超临界水氧化处理系统, 其特 征在于: 所述的第一容积式换热器管侧的出口还连接缓冲氧化器顶部的入口。
8、 如权利要求 1所述的高含盐有机废水的超临界水氧化处理系统, 其特 征在于: 所述的氧化缓冲器顶部的出口连接水力旋流器顶部的出口。
PCT/CN2012/085881 2012-04-23 2012-12-05 高含盐有机废水的超临界水氧化处理系统 WO2013159529A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/396,732 US9328008B2 (en) 2012-04-23 2012-12-05 Supercritical water oxidation treatment system for organic wastewater with high salinity

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210120217.7 2012-04-23
CN2012101202177A CN102642947B (zh) 2012-04-23 2012-04-23 高含盐有机废水的超临界水氧化处理系统

Publications (1)

Publication Number Publication Date
WO2013159529A1 true WO2013159529A1 (zh) 2013-10-31

Family

ID=46656072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/085881 WO2013159529A1 (zh) 2012-04-23 2012-12-05 高含盐有机废水的超临界水氧化处理系统

Country Status (3)

Country Link
US (1) US9328008B2 (zh)
CN (1) CN102642947B (zh)
WO (1) WO2013159529A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112479342A (zh) * 2020-11-05 2021-03-12 海南大学 一种超临界水处理有机污水系统及其污水处理方法
CN112875838A (zh) * 2021-01-28 2021-06-01 杭州安及星环保科技有限公司 一种超临界氧化废水处理方法
CN115806367A (zh) * 2022-12-16 2023-03-17 湖南汉华京电清洁能源科技有限公司 一种有机废水处理系统

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102642947B (zh) * 2012-04-23 2013-11-13 西安交通大学 高含盐有机废水的超临界水氧化处理系统
CN103490698A (zh) * 2013-10-08 2014-01-01 北京航天发射技术研究所 用于液氧泵机组流量控制的变频器及其参数设置方法
CN103693730B (zh) * 2013-11-28 2015-08-05 内蒙古工业大学 一种超临界水氧化法处理高浓度难降解有机废水的装置及方法
CN103848530B (zh) * 2014-03-03 2016-07-06 无锡市中岳石化设备有限公司 一种ddiso一体化同步氧化除盐装置
CN104211234B (zh) * 2014-09-30 2017-04-26 天津科技大学 超临界水氧化和膜分离协同处理食品工业废水的方法
CN104445574B (zh) * 2014-12-05 2016-09-07 王冰 一种分体撬装式超临界水氧化反应系统
CN106315885A (zh) * 2015-04-10 2017-01-11 王冰 一种污水、污泥、生活垃圾同时进行循环利用的系统及方法
CN105174675A (zh) * 2015-08-28 2015-12-23 中国海洋石油总公司 一种煤气化废水生化污泥的处理方法
CN105600912B (zh) * 2016-03-10 2018-06-26 西安交通大学 一种用于超临界水氧化反应管式反应器的多点注氧、分段混合装置
CN107055742B (zh) * 2017-05-23 2020-09-08 航天凯天环保科技股份有限公司 一种有机废水超临界水氧化的除盐方法及系统
US11420891B2 (en) 2017-10-20 2022-08-23 Duke University Systems, methods, and techniques for waste processing
CN107651804A (zh) * 2017-11-15 2018-02-02 昌邑市瑞海生物科技有限公司 一种高浓高盐化工废水制备工业盐的资源化处理方法及装置
CN110713282B (zh) * 2018-07-13 2023-10-24 中国石油化工股份有限公司 一种实验室有机废液处理方法及系统
CN109133474B (zh) * 2018-10-15 2020-06-19 西安交通大学 一种注汽锅炉高温分离水回用处理系统及处理方法
CN109319861B (zh) * 2018-10-31 2020-05-19 西安交通大学 一种用于高盐废水超临界水氧化系统的多级加热装置及方法
CN109574192B (zh) * 2018-12-29 2021-08-13 新地环保技术有限公司 一种自除垢超临界水氧化装置及其自除垢方法
JP2022537895A (ja) 2019-06-28 2022-08-31 バテル・メモリアル・インスティテュート 酸化プロセスによるpfasの破壊及び汚染された場所への輸送に適した装置
CN110606604A (zh) * 2019-09-30 2019-12-24 新中天环保股份有限公司 含盐废水的冷却结晶系统
CN110841585A (zh) * 2019-10-14 2020-02-28 吴剑华 一种苯乙腈生产装置及其使用方法
CN111377577A (zh) * 2019-12-18 2020-07-07 华北水利水电大学 一种农药生产用废水处理设备
CN111606488A (zh) * 2020-05-28 2020-09-01 陕西煤业化工技术研究院有限责任公司 一种高盐废水的临界脱盐方法及系统
EP4192791A1 (en) * 2020-08-06 2023-06-14 Battelle Memorial Institute Salt separation and destruction of pfas utilizing reverse osmosis and salt separation
CN112414554B (zh) * 2020-12-02 2021-12-07 国家卫星海洋应用中心 海面盐度获取方法、装置、设备及介质
CN112573542A (zh) * 2021-01-29 2021-03-30 山西长林能源科技有限公司 一种ro膜后污水的深度处理装置和方法
CN113264562B (zh) * 2021-04-27 2022-08-09 西安交通大学 一种用于高矿化度水的超临界反应的盐排除装置及方法
CN114804269B (zh) * 2022-04-29 2023-03-28 西安交通大学 一种有机废物超临界水处理装备的在线脱排盐系统及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101580320A (zh) * 2009-06-05 2009-11-18 西安交通大学 废有机物的超临界水处理系统的操作方法
CN101607772A (zh) * 2009-05-05 2009-12-23 西安交通大学 废有机物的超临界水处理与资源化利用系统
US20110108491A1 (en) * 2009-11-10 2011-05-12 Palo Alto Research Center Incorporated Desalination using supercritical water and spiral separation
CN102642947A (zh) * 2012-04-23 2012-08-22 西安交通大学 高含盐有机废水的超临界水氧化处理系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6103129A (en) * 1994-01-14 2000-08-15 3500764 Canada Inc. Method for the critical water oxidation of organic compounds
JP3459749B2 (ja) * 1997-05-21 2003-10-27 オルガノ株式会社 超臨界水反応装置
CN1987749B (zh) * 2005-12-21 2011-06-22 鸿富锦精密工业(深圳)有限公司 具有公事包的便携式指针设备及其实现方法
CN101987749B (zh) * 2010-10-22 2012-02-01 西安交通大学 高含盐量有机废水的超临界水处理系统
CN102249461B (zh) * 2011-06-16 2012-09-05 西安交通大学 高含盐高含氯有机废水的超临界水氧化处理系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101607772A (zh) * 2009-05-05 2009-12-23 西安交通大学 废有机物的超临界水处理与资源化利用系统
CN101580320A (zh) * 2009-06-05 2009-11-18 西安交通大学 废有机物的超临界水处理系统的操作方法
US20110108491A1 (en) * 2009-11-10 2011-05-12 Palo Alto Research Center Incorporated Desalination using supercritical water and spiral separation
CN102642947A (zh) * 2012-04-23 2012-08-22 西安交通大学 高含盐有机废水的超临界水氧化处理系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112479342A (zh) * 2020-11-05 2021-03-12 海南大学 一种超临界水处理有机污水系统及其污水处理方法
CN112875838A (zh) * 2021-01-28 2021-06-01 杭州安及星环保科技有限公司 一种超临界氧化废水处理方法
CN115806367A (zh) * 2022-12-16 2023-03-17 湖南汉华京电清洁能源科技有限公司 一种有机废水处理系统

Also Published As

Publication number Publication date
CN102642947B (zh) 2013-11-13
US20150128642A1 (en) 2015-05-14
US9328008B2 (en) 2016-05-03
CN102642947A (zh) 2012-08-22

Similar Documents

Publication Publication Date Title
WO2013159529A1 (zh) 高含盐有机废水的超临界水氧化处理系统
US9433901B2 (en) Osmotic desalination process
CN102329036B (zh) 余热利用高效含盐废水零排放回收处理方法
CN203959864U (zh) 一种含盐废水三效蒸发回收系统
CN212374925U (zh) 用于从有机废水中回收盐的超临界水热燃烧反应器及系统
CN103508605A (zh) 高含盐腐蚀性有机废水超临界水氧化处理系统
CN205099536U (zh) 垃圾渗滤液反渗透浓缩液的处理设备
CN100374378C (zh) 一种糠醛生产工业废水的回收处理方法
CN103626364B (zh) 高含固率城市污泥的超临界水氧化处理及发电系统
CN106115740B (zh) 一种制盐方法和制盐系统
CN114772671A (zh) 一种含盐废水的双级mvr单效强制循环蒸发生产装置及方法
CN102107119B (zh) 多效膜蒸馏装置与方法
CN101759272B (zh) 超临界水氧化有机废水处理系统
CN213652165U (zh) 一种多晶硅生产废水处理系统
CN103316588A (zh) 多效膜蒸馏装置与方法
EP3262139B1 (en) Method of production of a colloidal silica concentrate
CN112679020A (zh) 一种低成本页岩气压裂返排液处理系统及处理方法
CN111417598B (zh) 一种处理高盐高有机废水并回收能量的系统及方法
CN204939142U (zh) 一种烟气脱硫系统排放的脱硫废水的处理设备
CN104724776A (zh) 压力蒸发二次蒸汽掺入压力水中的装置及其方法
CN105152405A (zh) 一种烟气脱硫系统排放的脱硫废水的处理方法及设备
CN216808465U (zh) 一种脱硫废水资源化处理装置
CN216129452U (zh) 一种高含盐脱酸废水资源化利用系统
CN106629936B (zh) 一种处理废水的工艺和系统
CN107324578A (zh) 一种页岩气采出水处理系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12875532

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14396732

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12875532

Country of ref document: EP

Kind code of ref document: A1