WO2013157912A1 - Eliminación de sulfuro de hidrógeno y dióxido de carbono del gas natural mediante una absorción con solución de hidróxido de sodio y posterior tratamiento con hidróxido de amonio y oxidación para producir sulfato y carbonato de amonio - Google Patents

Eliminación de sulfuro de hidrógeno y dióxido de carbono del gas natural mediante una absorción con solución de hidróxido de sodio y posterior tratamiento con hidróxido de amonio y oxidación para producir sulfato y carbonato de amonio Download PDF

Info

Publication number
WO2013157912A1
WO2013157912A1 PCT/MX2013/000001 MX2013000001W WO2013157912A1 WO 2013157912 A1 WO2013157912 A1 WO 2013157912A1 MX 2013000001 W MX2013000001 W MX 2013000001W WO 2013157912 A1 WO2013157912 A1 WO 2013157912A1
Authority
WO
WIPO (PCT)
Prior art keywords
ammonium
natural gas
absorber
solution
hydrogen sulfide
Prior art date
Application number
PCT/MX2013/000001
Other languages
English (en)
French (fr)
Inventor
Roberto Tomás MIKLOS ILKOVICS
Original Assignee
Miklos Ilkovics Roberto Tomas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miklos Ilkovics Roberto Tomas filed Critical Miklos Ilkovics Roberto Tomas
Publication of WO2013157912A1 publication Critical patent/WO2013157912A1/es
Priority to IN9632DEN2014 priority Critical patent/IN2014DN09632A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/18Absorbing units; Liquid distributors therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1468Removing hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1493Selection of liquid materials for use as absorbents
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05CNITROGENOUS FERTILISERS
    • C05C3/00Fertilisers containing other salts of ammonia or ammonia itself, e.g. gas liquor
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/101Removal of contaminants
    • C10L3/102Removal of contaminants of acid contaminants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/101Removal of contaminants
    • C10L3/102Removal of contaminants of acid contaminants
    • C10L3/103Sulfur containing contaminants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/101Removal of contaminants
    • C10L3/102Removal of contaminants of acid contaminants
    • C10L3/104Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/30Alkali metal compounds
    • B01D2251/304Alkali metal compounds of sodium
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/54Specific separation steps for separating fractions, components or impurities during preparation or upgrading of a fuel
    • C10L2290/541Absorption of impurities during preparation or upgrading of a fuel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Definitions

  • the present invention relates in general to the reduction of acid gases, such as Hydrogen Sulfide and Carbon Dioxide, of natural gas, which pollute and dilute it, lowering its calorific value and Hydrogen Sulfide also gives it Very unpleasant smell and causes severe corrosion in the equipment where this gas is burned.
  • acid gases such as Hydrogen Sulfide and Carbon Dioxide
  • FIG. 1 Pilot absorber for the elimination of acid gases from natural gas.
  • Figure No. 2 Flowchart of the process of capturing acid gases from natural gas producing Sulfate and Ammonium Carbonate. To carry out this process, it is necessary to divert the natural gas from the production source, to the absorber, where the gases are sprayed with the 2N solution of Sodium Hydroxide and that the acid gases react, forming saline solutions of Carbonate and Sulphide of Sodium, according to the following reactions: 2 NaOH + C0 2 - - Na 2 C03 + H 2 0
  • the alkaline solution with salts is regenerated with Ammonium Hydroxide, forming the corresponding Ammonium salts, of which the Ammonium Sulphide must be oxidized, with an oxidizing agent or simply with air, to form Ammonium Sulfate and then separate the two salts by fractional crystallization.
  • the reactions that take place are the following:
  • Ammonium sulfate has application as a fertilizer.
  • an absorber with modular sections was designed to give flexibility to the operation of the equipment, with dispersion nozzles for the absorbing liquid and thus recover the acid gases, in order to concentrate and clean the natural gas.
  • composition of a natural gas can have up to 6% of Hydrogen Sulfide and up to 5% of Carbon Dioxide; therefore these will be the concentrations that will be considered in this study.
  • the alkaline solution will absorb Carbon Dioxide and Hydrogen Sulfide, producing Sodium Carbonate and Sodium Sulfide.
  • the flow of the wash solution should be such that only carbonate and sodium sulphide are formed, without letting it run out and sodium bicarbonate and bisulphide begin to form, according to the following reactions:
  • Natural gas In order to carry out the design of the process of absorption of the acid gases of natural gas, a gas flow of 5000 m 3 / day or 208.3 m 3 / h will be considered. Natural gas
  • the operating conditions that will be taken for the operation of the horizontal absorber are: Average global speed of natural gas, from 3 to 7 m / sec. Temperature of gases and absorber solution of 22 ° C. Pressure of the gases at the inlet of the absorber of 20 mm of Hg gauge.
  • the absorber is connected, on one end to the original source of natural gas and on the other to the application or storage vessel.
  • the absorber solution will be 80 g NaOH / l (2 N).
  • the liquid flow density ⁇ operation will be from 2.7 to 3.4 X , which are the optimal industrial operation values.
  • the volumetric mass transfer coefficient combined with chemical reaction must be determined experimentally in pilot tests; a coefficient of 16 Kgmol / m 3 h and for the Hydrogen Sulfide also with the solution of Sodium Hydroxide of 100 Kgmol / m 3 h were found for the absorption of Carbon Dioxide with the Sodium Hydroxide solution.
  • Nco2 (PV G / RT) Yc O2 0.97
  • each section of the absorber will have nozzles to disperse the absorber solution spaced every 20 cm, at the top of the absorber tube and at the sides at 90 ° or 15 nozzles per section: 5 on each side and 5 on the top.
  • the absorber liquid will pass through the nozzles and absorb C0 2 and H 2 S.
  • the liquid has a perpendicular impact on the gas flow and the liquid velocity mass will refer to the cross-sectional area formed by the product D Ab - l Ab ; this is:
  • the density of the solution is 1.06969 Kg / l obtained experimentally.
  • the recommended mass expenditure is 2.7 to 3.4, then it is suggested to use three times as necessary and perform recirculation; Then the flux density of the absorption liquid will be: 2.9 which is within the limits.
  • the absorber to carry out the capture of acid gases from natural gas in a flow of 5000 m 3 / day, with extreme concentrations of 5% of C0 2 and 6% of H 2 S will have the following dimensions:
  • the natural gas flow will be:
  • Each section of the absorber will have every 20 cm a nozzle at the top and another one at each side at 90 ° from the first, so that each 1 m section of the absorber will have 15 nozzles and the total of 2 sections with 30 nozzles.
  • the area of the straight section of the absorber is:
  • the area of the straight section is modified slightly to that calculated above.
  • the flux density of the absorption liquid is:
  • the absorber is shown in Figure No. 1 Production of by-products:
  • the concentrations of Carbon Dioxide and Hydrogen Sulfide, handled in the process were extreme 5 and 6% respectively.
  • a gas flow of 5000 m 3 / day was selected, with an overall speed of approximately 3 m / sec.
  • the 2N Sodium Hydroxide solution was passed through the nozzles at a flow density of 2.9 kg / m 2 sec.
  • the process of the present invention comprises the following steps:
  • Natural gas containing acid gases, enters the horizontal spray absorber and runs (in the horizontal direction) along the equipment.
  • 3. Absorb the acid gases by means of a solution of 8% NaOH, which is injected perpendicularly, in the form of a shower and at the sides, at 90 ° from the vertical through dispersion nozzles that dissolve and react with the gases acids producing Na 2 C0 3 and Na 2 S.
  • 4. Treat the Sodium salts formed with Ammonium Hydroxide solution to form Ammonium Carbonate and Ammonium Sulphide, oxidize "the latter with a stream of air so that the Sulfur is transformed in Sulfate and passed to the crystallizer, so that by fractional crystallization the two salts are separated and passed to the dryer to be bagged.
  • the absorber comprises: a) A tubular body segmented into two sections. b) Each tubular section has three series of nozzles equidistant apart from each other, every 20 cm from each other from center to center; The first series of nozzles is located at the top of the tubular section and the other two on each side of the first, forming an angle of 90 °, making a total of 15 nozzles per section.
  • a conversion vessel (E-4) to receive the absorption liquid with Carbonate and Sodium Sulphide and treat it with Ammonium Hydroxide solution and bubble air for the oxidation of Ammonium Sulphide to Ammonium Sulfate.
  • a basket crystallizer (E-5) to separate the sulphate ammonium carbonate by fractional crystallization with the help of the heat exchanger to heat the solutions and cause crystallization upon supersaturation.
  • a bitter tank (E-3) to receive the filtrate and recirculation flow to the feed tank of the absorption liquid.
  • a rotary filter (E-6) to separate and wash Ammonium Carbonate and Ammonium Sulfate.
  • a tunnel dryer (E-7) with air for Ammonium Carbonate and Sulfate.
  • a pump (B-5) to generate movement in the crystallizer and allow the separation of by-products.
  • Pallets for storing Ammonium Carbonate or bagged Ammonium Sulfate Pallets for storing Ammonium Carbonate or bagged Ammonium Sulfate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Gas Separation By Absorption (AREA)
  • Treating Waste Gases (AREA)

Abstract

La presente invención consiste en un proceso de absorción con reacción química para captar el Dióxido de Carbono y Sulfuro de Hidrógeno del gas natural; con el propósito de concentrar el combustible y eliminar la fuente de corrosión que produce el Sulfuro de Hidrógeno además de su mal olor; y produciendo Carbonato y Sulfuro de Sodio inicialmente para después transformarlos en Carbonato y Sulfato de Amonio. El proceso se lleva a cabo en un absorbedor horizontal de 15.5 cm de diámetro utilizando como líquido de absorción una solución de Hidróxido de Sodio al 8%, y dos secciones de un metro de longitud. Cada sección tiene tres hileras de toberas una en la parte superior y las otras dos a los lados formando un ángulo 90° con la vertical. Las toberas se encuentran a 20 cm de separación una de la otra de tal forma que cada sección tiene 15 toberas de dispersión para el líquido de absorción. El absorbedor lleva una canal de 10 cm de alto para recibir mediante perforaciones que se encuentran en la parte inferior del equipo para la recolección del líquido de absorción con los gases ácidos retenidos. Como subproductos finales se obtienen Carbonato y Sulfato de Amonio, los cuales se concentran y se separan por cristalización fraccionada, se filtran y se secan para finalmente ensacarse.

Description

ELIMINACIÓN DE SULFURO DE HIDRÓGENO Y DIÓXIDO DE CARBONO DEL GAS NATURAL MEDIANTE UNA ABSORCIÓN CON SOLUCIÓN DE HIDRÓXIDO DE SODIO Y POSTERIOR TRATAMIENTO CON HIDRÓXIDO DE AMONIO Y OXIDACIÓN PARA PRODUCIR SULFATO Y CARBONATO DE AMONIO.
CAMPO DE LA INVENCIÓN
La presente invención se relaciona de manera general con la reducción de gases ácidos, como el Sulfuro de Hidrógeno y el Dióxido de Carbono, del gas natural, que lo contaminan y lo diluyen, bajando su poder calorífico y el Sulfuro de Hidrógeno además le da un olor muy desagradable y ocasiona corrosión severa en los equipos donde se quema este gas.
Por lo anterior es deseable reducir la concentración de estos gases ácidos, dando la doble ventaja de aumentar el poder calorífico del gas natural y hacerlo menos corrosivo.
ANTECEDENTES DE LA INVENCIÓN
Desde hace más de 200 años se conoce la captura de los gases ácidos a través de una solución alcalina, pero no fue sino a mediados del siglo pasado que se desarrollaron los equipos de absorción, que permitieron eliminar el C02, el H2S y demás gases ácidos que pudieran contener el gas natural utilizando inicialmente los tanques de burbujeo y luego las torres de absorción empacadas y no empacadas como las de pulverización. Las soluciones alcalinas que se han usado más frecuentemente, son el Hidróxido de Sodio y el Hidróxido de Calcio, encontrando que el equipo más eficiente es el absorbedor de pulverización. El absorbedor de pulverización clásico es una torre no empacada vertical, que admite velocidades del gas hasta de 1.5 m/seg, en el año 2010, se pudo demostrar que el absorbedor de pulverización, diseñado para operarlo horizontalmente permitía una operación con velocidades del gas hasta de 7 m/seg y que ha sido registrado como modelo de utilidad (Expediente No. MX/u/20 0/000348).
La utilización del equipo anteriormente mencionado, permitió el desarrollo de un proceso de obtención de Carbonato de Sodio a partir de la captura del Dióxido de Carbono del aire y de gases de combustión mediante una absorción con solución de Hidróxido de Sodio para acreditar Bonos de Carbono (Expediente No. MX/a/20 0/0 0186).
La presencia de gases ácidos como el Sulfuro de Hidrógeno y el Dióxido de Carbono en el gas natural, diluyen el combustible, bajando su poder calorífico, y lo contaminan, el H2S le da un mal olor al gas natural y produce corrosión severa en los quemadores donde se use este gas, por esta razón se hace necesario el endulzamiento de los combustibles.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
Figura No. , Absorbedor piloto para la eliminación de gases ácidos del gas natural. En la Figura No. 2, Diagrama de flujo del proceso de captura de gases ácidos del gas natural produciendo Sulfato y Carbonato de Amonio. Para llevar a cabo este proceso, se requiere desviar el gas natural de la fuente de producción, hacia el absorbedor, donde los gases son rociados con la solución 2N de Hidróxido de Sodio y que reaccionan los gases ácidos, formando soluciones salinas de Carbonato y Sulfuro de Sodio, de acuerdo a las siguientes reacciones: 2 NaOH + C02— - Na2C03 + H20
2 NaOH + H2S— - Na2S + H20
La solución alcalina con sales, se regenera con Hidróxido de Amonio, formando las sales de Amonio correspondientes, de las cuales el Sulfuro de Amonio se debe oxidar, con un agente oxidante o simplemente con aire, para formar Sulfato de Amonio y luego separar las dos sales por cristalización fraccionada. Las reacciones que tienen lugar son las siguientes:
Na2C03 + 2NH4OH— - (NH4)2C03 + 2 NaOH
Na2S + 2NH4OH—- » (NH4)2S +2 NaOH
(NH4)2S + 202— - (NH4)2S04
El sulfato de amonio tiene aplicación como fertilizante. Para llevar a cabo este proceso, se diseñó un absorbedor con secciones modulares, para darle flexibilidad a la operación del equipo, con toberas de dispersión para el líquido absorbedor y recuperar así los gases ácidos, a fin de concentrar y limpiar el gas natural.
Para el presente estudio se considerará una composición del gas natural con valores extremos de los gases ácidos que se desean separar (C02 y H2S) siendo el más importante de ellos el Sulfuro de Hidrógeno, por su mal olor y acción corrosiva; el Dióxido de Carbono, en este caso, es inerte, pero diluye al gas natural y hace que se reduzca su poder calorífico.
La composición de un gas natural puede llegar a tener hasta 6 % de Sulfuro de Hidrógeno y hasta 5 % de Dióxido de Carbono; por lo tanto estas serán las concentraciones que se considerarán en este estudio. La solución alcalina absorberá el Dióxido de Carbono y el Sulfuro de Hidrógeno, produciéndose Carbonato de Sodio y Sulfuro de Sodio.
El flujo de la solución de lavado, debe ser tal que sólo se forme Carbonato y Sulfuro de Sodio, sin dejar que se agote y se empiece a formar bicarbonato y bisulfuro de sodio, de acuerdo con las siguientes reacciones:
Na2C03 + C02 + H20— 2 NaHC03
Na2S + H2S— -» 2 NaHS Una solución de Hidróxido de Sodio no absorbe con la misma velocidad el Dióxido de Carbono y el Sulfuro de Hidrógeno, por lo tanto se estudió la absorción de estos gases por separado y así llegar al diseño del equipo necesario. Las características del equipo para captar el Dióxido de Carbono y el Sulfuro de Hidrógeno del gas natural, consisten en un absorbedor horizontal en el cual los gases corren (en el sentido horizontal) a lo largo del equipo y reciben, perpendicularmente, en forma de regadera y a los lados, a 90° respecto a la vertical, a través de toberas de dispersión, la solución alcalina, que disuelve y reacciona con el soluto, los gases ácidos, que lleve el flujo gaseoso.
Para poder llevar a cabo el diseño del proceso de absorción de los gases ácidos del gas natural, se considerará un flujo gaseoso de 5000 m3/ día o sean 208.3 m3 / h. de gas natural.
Las condiciones de operación que se tendrán para el funcionamiento del absorbedor horizontal son: Velocidad media global del gas natural, de 3 a 7 m/seg. Temperatura de los gases y de la solución absorbedora de 22°C. Presión de los gases a la entrada del absorbedor de 20 mm de Hg manométricos. El absorbedor se conecta, por un extremo a la fuente original del gas natural y por el otro a la aplicación o recipiente de almacenaje. La solución absorbedora será de 80 g NaOH/lt (o sea 2 N).
La densidad de flujo líquido άβ operación estará comprendida de 2.7 a 3.4 X , que son los valores de operación industrial óptimos.
Para iniciar el cálculo de las dimensiones del absorbedor horizontal se debe determinar experimentalmente, en pruebas piloto, el coeficiente volumétrico de transferencia de masa combinado con reacción química (KG aV); habiéndose encontrado para la absorción del Dióxido de Carbono con la solución de Hidróxido de Sodio un coeficiente de 16 Kgmol / m3 h y para el Sulfuro de Hidrógeno también con la solución de Hidróxido de Sodio de 100 Kgmol / m3 h.
Como ya se indicó se considerará un flujo de gas natural, de 208.3 m3/h = 0.05787 nVYseg en C.N.T.P.; y una velocidad global de alrededor de 3 m/seg., de tal forma que el diámetro del absorbedor sea de 0.155 m (6 plg st.). El área transversal recta del absorbedor es:
SAb = 0.7854 DAb 2
SAb = 0.7854 x (0.155)2 = 0.01887 m2 <V> = VG / SAb = 0.05787 / 0.01887 = 3.07 m / seg.
Para el cálculo del volumen de absorbedor que se requiere para la captura de cada gas ácido, se usarán las ecuaciones siguientes:
Nco2 = (P VG / R T) YcO2 0.97
NH2S = (P Vg / R T) YH2S 0.97
Para el C02 se tiene:
co2 = (1 208.3 / 0.08205 x 273) x 0.05 x 0.97 = 0.451 Kgmol C02 / h.
Con un volumen de absorbedor de:
VAb = NC02 / KG av = 0.451 / 16 = 0.0282 m3
Y la longitud del absorbedor será:
!_ Ab = Ab/ SAb = 0.0282 / 0.01887 = 1.494 m
Para el H2S se tiene:
NH2s = (1 x 208.3 / 0.08205 x 273) x 0.06 x 0.97 = 0.5412 Kgmol H2S / h. Con un volumen de absorbedor de:
VAb = NH2S / KG av = 0.5412 / 100 = 0.005412 m3
Y la longitud del absorbedor será:
L Ab = VAb/ SAb = 0.005412 / 0.01887 = 0.287 m. Del cálculo anterior se desprende que el gas de captura controlante es el C02 aunque se encuentre en menor proporción y por lo tanto se pondrán dos módulos de un metro cada uno, para poder absorber los dos gases ácidos.
L Ab = 2 m
DAb = 15.5 cm (6 plg st.)
El diseño de cada sección del absorbedor llevará toberas para dispersar la solución absorbedora espaciadas cada 20 cm, en la parte superior del tubo absorbedor y a los lados a 90° o sean 15 toberas por sección: 5 de cada lado y 5 en la parte superior.
El líquido absorbedor pasará por las toberas y absorberá el C02 y el H2S. En este caso el líquido incide perpendicularmente al flujo del gas y la masa velocidad del líquido se referirá al área transversal formada por el producto DAb - lAb; esto es:
S = 0.155 x 2 = 0.31 m2
Si la solución del Hidróxido de Sodio es del 8% en peso o sea 2N para absorber 0.451 Kg mol/h de C02 de acuerdo a la reacción:
2NaOH + C02 Na2C03 + H20
La concentración molar de la solución absorbedora es 2 g-mol/lt o Kg-mol/m3; luego entonces se van a requerir: VL = 2 x 0.451 1 2 = 0.451 m3 / h.
Y análogamente para la "absorción del H2S, se tiene:
2 NaOH + H2S— -» Na2S + H20
VL = 2 x 0.5412 / 2 = 0.5412 m3 / h.
De aquí que el flujo total del líquido de absorción es:
VLt = 0.451 + 0.5412 = 0.9922 m3 / h.
La densidad de la solución es 1 .0869 Kg/lt obtenido experimentalmente.
L = VLt pj S = 0.9922 x 1086.9 / 0.31 = 3,479 Kg / m2h = 0.9663 Kg/m2seg
El gasto masa recomendado es de 2.7 a 3.4 luego entonces se sugiere utilizar el triple del necesario y efectuar recirculación; luego entonces la densidad de flujo del líquido de absorción será: 2.9 que se encuentra dentro de los límites.
Conclusión del diseño del absorbedor.
El absorbedor para llevar a cabo la captación de los gases ácidos del gas natural en un flujo de 5000 m3 / día, con concentraciones extremas de 5 % de C02 y 6 % de H2S tendrá las siguientes dimensiones:
DAb = 15.5 cm (6 plg st.) L-Ab = 1 m cada sección y se construirán 2 secciones.
El flujo de gas natural, será de:
VG = 5000 m3/ día = 208.3 m3 / h = 0.05787 m3 / seg.
Cada sección del absorbedor tendrá a cada 20 cm una tobera en la parte superior y otra a cada lado a 90° de la primera, con lo que cada sección de 1 m del absorbedor tendrá 15 toberas y el total de 2 secciones con 30 toberas. El área de la sección recta del absorbedor es:
SAb = 0.01887 m2
Y la velocidad media global de los gases es:
<V> = 3.07 m / seg.
Para el líquido de absorción, el área de la sección recta se modifica ligeramente a la calculada anteriormente.
S = 0.31 m2
La densidad de flujo del líquido de absorción es:
L = 2.9 Kg/m2seg (triple de la necesaria)
En la Figura No. 1 se muestra el absorbedor Producción de subproductos:
Carbonato de Amonio:
El flujo molar de C02 absorbido es de 0.451 Kgmol C02 / h, formará Carbonato de Amonio de acuerdo a la siguiente ecuación:
Na2C03 + 2NH4OH— (NH4)2C03 + 2 NaOH
Lo que indica que será igual número de moles de (NH4)2C03 que se formarán como subproducto. m(NH4)2C03
Figure imgf000013_0001
m(NH4)2C03 = 0.451 x 94 = 42.39 Kg / h.
Igual situación se tendrá para el Sulfuro de Sodio y su posterior transformación en Sulfato de Amonio.
Na2S + 2NH4OH— ^ (NH4)2S +2 NaOH
(NH4)2S + 202— ^ (NH4)2S04
m(NH4)2S04 = N(NH4)2S04 + M(NH4)2S04
m(NH4)2S04 = 0.5412 x 132 = 7 .44 Kg / h.
Para el secador se propone una capacidad de 250 Kg/h (54.5 % más de la producción) Las reacciones que tienen lugar en el absorbedor, son las siguientes: 2 NaOH + C02 > Na2C03 + H20
2 NaOH + H2S > Na2S + H20 Las sales que se forman son solubles en el agua, así que la solución formada se pasa a un tanque de conversión donde recibe una solución de Hidróxido de Amonio, para formar Carbonato y Sulfuro de Amonio, este último se oxida con aire para formar el Sulfato de Amonio. En esta etapa del proceso regenera el Hidróxido de Sodio. Las dos sales de Amonio formadas se concentran y se calientan para llevar a cabo una cristalización fraccionada y separarlas.
Las concentraciones del Dióxido de Carbono y el Sulfuro de Hidrógeno, manejadas en el proceso fueron extremas 5 y 6 % respectivamente. Se seleccionó un flujo gaseoso de 5000 m3 / día, con una velocidad global de 3 m/seg aproximadamente. En forma perpendicular se hizo pasar la solución de Hidróxido de Sodio 2N a través de las toberas a una densidad de flujo de 2.9 Kg /m2 seg.
El proceso completo para la captación de gases ácidos del gas natural a fin de concentrar el combustible y aumentar su poder calorífico, al tiempo de eliminar malos olores que produce el H2S y la corrosión en los equipos de combustión donde se use el gas natural. En una modalidad el proceso de la presente invención comprende las siguientes etapas:
1. Captar los gases ácidos (H2S y C02 principalmente) de un flujo de gas natural, utilizando un ventilador para dirigirlos al absorbedor de pulverización horizontal.
2. El gas natural, conteniendo los gases ácidos, entran al absorbedor de pulverización horizontal y corren (en el sentido horizontal) a lo largo del equipo. 3. Absorber los gases ácidos por medio de una solución de NaOH al 8 %, que es inyectada perpendicularmente, en forma de regadera y a los lados, a 90° respecto a la vertical a través de toberas de dispersión que disuelve y reacciona con los gases ácidos produciéndose Na2C03 y Na2S. 4. Tratar las sales de Sodio formadas con solución de Hidróxido de Amonio para formar Carbonato de Amonio y Sulfuro de Amonio, oxidar "este último con una corriente de aire para que el Sulfuró se transforme en Sulfato y se pasen al cristalizador, para que por cristalización fraccionada se separen las dos sales y pasen al secador para ser ensacadas.
En otra modalidad preferida, el absorbedor comprende: a) Un cuerpo tubular segmentado en dos secciones. b) Cada sección tubular tiene tres series de toberas separadas equidistantemente entre sí, cada 20 cm una de otra de centro a centro; la primera serie de toberas se localiza en la parte superior de la sección tubular y las otras dos a cada lado de la primera, formando un ángulo de 90°, haciendo un total de 15 toberas por sección.
c) Una canal en la parte inferior del cuerpo tubular para recolectar el líquido de absorción con los gases ácidos absorbidos, a través de perforaciones; la cual tiene una altura de 10 cm como sello hidrostático y 5 cm de ancho a todo lo largo de la sección.
EQUIPOS, REACTIVOS, INSUMOS Y MATERIALES UTILIZADOS:
Equipos y accesorios:
Un absorbedor horizontal de pulverización no empacado (E-2) descrito anteriormente, de 15.5 cm de diámetro y dos secciones de un metro de longitud con 15 toberas cada sección. Este equipo es fabricado en acero austenítico.
Un tanque de acero austenítico de 5.3 m3 (E-1) para la distribución del líquido de absorción (solución de NaOH 2N).
Un recipiente de conversión (E-4) para recibir el líquido de absorción con el Carbonato y el Sulfuro de Sodio y tratarlo con solución de Hidróxido de Amonio y burbujear aire para la oxidación del Sulfuro de Amonio a Sulfato de Amonio. Un cristalizador de canasta (E-5) para separar por cristalización fraccionada el Carbonato de Amonio del Sulfato con la ayuda del cambiador de calor para calentar las soluciones y provocar la cristalización al llegar a la sobresaturación. Un tanque de amargos (E-3) para recibir el filtrado y flujo de recirculación al tanque de alimentación del líquido de absorción.
Un filtro rotatorio (E-6) para separar y lavar el Carbonato de Amonio y el Sulfato de Amonio. Un secador túnel (E-7) con aire para el Carbonato y Sulfato de Amonio.
Dos ensacadoras (E-8) y (E-9) para el Carbonato de Amonio y el Sulfato de Amonio. Un molino (E-10) de bolas para el Carbonato y Sulfato de Amonio.
Una caldera (E-1 1) y un cambiador de calor (E-12)
Un ventilador centrífugo (B-1) para manejar el gas natural o el biogás de 5000 m3/día. Una bomba (B-2) para el manejo del líquido de absorción.
Una bomba (B-3) para el retorno del líquido de absorción al tanque de amargos y reciclo al tanque del liquido de absorción. Una bomba (B-4) para llevar la solución al cambiador de calor al cristalizador.
Una bomba (B-5) para generar movimiento en el cristalizador y permitir la separación de los subproductos.
Una bomba (B-6) para llevar agua al tanque del líquido de absorción.
Una chimenea (S-1) para expulsar lo gases de combustión.
Tuberías y válvulas como se indican en el diagrama. REACTIVOS: · Solución de anaranjado de metilo
• Solución alcohólica de fenolftaleína
• Papel pH
• Solución de Ácido Clorhídrico 0.1 N APARATOS DE MEDICIÓN:
Analizador de gases con determinadores de Dióxidos de Carbono y Sulfuro de
Hidrógeno.
Potenciómetro Balanza analítica de sensibilidad de 0.1 mg.
Balanza granataria de sensibilidad de 0.1 g
INSUMOS:
Hidróxido de sodio sólido grado técnico.
Tarimas para almacenar el Carbonato de Amonio o el Sulfato de Amonio ensacados.
MATERIAL DEL LABORATORIO:
Cantidad Material
2 Buretas de 50 mi
4 Frascos de 1000 mi con tapón esmerilado
6 Tubos de ensayo
1 Gradilla para tubos de ensayo
2 Pinzas para bureta
1 Soporte universal
1 Probeta graduada de 1000 mi
4 Vasos de precipitados de 100 mi
1 Pipeta graduada de 5 mi
1 Espátula

Claims

REIVINDICACIONES
1. Proceso de captura de Dióxido de Carbono y Sulfuro de Hidrógeno del gas natural, mediante una solución de Hidróxido de Sodio, caracterizado por las siguientes etapas: a) Captar el Dióxido de Carbono y Sulfuro de Hidrógeno provenientes del gas natural, mediante un ventilador para dirigirlos al absorbedor de pulverización horizontal, b) La alimentación del gas natural, conteniendo gases ácidos (C02 y H2S) al absorbedor de pulverización horizontal en el cual los gases corren (en el sentido horizontal) a lo largo del equipo.
c) Absorber los gases ácidos (C02 y H2S), por medio de una solución de NaOH al 8%, que es inyectada perpendicularmente, en forma de regadera y a los lados, a 90° respecto a la vertical a través de toberas de dispersión que disuelve y reacciona con los gases ácidos, produciéndose Na2C03 y Na2S.
d) Tratamiento de la solución de Carbonato y Sulfuro de Sodio con solución de Hidróxido de Amonio, para formar Carbonato y Sulfuro de Amonio, y subsecuente oxidación con una corriente de aire que burbujee la solución.
e) Cristalización fraccionada del Carbonato de Amonio y el Sulfato de Amonio, filtrado de los cristales y recirculación de la solución absorbedora, con separación de amargos.
2. El proceso de conformidad con la reivindicación 1 , caracterizado porque en la etapa (d), se trata la solución formada en el absorbedor con una solución de Hidróxido de Amonio.
3. El proceso de conformidad con la reivindicación 1 , caracterizado porque la velocidad media del gas varía de 3 a 7 m/seg y el flujo del líquido de absorción varía de 2.7 a 3.4 Kg/m2seg.
4. En el absorbedor horizontal, de conformidad con la reivindicación 1 , caracterizado por la absorción del Dióxido de Carbono y Sulfuro de Hidrógeno, contenido en el gas natural (endulzamiento del gas combustible), produciendo Carbonato y Sulfuro de Sodio, eliminando el C02 y H2S existente en el flujo gaseoso.
5. Un absorbedor piloto de pulverización horizontal para absorber los gases ácidos del gas natural y el biogás, caracterizado porque comprende:
a) Un cuerpo tubular segmentado en dos secciones.
b) Cada sección tiene tres series de toberas separadas equidistantemente entre sí, cada 20 cm una de otra de centro a centro; una en la parte superior de la sección tubular y las otras dos a cada lado de la primera formando un ángulo de 90°, haciendo un total de 15 toberas por sección.
c) Una canal en la parte inferior del cuerpo tubular para recolectar el líquido de absorción con los gases ácidos absorbidos, a través de perforaciones; la cual tiene una altura de 10 cm como sello hidráulico y 5 cm de ancho a todo lo largo de la sección.
PCT/MX2013/000001 2012-04-19 2013-01-07 Eliminación de sulfuro de hidrógeno y dióxido de carbono del gas natural mediante una absorción con solución de hidróxido de sodio y posterior tratamiento con hidróxido de amonio y oxidación para producir sulfato y carbonato de amonio WO2013157912A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
IN9632DEN2014 IN2014DN09632A (es) 2012-04-19 2014-11-14

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MX2012004611 2012-04-19
MXMX/A/2012/004611 2012-04-19

Publications (1)

Publication Number Publication Date
WO2013157912A1 true WO2013157912A1 (es) 2013-10-24

Family

ID=49383781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2013/000001 WO2013157912A1 (es) 2012-04-19 2013-01-07 Eliminación de sulfuro de hidrógeno y dióxido de carbono del gas natural mediante una absorción con solución de hidróxido de sodio y posterior tratamiento con hidróxido de amonio y oxidación para producir sulfato y carbonato de amonio

Country Status (2)

Country Link
IN (1) IN2014DN09632A (es)
WO (1) WO2013157912A1 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020124184A1 (pt) * 2018-12-20 2020-06-25 Universidade Federal De Minas Gerais Processo de captura de co2 e processo de regeneração contínua de solvente
CN112642273A (zh) * 2020-12-18 2021-04-13 阿拉尔市中泰纺织科技有限公司 一种低浓度废气脱气转换高浓度废气焚烧回收系统及工艺

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999043406A1 (en) * 1998-02-25 1999-09-02 Stone & Webster Engineering Corporation Spent caustic pretreatment and enhanced oxidation process
US20090035199A1 (en) * 2007-07-03 2009-02-05 Aristos Energy Inc. Method for sour gas treatment
WO2011122925A1 (es) * 2010-03-29 2011-10-06 Miklos Ilkovics Roberto Tomas Proceso de eliminación de gases ácidos del aire y gases de combustión de quemadores y motores de combustión interna mediante una absorción con solución de hidróxido de sodio y proceso de obtención de carbonato de sodio para acreditar bonos de carbono

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999043406A1 (en) * 1998-02-25 1999-09-02 Stone & Webster Engineering Corporation Spent caustic pretreatment and enhanced oxidation process
US20090035199A1 (en) * 2007-07-03 2009-02-05 Aristos Energy Inc. Method for sour gas treatment
WO2011122925A1 (es) * 2010-03-29 2011-10-06 Miklos Ilkovics Roberto Tomas Proceso de eliminación de gases ácidos del aire y gases de combustión de quemadores y motores de combustión interna mediante una absorción con solución de hidróxido de sodio y proceso de obtención de carbonato de sodio para acreditar bonos de carbono

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ONDA, K. ET AL.: "Simultaneous Absorption of Hydrogen Sulphide and Carbon Dioxide in Aqueous Sodium Hydroxide Solutions", JOURNAL OF CHEMICAL ENGINEERING OF JAPAN., vol. 5, no. L., 1972, pages 27 - 33 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020124184A1 (pt) * 2018-12-20 2020-06-25 Universidade Federal De Minas Gerais Processo de captura de co2 e processo de regeneração contínua de solvente
CN112642273A (zh) * 2020-12-18 2021-04-13 阿拉尔市中泰纺织科技有限公司 一种低浓度废气脱气转换高浓度废气焚烧回收系统及工艺

Also Published As

Publication number Publication date
IN2014DN09632A (es) 2015-07-31

Similar Documents

Publication Publication Date Title
CN105344235B (zh) 一种燃煤工业锅炉同时吸收NOx和SO2的设备及方法
ES2895874T3 (es) Proceso y dispositivo para la desulfuración y desnitrificación de gas de combustión
ES2749853T3 (es) Recuperación regenerativa de dióxido de azufre de efluentes gaseosos
AU2010317550B2 (en) Flue gas treatment system
CN108006683A (zh) 一种利用全烟气实现脱硫废水零排放的方法和装置
WO2011122925A1 (es) Proceso de eliminación de gases ácidos del aire y gases de combustión de quemadores y motores de combustión interna mediante una absorción con solución de hidróxido de sodio y proceso de obtención de carbonato de sodio para acreditar bonos de carbono
WO2004022205A1 (fr) Procede et dispositif pour eliminer et recuperer du so2 dans des fumees
CN105413430B (zh) 一种带有深度除湿功能的湿法烟气脱硫塔及除湿工艺
CN102580484B (zh) 一种二氧化硫烟气的净化回收方法
CN206746318U (zh) 一种烟气余热回收湿法集成净化系统
WO2013157912A1 (es) Eliminación de sulfuro de hidrógeno y dióxido de carbono del gas natural mediante una absorción con solución de hidróxido de sodio y posterior tratamiento con hidróxido de amonio y oxidación para producir sulfato y carbonato de amonio
CN201157752Y (zh) 一种氨法烟气脱硫装置
CN108686478B (zh) 一种烟气脱硫及脱硫废水的处理方法与装置
CA2823956C (en) Process and system for cleaning a gas stream
ES2587681T3 (es) Eliminación de óxidos de azufre de una corriente de fluido
CN105854538B (zh) 一种氨-亚硫酸铵法烟气脱硫装置
CN104607037A (zh) 一种利用pH摆动原理实现CO2捕集的方法及系统
CN207237819U (zh) 一种脱硝尿素溶液制备装置
CN206810042U (zh) 一种氨法脱硫双循环工艺及装置
CN206008418U (zh) 高效节能的气液耦合氧化脱硫脱硝装置
CN209213899U (zh) 无白烟羽烟气脱硫系统
CN205687575U (zh) 一种氧化镁湿法脱硫副产物的处理装置
CN106925078A (zh) 一种脱硫超净再热排放系统及基于该系统的方法
CN221815713U (zh) 一种冶炼烟气的再利用装置
CN205367752U (zh) 一种利用燃煤废气制备无水硫酸钠的装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13778501

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13778501

Country of ref document: EP

Kind code of ref document: A1