WO2013157732A1 - The composite girder having web members with various patterns - Google Patents

The composite girder having web members with various patterns Download PDF

Info

Publication number
WO2013157732A1
WO2013157732A1 PCT/KR2013/001464 KR2013001464W WO2013157732A1 WO 2013157732 A1 WO2013157732 A1 WO 2013157732A1 KR 2013001464 W KR2013001464 W KR 2013001464W WO 2013157732 A1 WO2013157732 A1 WO 2013157732A1
Authority
WO
WIPO (PCT)
Prior art keywords
concrete
steel
abdominal
composite
truss
Prior art date
Application number
PCT/KR2013/001464
Other languages
French (fr)
Korean (ko)
Inventor
원대연
Original Assignee
Won Dae-Yon
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Won Dae-Yon filed Critical Won Dae-Yon
Priority to CN201380020174.8A priority Critical patent/CN104246074B/en
Priority to JP2015504474A priority patent/JP6010215B2/en
Publication of WO2013157732A1 publication Critical patent/WO2013157732A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D2/00Bridges characterised by the cross-section of their bearing spanning structure
    • E01D2/02Bridges characterised by the cross-section of their bearing spanning structure of the I-girder type
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D2/00Bridges characterised by the cross-section of their bearing spanning structure
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D2/00Bridges characterised by the cross-section of their bearing spanning structure
    • E01D2/04Bridges characterised by the cross-section of their bearing spanning structure of the box-girder type
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D2101/00Material constitution of bridges
    • E01D2101/20Concrete, stone or stone-like material
    • E01D2101/24Concrete
    • E01D2101/26Concrete reinforced
    • E01D2101/268Composite concrete-metal

Definitions

  • a skeleton structure composed only of steel is first manufactured in a factory and transported to a construction site, and then a composite girder structure that resists external loads by being integrated with a concrete member and a shear connector at a work site or a pier, After manufacturing the tubular or rolled steel by bending processing using high-frequency heating, a unit member of a predetermined shape is manufactured, and then, the unit members are joined through a connecting plate to form a member having a variety of shapes.
  • Conventional dwellers have a tucked structure with the abdominal wall closed or a triangular perforated space.
  • the main difference between the two types of structure is that the housing girder, which has a cladding structure, resists the external force in the vertical direction through the shear force of the abdominal member, and the housing girder, which has a truss structure, resists the axial force of the sand.
  • the housing sheath has a filling structure
  • the countermeasure for varying the thickness of the abdominal member according to the magnitude of the shear force may be used properly when the abdominal member is made of steel sheet. There is a problem that is not determined.
  • the thickness of the abdominal member is generally determined based on the maximum shear force. Consequently, the abdominal member always has a margin of resistance against the shear force, and the self-weight increases more than necessary. Brings about.
  • the housing In order to prevent the girder weight from increasing due to the excessive use of the abdominal member, it is effective to reduce the height of the housing, but the problem is that the height of the housing is not determined by the shear force, but the magnitude and deflection of the bending moment in the housing. It is mainly determined by such constraints.
  • the most efficient way to increase the housing girder's resistance to bending moments and deflections is to increase the housing girder's height, but increasing the housing girder's height increases the surplus of the resistance to shear forces, thereby increasing unnecessary self-weight and This results in increased bending moments.
  • the shear force increases and the magnitude of the bending moment also increases, so the method of responding to the change in shear force by changing the height of the housing can be partially applied, but in the simple beam structure, the shear force and the bending moment Since changes tend to be inconsistent or opposite, the reduction in shear force does not reduce the height of the dwelling.
  • the abdomen is a truss structure
  • the vertical load that causes the shear force in the filling structure is transmitted to the axial force of the yarn, so that the cross-sectional specifications of each yarn can be changed according to the size of the shear force.
  • the most effective way to reduce the weight of the house is to use the truss structure type with excellent structural efficiency while using steel with good material efficiency.
  • the type of truss structure is different in appearance and name depending on the shape of the abdominal member.
  • the best type of structural characteristics and material efficiency is the warren truss structure in which alternating materials are subjected to compressive and tensile forces.
  • the warren truss structure transfers the vertical loads to the point through the shortest path, and is used for composite truss girders using concrete in truss chords because of its excellent resistance to external horizontal loads such as prestressing forces. have.
  • the axial force acting on the adjacent sand is converted from compressive force to tensile force at the lower gap where it meets the concrete lower chord.
  • the horizontal force is transmitted to the concrete lower chord.
  • the beam-type housing girders are made in most cases so that the abdominal portion, which resists shear forces, is made to have a greater resistance than the actually acting vertical force, resulting in an increase in the amount of unneeded girders. .
  • the longer the span length the greater the proportion of the cross-sectional force due to the girder weight. Therefore, in order to reduce the construction cost and construction cost more efficiently, it is necessary to reduce the girder weight by optimizing the shape of the member.
  • the use of the truss structure in the abdomen is a very effective countermeasure for reducing the weight, but due to the following specificity of the truss structure type, special care is required in design and construction.
  • the direction of sudden force change is made between the connected members in all the intervals. The closer to the point, the greater the axial force acting on the sand, and the greater the magnitude of the local shear force at the critical point.
  • the yarn axial force increases at the point of the outermost span of the simple support structure or the continuous support structure, but the magnitude of the axial force due to the bending moment occurring in the phase current decreases rapidly as the point approaches the point.
  • one of the issues that arise when applying a composite truss girder with a concrete lower chord in a continuous structure is a phenomenon in which a very large bending moment occurs in the concrete lower chord due to the local flexural strain restriction at the mid-point. This is caused by the fact that the concrete lower chords are connected to the continuous beam members with flexural stiffness in the gap section, unlike the ideal truss behavior in which all the member elements constituting the truss are pinned together at each other.
  • a concrete bulkhead having a very high rigidity is additionally installed at each intermediate point over one or three or more striking points of the truss to generate local concrete under current.
  • the conventional composite truss girder having a concrete lower chord exhibits the structural behavior of the truss in the overall force flow, so that the original purpose of self-weight reduction can be achieved, Additional challenges such as inconsistency in the tendency of cross-sectional force generation, limitations in the use of various materials and gap specifications, generation of large local cross-sectional forces in the gap section due to the use of steel defect points, and problems due to the installation of intermediate point bulkheads Have.
  • the composite girder of the present invention is a frame structure made of steel having a structural behavior similar to truss, concrete completely surrounding the lower steel of the skeleton structure, concrete filling a part of the abdominal space of the skeleton structure The abdominal member and the concrete base plate are combined with the phase current of the skeleton structure.
  • a member having a circular or semi-circular shape is used for the abdominal member instead of the conventional truss structure in which a pair of straight yarns alternates with a constant inclination angle where the pair of straight yarns meets the upper or lower chords.
  • the vertical force can be transmitted through the direct coupling between the abdominal members through the use of a heart-shaped member.
  • the transfer of force between the abdominal member and the lower chord can be such that the intersection angle between the members is about 70 degrees, so that the gap size is greatly reduced compared to the conventional truss structure.
  • the resistance to buckling under compressive force is greatly improved, and the inclination angle of the yarn can be steeped while maintaining the same gap point. The specification is reduced. Here it is.
  • overlapping the abdominal member and the phase chord over almost all of the gap points a portion of the vertical force can be transmitted through the shear resistance of the phase current and the abdominal part.
  • the same structural behavior as that of dispersing the axial force acting on the abdominal member, as in the conventional double warren truss, can be secured.
  • the vertical force generated in the abdominal member is transmitted through the direct shear between the abdominal members without passing through the upper and lower chords, and the horizontal force generated by the direction change of the axial force acting on the abdominal member is also in the form of the direct current and the lower chord. Can deliver at present.
  • another main object of the present invention is to convert the structural form of the housing girder from the similar truss structure to the beam structure according to the construction stage.
  • the method is to produce a light weight composite girder that can support the vertical force acting on the housing girder not only by the axial resistance of the abdominal member but also by the shear resistance of the abdominal member, the upper chord, the lower chord and the joint reinforcement plate.
  • the truss-like structural behavior is to be the dominant structure in the step of forming a dweller using the skeleton structure of steel, which is the basic skeleton of the dweller, and the dwelling step is combined with the upper floor concrete and the dwelling is in common.
  • the beam represent the structural behavior of the beam.
  • the skeletal structure of the steel is 15%, the concrete lower chord 30% and the concrete top plate 55% of the total weight, respectively, to be used in the bridge structure
  • the additional fixed load such as curb and pavement and the moving load of the vehicle are about 30% of the composite girder. That is, the vertical force up to the stage where the concrete undercarriage is formed is about 35% of the total size, and the vertical force applied to the housing after the common stage is about 65%, and the vertical force through the shear resistance of the housing If the structure can share the size of the abdominal member can be reduced, and as a result it is possible to greatly reduce the size of the gap installed in the place where the abdominal member and the upper or lower chord meet.
  • the composite girder according to the present invention fills the remaining space, except the space surrounded by only the abdominal member of the openings installed in the abdomen with a thin reinforced concrete structure of about 150mm thickness to exhibit the same structural behavior as the beam .
  • 1 is a plan view of a unit member for manufacturing the abdominal member according to the present invention.
  • Figure 2 is a cross-sectional view of the member used for manufacturing the unit member according to the present invention.
  • Figure 3 is a schematic view of the apparatus for bending the unit member according to the present invention.
  • Figure 4 is a shape of the steel skeleton structure according to the present invention.
  • FIG. 5 is a flow chart of the inter-member force of the steel frame structure according to the present invention.
  • Figure 6 is an illustration of a steel skeleton structure that can be produced in combination between unit members according to the present invention.
  • Figure 7 is a composite girder construction sequence according to a first embodiment of the present invention.
  • FIG. 8 is a composite girder construction sequence according to a second embodiment of the present invention.
  • Figure 9 is a composite girder construction sequence according to a third embodiment of the present invention.
  • Figure 1 shows the shape of the unit member used for manufacturing the abdominal member according to the present invention.
  • the composite member of the composite girder according to the present invention has the shape of a circle (1), a heart (2), an inequality (3), and a semicircle (4) bent to a predetermined radius (R) It is manufactured to have various patterns at regular intervals using unit members.
  • Figure 2 shows the cross-sectional shape used in the unit member according to the present invention, the cross-section of the circular steel pipe, square tube or rolled steel (H-shaped steel, c-shaped steel) that can be minimized the change in material properties according to bending process Is done.
  • FIG. 3 shows an overview of the device for manufacturing a unit member according to the present invention.
  • the fixing clamp 5 is attached to maintain the constant radius at the beginning of the curve, and then the linear member passes the high frequency heating device 6 in front of the fixing roller 7. It is bent to have a predetermined radius (R).
  • R predetermined radius
  • Figure 4 shows the shape of the steel skeleton structure that can be implemented using a unit member according to the present invention.
  • a similar truss structure that can be implemented using the unit member according to the present invention can be largely divided into four basic shapes.
  • the circular unit member 1 is connected to each other through welding of the connecting plate 10 to form the abdominal member, and then the upper chord 8 and the lower chord 9 are welded to the upper and lower portions of the abdominal member, respectively.
  • a steel skeleton structure having a circular opening in the abdomen is produced by attaching the abdominal reinforcing plate 11 to both ends of the skeleton to form a skeleton structure (Fig. 4 (a)).
  • the steel frame structure having a heart-shaped opening in the abdomen forms the abdominal member by connecting the curved portions of the heart-shaped unit member 2 through the welding of the connecting plate 10 to form an abdominal member.
  • the upper chord 8 is welded along the horizontal straight section, and the lower part of the abdominal member is welded to each other by welding the reinforcement plate 12 and the lower chord 9 welded together to close the heart-shaped unit member 2. It is produced (Fig. 4 (b)).
  • the steel skeleton structure having a rhombic pattern opening in the abdomen is arranged with the curved portions of the unit member 3 of the inequality shape facing each other and then connected to each other by welding of the connecting plate 10 to form a abdominal member. It is produced by welding the upper chord 8 and the lower chord 9 to the upper and lower portions of the abdominal member, respectively (Fig. 4 (c)).
  • Steel frame structure having semicircular pattern openings on the abdomen is formed by connecting the lower ends of the semicircular unit members 4 through welding to form abdominal members, and then, respectively, the upper chords 8 and the upper and lower portions of the abdominal members, respectively. It is produced by welding the lower chord 9 (Fig. 4 (d)).
  • Figure 5 shows a flow chart of the inter-member force of the steel skeleton structure according to the present invention.
  • the vertical force due to external load acts as a shear force at the position where the abdominal member meets the upper chord and the lower chord, and the abdominal members meet each other.
  • the direction of the force is switched by the axial force in the vertical direction, and the behavior of the unit member to rotate toward the smaller vertical force due to the difference in the vertical axial force (V1, V2) applied to the connection point between the front and rear of the unit member.
  • compressive forces C1 and C2 are generated in the upper chord and tensile forces T1 and T2 in the lower chord, respectively. That is, in the conventional truss structure, all the vertical force is transmitted only by the straight yarn axial force, but in the skeleton structure having a circular abdominal structure according to the present invention, the structure resists the vertical force through a circular structure having excellent structural resistance of high order irregularity. Has characteristics.
  • a triangular truss structure is formed on the upper and lower chords with respect to the connection point between the unit members, and as a result, the unit member
  • the vertical force (V1, V2) applied to the connection point is divided into two truss structures located at the upper and lower sides, and the vertical force is generated by the vertical force component transmitted to the upper truss.
  • Tensile forces (T1, T2) are generated in the lower chord by the force component, respectively.
  • the axial force acting on the sand is always kept constant in size and direction over the entire length of the member.
  • the magnitude and direction of the force acting on one abdominal member can be changed differently according to the position of the gap point that meets the present. Reduces the absolute magnitude of the vertical force acting on it.
  • the connection point between the abdominal members where the vertical force is concentrated is placed between the upper and lower chords so that a part of the vertical force can be shared through the shear resistance of the upper and lower chords.
  • a lozenge-shaped abdominal member is constructed by using an inequality unit member
  • two triangular truss structures having the same specifications as the upper and lower chords are formed on the basis of the connection point between the abdominal members.
  • the vertical force (V1, V2) applied to the connection point of the unit member is equally distributed between the two truss structures located at the top and bottom, and the compressive force (C1, C2) at the present time due to the vertical force component transmitted to the upper truss. )
  • the tension force (T1, T2) is generated in the lower chord due to the vertical force component shearing the lower truss. That is, the skeleton structure having the abdominal structure of the lozenge shape according to the present invention exhibits the same structural behavior as the conventional double warren truss structure.
  • the vertical load acting on the upper chord acts as a concentrated load at the position where the upper chord and the abdominal member meet, and this concentrated load acts as an arch of the abdominal member.
  • the horizontal force and the vertical reaction force are converted at the position where the abdominal member and the lower chord meet, and the horizontal force causes tension (T1, T2) at the lower chord, and the vertical reaction force is applied to the adjacent abdominal cavity through the direct shear between the abdominal members. Delivered.
  • the vertical load acting on the lower chord is transmitted to the point through the bending resistance of the lower chord, which acts as a continuous beam structure with the end of the abdominal member of the semicircle as the point.
  • the vertical force is converted into horizontal force and shear force at the apex of the semicircle, respectively, and the horizontal force causes the compressive force (C1, C2) of the phase current, and the shear force (V1, V2) is applied to the end of the opposite abdomen through the arch action of the abdominal member Delivered.
  • Figure 6 shows the shape of the steel skeleton structure having a patterned abdominal member made by combining two or more unit members of the same or different shape according to the present invention.
  • the circular unit member 1 is circular by using an unequal unit member 3 having an internal angle at right angles to the abdominal member connected to each other through the connecting plate 10.
  • the shear force and the moment generated in the circular abdominal member 1 are greatly reduced, and the upper chord and the lower chord The effect of dispersing the vertical load currently applied can be obtained.
  • Another method to reduce the shear force and the moment generated in the circular unit member 1 is a pair of inequality arc-shaped unit members 3 having a right angled inner shell is welded inside the circular unit member 1 so that the abdominal member It is made to be shaped like a wheel of an automobile (Fig. 6 (b)).
  • the pair of heart-shaped unit members 2 face each other with respect to the horizontal line, and then the connecting plate 10 is welded to have a butterfly-shaped pattern having a butterfly pattern.
  • Steel skeleton can be made.
  • the steel frame structure having the semicircular abdominal member has the advantage of securing the widest area of opening compared to the abdominal member having other patterns when the abdominal member height is the same.
  • the disadvantage is that the size of the moment is significantly larger than other types.
  • the upper chord 8 and the lower chord are added by adding two inequality-shaped unit members 3 having different sizes inside and outside the semicircular member 4.
  • FIG. 7 shows a composite girder construction sequence according to a first embodiment of the present invention.
  • Composite girder according to the present invention can be manufactured using only the steel skeleton structure consisting of only the abdominal member when the construction method including the self-weight before the girder is supported by a separate support facility is applied.
  • the connecting member 4 having the shear connector 13 is connected through the connecting plate 12 to be bonded with concrete, and then shown in Fig. 7 (b).
  • the abdominal member 4 is coupled with the concrete lower chord 14 and the concrete upper base plate 15, and the space between the concrete upper base plate 15 and the abdominal member 4 is filled with the abdominal concrete 16.
  • the concrete lower chord due to the external load is introduced by using the high-strength PS steel material 17 embedded in the concrete, the preceding compression force (P) is introduced.
  • FIG. 8 shows a construction procedure of a composite girder according to a second preferred embodiment of the present invention.
  • the composite girder according to the present invention may be manufactured using only a steel skeleton structure composed of only the abdominal member and the upper chord when the composite girder has a temporary condition in which the bulkhead can be placed by a crane before synthesis.
  • the connecting plates 10 and 12 are welded to the unit member 2 of a predetermined shape to form a plurality of members, and a shear connecting member (c) is used to couple the members to the concrete floor plate. 13) weld the upper chord (longitudinal beam, 8) of the steel material and the abdominal member to produce a steel skeleton structure.
  • FIG. 8 shows a construction procedure of a composite girder according to a second preferred embodiment of the present invention.
  • the composite girder according to the present invention may be manufactured using only a steel skeleton structure composed of only the abdominal member and the upper chord when the composite girder has a temporary condition in which the
  • FIG. 9 shows a construction procedure of a composite girder according to a third preferred embodiment of the present invention.
  • the composite girder according to the present invention has a long span or difficult to use large cranes, and if it is not possible to install it in the construction sequence as shown in FIG. And all of the lower chords are to be provided.
  • the connecting plate 10 is welded to a predetermined shape of the unit member 1 to form a plurality of members, and the shear connecting member 13 for the coupling between the member and the concrete bottom plate.
  • Top chord (long beam, 8) and bottom chord (long beam, 9) are welded to the abdominal member, respectively, to fabricate the steel skeleton structure.
  • FIG. 9 shows a construction procedure of a composite girder according to a third preferred embodiment of the present invention.
  • the composite girder according to the present invention has a long span or difficult to use large cranes, and if it is not possible to install it in the construction sequence as shown in FIG. And all of the lower chords are to be
  • the steel frame structure is mounted on a pier or column using a crane, coupled to the concrete lower chord 14, and the high-strength PS steel 17 embedded in the concrete lower chord 14. Introduce the preceding compression force (P) using. Then, as shown in FIG. 10 (c), the upper chord 9 of the steel frame structure and the concrete upper plate 15 are synthesized, and the abdominal member 1 of the steel frame structure, the concrete lower chord and the concrete upper floor are synthesized. Filling the empty space surrounded by the plate with the abdominal concrete (16) to complete the composite girder.
  • Embodiments according to the present invention described above may be modified in various forms, the scope of the present invention should not be construed as being limited to the embodiments described above.
  • the terms used to describe the embodiments of the present invention are used for the purpose of describing the present invention and are not used to limit the scope of the present invention as defined in the claims or the claims.
  • the main effects of the composite girder according to the present invention are as follows.
  • the absolute magnitude of the axial force applied to the abdominal member is reduced, so that the specification of the abdominal member used even when used in the structure of the long span can be 2 to 3 or less, so that the product can be easily purchased and the production efficiency of the steel member is also improved.

Abstract

The present invention relates to the development of a composite girder, comprising steel web members, a concrete lower cord member and a concrete upper floor plate. Conventional composite truss girders having a concrete lower cord member have problems to be solved such as the generation of localized large sectional force in a connection system section due to the use of a firmly coupled connection system, and problems caused by mounting a partition wall in a middle support, or the like. The present invention uses various patterns for web members instead of a conventional triangular truss structure so as to smoothly transfer force between members and to develop a composite girder bridge for converting the structure type of a main girder from a truss structure to a beam structure according to a main construction step. To this end, the composite girder of the present invention comprises: a framed structure made from a steel material of which the structural behavior is similar to a truss; a concrete lower cord member for completely surrounding the lower steel material of the framed structure; a concrete web member for filling a part of a web space of the framed structure; and a concrete floor plate coupled to the upper cord member of the framed structure. The composite girder of the present invention can appropriately utilize the advantages of the truss structure and the beam structure and the advantages of the steel material and the concrete according to construction conditions and construction steps.

Description

복부재가 다양한 형태의 문양을 갖는 복합거더Compound girders with various patterns
본 발명은 강재로만 구성되는 뼈대구조를 공장에서 먼저 제작하여 가설현장으로 운반한 다음, 제작장 또는 교각위에서 콘크리트 부재와 전단연결재를 통해 일체가 되도록 하여 외부하중에 저항하는 합성거더구조에 있어서, 강관, 각관 또는 압연형강을 고주파 가열을 이용한 굽힘가공을 통해 소정형상의 단위부재를 제작한 다음, 이들 단위부재를 연결판을 통해 결합하여 다양한 형상의 문양을 갖는 복부재를 만들고, 이 복부재의 상부 및 하부에 종방향 보부재를 각각 결합시켜 강재의 뼈대구조를 만든 다음, 여기에다 뼈대구조 하부에 부착된 종방향 보부재를 소정형상의 콘크리트부재와 결합시키고, 중공의 복부재의 일부를 콘크리트로 채움으로써 보의 구조거동을 하는 복합단면으로 이루어진 주거더를 만들고, 그런 다음 뼈대구조의 상부에 부착된 종방향 보부재와 콘크리트 상부 바닥판과 결합하는 것을 주요특징으로 하는 복합거더의 개발에 관한 것이다.In the present invention, a skeleton structure composed only of steel is first manufactured in a factory and transported to a construction site, and then a composite girder structure that resists external loads by being integrated with a concrete member and a shear connector at a work site or a pier, After manufacturing the tubular or rolled steel by bending processing using high-frequency heating, a unit member of a predetermined shape is manufactured, and then, the unit members are joined through a connecting plate to form a member having a variety of shapes. Combine the longitudinal beam members to the lower part to make the skeleton structure of the steel, and then join the longitudinal beam members attached to the lower part of the skeleton structure with the concrete member of the predetermined shape, and fill the hollow hollow member with concrete Make a housing consisting of a composite cross section, the structural behavior of which is then attached to the upper part of the skeleton structure The longitudinal beam members and to join the upper concrete floor plates relates to the development of a composite girder as main features.
본 출원은 대한민국 특허출원 제10-2012-0038850호를 기초로 우선권을 주장하면서 출원되는 것으로서, 대한민국 특허출원 제10-2012-0038850호의 출원 명세서에 기재된 내용은 본 명세서에 포함된다. The present application is filed while claiming priority based on the Republic of Korea Patent Application No. 10-2012-0038850, the contents described in the application specification of the Republic of Korea Patent Application No. 10-2012-0038850 is included herein.
종래의 주거더는 복부가 벽식으로 막혀있는 충복구조 이거나 또는 삼각형태의 뚫린 공간을 갖는 트러스 구조로 되어 있다. 충복구조로 된 주거더는 연직방향의 외력을 복부재의 전단력을 통해 저항하고, 트러스 구조로 된 주거더는 사재의 축력을 통해 저항한다는 것이 두 구조형식의 가장 큰 차이점이다.Conventional dwellers have a tucked structure with the abdominal wall closed or a triangular perforated space. The main difference between the two types of structure is that the housing girder, which has a cladding structure, resists the external force in the vertical direction through the shear force of the abdominal member, and the housing girder, which has a truss structure, resists the axial force of the sand.
주거더가 충복구조로 되어 있는 경우에는 전단력의 크기변화에 따라 복부재의 두께를 달리하거나 또는 높이를 다르게 하는 것이 재료사용 측면에서 바람직하다. 복부재의 두께를 전단력의 크기에 따라 달리하는 대응안은 복부재가 강판으로 된 경우에는 적절히 사용될 수 있지만, 전단좌굴방지를 위해서는 일정두께 이상의 강판이 필요하므로, 반드시 전단력의 크기만으로 복부재 구성하는 강판의 두께가 결정되지 않는다는 문제를 내재하고 있다.In the case where the housing sheath has a filling structure, it is preferable to change the thickness or height of the abdominal member according to the change of the shear force in terms of material use. The countermeasure for varying the thickness of the abdominal member according to the magnitude of the shear force may be used properly when the abdominal member is made of steel sheet. There is a problem that is not determined.
또한, 복부가 콘크리트로 된 경우에는 통상적으로 전단력이 최대가 되는 곳을 기준으로 복부재 두께가 결정되며, 결국 전단력에 대해서는 복부재의 저항능력에 항상 여유가 있으며, 주거더 자중이 필요이상으로 늘어나는 현상을 초래한다.In addition, when the abdomen is made of concrete, the thickness of the abdominal member is generally determined based on the maximum shear force. Consequently, the abdominal member always has a margin of resistance against the shear force, and the self-weight increases more than necessary. Brings about.
복부재의 잉여사용으로 인해 거더자중이 증가하는 현상을 방지하기 위해서는 주거더 높이를 줄이는 것이 효과적인 방법이지만, 문제는 주거더의 높이가 전단력에 의해 결정되는 것이 아니라 주거더에 생기는 휨모멘트의 크기와 처짐 등의 제약에 의해 주로 결정된다는 것이다. 휨모멘트와 처짐에 대한 주거더의 저항성을 증대시키는 가장 효율적인 방법은 주거더의 높이를 키우는 것이지만, 주거더의 높이를 키우면 전단력에 대한 저항능력의 잉여도는 그만큼 더 늘어나며, 불필요한 자중의 증가와 이로 인한 휨모멘트의 증가되는 결과가 초래된다.In order to prevent the girder weight from increasing due to the excessive use of the abdominal member, it is effective to reduce the height of the housing, but the problem is that the height of the housing is not determined by the shear force, but the magnitude and deflection of the bending moment in the housing. It is mainly determined by such constraints. The most efficient way to increase the housing girder's resistance to bending moments and deflections is to increase the housing girder's height, but increasing the housing girder's height increases the surplus of the resistance to shear forces, thereby increasing unnecessary self-weight and This results in increased bending moments.
여기에다, 연속보 구조에서는 전단력이 증가함과 동시에 휨모멘트의 크기도 따라 증가하므로 주거더의 높이를 변화시켜 전단력 변화에 대응하는 방법을 부분적으로 적용할 수도 있지만, 단순보 구조에서는 전단력과 휨모멘트의 변화가 서로 일치하지 않거나 반대가 되는 경향을 나타내므로 전단력이 감소된다고 해서 주거더 높이를 감소시킬 수는 없다.In addition, in the continuous beam structure, the shear force increases and the magnitude of the bending moment also increases, so the method of responding to the change in shear force by changing the height of the housing can be partially applied, but in the simple beam structure, the shear force and the bending moment Since changes tend to be inconsistent or opposite, the reduction in shear force does not reduce the height of the dwelling.
한편, 복부가 트러스 구조로 된 경우에는 충복구조에서 전단력을 유발하는 연직하중이 사재의 축력으로 전달되므로 전단력의 크기에 맞추어 각 사재의 단면제원을 변화시킬 수 있기에, 복부재의 잉여사용으로 인한 자중증가 문제를 근본적으로 해소시킬 수 있다. 주거더 자중을 줄이기 위한 가장 효과적인 방안으로는 재료효율성이 우수한 강재를 복부에 사용함과 동시에 구조효율성이 뛰어난 트러스 구조형식을 사용하는 것을 들 수 있다. 트러스 구조형식은 복부재의 배치형상에 따라 외관과 명칭이 달라지는데, 이중 구조특성 및 재료효율성이 가장 좋은 형식은 압축력과 인장력을 받는 사재를 교번으로 배치한 와렌트러스(warren truss) 구조이다.On the other hand, when the abdomen is a truss structure, the vertical load that causes the shear force in the filling structure is transmitted to the axial force of the yarn, so that the cross-sectional specifications of each yarn can be changed according to the size of the shear force. It can fundamentally solve the problem. The most effective way to reduce the weight of the house is to use the truss structure type with excellent structural efficiency while using steel with good material efficiency. The type of truss structure is different in appearance and name depending on the shape of the abdominal member. The best type of structural characteristics and material efficiency is the warren truss structure in which alternating materials are subjected to compressive and tensile forces.
와렌트러스(warren truss) 구조는 구조물에 가해지는 연직하중을 최단경로를 통해 지점으로 전달시키며, 프리스트레싱 힘과 같은 외적 수평하중에 대한 저항성이 뛰어나 트러스 하현재에 콘크리트를 사용하는 복합트러스 거더에 사용되고 있다. 즉, 인접한 사재에 작용하는 축력이 콘크리트 하현재와 만나는 하부격점에서 압축력에서 인장력으로 전환되는데, 이 과정에서 수평력이 콘크리트 하현재에 전달된다. 이때, 인접한 사재의 중심축선과 콘크리트 하현재의 도심축이 한점에서 일치하지 않을 때에는 격점구간에는 큰 전단력과 편심모멘트가 작용하게 되는데, 콘크리트 하현재가 이들 힘에 안전하게 견딜 수 있도록 하기 위해서는 두 사재를 연결하는 적절한 형상의 매입강재와 철근을 사용한 격점부 보강과 콘크리트 하현재에 선행압축력 도입을 위한 PS강재의 사용이 필요하다. The warren truss structure transfers the vertical loads to the point through the shortest path, and is used for composite truss girders using concrete in truss chords because of its excellent resistance to external horizontal loads such as prestressing forces. have. In other words, the axial force acting on the adjacent sand is converted from compressive force to tensile force at the lower gap where it meets the concrete lower chord. In this process, the horizontal force is transmitted to the concrete lower chord. At this time, when the center axis of adjacent sand material and the center axis of the concrete lower chord do not coincide at one point, a large shear force and an eccentric moment are acting in the gap section. In order to ensure that the concrete lower chord can withstand these forces safely, connect the two materials. The use of PS steel for reinforcement of the gap point using embedded steel and reinforcement of appropriate shape and introduction of pre-compression force in concrete lower chord.
앞에서 언급한 바와 같이, 보형식의 주거더는 대부분의 경우에 있어서 전단력에 저항하는 복부재 부분이 실제로 작용하는 연직력보다 더 큰 저항력을 갖도록 제작되는데, 이로 인해 필요치 않은 거더자중의 증가를 초래한다. 경간장이 길어질수록 거더자중으로 인한 단면력이 차지하는 비중이 커지게 되므로, 보다 효율적인 구조거동과 시공비 절감을 위해서는 복부재 형상의 최적화를 통해 거더자중을 감소시킬 수 있는 방안이 필요하다.As mentioned earlier, the beam-type housing girders are made in most cases so that the abdominal portion, which resists shear forces, is made to have a greater resistance than the actually acting vertical force, resulting in an increase in the amount of unneeded girders. . The longer the span length, the greater the proportion of the cross-sectional force due to the girder weight. Therefore, in order to reduce the construction cost and construction cost more efficiently, it is necessary to reduce the girder weight by optimizing the shape of the member.
한편, 복부에 트러스 구조를 사용하면 자중의 경감에는 매우 효율적인 대응안이 되지만, 트러스 구조형식이 갖고 있는 다음의 몇가지 특수성으로 인해 설계 및 시공에 각별한 주의가 요구된다. 직선부재를 조합한 삼각형의 트러스 구조에서는 모든 격점구간에서 서로 연결된 부재들 사이의 급격한 힘의 방향변환이 이루어지며. 지점에 가까워질수록 사재에 작용하는 축력이 커져 격점에 가해지는 국부적인 전단력의 크기도 급격히 커진다. 하지만, 단순지지 구조형식이거나 연속지지 구조의 최외측 경간의 지점에서는 사재축력이 커지지만, 상현재에 생기는 휨모멘트로 인한 축력의 크기는 지점에 가까워 질수록 오히려 급격히 감소한다. 즉, 이 구간에서의 상현재의 강판두께는 얇은 반면에 사재의 강판두께는 두꺼워져야 하는 심각한 부재간의 두께차 문제가 문제가 발생하며, 원활한 힘의 전달과 상현재의 국부적인 전단변형을 방지하기 위해서는 추가적인 격점보강판의 사용이 불가피하게 된다.On the other hand, the use of the truss structure in the abdomen is a very effective countermeasure for reducing the weight, but due to the following specificity of the truss structure type, special care is required in design and construction. In the triangular truss structure with the combination of straight members, the direction of sudden force change is made between the connected members in all the intervals. The closer to the point, the greater the axial force acting on the sand, and the greater the magnitude of the local shear force at the critical point. However, the yarn axial force increases at the point of the outermost span of the simple support structure or the continuous support structure, but the magnitude of the axial force due to the bending moment occurring in the phase current decreases rapidly as the point approaches the point. In other words, there is a problem in the thickness difference between the serious members that the steel sheet thickness of the phase current is thin while the steel sheet thickness of the sand material in this section, and to prevent the smooth transfer of force and local shear deformation of the phase current. To this end, the use of additional stiffening plates is inevitable.
또한, 트러스 구조는 축력에 저항하는 사재와 휨모멘트에 저항하는 상현재와 하현재가 서로 만나는 격점에서 서로 다른 작용방향을 갖는 힘들이 서로 교차하게 되는데, 이 힘들이 각 부재의 도심축을 따라 격점구간내에서 한점에서 일치할 수 있도록 설계에 세심한 주의가 요구된다. 종래의 강트러스 구조에서는 격점구간에 매우 큰 거세트판을 추가로 부착하여 서로 연결된 트러스 구성부재의 작용력이 격점내에서 서로 한점에서 만나도록 하였다. In the truss structure, forces having different directions of action intersect each other at the intersecting points of the upper and lower chords that resist the axial force and the bending moments, and these forces intersect each other along the central axis of each member. Careful attention must be paid to the design to ensure that the points at one point correspond. In the conventional steel truss structure, a very large gusset plate is additionally attached to the gap point section so that the action forces of the truss constituent members connected to each other meet at one point within each other.
하지만, 복부재에 강관을 사용하고 콘크리트로 된 하현재를 갖는 복합트러스 거더교에 있어서는 노출된 큰 규모의 거세트판을 사용할 때 생기는 여러가지 문제점들, 콘크리트와 강재접촉면의 부식으로 인한 유지관리문제 그리고 상대적으로 낮은 거더높이로 인한 미관저해 등의 문제로 인해 콘크리트로 된 현재 내에 매입되는 강결격점구조가 주로 사용되고 있으며, 이 경우 인접한 사재에 작용하는 축력은 직접 또는 간접적으로 콘크리트 현재를 통해서만 힘이 전달된다. 이 과정에서 사재에 작용하는 축력의 연직성분과 강결처리로 인한 국부적인 사재의 휨모멘트가 격점구간에 발생되는데, 이 힘들로 인해 콘크리트 하현재에 유해한 균열을 유발되지 않도록 각별한 설계상의 주의가 요구된다.However, in the case of composite truss girder bridges using steel pipes in the composite material and having a low chord of concrete, various problems of using exposed large gusset plates, maintenance problems due to corrosion of concrete and steel contact surfaces, and relative Due to problems such as aesthetic damage due to low girder height, the steel defect point structure that is embedded in the concrete current is mainly used. In this case, the axial force acting on the adjacent sand is transmitted directly or indirectly through the concrete current. . In this process, the vertical component of the axial force acting on the sand and the local bending moment due to the stiffening process are generated at the critical point, and special care must be taken to ensure that the forces do not cause harmful cracking in the concrete undercarriage. .
한편, 경간장이 길어질수록 위치에 따라 사재에 작용하는 축력의 절대크기의 차이가 심해지며, 이에 따라 사용되는 사재 및 격점의 제원도 많이 다양해져야 한다. 하지만, 설계 및 제작상의 단순화를 충족시키기 위해 너무 많은 종류의 사재와 격점의 사용은 피하게 되므로 결국 계산상 필요한 것 보다 많은 많은 양의 강재를 사용할 수 밖에 없는 경우가 빈번히 생긴다. On the other hand, the longer the span, the greater the difference in the absolute magnitude of the axial force acting on the yarn according to the position, and accordingly, the specifications of the yarn and the critical point to be used should be varied. However, the use of too many types of sand and gaps to avoid design and fabrication simplification often results in the use of more steel than is necessary for calculations.
트러스를 구성하는 사재들 사이의 현저한 단면력 차이로 인한 불필요하게 강재사용량이 늘어나는 문제해결을 위해 와렌트러스를 트러스의 반격점간격으로 서로 겹친 더블와렌트러스 구조를 적용하는 방안도 있지만, 이 경우에는 지속적인 유지관리가 필요한 격점수가 오히려 두배로 증가하고, 서로 교차되는 사재구간의 처리문제, 중간교각에서의 사재의 지점처리, 그리고 투시성의 저하 등의 문제로 인해 아주 특별한 경우를 제외하고는 잘 사용되지 않는다.In order to solve the problem of unnecessarily increasing steel usage due to the remarkable cross-sectional force difference between the members of the truss, there is a method of applying the double warren truss structure that overlaps the warren truss with the truss' counter-thickness interval. The number of critical points that require maintenance is rather doubled, and it is not used well except in very special cases due to problems such as intersecting the intersecting sections, dismantling the spots in the middle piers, and poor visibility. Do not.
그리고, 콘크리트 하현재를 갖는 복합트러스 거더를 연속구조에서 적용할 때 발생되는 또 다른 현안 중의 하나는 중간지점부에서의 국부적인 휨변형 구속으로 인해 콘크리트 하현재에 매우 큰 휨모멘트가 생기는 현상이다. 이것은 트러스를 구성하는 모든 부재요소는 격점에서 서로 핀구조로 결합된다는 이상적인 트러스 거동과는 달리, 격점구간에서 콘크리트 하현재는 휨강성을 갖는 연속 보부재로 결합되기 때문에 발생되는 현상이다. In addition, one of the issues that arise when applying a composite truss girder with a concrete lower chord in a continuous structure is a phenomenon in which a very large bending moment occurs in the concrete lower chord due to the local flexural strain restriction at the mid-point. This is caused by the fact that the concrete lower chords are connected to the continuous beam members with flexural stiffness in the gap section, unlike the ideal truss behavior in which all the member elements constituting the truss are pinned together at each other.
상기 문제를 해결하기 위하여, 종래의 강트러스교와는 달리 복합트러스 거더교에서는 각 중간지점에 강성이 매우 큰 콘크리트 격벽을 트러스의 한격점 내지 서너격점에 걸쳐서 추가로 설치하여 콘크리트 하현재에 발생되는 국부적인 휨모멘트에 저항하도록 하고 있지만, 격벽설치에 따른 비용증가, 자중의 증가로 인한 사용받침의 용량증가 그리고 하부지지구조의 규격증가 등의 문제가 별도로 수반된다.In order to solve the above problems, unlike conventional steel truss bridges, in the composite truss girder bridges, a concrete bulkhead having a very high rigidity is additionally installed at each intermediate point over one or three or more striking points of the truss to generate local concrete under current. Although it is intended to resist the bending moment, the cost increase due to the bulkhead installation, the capacity increase of the use base due to the increase of its own weight, and the increase of the specification of the lower support structure are accompanied separately.
이상에서 살펴본 바와 같이, 콘크리트 하현재를 갖는 종래의 복합트러스 거더는 전체적인 힘의 흐름에 있어서는 트러스의 구조거동을 나타내므로 자중경감이라는 본래의 목적은 성취할 수 있지만, 위치에 따른 사재와 상현재 사이의 단면력 발생경향의 불일치, 다양한 규격의 사재 및 격점제원 사용의 제약, 강결격점의 사용으로 인한 격점구간내의 국부적인 큰 단면력의 발생, 중간지점부 격벽설치에 따른 문제 등의 추가의 해결과제를 가지고 있다.As described above, the conventional composite truss girder having a concrete lower chord exhibits the structural behavior of the truss in the overall force flow, so that the original purpose of self-weight reduction can be achieved, Additional challenges such as inconsistency in the tendency of cross-sectional force generation, limitations in the use of various materials and gap specifications, generation of large local cross-sectional forces in the gap section due to the use of steel defect points, and problems due to the installation of intermediate point bulkheads Have.
본 발명에서는 전술한 복합트러스 거더의 문제점을 해결하기 위하여, 종래의 삼각형의 트러스 구조대신에 부재간의 원할한 힘의 전달이 가능한 다양한 형태의 문양을 복부재에 사용하고, 주요 시공단계에 따라 주거더의 구조형식을 트러스 구조에서 보구조로 변환하는 복합거더교를 개발하는데 있다.In the present invention, in order to solve the problems of the above-described composite truss girder, instead of the conventional triangular truss structure, various types of patterns that can transmit a smooth force between the members are used in the abdominal member, the housing according to the main construction stage To develop a composite girder bridge that converts the structural form of a truss structure into a beam structure.
상기의 목적을 달성하기 위하여, 본 발명의 복합거더는 트러스와 유사한 구조거동을 하는 강재로 된 뼈대구조, 뼈대구조의 하부강재를 완전히 둘러싸는 콘크리트 하현재, 뼈대구조의 복부공간의 일부를 채우는 콘크리트 복부재, 그리고 뼈대구조의 상현재와 결합되는 콘크리트 바닥판을 구비한다.In order to achieve the above object, the composite girder of the present invention is a frame structure made of steel having a structural behavior similar to truss, concrete completely surrounding the lower steel of the skeleton structure, concrete filling a part of the abdominal space of the skeleton structure The abdominal member and the concrete base plate are combined with the phase current of the skeleton structure.
이때, 강재로 된 뼈대구조로는 직선의 한쌍의 사재가 상현재 또는 하현재와 만나는 곳에서 일정의 경사각으로 교번되는 종래의 트러스 구조대신에, 복부재에 원형 또는 반원형의 형상을 갖는 부재를 사용함으로써 복부재에 가해지는 연직력이 상현재와 하현재를 통하지 않고서도 인접한 복부재에 직접 전달되는 하중경로를 형성시키며, 복부재가 상현재 또는 하현재와 만나는 위치에서는 복부재에 작용하는 축력과 현재의 축력방향이 서로 평행 또는 직각이 되도록 함으로써 최단거리로 힘의 전달이 이루어지는 직접전단(direct shear)에 의한 부재간의 힘의 전달이 이루어지도록 한다.At this time, as a skeleton structure of steel, a member having a circular or semi-circular shape is used for the abdominal member instead of the conventional truss structure in which a pair of straight yarns alternates with a constant inclination angle where the pair of straight yarns meets the upper or lower chords. This creates a load path in which the vertical force applied to the abdominal member is transmitted directly to the adjacent abdominal member without passing through the upper and lower chords. By allowing the axial force directions of the to be parallel or perpendicular to each other, the force is transmitted between the members by direct shear in which the force is transmitted in the shortest distance.
강재로 된 뼈대구조의 복부재에는 하트형상을 갖는 부재를 사용하는 것을 통해서도 연직력이 복부재간의 직접결합을 통해 전달시킬 수 있으며, 복부재와 상현재 사이의 힘의 전달은 두 부재가 수평으로 나란히 배치되도록 함으로써 직접전단으로, 복부재와 하현재 사이의 힘의 전달은 부재간 교차각이 약 70도 수준이 되도록 할 수 있어 격점규모가 종래의 트러스 구조에 비해 대폭 축소된다. 그리고, 직선의 축방향 부재가 형성되는 부분의 길이가 대폭 짧아짐으로써 압축력을 받을 때의 좌굴에 대한 저항성이 크게 향상되며, 동일한 격점간격을 유지하면서도 사재의 경사각을 가파르게 하는 효과를 얻을 수 있어 복부재의 규격이 감소된다. 여기에다. 복부재와 상현재가 거의 격점 전구간에 걸쳐 겹쳐짐으로써 연직력의 일부가 상현재와 복부재의 전단저항을 통해서도 전달될 수 있도록 한다.In the abdominal member of steel frame structure, the vertical force can be transmitted through the direct coupling between the abdominal members through the use of a heart-shaped member. By placing them side by side, the transfer of force between the abdominal member and the lower chord can be such that the intersection angle between the members is about 70 degrees, so that the gap size is greatly reduced compared to the conventional truss structure. In addition, since the length of the portion in which the linear axial member is formed is significantly shortened, the resistance to buckling under compressive force is greatly improved, and the inclination angle of the yarn can be steeped while maintaining the same gap point. The specification is reduced. Here it is. By overlapping the abdominal member and the phase chord over almost all of the gap points, a portion of the vertical force can be transmitted through the shear resistance of the phase current and the abdominal part.
또한, 뼈대구조의 복부재로 마름모형상의 부재를 연속으로 배치하면, 종래의 더블와렌트러스와 같이 복부재에 작용하는 축력을 분산시키는 것과 동일한 구조거동을 확보할 수 있다. 그리고, 복부재에 생기는 연직력을 상현재 및 하현재를 통하지 않고도 복부재 사이의 직접전단을 통해 전달시키며, 복부재의 작용하는 축력의 방향변환으로 인해 생기는 수평력도 직접전단의 형태로 상현재와 하현재에 전달시킬 수 있다.Further, when the rhombic member is continuously arranged in the abdominal member of the skeleton structure, the same structural behavior as that of dispersing the axial force acting on the abdominal member, as in the conventional double warren truss, can be secured. In addition, the vertical force generated in the abdominal member is transmitted through the direct shear between the abdominal members without passing through the upper and lower chords, and the horizontal force generated by the direction change of the axial force acting on the abdominal member is also in the form of the direct current and the lower chord. Can deliver at present.
지금까지 기술한 복부재의 형상을 변화시켜 격점에 작용하는 힘의 크기를 감소시키는 것과는 별도로, 본 발명의 또 다른 주요 목적은 주거더의 구조형식을 시공단계에 따라 유사 트러스 구조에서 보구조로 변환시키는 방법을 통해 주거더에 작용하는 연직력을 복부재의 축방향 저항뿐만 아니라, 복부재, 상현재, 하현재 그리고 연결부 보강판의 전단저항으로도 지지할 수 있는 경량의 복합거더를 제작하는 것에 있다. 즉, 주거더의 기본골격이 되는 강재의 뼈대구조를 이용하여 주거더를 형성하는 단계에서는 트러스와 유사한 구조거동이 지배적인 구조가 되도록 하며, 상부바닥판 콘크리트와 결합되는 단계 및 공용중인 상태에서는 주거더가 보의 구조거동을 나타내도록 한다.Apart from changing the shape of the abdominal member described above to reduce the magnitude of the force acting on the gap point, another main object of the present invention is to convert the structural form of the housing girder from the similar truss structure to the beam structure according to the construction stage. The method is to produce a light weight composite girder that can support the vertical force acting on the housing girder not only by the axial resistance of the abdominal member but also by the shear resistance of the abdominal member, the upper chord, the lower chord and the joint reinforcement plate. In other words, the truss-like structural behavior is to be the dominant structure in the step of forming a dweller using the skeleton structure of steel, which is the basic skeleton of the dweller, and the dwelling step is combined with the upper floor concrete and the dwelling is in common. Let the beam represent the structural behavior of the beam.
본 발명에 따른 복합거더를 각 구성부재별 자중으로 비교해보면, 전체자중에서 강재의 뼈대구조가 15%, 콘크리트 하현재가 30% 그리고 콘크리트 상부바닥판이 55% 정도의 비중를 각각 차지하며, 교량구조물에 사용될 경우에는 연석 및 포장 등의 추가고정하중 그리고 차량등의 이동하중의 크기는 복합거더자중의 약 30%수준이 된다. 즉, 콘크리트 하현재가 형성되는 단계까지의 연직력은 전체크기의 약 35%정도이며, 이후 공용단계까지 주거더에 추가로 가해지는 연직력은 약 65%로써, 주거더의 전단저항을 통해 연직력을 분담시킬 수 있는 구조가 되면 복부재의 규격을 줄일 수 있게 되며, 이 결과로써 복부재와 상현재 또는 하현재가 만나는 곳에 설치되는 격점의 규모를 크게 감소시킬 수 있게 된다.Comparing the composite girder according to the present invention by the weight of each constituent member, the skeletal structure of the steel is 15%, the concrete lower chord 30% and the concrete top plate 55% of the total weight, respectively, to be used in the bridge structure In this case, the additional fixed load such as curb and pavement and the moving load of the vehicle are about 30% of the composite girder. That is, the vertical force up to the stage where the concrete undercarriage is formed is about 35% of the total size, and the vertical force applied to the housing after the common stage is about 65%, and the vertical force through the shear resistance of the housing If the structure can share the size of the abdominal member can be reduced, and as a result it is possible to greatly reduce the size of the gap installed in the place where the abdominal member and the upper or lower chord meet.
상기의 목적을 달성하기 위하여, 본 발명에 따른 복합거더는 복부에 설치된 개구부 중에서, 복부재만으로 둘러싸인 공간을 제외한 나머지 공간을 두께 150mm내외의 얇은 철근 콘크리트 구조로 채워 보와 동일한 구조거동을 나타내도록 한다.In order to achieve the above object, the composite girder according to the present invention fills the remaining space, except the space surrounded by only the abdominal member of the openings installed in the abdomen with a thin reinforced concrete structure of about 150mm thickness to exhibit the same structural behavior as the beam .
도 1은 본 발명에 따른 복부재 제작을 위한 단위부재의 평면도.1 is a plan view of a unit member for manufacturing the abdominal member according to the present invention.
도 2는 본 발명에 따른 단위부재 제작에 사용되는 부재의 단면도.Figure 2 is a cross-sectional view of the member used for manufacturing the unit member according to the present invention.
도 3은 본 발명에 따른 단위부재의 굽힘가공을 위한 장치개요도.Figure 3 is a schematic view of the apparatus for bending the unit member according to the present invention.
도 4는 본 발명에 따른 강재 뼈대구조의 형상도.Figure 4 is a shape of the steel skeleton structure according to the present invention.
도 5는 본 발명에 따른 강재 뼈대구조의 부재간 힘의 흐름도.5 is a flow chart of the inter-member force of the steel frame structure according to the present invention.
도 6은 본 발명에 따른 단위부재간의 조합으로 제작될 수 있는 강재 뼈대구조의 예시도.Figure 6 is an illustration of a steel skeleton structure that can be produced in combination between unit members according to the present invention.
도 7은 본 발명의 바람직한 제1실시예에 따른 복합거더 시공순서도.Figure 7 is a composite girder construction sequence according to a first embodiment of the present invention.
도 8은 본 발명의 바람직한 제2실시예에 따른 복합거더 시공순서도.8 is a composite girder construction sequence according to a second embodiment of the present invention.
도 9는 본 발명의 바람직한 제3실시예에 따른 복합거더 시공순서도.Figure 9 is a composite girder construction sequence according to a third embodiment of the present invention.
1 : 복부재 제작을 위한 원형 단위부재1: Circular unit member for manufacturing abdominal member
2 : 복부재 제작을 위한 하트형 단위부재2: heart-shaped unit member for manufacturing the abdominal member
3 : 복부재 제작을 위한 부등호형 단위부재3: inequality unit member for manufacturing abdominal member
4 : 복부재 제작을 위한 반원형 단위부재4: Semi-circular unit member for manufacturing abdominal member
5 : 단위부재의 굽힘가공을 위한 고정 클램프5: Fixed clamp for bending the unit member
6 : 고주파 가열장치 7 : 고정로울러6: high frequency heating device 7: fixed roller
8 : 강재 뼈대구조의 상현재 9 : 강재 뼈대구조의 하현재8: Upper current of steel skeleton structure 9: Lower current of steel skeleton structure
10 : 단위부재 연결판 11 : 지점보강판10 unit connection plate 11 point reinforcement plate
12 : 단위부재 하부연결판 13 : 전단연결재12: unit member lower connecting plate 13: shear connector
14 : 콘크리트 하현재 15 : 콘크리트 상부바닥판14: concrete lower current 15: concrete top plate
16 : 복부콘크리트 17 : 고강도 PS강재16: abdominal concrete 17: high-strength PS steel
이하, 본 발명의 내용을 구체적으로 설명하기 위하여 실시예를 나타낸 첨부도면을 참조로 하여 상세히 설명한다. Hereinafter, with reference to the accompanying drawings showing an embodiment in order to explain the contents of the present invention in detail.
도 1은 본 발명에 따른 복부재 제작을 위해 사용되는 단위부재의 형상을 나타낸 것이다. 도 1에 나타낸 것과 같이, 본 발명에 따른 복합거더의 복부재는 소정의 반경(R)으로 굽힘가공된 원형(1), 하트(2), 부등호(3), 그리고 반원(4)의 형상을 갖는 단위부재를 이용해 일정간격으로 다양한 문양을 갖도록 제작된다.Figure 1 shows the shape of the unit member used for manufacturing the abdominal member according to the present invention. As shown in Figure 1, the composite member of the composite girder according to the present invention has the shape of a circle (1), a heart (2), an inequality (3), and a semicircle (4) bent to a predetermined radius (R) It is manufactured to have various patterns at regular intervals using unit members.
도 2는 본 발명에 따른 단위부재에 사용되는 단면형상을 나타낸 것으로써, 굽힘가공에 따른 재료특성의 변화가 최소가 될 수 있는 원형강관, 사각각관 또는 압연형강(H형강, ㄷ형강)의 단면으로 이루어진다.Figure 2 shows the cross-sectional shape used in the unit member according to the present invention, the cross-section of the circular steel pipe, square tube or rolled steel (H-shaped steel, c-shaped steel) that can be minimized the change in material properties according to bending process Is done.
도 3은 본 발명에 따른 단위부재를 제작하기 위한 장치의 개요를 나타낸 것이다. 도 3에 나타낸 것과 같이, 원곡선이 시작되는 곳에 일정한 반경이 유지되도록 하는 고정용 클램프(5)를 부착한 다음, 직선부재가 고정로울러(7)의 앞쪽에 고주파 가열장치(6)를 통과하면서 소정반경(R)을 갖도록 굽힘가공된다. 즉, 고온의 고주파 가열을 통한 굽힘가공을 실시하여, 강재고유의 재료특성 손상을 최소화 할 수 있어 상온에서의 냉간가공에 비해 곡선반경을 2배 이상 작게 할 수 있다.Figure 3 shows an overview of the device for manufacturing a unit member according to the present invention. As shown in FIG. 3, the fixing clamp 5 is attached to maintain the constant radius at the beginning of the curve, and then the linear member passes the high frequency heating device 6 in front of the fixing roller 7. It is bent to have a predetermined radius (R). In other words, by performing bending processing through high-temperature high-frequency heating, it is possible to minimize the damage to the material properties of the steel material, it is possible to reduce the radius of the curve more than two times compared to cold processing at room temperature.
도 4는 본 발명에 따른 단위부재를 이용하여 구현할 수 있는 강재 뼈대구조의 형상을 나타낸 것이다. 본 발명에 따른 단위부재를 사용하여 구현할 수 있는 유사 트러스 구조는 크게 네 가지의 기본형상으로 구분할 수 있다. Figure 4 shows the shape of the steel skeleton structure that can be implemented using a unit member according to the present invention. A similar truss structure that can be implemented using the unit member according to the present invention can be largely divided into four basic shapes.
먼저, 원형의 단위부재(1)를 연결판(10)의 용착을 통해 서로 연결하여 복부재를 형성한 다음, 복부재의 상부와 하부에 각각 상현재(8)와 하현재(9)를 용착시켜 뼈대 구조를 형성시키며, 지점이 위치하는 양쪽단부에는 복부보강판(11)을 부착하도록 함으로써 복부에 원형의 개구부를 갖는 강재 뼈대구조가 제작된다(도4(a)).First, the circular unit member 1 is connected to each other through welding of the connecting plate 10 to form the abdominal member, and then the upper chord 8 and the lower chord 9 are welded to the upper and lower portions of the abdominal member, respectively. A steel skeleton structure having a circular opening in the abdomen is produced by attaching the abdominal reinforcing plate 11 to both ends of the skeleton to form a skeleton structure (Fig. 4 (a)).
복부에 하트형상 문양의 개구부를 갖는 강재 뼈대구조는 하트모양의 단위부재(2)의 곡선가공된 부분을 연결판(10)의 용착을 통해 서로 연결하여 복부재를 형성한 다음, 복부재의 상부는 수평의 직선구간을 따라 상현재(8)와 용착하고, 복부재의 하부는 하트모양의 단위부재(2)를 폐합시키기 위해 용착한 보강판(12)과 하현재(9)를 서로 용착시키는 것을 통해 제작된다(도4(b)).The steel frame structure having a heart-shaped opening in the abdomen forms the abdominal member by connecting the curved portions of the heart-shaped unit member 2 through the welding of the connecting plate 10 to form an abdominal member. The upper chord 8 is welded along the horizontal straight section, and the lower part of the abdominal member is welded to each other by welding the reinforcement plate 12 and the lower chord 9 welded together to close the heart-shaped unit member 2. It is produced (Fig. 4 (b)).
복부에 마름모꼴 문양의 개구부를 갖는 강재 뼈대구조는 부등호 모양의 단위부재(3)의 곡선가공된 부분을 서로 마주보게 배치한 후 연결판(10)의 용착을 통해 서로 연결하여 복부재를 형성한 다음, 복부재의 상부와 하부에 각각 상현재(8)와 하현재(9)를 용착시키는 것을 통해 제작된다(도4(c)).The steel skeleton structure having a rhombic pattern opening in the abdomen is arranged with the curved portions of the unit member 3 of the inequality shape facing each other and then connected to each other by welding of the connecting plate 10 to form a abdominal member. It is produced by welding the upper chord 8 and the lower chord 9 to the upper and lower portions of the abdominal member, respectively (Fig. 4 (c)).
복부에 반원형상 문양의 개구부를 갖는 강재 뼈대구조는 반원 모양의 단위부재(4)의 하단을 용착을 통해 서로 연결하여 복부재를 형성한 다음, 복부재의 상부와 하부에 각각 상현재(8)와 하현재(9)를 용착시키는 것을 통해 제작된다(도4(d)).Steel frame structure having semicircular pattern openings on the abdomen is formed by connecting the lower ends of the semicircular unit members 4 through welding to form abdominal members, and then, respectively, the upper chords 8 and the upper and lower portions of the abdominal members, respectively. It is produced by welding the lower chord 9 (Fig. 4 (d)).
도 5는 본 발명에 따른 강재 뼈대구조의 부재간 힘의 흐름도를 나타낸 것이다. 도 5(a)에 나타낸 것과 같이, 원형의 단위부재를 복부재에 사용할 때에는 외부하중에 의한 연직력은 복부재가 상현재 및 하현재가 만나는 위치에서는 전단력의 형태로 작용하며, 복부재끼리 서로 만나는 복부중앙에서는 연직방향의 축력으로 힘의 방향이 전환되며, 단위부재의 전방과 후방의 연결점에 작용되는 연직축력(V1, V2)의 차이로 인해 단위부재가 연직력의 크기가 작은 쪽으로 회전하려는 거동이 생기게 되며, 이 회전거동을 구속하기 위해 상현재에는 압축력(C1,C2)이 생기고, 하현재에는 인장력(T1,T2)이 각각 생기게 된다. 즉, 종래의 트러스 구조에서는 모든 연직력이 직선의 사재축력에 의해서만 전달되었지만, 본 발명에 따른 원형의 복부구조를 갖는 뼈대구조에서는 고차부정정의 구조저항성이 뛰어난 원구조를 통해 연직력에 저항하는 구조특성을 가진다.Figure 5 shows a flow chart of the inter-member force of the steel skeleton structure according to the present invention. As shown in Fig. 5 (a), when the circular unit member is used for the abdominal member, the vertical force due to external load acts as a shear force at the position where the abdominal member meets the upper chord and the lower chord, and the abdominal members meet each other. In the center, the direction of the force is switched by the axial force in the vertical direction, and the behavior of the unit member to rotate toward the smaller vertical force due to the difference in the vertical axial force (V1, V2) applied to the connection point between the front and rear of the unit member. In order to restrain this rotational behavior, compressive forces C1 and C2 are generated in the upper chord and tensile forces T1 and T2 in the lower chord, respectively. That is, in the conventional truss structure, all the vertical force is transmitted only by the straight yarn axial force, but in the skeleton structure having a circular abdominal structure according to the present invention, the structure resists the vertical force through a circular structure having excellent structural resistance of high order irregularity. Has characteristics.
도 5(b)에 나타낸 것과 같이, 하트형상의 단위부재를 복부재에 사용할 때에는 단위부재간의 연결점을 기준으로 하여 상현재와 하현재측으로 각각의 삼각형의 트러스 구조가 형성되며, 이 결과로써 단위부재 연결점에 가해지는 연직력(V1,V2)은 상하에 위치한 두 트러스 구조로 분담되며, 상부트러스로 전달되는 연직력 성분에 의해 상현재에는 압축력(C1,C2)이 생기고, 하부트러스에 전단되는 연직력 성분에 의해 하현재에는 인장력(T1,T2)이 각각 생기게 된다. 종래의 트러스 구조에서는 사재에 작용하는 축력은 부재 전 길이에 걸쳐 크기와 방향이 항상 일정하게 유지되며, 오직 현재와 만나는 격점구간에서 작용력의 크기와 방향이 변화되는 특성을 가지고 있기에 전체 연직력이 한 격점에만 집중되는 현상이 발생되었지만, 본 발명에 따른 하트형상의 복부구조를 갖는 뼈대구조에서는 하나의 복부재에 작용하는 힘의 크기와 방향을 부재위치에 따라 다르게 달라지도록 할 수 있어 현재와 만나는 격점에 작용되는 연직력의 절대 크기를 감소시킨다. 또한, 연직력이 집중되는 복부재간의 연결점을 상현재와 하현재 사이에 놓이게 함으로써 상현재와 하현재의 전단저항을 통해서도 연직력의 일부가 분담될 수 있도록 하였다.As shown in Fig. 5 (b), when the heart-shaped unit member is used for the abdominal member, a triangular truss structure is formed on the upper and lower chords with respect to the connection point between the unit members, and as a result, the unit member The vertical force (V1, V2) applied to the connection point is divided into two truss structures located at the upper and lower sides, and the vertical force is generated by the vertical force component transmitted to the upper truss. Tensile forces (T1, T2) are generated in the lower chord by the force component, respectively. In the conventional truss structure, the axial force acting on the sand is always kept constant in size and direction over the entire length of the member. Although the phenomenon of concentrating only on the gap point occurred, in the skeleton structure having a heart-shaped abdomen structure according to the present invention, the magnitude and direction of the force acting on one abdominal member can be changed differently according to the position of the gap point that meets the present. Reduces the absolute magnitude of the vertical force acting on it. In addition, the connection point between the abdominal members where the vertical force is concentrated is placed between the upper and lower chords so that a part of the vertical force can be shared through the shear resistance of the upper and lower chords.
도 5(c)에 나타낸 것과 같이, 부등호 형상의 단위부재를 이용하여 마름모꼴 형상의 복부재가 구축될 때에는 복부재간의 연결점을 기준으로 하여 상현재와 하현재측으로 동일한 제원의 두 개의 삼각형의 트러스 구조가 형성되며, 이 결과로써 단위부재 연결점에 가해지는 연직력(V1,V2)은 상하에 위치한 두 트러스 구조에 동등하게 분담되며, 상부트러스로 전달되는 연직력 성분으로 인해 상현재에는 압축력(C1,C2)이 생기고, 하부트러스에 전단되는 연직력 성분으로 인해 하현재에는 인장력(T1,T2)이 각각 생긴다. 즉, 본 발명에 따른 마름모꼴 형상의 복부구조를 갖는 뼈대구조는 종래의 더블와렌트러스 구조와 동일한 구조거동을 나타낸다.As shown in Fig. 5 (c), when a lozenge-shaped abdominal member is constructed by using an inequality unit member, two triangular truss structures having the same specifications as the upper and lower chords are formed on the basis of the connection point between the abdominal members. As a result, the vertical force (V1, V2) applied to the connection point of the unit member is equally distributed between the two truss structures located at the top and bottom, and the compressive force (C1, C2) at the present time due to the vertical force component transmitted to the upper truss. ), And the tension force (T1, T2) is generated in the lower chord due to the vertical force component shearing the lower truss. That is, the skeleton structure having the abdominal structure of the lozenge shape according to the present invention exhibits the same structural behavior as the conventional double warren truss structure.
한편, 도 5(d)에 나타낸 것처럼, 반원형상의 복부재를 갖는 경우에는 상현재에 작용하는 연직하중은 상현재와 복부재가 만나는 위치에서의 집중하중으로 작용되며, 이 집중하중은 복부재의 아치작용을 통해 복부재와 하현재가 만나는 위치에서 수평력과 연직반력으로 전환되는데, 이때의 수평력은 하현재에 인장력(T1,T2)을 유발시키고, 연직반력은 복부재 사이의 직접전단을 통해 인접한 복부재로 전달된다. 한편 하현재에 작용하는 연직하중은 반원의 복부재의 끝단을 지점으로 하는 연속보구조로써 거동하는 하현재의 휨저항을 통해 지점으로 전달되며, 지점으로 전달된 연직력은 복부재의 아치작용을 통해 반원의 정점쪽으로 전달된다. 그리고 이 연직력은 반원의 정점에서 수평력과 전단력으로 각각 변환되는데, 수평력은 상현재의 압축력(C1,C2)을 유발시키고, 전단력(V1,V2)은 복부재의 아치작용을 통해 반대편 복부재의 끝단으로 전달된다.On the other hand, as shown in Fig. 5 (d), in the case of having a semicircular abdominal member, the vertical load acting on the upper chord acts as a concentrated load at the position where the upper chord and the abdominal member meet, and this concentrated load acts as an arch of the abdominal member. The horizontal force and the vertical reaction force are converted at the position where the abdominal member and the lower chord meet, and the horizontal force causes tension (T1, T2) at the lower chord, and the vertical reaction force is applied to the adjacent abdominal cavity through the direct shear between the abdominal members. Delivered. On the other hand, the vertical load acting on the lower chord is transmitted to the point through the bending resistance of the lower chord, which acts as a continuous beam structure with the end of the abdominal member of the semicircle as the point. Is passed toward the vertex of. The vertical force is converted into horizontal force and shear force at the apex of the semicircle, respectively, and the horizontal force causes the compressive force (C1, C2) of the phase current, and the shear force (V1, V2) is applied to the end of the opposite abdomen through the arch action of the abdominal member Delivered.
도 6은 본 발명에 따른 동일 또는 다른 모양의 단위부재를 두 개 이상 조합하여 만든 문양의 복부재를 갖는 강재 뼈대구조의 형상을 나타낸 것이다. Figure 6 shows the shape of the steel skeleton structure having a patterned abdominal member made by combining two or more unit members of the same or different shape according to the present invention.
먼저, 도6(a)에 나타낸 것과 같이, 원형의 단위부재(1)가 연결판(10)을 통해 서로 연결된 복부재에 직각의 내각을 갖는 부등호 형상의 단위부재(3)를 이용하여 원형의 단위부재(1)를 상현재(8)와 하현재(9)를 통해 각각 추가로 연결시켜줌으로써, 원형의 복부재(1)에 생기는 전단력과 모멘트의 크기를 대폭 감소시키고, 더불어 상현재와 하현재에 작용하는 연직하중을 분산시키는 효과를 얻을 수 있다. First, as shown in Fig. 6 (a), the circular unit member 1 is circular by using an unequal unit member 3 having an internal angle at right angles to the abdominal member connected to each other through the connecting plate 10. By further connecting the unit member 1 through the upper chord 8 and the lower chord 9, the shear force and the moment generated in the circular abdominal member 1 are greatly reduced, and the upper chord and the lower chord The effect of dispersing the vertical load currently applied can be obtained.
원형의 단위부재(1)에 생기는 전단력과 모멘트를 감소시킬 수 있는 다른 방안으로는 직각의 내각을 갖는 한쌍의 부등호 형상의 단위부재(3)를 원형의 단위부재(1) 내부에 용착시켜 복부재가 자동차의 휠과 같은 형상이 되도록 한다(도6(b)).Another method to reduce the shear force and the moment generated in the circular unit member 1 is a pair of inequality arc-shaped unit members 3 having a right angled inner shell is welded inside the circular unit member 1 so that the abdominal member It is made to be shaped like a wheel of an automobile (Fig. 6 (b)).
또한, 도6(c)에 나타낸 것과 같이, 한쌍의 하트형상의 단위부재(2)를 수평선에 대해 서로 마주보게 한 다음, 연결판(10)을 용착하여 나비형상의 문양을 갖는 복부재를 갖는 강재 뼈대구조를 만들수 있다.In addition, as shown in Fig. 6 (c), the pair of heart-shaped unit members 2 face each other with respect to the horizontal line, and then the connecting plate 10 is welded to have a butterfly-shaped pattern having a butterfly pattern. Steel skeleton can be made.
한편, 반원형상의 복부재를 갖는 강재 뼈대구조는 복부재 높이가 동일할 때에 다른 문양을 갖는 복부재에 비해 가장 넓은 면적의 개구부를 확보할 수 있다는 장점이 있지만, 반대로 반원형의 복부재에 생기는 전단력과 모멘트의 크기가 다른 형식에 비해 현저히 커지는 단점이 있다. 이러한 단점을 보완하기 위하여 도 6(d)에 나타낸 것과 같이, 반원형 부재(4)의 내부와 외부에 크기가 다른 두 개의 부등호 형상의 단위부재(3)를 추가하여 상현재(8)와 하현재(9)에 연결되는 하중전달경로를 새로이 생성시키면, 반원형 부재에 생기는 전단력과 휨모멘트 크기를 현저히 감소시킬 수 있음과 동시에, 상현재와 하현재에 생기는 휨모멘트도 크게 줄어든다.On the other hand, the steel frame structure having the semicircular abdominal member has the advantage of securing the widest area of opening compared to the abdominal member having other patterns when the abdominal member height is the same. The disadvantage is that the size of the moment is significantly larger than other types. In order to compensate for these disadvantages, as shown in FIG. 6 (d), the upper chord 8 and the lower chord are added by adding two inequality-shaped unit members 3 having different sizes inside and outside the semicircular member 4. When a new load transfer path connected to (9) is generated, the shear force and bending moment magnitude generated in the semicircular member can be significantly reduced, and the bending moments generated in the upper chord and the lower chord are greatly reduced.
도 7은 본 발명의 바람직한 제1실시예에 따른 복합거더 시공순서를 나타낸 것이다. 본 발명에 따른 복합거더는 거더형성전의 자중을 포함한 시공하중을 별도의 지보시설에 의해 지지되는 가설공법이 적용되는 경우에는 복부재만으로 구성된 강재 뼈대구조만을 이용해 제작될 수 있다. 먼저, 도7(a)에 나타낸 것처럼, 콘크리트와의 결합을 위해 전단연결재(13)를 구비한 복부재(4)를 연결판(12)을 통해 연결하고, 그런 다음 도7(b)에 나타낸 것처럼, 복부재(4)를 콘크리트 하현재(14)와 콘크리트 상부바닥판(15)와 결합시키고, 콘크리트 상부바닥판(15)과 복부재(4) 사이의 공간을 복부콘크리트(16)로 충진시켜 보(beam)의 구조거동을 하는 복합거더를 제작한다. 이때, 외부하중으로 인해 인장응력이 생기는 콘크리트 하현재는 콘크리트 내부에 매입된 고강도 PS강재(17)를 이용하여 선행압축력(P)을 도입시킨다.Figure 7 shows a composite girder construction sequence according to a first embodiment of the present invention. Composite girder according to the present invention can be manufactured using only the steel skeleton structure consisting of only the abdominal member when the construction method including the self-weight before the girder is supported by a separate support facility is applied. First, as shown in Fig. 7 (a), the connecting member 4 having the shear connector 13 is connected through the connecting plate 12 to be bonded with concrete, and then shown in Fig. 7 (b). As shown, the abdominal member 4 is coupled with the concrete lower chord 14 and the concrete upper base plate 15, and the space between the concrete upper base plate 15 and the abdominal member 4 is filled with the abdominal concrete 16. To make a composite girder that performs the structural behavior of the beam. At this time, the concrete lower chord due to the external load is introduced by using the high-strength PS steel material 17 embedded in the concrete, the preceding compression force (P) is introduced.
도 8은 본 발명의 바람직한 제2실시예에 따른 복합거더 시공순서를 나타낸 것이다. 본 발명에 따른 복합거더는 합성전 주거더를 크레인에 의한 일괄거치가 가능한 가설여건을 갖는 경우에는 복부재와 상현재만으로 구성되는 강재 뼈대구조만을 이용해 제작될 수 있다. 먼저, 도 8(a)에 나타낸 것처럼, 소정형상의 단위부재(2)에 연결판(10,12)을 용착해 복부재를 형성하고, 복부재와 콘크리트 바닥판과의 결합을 위해 전단연결재(13)가 구비된 강재의 상현재(종방향보, 8)와 복부재를 용착시켜 강재 뼈대구조를 제작한다. 다음으로, 도 8(b)에 나타낸 것처럼, 별도로 조성된 지상의 공간에서 강재 뼈대구조를 내부에 매입된 고강도 PS강재(17)를 이용하여 선행압축력(P)을 도입시킨 콘크리트 하현재(14)와 복부콘크리트(16)를 결합시켜 복합주거더를 제작한다. 그런 다음, 제작된 주거더를 크레인을 이용해 교각이나 기둥위에 거치하고, 거치된 주거더와 콘크리트 상부바닥판(15)을 합성시켜 복합거더를 완성한다(도 8(c)).8 shows a construction procedure of a composite girder according to a second preferred embodiment of the present invention. The composite girder according to the present invention may be manufactured using only a steel skeleton structure composed of only the abdominal member and the upper chord when the composite girder has a temporary condition in which the bulkhead can be placed by a crane before synthesis. First, as shown in FIG. 8 (a), the connecting plates 10 and 12 are welded to the unit member 2 of a predetermined shape to form a plurality of members, and a shear connecting member (c) is used to couple the members to the concrete floor plate. 13) weld the upper chord (longitudinal beam, 8) of the steel material and the abdominal member to produce a steel skeleton structure. Next, as shown in FIG. 8 (b), the concrete lower chord 14 which introduces the precompression force P using the high-strength PS steel 17 embedded therein in the ground space separately formed therein. Combining the abdominal concrete (16) to produce a composite girder. Then, the manufactured housing girders are mounted on the pier or pillar using a crane, and the mounted housing girders and the concrete upper plate 15 are synthesized to complete the composite girders (FIG. 8 (c)).
도 9는 본 발명의 바람직한 제3실시예에 따른 복합거더 시공순서를 나타낸 것이다. 본 발명에 따른 복합거더는 경간장이 매우 길거나 또는 대형크레인의 사용이 어려워, 도 8에 나타낸 것과 같은 시공순서로 가설하지 못할 경우에는 강재 뼈대구조만으로 외적하중에 대한 저항이 가능하도록 복부재, 상현재 그리고 하현재를 모두 구비하도록 한다. 먼저, 도 9(a)에 나타낸 것처럼, 소정형상의 단위부재(1)에 연결판(10)을 용착해 복부재를 형성하고, 복부재와 콘크리트 바닥판과의 결합을 위해 전단연결재(13)가 구비된 강재의 상현재(종방향보, 8)와 하현재(종방향보, 9)를 각각 복부재에 용착시켜 강재 뼈대구조를 제작한다. 다음으로, 도 10(b)에 나타낸 것처럼, 강재 뼈대구조를 크레인을 이용해 교각이나 기둥위에 거치하여 콘크리트 하현재(14)와 결합하고, 콘크리트 하현재(14)에 매입된 고강도 PS강재(17)를 이용하여 선행압축력(P)을 도입시킨다. 그런 다음, 도 10(c)에 나타낸 것처럼, 강재 뼈대구조의 상현재(9)와 콘크리트 상부바닥판(15)을 합성시키고, 강재 뼈대구조의 복부재(1)와 콘크리트 하현재 및 콘크리트 상부바닥판으로 둘러싸인 빈공간을 복부콘크리트(16)로 충진하여 복합거더를 완성한다.9 shows a construction procedure of a composite girder according to a third preferred embodiment of the present invention. The composite girder according to the present invention has a long span or difficult to use large cranes, and if it is not possible to install it in the construction sequence as shown in FIG. And all of the lower chords are to be provided. First, as shown in FIG. 9 (a), the connecting plate 10 is welded to a predetermined shape of the unit member 1 to form a plurality of members, and the shear connecting member 13 for the coupling between the member and the concrete bottom plate. Top chord (long beam, 8) and bottom chord (long beam, 9) are welded to the abdominal member, respectively, to fabricate the steel skeleton structure. Next, as shown in FIG. 10 (b), the steel frame structure is mounted on a pier or column using a crane, coupled to the concrete lower chord 14, and the high-strength PS steel 17 embedded in the concrete lower chord 14. Introduce the preceding compression force (P) using. Then, as shown in FIG. 10 (c), the upper chord 9 of the steel frame structure and the concrete upper plate 15 are synthesized, and the abdominal member 1 of the steel frame structure, the concrete lower chord and the concrete upper floor are synthesized. Filling the empty space surrounded by the plate with the abdominal concrete (16) to complete the composite girder.
이상에서 설명된 본 발명에 따른 실시예들은 여러가지 형태로 변형될 수 있으며, 본 발명의 범위가 앞에서 설명된 실시예에 한정되는 것으로 해석되어서는 아니된다. 또한, 본 발명의 실시예를 설명하기 위하여 사용된 용어들은 본 발명을 설명하기 위한 목적으로 사용된 것이지 의미의 한정이나 특허청구범위에 기재된 본 발명의 범위를 제한하기 위해 사용된 것이 아니다.Embodiments according to the present invention described above may be modified in various forms, the scope of the present invention should not be construed as being limited to the embodiments described above. In addition, the terms used to describe the embodiments of the present invention are used for the purpose of describing the present invention and are not used to limit the scope of the present invention as defined in the claims or the claims.
본 발명에 따른 복합거더의 주요 효과는 다음과 같다.The main effects of the composite girder according to the present invention are as follows.
첫째로, 복부재와 상현재 또는 하현재가 서로 만나는 곳의 격점구조를 간소화할 수 있어 시공성과 유지관리성이 크게 향상된다.First, it is possible to simplify the gap structure where the abdominal member and the upper chord or lower chord meet each other, thereby greatly improving workability and maintainability.
둘째로, 복부재에 가해지는 축력의 절대크기가 줄어들어 장경간의 구조에 사용될 때에도 사용되는 복부재의 규격을 2내지 3종류 이하로 할 수 있어 제품구입이 용이해지고, 강부재의 제작효율도 많이 향상된다.Secondly, the absolute magnitude of the axial force applied to the abdominal member is reduced, so that the specification of the abdominal member used even when used in the structure of the long span can be 2 to 3 or less, so that the product can be easily purchased and the production efficiency of the steel member is also improved. .
셋째로, 복부공간에 다양한 형상의 패턴을 가지게 됨으로써 새로운 감각을 느낄 수 있는 미관성이 우수한 합성거더구조를 건설할 수 있다.Third, by having a pattern of various shapes in the abdominal space it is possible to build a composite girder structure excellent in aesthetics to feel a new sense.
넷째로, 트러스 구조와 보구조의 장점 그리고 강재와 콘크리트가 지니고 있는 장점들을 시공조건과 시공단계에 따라 적절히 조합할 수 있어 경제성과 시공성을 동시에 만족하는 합성거더구조의 건설이 가능해진다. Fourthly, the advantages of truss structure and beam structure, and the advantages of steel and concrete can be properly combined according to the construction conditions and construction stages, thus enabling the construction of a composite girder structure that satisfies the economics and the constructability at the same time.

Claims (6)

  1. 굽힘가공을 통해 각각 제작된 소정형상의 강부재를 나란히 연결하여 형성된 복부재를 갖는 강재의 뼈대구조를 가지고, It has a skeleton structure of steel having a double member formed by connecting the steel members of a predetermined shape side by side through the bending process,
    상기 뼈대구조의 하부는 선행압축력이 도입된 콘크리트 하현재와 결합되며, 상기 뼈대구조의 상부는 콘크리트 상부바닥판과 결합되고, 상기 뼈대구조의 복부재와 콘크리트 하현재 및, 뼈대구조의 복부재와 콘크리트 상부바닥판으로 둘러싸인 각각의 복부공간이 콘크리트로 채워지며, 최종적으로는 보(beam)로써의 구조거동을 하는 것을 특징으로 하는 복합거더.The lower part of the skeleton structure is coupled with the concrete lower chord introduced by the preceding compression force, the upper part of the skeleton structure is coupled with the concrete upper plate, the abdominal member and the concrete lower chord of the skeleton structure, and the abdominal member of the skeleton structure and Each abdominal space surrounded by a concrete top plate is filled with concrete, and finally a composite girder characterized in that the structural behavior as a beam (beam).
  2. 제1항에 있어서,The method of claim 1,
    상기 강재 뼈대구조의 복부재가 원형 또는 하트형상 또는 부등호형상 또는 반원형으로 제작된 동일 형상의 단위부재들만으로 형성되는 연속된 문양을 구비하도록 하는 것을 특징으로 하는 복합거더.The composite girder, characterized in that the steel member has a continuous pattern formed of only the unit member of the same shape made of circular or heart-shaped or inequality or semi-circular shape.
  3. 제1항에 있어서,The method of claim 1,
    상기 강재 뼈대구조의 복부재가 원형, 하트형상, 부등호형상 및, 반원형 중 적어도 두 개의 형상으로 제작된 단위부재들을 서로 조합하여 형성되는 연속된 문양을 구비하는 것을 특징으로 하는 복합거더.The composite girder, characterized in that the steel member has a continuous pattern formed by combining the unit members made of at least two of the circular, heart-shaped, inequality arc-shaped, and semi-circular shape.
  4. 제1항에 있어서,The method of claim 1,
    상기 강재 뼈대구조가 원형 또는 하트형상 또는 부등호형상 또는 반원형으로 제작된 단위부재들로 형성된 복부재만으로 구성되는 것을 특징으로 하는 복합거더.Composite steel girder, characterized in that the steel frame structure is composed of only a plurality of members formed of unit members manufactured in the shape of a circle or heart or inequality or semicircle.
  5. 제1항에 있어서,The method of claim 1,
    상기 강재 뼈대구조는 원형 또는 하트형상 또는 부등호형상 또는 반원형으로 제작된 단위부재들로 형성된 복부재와, 콘크리트 바닥판과의 합성거동을 위한 전단연결재가 용착된 종방향보를 복부재의 상부에 구비하는 것을 특징으로 하는 복합거더.The steel frame structure is provided with a longitudinal member on the upper part of the abdominal member formed of unit members made of circular or heart-shaped or inequality or semi-circular shape, and a longitudinal beam welded with a shear connector for the composite behavior with the concrete deck. The composite girder characterized by the above.
  6. 제1항에 있어서, The method of claim 1,
    상기 강재 뼈대구조는 원형 또는 하트형상 또는 부등호형상 또는 반원형으로 제작된 단위부재들로 형성된 복부재와 콘크리트 부재와의 합성거동을 위한 전단연결재가 용착된 종방향보를 복부재의 상부와 하부에 각각 구비하도록 하여 외적하중에 독립적으로 저항할 수 있도록 하는 것을 특징으로 하는 복합거더.The steel frame structure is provided with a longitudinal beam on the upper and lower portions of the abdominal member, in which a longitudinal connecting member for welding the composite member and the concrete member formed of unit members manufactured in a circular or heart shape or an inequality or semi-circular shape is welded. Composite girders characterized in that to independently resist the external load.
PCT/KR2013/001464 2012-04-15 2013-02-25 The composite girder having web members with various patterns WO2013157732A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380020174.8A CN104246074B (en) 2012-04-15 2013-02-25 Soffit of girder material has the composite beam of the decorative pattern of variform
JP2015504474A JP6010215B2 (en) 2012-04-15 2013-02-25 Composite girders with abdominal members with various patterns

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0038850 2012-04-15
KR1020120038850A KR101406938B1 (en) 2012-04-15 2012-04-15 The composite girder with various pattern as web members

Publications (1)

Publication Number Publication Date
WO2013157732A1 true WO2013157732A1 (en) 2013-10-24

Family

ID=46270376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/001464 WO2013157732A1 (en) 2012-04-15 2013-02-25 The composite girder having web members with various patterns

Country Status (4)

Country Link
JP (1) JP6010215B2 (en)
KR (1) KR101406938B1 (en)
CN (1) CN104246074B (en)
WO (1) WO2013157732A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109056494A (en) * 2018-09-25 2018-12-21 中铁二院工程集团有限责任公司 A kind of ultra-wide cross-sectional configuration suitable for double track railway deck type steel truss girder

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104563390A (en) * 2015-01-21 2015-04-29 广东工业大学 FRP (fiber reinforce plastic) tube-concrete-multiple steel tube hollow combined single-box or multi-box multi-compartment beam
CN107503278A (en) * 2017-09-08 2017-12-22 上海市政工程设计研究总院(集团)有限公司 A kind of truss-like steel box-girder diaphragm plate
KR102027514B1 (en) * 2019-02-07 2019-10-01 동아이엔지(주) Soundproof tunnel and construction method thereof
JP7356121B2 (en) * 2019-03-11 2023-10-04 株式会社フジショウ Column beam structure
CN110094148A (en) * 2019-06-06 2019-08-06 重庆华厦钢结构有限公司 A kind of the people's air defense door leaf and manufacturing method of geometric form composite construction
KR102564471B1 (en) * 2021-08-14 2023-08-07 (주)지아이에프 Composite lattice girder bridge assembled in warren truss shapes
KR102501993B1 (en) * 2022-03-30 2023-02-21 이룸토건 주식회사 H-beam with reinforcement structure
CN114856082B (en) * 2022-06-14 2024-03-22 江苏华江祥瑞现代建筑发展有限公司 Assembled prestressing force composite web composite beam
KR102591934B1 (en) * 2022-09-14 2023-10-23 (주)삼현비앤이 Upper structure of complex type bridge

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR830002114A (en) * 1978-12-16 1983-05-21 월터 시바첸코 유진 Lightweight modular truss bridge
KR100623996B1 (en) * 2006-04-12 2006-09-15 씨티씨 주식회사 Bridge construction method using truss-web girder with reinforced support
KR20060115698A (en) * 2006-10-20 2006-11-09 원대연 Composite truss girder with multi-composite concept and improved structural performance at the junction
KR100694805B1 (en) * 2004-09-25 2007-03-13 아주대학교산학협력단 Hollow prestressed concrete HPC girder and spliced hollow prestressed concrete girder s-HPC bridge construction method

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5225016B2 (en) * 1973-04-28 1977-07-05
JPS5237459Y2 (en) * 1973-10-29 1977-08-26
US4120065A (en) * 1977-12-15 1978-10-17 Eugene W. Sivachenko Lightweight modular, truss-deck bridge system
YU42329B (en) * 1979-04-12 1988-08-31 Westinghouse Electric Corp Decontamination method
US6170105B1 (en) * 1999-04-29 2001-01-09 Composite Deck Solutions, Llc Composite deck system and method of construction
KR100423757B1 (en) * 2001-05-04 2004-03-22 원대연 Prestressed composite truss girder and construction method of the same
JP4697834B2 (en) * 2001-05-16 2011-06-08 五洋建設株式会社 Precast concrete board, method for producing the same, and method for constructing slab
JP4087750B2 (en) * 2003-05-27 2008-05-21 小林 博 Framework composition and connecting means thereof
KR20060025385A (en) * 2004-09-16 2006-03-21 주식회사 브레인알앤디 Strong girder with simultaneous movement
CN100526559C (en) * 2007-02-14 2009-08-12 中铁大桥勘测设计院有限公司 Three plates or multiple plates truss structure main girder
KR100784885B1 (en) * 2007-02-16 2007-12-14 현대건설주식회사 Composite girder with steel truss web having hinge connecting, and connection structure thereof
KR20120031626A (en) * 2010-09-27 2012-04-04 권오근 Web steel pipe truss i-beam and construction method of the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR830002114A (en) * 1978-12-16 1983-05-21 월터 시바첸코 유진 Lightweight modular truss bridge
KR100694805B1 (en) * 2004-09-25 2007-03-13 아주대학교산학협력단 Hollow prestressed concrete HPC girder and spliced hollow prestressed concrete girder s-HPC bridge construction method
KR100623996B1 (en) * 2006-04-12 2006-09-15 씨티씨 주식회사 Bridge construction method using truss-web girder with reinforced support
KR20060115698A (en) * 2006-10-20 2006-11-09 원대연 Composite truss girder with multi-composite concept and improved structural performance at the junction

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109056494A (en) * 2018-09-25 2018-12-21 中铁二院工程集团有限责任公司 A kind of ultra-wide cross-sectional configuration suitable for double track railway deck type steel truss girder

Also Published As

Publication number Publication date
JP6010215B2 (en) 2016-10-19
JP2015514172A (en) 2015-05-18
CN104246074B (en) 2016-06-15
KR20120054578A (en) 2012-05-30
CN104246074A (en) 2014-12-24
KR101406938B1 (en) 2014-06-12

Similar Documents

Publication Publication Date Title
WO2013157732A1 (en) The composite girder having web members with various patterns
KR101229472B1 (en) Steel pipe girder for bridge
WO2012099346A2 (en) Truss structure using a material having a pi-shaped cross-section as an upper chord
WO2012008677A2 (en) Composite girder for bridge construction
CN107841934B (en) Wing-spreading arch cable-stayed bridge
KR100964067B1 (en) Steel girder for bridge and manufacturing method thereof
WO2012053730A1 (en) Truss structure corresponding to the second moment of a support part and a production method for the same, and a truss bridge using the truss structure corresponding to the second moment of the support part and a method for constructing the same
CN113882238A (en) Large-span deck cable-auxiliary beam arch combined rigid frame bridge and construction method thereof
KR101272278B1 (en) Truss-arch type composite bridge
CN112459316B (en) Vertical long cantilever truss structure for spiral ascending type curtain wall support and application
CN102444270A (en) Sleeve joint oblique key type support bracket
KR20120050940A (en) Constrution method of prestressed composite truss girder with internal hinge structure
CN104929242A (en) Hollow core tube structure system of high-rise building frame
CN104847016A (en) Suspending transfer layer of stayed cable beam
CN204715526U (en) A kind of frame hollow core wall structure system of highrise building
JP5506001B2 (en) Abdomen of composite truss girder bridge and joint connection structure of composite truss girder bridge using the same
CN217298606U (en) Mid-span shaftless force connecting device of ground anchor type cable-stayed bridge
CN104894984A (en) Rigid frame bridge reinforcement method by adopting reverse suspension bridge structure system
CN101949209B (en) Supporting platform for sealing large-span building roofs
KR20190041276A (en) Thrust Structure Using Double Steel Tube and Construction Method Therefor
CN110670475A (en) Arch structure with mixed reinforced concrete plate girders
CN106192716A (en) Laemodipodiform steel tubular type broken line arch bridge
KR20140017689A (en) The composite girder with various pattern as web members
CN211285219U (en) Arch structure with mixed reinforced concrete plate girders
CN210596971U (en) Light steel pedestrian truss bridge structure based on cable reinforcing system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13778913

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015504474

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13778913

Country of ref document: EP

Kind code of ref document: A1