WO2013157387A1 - Rectifier and rectifying system - Google Patents

Rectifier and rectifying system Download PDF

Info

Publication number
WO2013157387A1
WO2013157387A1 PCT/JP2013/060094 JP2013060094W WO2013157387A1 WO 2013157387 A1 WO2013157387 A1 WO 2013157387A1 JP 2013060094 W JP2013060094 W JP 2013060094W WO 2013157387 A1 WO2013157387 A1 WO 2013157387A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
switching pattern
current
rectifier
switching
Prior art date
Application number
PCT/JP2013/060094
Other languages
French (fr)
Japanese (ja)
Inventor
正樹 金森
裕行 梁瀬
Original Assignee
東芝キヤリア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝キヤリア株式会社 filed Critical 東芝キヤリア株式会社
Priority to JP2014511160A priority Critical patent/JP5802828B2/en
Priority to CN201380020390.2A priority patent/CN104247243B/en
Priority to KR1020147028838A priority patent/KR101702200B1/en
Publication of WO2013157387A1 publication Critical patent/WO2013157387A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4241Arrangements for improving power factor of AC input using a resonant converter
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/23Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only arranged for operation in parallel

Definitions

  • Embodiments of the present invention relate to a rectifier and a rectifier system that convert an AC voltage into a DC voltage.
  • a rectifier circuit that rectifies the voltage of a three-phase AC power source and converts it into a DC voltage has three series circuits in which a pair of diodes are connected in series, and the interconnection point of each diode in these series circuits is a three-phase AC Connected to each phase of the power supply.
  • a smoothing capacitor is connected to the output terminal of the rectifier circuit, and a load is connected to the smoothing capacitor.
  • the three-phase AC power supply voltage is composed of three phase voltages whose phases are different from each other by 120 °. With these phase voltages, a current flows through the positive diode of each series circuit to the smoothing capacitor, and from the smoothing capacitor to each series circuit. Current flows through each negative diode.
  • a reactor is provided on the input side and a plurality of switches for forming a short circuit for these reactors are connected.
  • a three-phase harmonic reduction circuit that follows the sine wave of the input current waveform by switching these switches at an appropriate timing is employed (for example, described in JP 2010-233292 A).
  • a switching pattern corresponding to the value of the input current is first selected, the switch is turned on / off based on the selected switching pattern, and then the selected switching pattern is sequentially increased in a direction in which the power factor improves. While correcting, the switch is turned on / off based on the corrected switching pattern.
  • the correction of the switching pattern cannot catch up with the fluctuation, and a sufficient effect as power factor improvement and harmonic suppression may not be obtained.
  • An object of an embodiment of the present invention is to enable switching corresponding to a rapid change even when the value of an input current greatly fluctuates, and thereby a rectifier and a rectifier that can obtain sufficient effects as power factor improvement and harmonic suppression Is to provide a system.
  • a rectifier includes a rectifier circuit that rectifies the voltage of an AC power supply, a reactor provided between the connection of the AC power supply and the rectifier circuit, and a short circuit to the AC power supply through the reactor and the rectifier circuit.
  • a switching element for forming a path, a detecting means for detecting an input current from the AC power supply, a detecting means for detecting a power factor, and a control means are provided.
  • the control means selects a switching pattern for intermittently turning on the switching element in a predetermined phase of the voltage of the AC power supply according to the detection current of the detection means, and the switching based on the selected switching pattern
  • the device is turned on and off, and then the selected switching pattern is sequentially corrected in a direction in which the detection power factor of the detection means improves, and the switching device is turned on and off based on the switching pattern for each correction. Then, the difference between the switching pattern for each correction and the switching pattern at the time of selection is obtained. If the obtained difference is less than a predetermined value, the correction is continued, and if it is greater than the predetermined value, the selection is returned to the selection.
  • FIG. 1 A first embodiment of the present invention will be described below with reference to the drawings.
  • a plurality of, for example, three rectifiers (three-phase rectifiers) 10 are connected to the R, S, and T phases of a three-phase AC power source 1.
  • the output terminals of these rectifiers 10 are commonly connected to the smoothing capacitor 70.
  • the voltage generated in the smoothing capacitor 70 is supplied to the load 2.
  • the load 2 is, for example, an inverter device for driving a motor.
  • the rectifiers 10 are connected in parallel to each other and are connected to each other via a communication line.
  • the number of rectifiers 10 corresponding to the capacity of the load 2 can be increased as appropriate.
  • the rectifier 10 and the smoothing capacitor 70 constitute a rectifier system.
  • the rectifier 10 includes a rectifier circuit (three-phase rectifier circuit) 20 connected to the three-phase AC power source 1, and reactors 11, 12, 13 provided in connection lines between the rectifier circuit 20 and the three-phase AC power source 1.
  • the zero cross detection circuits 41, 42, 43 and current sensors 51, 52, 53 and the output voltage of the rectifier circuit 20 provided in the connection line between the reactors 11, 12, 13 and the three-phase AC power supply 1 are detected. It has a voltage detection circuit 47, a current detection circuit 48 that detects an output current of the rectifier circuit 20, a control unit 60, a memory (storage means) 61, and a communication unit 62.
  • the rectifier circuit 20 includes an R-phase series circuit in which a positive diode 21 and a negative diode 22 are connected in series, an S-phase series circuit in which a positive diode 23 and a negative diode 24 are connected in series, and a positive diode 25 and a negative side. It has a T-phase series circuit in which diodes 26 are connected in series.
  • An interconnection point between the positive side diode 21 and the negative side diode 22 is connected to the R phase of the three-phase AC power supply 1.
  • An interconnection point between the positive side diode 23 and the negative side diode 24 is connected to the S phase of the three-phase AC power supply 1.
  • An interconnection point between the positive side diode 25 and the negative side diode 26 is connected to the T phase of the three-phase AC power supply 1. That is, the rectifier circuit 20 converts the three-phase AC voltage of the three-phase AC power source 1 into a DC voltage and outputs it from the positive output terminal (+) and the negative output terminal ( ⁇ ). Switching elements such as MOSFETs 31, 32, 33, 34, 35, and 36 are connected in parallel to the positive side diodes 21, 23, 25 and the negative side diode diodes 22, 24, 26 of the rectifier circuit 20, respectively.
  • the MOSFETs 31, 32, 33, 34, 35, and 36 have parasitic diodes therein, so that these parasitic diodes are directly used as the positive side diodes 21, 23, 25 and the negative side. Used as diode diodes 22, 24, 26.
  • the switching element is not a MOSFET but a transistor or IGBT, it is necessary to prepare positive side diodes 21, 23, 25 and negative side diode diodes 22, 24, 26 separately from the switching element.
  • the zero cross detection circuit 41 detects the zero cross point of the R-phase input voltage from the three-phase AC power supply 1.
  • the zero cross detection circuit 42 detects the zero cross point of the S phase input voltage from the three-phase AC power supply 1.
  • the zero cross detection circuit 43 detects the zero cross point of the T-phase input voltage from the three-phase AC power supply 1.
  • the current sensor 51 detects the value of the R-phase input current from the three-phase AC power source 1.
  • the current sensor 52 detects the value of the S-phase input current from the three-phase AC power supply 1.
  • the current sensor 53 detects the value of the T-phase input current from the three-phase AC power supply 1.
  • three zero cross detection circuits 41, 42, 43 and three current sensors 51, 52, 53 are provided to accurately detect the zero cross point of each phase input voltage and the current value of each phase input current.
  • One of the zero cross points of each phase input voltage can be detected from the phase shift of the input voltage of the two phases, and one of the values of each phase input current is calculated from the value of the input current of the two phases Since it can be obtained, two zero cross detection circuits and two current sensors may be provided. The number of parts and the cost can be reduced.
  • the communication unit 62 performs mutual data communication with the communication unit 62 of the other rectifier 10 via a communication line.
  • the memory 61 stores a plurality of switching pattern data for on / off driving of the MOSFETs 31, 32, 33, 34, 35, and 36. These switching pattern data are for intermittently turning on each MOSFET on at least the leading edge side of the phase where each phase input voltage from the three-phase AC power supply 1 is at a positive level and at least the leading edge side of the phase where it is at a negative level.
  • the ON timing and OFF timing are sequentially determined as the phase progresses.
  • These switching pattern data are respectively associated with the value (effective value) of each phase input current from the three-phase AC power source 1.
  • the leading edge side means the rising and falling portions of each phase input voltage from 0V, specifically, the range of 0 ° to 60 ° and the range of 180 ° to 240 ° of the waveform of each phase input voltage. Means.
  • the leading edge side of the phase at which each phase input voltage is at the positive level is from the zero crossing point to the next zero crossing point of the R phase input voltage, S phase input voltage, and T phase input voltage.
  • periods Rx1, Sx1, and Tx1 with the forward electrical angles of 0 ° to 60 °.
  • the leading edge side of the phase that is the negative level of each phase input voltage has an electrical angle of 180 ° to 360 ° from the zero cross point to the next zero cross point of the R phase input voltage, S phase input voltage, and T phase input voltage.
  • periods Ry1, Sy1, and Ty1 with a forward electrical angle of 180 ° to 240 ° are examples of intermittently turning on means repeating on and off at a predetermined time interval.
  • the control unit 60 has the following control means (1) to (4) as main functions.
  • the MOSFETs 31 to 36 are turned on and off based on the above, and then the switching patterns data selected above are sequentially corrected in a direction in which the power factor is improved, and the MOSFETs 31 to 36 are turned on based on the corrected switching pattern data.
  • the difference between each switching pattern for each correction and each switching pattern at the time of the selection is obtained. If the obtained difference is less than a predetermined value, the correction is continued.
  • First control means for returning to the above selection if the value is greater than or equal to the value.
  • the difference between each switching pattern data for each correction and each switching pattern data at the time of selection is, for example, a difference in time width of on data at the same timing.
  • the detection current of the current detection circuit 48 (the output current of the rectification circuit 20) in all the rectification devices 10 including the rectification device 10 is grasped by data communication of the communication unit 62, and any detection current is determined in advance.
  • the operation will be described.
  • a current flows from the three-phase AC power source 1 through the reactor 11 and the positive diode 21 to the smoothing capacitor 70, and the current passing through the smoothing capacitor 70 is the negative diode 24 first.
  • the reactor 12 returns to the S phase of the three-phase AC power supply 1, and then the path returning to the T phase of the three-phase AC power supply 1 through the negative diode 26 and the reactor 13 is formed as the phase of the R phase advances. Is done.
  • the MOSFET 32 is intermittently turned on in the period Rx1 of 0 ° to 60 ° on the leading edge side of the phase where the R-phase input voltage becomes a positive level.
  • the interconnection point of the diodes 21 and 22 is electrically connected to the negative output terminal of the rectifier circuit 20, and as shown by an arrow in FIG. 1, the reactor 11, the MOSFET 32, and the negative diode are connected to the three-phase AC power source 1. 24, a short circuit is formed through the reactor 12.
  • the MOSFET 34 is intermittently turned on in a period Sx1 of 0 ° to 60 ° on the leading edge side of the phase where the S-phase input voltage is at a positive level.
  • the interconnection point of the diodes 23 and 24 is electrically connected to the negative output terminal of the rectifier circuit 20, and the short-circuit path through the reactor 12, the MOSFET 34, the negative diode 26, and the reactor 13 with respect to the three-phase AC power supply 1. Is formed.
  • a current flows from the three-phase AC power source 1 through the reactor 13 and the positive diode 25 to the smoothing capacitor 70, and the current passing through the smoothing capacitor 70 is firstly the negative diode 22.
  • the reactor 11 returns to the R phase of the three-phase AC power source 1, and then the path returns to the S phase of the three-phase AC power source 1 through the negative diode 24 and the reactor 12 as the phase of the T phase advances. Is done.
  • the MOSFET 36 is intermittently turned on in a period Tx1 of 0 ° to 60 ° on the leading edge side of the phase where the T-phase input voltage is at a positive level.
  • the interconnection point between the diodes 25 and 26 is electrically connected to the negative output terminal of the rectifier circuit 20, and the short-circuit path through the reactor 13, the MOSFET 36, the negative diode 22, and the reactor 11 with respect to the three-phase AC power supply 1. Is formed.
  • the MOSFETs 31, 33, and 35 connected in parallel with the positive diodes 21, 23, and 25 are intermittent. Turn on. About the operation
  • the MOSFETs 32, 34, and 36 of the rectifier circuit 20 are intermittently turned on in the leading edge periods Rx1, Sx1, and Tx1 of the phase in which the R-phase input voltage, the S-phase input voltage, and the T-phase input voltage are positive levels.
  • the MOSFETs 31, 33, and 35 of the rectifier circuit 20 are intermittently turned on in the leading edge side periods Ry1, Sy1, and Ty1 of the phase in which the R-phase input voltage, the S-phase input voltage, and the T-phase input voltage become negative levels.
  • the waveform of the input current to the device 10 can be approximated to a sine wave with good followability. Thereby, while a power factor improves, the harmonic current contained in the input current to the rectifier 10 can be suppressed.
  • the period Rx1, Sx1, Tx1, Ry1, Sy1, Ty1 of the leading edge side where the MOSFET is intermittently turned on is affected by the ON / OFF control of one phase on the current waveforms of the other two phases. It hits the rise of each phase in a short period. Therefore, by selecting this period, a large harmonic current reduction effect can be obtained with a small number of switching operations. In addition, the number of times of switching can be reduced and switching noise can be reduced as compared with the case of switching at a high frequency in all phases.
  • the switching pattern data corresponding to the value (effective value) of each phase input current detected by the current sensors 51 to 53 is stored in the memory 61.
  • the MOSFETs 31 to 36 are turned on and off based on the selected switching pattern data (step 102).
  • the switching pattern data corresponding to the effective value of the input current stored in the memory 61 is experimentally set assuming an operating state of a specific load. For this reason, during actual operation, the stored switching pattern data may not be an optimum value from the viewpoint of power factor improvement and harmonic reduction due to the influence of temperature, load fluctuation and the like. Therefore, even if the execution values are the same, it is possible to obtain harmonics and improve the power factor by shifting the switching pattern. In order to realize this, the switching pattern is corrected in step 103 and later described later.
  • each phase input voltage and each phase input current based on the zero cross point of each phase input voltage detected by the zero cross detection circuits 41 to 43 and the value of each phase input current detected by the current sensors 51 to 53.
  • the amount of deviation of the power factor cos ⁇ is obtained by integrating the power factor cos ⁇ based on the phase difference ⁇ and the value of each phase input current (step 103).
  • the switching pattern data selected first is sequentially corrected in a direction in which the obtained deviation amount of the power factor cos ⁇ is reduced, that is, in a direction in which the power factor is improved (step 104).
  • the difference between the switching pattern data for each correction and the initially selected switching pattern data is obtained (step 105), and the difference is compared with the set value (step 106).
  • Step 107 If the obtained difference is less than the set value (NO in step 106), it is then determined whether or not the value (effective value) of each phase input current detected by the current sensors 51 to 53 has changed by more than the set value. (Step 107). If the detected current values (effective values) of the current sensors 51 to 53 have not changed more than the set value (NO in step 107), the process returns to step 102, and the MOSFETs 31 to 36 are turned on based on the corrected switching pattern data. Driven off. Subsequently, a deviation amount of the power factor cos ⁇ is obtained (step 103), and the corrected switching pattern data is further corrected in a direction in which the deviation amount is reduced, that is, in a direction in which the power factor is improved (step 104).
  • the switching pattern data is corrected so that the switching pattern is optimally repeated.
  • a method such as a hill climbing method is used to correct the switching pattern. Specifically, switching is performed by shifting the switching pattern in the + or ⁇ direction by a predetermined phase. As a result, if the power factor shift amount decreases, the switching pattern is shifted again by the predetermined phase in the same direction. On the other hand, if the amount of power factor shift increases as a result of switching with a new switching pattern, the operation of shifting again by a predetermined phase in the reverse direction is repeated.
  • the value of the detected current of the current sensors 51 to 53 is determined. Is selected from the memory 61 (step 101). After that, the switching pattern is corrected again. (Steps 103-106)
  • the process returns to the first step 101 without using the corrected switching pattern data, and the switching pattern data (initial value) corresponding to the detected current values of the current sensors 51 to 53 is selected again.
  • each rectifier 10 can be added or detached according to the capacity of the load 2, when the load 2 is an air conditioner having various models having different capacities, for example, the rectifier 10 is adapted to the model. Select the number of connections. As a result, it is not necessary to individually design a dedicated rectifier for each model, and the development cost, development period, and cost of the air conditioner can be reduced, and inventory management is facilitated.
  • the detected currents of the current sensors 51 to 53 in all the rectifiers 10 including the rectifier 10 are grasped by each rectifier 10 by data communication of the communication unit 62, and any of the detected currents is near zero or predetermined.
  • the abnormal value is equal to or greater than the value
  • the on / off of the MOSFETs 31 to 36 in each rectifier 10 is immediately stopped.
  • destruction of electrical components including the MOSFETs 31 to 36 of each rectifier 10 is prevented. Since each rectifier 10 has the same specification and performs data communication with each other, any one rectifier 10 may store a predetermined value for determining an abnormality.
  • an average value of the detected currents of the current sensors 51 to 53 in all the rectifying devices 10 that are grasped is obtained, and the detected currents of the individual current sensors 51 to 53 of each rectifying device 10 are approximated to the average value.
  • the on period when the MOSFETs 31 to 36 are turned on and off is adjusted. If the MOSFETs 31 to 36 in each rectifier 10 have a shift in the on / off timing, on / off frequency, switching pattern, etc., current flows intensively in any of the rectifiers 10, and the current concentration causes the MOSFETs 31 to 36. Although there is a possibility that electric parts such as 36 are consumed quickly, the current balance between the rectifiers 10 can be maintained by adjusting the ON period. Thereby, the malfunction that consumption of an electrical component is accelerated can be prevented.
  • the detected currents of the current detection circuits 48 in all the rectifiers 10 are also grasped by the respective rectifiers 10 by data communication of the communication unit 62, and the detected currents of the current detection circuits 48 in any of the rectifiers 10 are for abnormality determination.
  • the value exceeds the predetermined value the on / off of the MOSFETs 31 to 36 of each rectifier 10 is stopped.
  • the positive side MOSFET and the negative side MOSFET in the rectifier circuit 20 of any of the rectifiers 10 are erroneously fired simultaneously due to the influence of noise or the like, the positive side line and the negative side line of the rectifier circuit 20 are There is a possibility that a large short-circuit current (also referred to as overcurrent) flows through the short circuit and the MOSFETs 31 to 36 may be destroyed.
  • the MOSFETs 31 to 36 are destroyed by immediately stopping the on / off of the MOSFETs 31 to 36. A malfunction can be prevented.
  • the MOSFETs 31 to 36 are turned on and off not only in the rectifier 10 in which the short circuit has occurred, but also in the remaining rectifiers 10, the MOSFETs 31 to 36 are destroyed by the short circuit current flowing into the other rectifiers 10. Can also be prevented.
  • a second embodiment of the present invention will be described.
  • the MOSFETs 31 to 36 of each rectifier 10 are turned on and off.
  • a normally closed relay contact 49 is inserted into the positive output line of the rectifier circuit 20, and any of the current detection circuits 48 in each rectifier 10 is connected.
  • the relay contact 49 is opened in addition to stopping the on / off of the MOSFETs 31 to 36 of each rectifier 10.
  • each of the rectifiers 10 is executed including the abnormality determination of the other rectifiers 10.
  • the third embodiment when a plurality of rectifiers 10 are connected by communication, one three-phase rectifier is set as a master unit, the other rectifier 10 is set as a slave unit, and set as a master unit. Only the connected rectifier 10 determines the abnormality of all the connected rectifiers 10 and instructs the operation / abnormal stop of all the rectifiers 10 by communication.
  • a fourth embodiment of the present invention will be described.
  • the period in which the MOSFET is intermittently turned on the period Rx1, Sx1, Tx1 of the leading edge side 0 ° to 60 ° of the phase in which the input voltage is at a positive level, and the phase in which the input voltage is at a negative level.
  • Periods Ry1, Sy1, Ty1 of 0 ° to 60 ° on the leading edge side were set.
  • a period of 120 ° to 180 ° of the trailing edge side of the phase in which the input voltage becomes positive level and a period of 120 ° to 180 ° of the trailing edge side of the phase in which the input voltage becomes negative level.
  • 0 ° to (40 ° ⁇ 10 °) is set as the period Rx1, Sx1, Tx1, Ry1, Sy1, Ty1 on the leading edge side, and (160 ° ⁇ 10 °) to 180 ° is set as the period on the trailing edge side.
  • the trailing edge side means a falling (negative level phase) and falling (positive level phase) portion of each AC voltage toward 0 V, specifically, 120 ° to 180 ° of each AC voltage waveform. It means the range of ° and the range of 300 ° to 360 °.
  • the zero cross point of each phase input voltage is expressed as 0 ° regardless of whether it is positive or negative
  • 0 ° to 30 ° is set as the period Rx1, Sx1, Tx1, Ry1, Sy1, Ty1 on the leading edge side
  • a longer period of 150 ° to 180 ° is set as the period on the edge side.
  • a long 0 ° to 50 ° is set as the period Rx1, Sx1, Tx1, Ry1, Sy1, Ty1 on the leading edge side
  • a period of 170 ° to 180 ° is set as the trailing edge side period.
  • the period of the leading edge side and the period of the trailing edge side may be distributed within an electric angle of 60 °.
  • Switching in the period from 0 ° to (40 ° ⁇ 10 °) on the leading edge side and 160 ° ⁇ 10 ° to the trailing edge side to 180 ° is performed in the period from 0 ° to 60 ° on the leading edge side and 120 ° to 180 ° on the trailing edge side.
  • the MOSFETs 31 to 36 that are turned on throughout the entire period (0 ° to 180 °) are any one, and the effect of improving controllability and reducing switching noise can be obtained.
  • switching noise is not a problem, it is not necessary to limit switching to a specific phase period of each phase as in this embodiment. In this case, although switching noise increases, by performing switching (short circuit) at an appropriate timing in all phases, it is possible to further reduce harmonics and improve the power factor.
  • the rectifier and the rectifier system according to the embodiment of the present invention can be used for an apparatus that converts an AC voltage into a DC voltage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)

Abstract

Provided are a rectifier and a rectifying system that, even in instances of wide variation in the value of an input current, enable high-frequency switching for addressing the fluctuation at high speed, resulting in an adequate effect in terms of higher harmonic suppression and improving the power factor. Switching pattern data corresponding to the value of the input current is selected, and MOSFETs are turned on or off on the basis of the selected switching pattern data. Next, while the selected switching pattern data is successively corrected in the direction of improving power factor, the MOSFETs are continuously turned on or off on the basis of the corrected switching pattern data. In addition, the difference between the switching pattern data for each of the corrections and the selected switching pattern data is determined, the correcting being continued if the determined difference is below a set value, and the switching pattern data being returned to the initially selected switching pattern data if the derived difference is equal to or greater than the set value.

Description

整流装置および整流システムRectifier and rectifier system
 本発明の実施形態は、交流電圧を直流電圧に変換する整流装置および整流システムに関する。 Embodiments of the present invention relate to a rectifier and a rectifier system that convert an AC voltage into a DC voltage.
 三相交流電源の電圧を整流して直流電圧に変換する整流回路は、一対のダイオードを直列接続してなる3つの直列回路を有し、これら直列回路の各ダイオードの相互接続点が三相交流電源の各相に接続される。そして、この整流回路の出力端に平滑コンデンサが接続され、その平滑コンデンサに負荷が接続される。 A rectifier circuit that rectifies the voltage of a three-phase AC power source and converts it into a DC voltage has three series circuits in which a pair of diodes are connected in series, and the interconnection point of each diode in these series circuits is a three-phase AC Connected to each phase of the power supply. A smoothing capacitor is connected to the output terminal of the rectifier circuit, and a load is connected to the smoothing capacitor.
 三相交流電源電圧は位相が互いに120°異なる3つの相電圧からなり、これら相電圧により、各直列回路のそれぞれ正側ダイオードを通って平滑コンデンサに電流が流れ、その平滑コンデンサから各直列回路のそれぞれ負側ダイオードを通って電流が流れる。 The three-phase AC power supply voltage is composed of three phase voltages whose phases are different from each other by 120 °. With these phase voltages, a current flows through the positive diode of each series circuit to the smoothing capacitor, and from the smoothing capacitor to each series circuit. Current flows through each negative diode.
 また、このような整流回路における力率を改善するため、また入力電流に含まれる高調波電流を抑制するため、入力側にリアクトルを設けるとともに、これらリアクトルに対する短絡路形成用の複数のスイッチを接続し、これらスイッチを適切なタイミングでスイッチングすることにより、入力電流波形を正弦波に追従させる三相高調波低減回路が採用される(例えば、特開2010-233292号公報に記載されている)。 In addition, in order to improve the power factor in such a rectifier circuit and to suppress the harmonic current contained in the input current, a reactor is provided on the input side and a plurality of switches for forming a short circuit for these reactors are connected. In addition, a three-phase harmonic reduction circuit that follows the sine wave of the input current waveform by switching these switches at an appropriate timing is employed (for example, described in JP 2010-233292 A).
 上記スイッチングでは、例えば、入力電流の値に対応するスイッチングパターンをまず選定し、選定したスイッチングパターンに基づいてスイッチをオン,オフし、続いて選定したスイッチングパターンを力率が改善する方向に逐次に補正しながら、その補正したスイッチングパターンに基づいてスイッチをオン,オフする。 
 ただし、入力電流の値が大きく変動した場合、その変動にスイッチングパターンの補正が追い付かず、力率改善および高調波抑制としての十分な効果が得られないことがある。
In the above switching, for example, a switching pattern corresponding to the value of the input current is first selected, the switch is turned on / off based on the selected switching pattern, and then the selected switching pattern is sequentially increased in a direction in which the power factor improves. While correcting, the switch is turned on / off based on the corrected switching pattern.
However, when the value of the input current largely fluctuates, the correction of the switching pattern cannot catch up with the fluctuation, and a sufficient effect as power factor improvement and harmonic suppression may not be obtained.
 本発明の実施形態の目的は、入力電流の値が大きく変動した場合でもそれに迅速に対応したスイッチングを可能とし、これにより力率改善および高調波抑制としての十分な効果が得られる整流装置および整流システムを提供することである。 An object of an embodiment of the present invention is to enable switching corresponding to a rapid change even when the value of an input current greatly fluctuates, and thereby a rectifier and a rectifier that can obtain sufficient effects as power factor improvement and harmonic suppression Is to provide a system.
 本発明の実施形態の整流装置は、交流電源の電圧を整流する整流回路と、前記交流電源と前記整流回路との接続間に設けたリアクトルと、このリアクトルおよび前記整流回路を通して前記交流電源に対する短絡路を形成するためのスイッチング素子と、前記交流電源からの入力電流を検知する検知手段と、力率を検出する検出手段と、制御手段とを備える。この制御手段は、前記交流電源の電圧の所定の位相において前記スイッチング素子を断続的にオンするためのスイッチングパターンを前記検知手段の検知電流に応じて選定し、選定したスイッチングパターンに基づいて前記スイッチング素子をオン,オフし、続いて前記選定したスイッチングパターンを前記検出手段の検出力率が改善する方向に逐次に補正しながらその補正ごとのスイッチングパターンに基づいて前記スイッチング素子をオン,オフするとともに、その補正ごとのスイッチングパターンと前記選定時のスイッチングパターンとの差を求め、求めた差が所定値未満の場合は前記補正を継続し所定値以上の場合は前記選定に戻る。 A rectifier according to an embodiment of the present invention includes a rectifier circuit that rectifies the voltage of an AC power supply, a reactor provided between the connection of the AC power supply and the rectifier circuit, and a short circuit to the AC power supply through the reactor and the rectifier circuit. A switching element for forming a path, a detecting means for detecting an input current from the AC power supply, a detecting means for detecting a power factor, and a control means are provided. The control means selects a switching pattern for intermittently turning on the switching element in a predetermined phase of the voltage of the AC power supply according to the detection current of the detection means, and the switching based on the selected switching pattern The device is turned on and off, and then the selected switching pattern is sequentially corrected in a direction in which the detection power factor of the detection means improves, and the switching device is turned on and off based on the switching pattern for each correction. Then, the difference between the switching pattern for each correction and the switching pattern at the time of selection is obtained. If the obtained difference is less than a predetermined value, the correction is continued, and if it is greater than the predetermined value, the selection is returned to the selection.
一実施形態の構成を示すブロック図である。It is a block diagram which shows the structure of one Embodiment. 一実施形態における入力電圧の波形を示す図である。It is a figure which shows the waveform of the input voltage in one Embodiment. 一実施形態の制御を示すフローチャートである。It is a flowchart which shows control of one Embodiment. 一実施形態の変形例の構成を示すブロック図である。It is a block diagram which shows the structure of the modification of one Embodiment.
 [1]以下、本発明の第1実施形態について図面を参照して説明する。 
 図1に示すように、三相交流電源1のR,S,T相に、複数たとえば3つの整流装置(三相整流装置)10が接続される。これら整流装置10の出力端が、平滑コンデンサ70に共通接続される。この平滑コンデンサ70に生じる電圧が、負荷2に供給される。負荷2は、例えばモータ駆動用のインバータ装置である。各整流装置10は、互いに並列接続されるとともに互いに通信線にて接続される。負荷2の容量に対応する個数の整流装置10が適宜に増設可能となっている。これら整流装置10および平滑コンデンサ70により、整流システムが構成される。
[1] A first embodiment of the present invention will be described below with reference to the drawings.
As shown in FIG. 1, a plurality of, for example, three rectifiers (three-phase rectifiers) 10 are connected to the R, S, and T phases of a three-phase AC power source 1. The output terminals of these rectifiers 10 are commonly connected to the smoothing capacitor 70. The voltage generated in the smoothing capacitor 70 is supplied to the load 2. The load 2 is, for example, an inverter device for driving a motor. The rectifiers 10 are connected in parallel to each other and are connected to each other via a communication line. The number of rectifiers 10 corresponding to the capacity of the load 2 can be increased as appropriate. The rectifier 10 and the smoothing capacitor 70 constitute a rectifier system.
 また、整流装置10は、三相交流電源1に接続される整流回路(三相整流回路)20、この整流回路20と三相交流電源1との各接続ラインに設けたリアクトル11,12,13、このリアクトル11,12,13と三相交流電源1との間の接続ラインに設けた零クロス検出回路41,42,43および電流センサ51,52,53、整流回路20の出力電圧を検出する電圧検出回路47、整流回路20の出力電流を検出する電流検出回路48、制御部60、メモリ(記憶手段)61、通信部62を有する。 The rectifier 10 includes a rectifier circuit (three-phase rectifier circuit) 20 connected to the three-phase AC power source 1, and reactors 11, 12, 13 provided in connection lines between the rectifier circuit 20 and the three-phase AC power source 1. The zero cross detection circuits 41, 42, 43 and current sensors 51, 52, 53 and the output voltage of the rectifier circuit 20 provided in the connection line between the reactors 11, 12, 13 and the three-phase AC power supply 1 are detected. It has a voltage detection circuit 47, a current detection circuit 48 that detects an output current of the rectifier circuit 20, a control unit 60, a memory (storage means) 61, and a communication unit 62.
 整流回路20は、正側ダイオード21と負側ダイオード22を直列接続したR相用直列回路、正側ダイオード23と負側ダイオード24を直列接続したS相用直列回路、正側ダイオード25と負側ダイオード26を直列接続したT相用直列回路を有する。正側ダイオード21と負側ダイオード22の相互接続点が、三相交流電源1のR相に接続される。正側ダイオード23と負側ダイオード24の相互接続点が、三相交流電源1のS相に接続される。正側ダイオード25と負側ダイオード26の相互接続点が、三相交流電源1のT相に接続される。すなわち、整流回路20は、三相交流電源1の三相交流電圧を直流電圧に変換して正側出力端子(+)および負側出力端子(-)から出力する。この整流回路20の正側ダイオード21,23,25および負側ダイオードダイオード22,24,26に対し、スイッチング素子たとえばMOSFET31,32,33,34,35,36がそれぞれ並列接続されている。 The rectifier circuit 20 includes an R-phase series circuit in which a positive diode 21 and a negative diode 22 are connected in series, an S-phase series circuit in which a positive diode 23 and a negative diode 24 are connected in series, and a positive diode 25 and a negative side. It has a T-phase series circuit in which diodes 26 are connected in series. An interconnection point between the positive side diode 21 and the negative side diode 22 is connected to the R phase of the three-phase AC power supply 1. An interconnection point between the positive side diode 23 and the negative side diode 24 is connected to the S phase of the three-phase AC power supply 1. An interconnection point between the positive side diode 25 and the negative side diode 26 is connected to the T phase of the three-phase AC power supply 1. That is, the rectifier circuit 20 converts the three-phase AC voltage of the three-phase AC power source 1 into a DC voltage and outputs it from the positive output terminal (+) and the negative output terminal (−). Switching elements such as MOSFETs 31, 32, 33, 34, 35, and 36 are connected in parallel to the positive side diodes 21, 23, 25 and the negative side diode diodes 22, 24, 26 of the rectifier circuit 20, respectively.
 なお、スイッチング素子としてMOSFETを用いた場合には、MOSFET31,32,33,34,35,36はそれぞれ内部に寄生ダイオードを有するので、これら寄生ダイオードがそのまま正側ダイオード21,23,25および負側ダイオードダイオード22,24,26として用いられる。スイッチング素子がMOSFETでなくトランジスタやIGBTである場合は、スイッチング素子とは別に正側ダイオード21,23,25および負側ダイオードダイオード22,24,26を用意する必要がある。 When MOSFETs are used as the switching elements, the MOSFETs 31, 32, 33, 34, 35, and 36 have parasitic diodes therein, so that these parasitic diodes are directly used as the positive side diodes 21, 23, 25 and the negative side. Used as diode diodes 22, 24, 26. When the switching element is not a MOSFET but a transistor or IGBT, it is necessary to prepare positive side diodes 21, 23, 25 and negative side diode diodes 22, 24, 26 separately from the switching element.
 零クロス検出回路41は、三相交流電源1からのR相入力電圧の零クロス点を検出する。零クロス検出回路42は、三相交流電源1からのS相入力電圧の零クロス点を検出する。零クロス検出回路43は、三相交流電源1からのT相入力電圧の零クロス点を検出する。電流センサ51は、三相交流電源1からのR相入力電流の値を検出する。電流センサ52は、三相交流電源1からのS相入力電流の値を検出する。電流センサ53は、三相交流電源1からのT相入力電流の値を検出する。 The zero cross detection circuit 41 detects the zero cross point of the R-phase input voltage from the three-phase AC power supply 1. The zero cross detection circuit 42 detects the zero cross point of the S phase input voltage from the three-phase AC power supply 1. The zero cross detection circuit 43 detects the zero cross point of the T-phase input voltage from the three-phase AC power supply 1. The current sensor 51 detects the value of the R-phase input current from the three-phase AC power source 1. The current sensor 52 detects the value of the S-phase input current from the three-phase AC power supply 1. The current sensor 53 detects the value of the T-phase input current from the three-phase AC power supply 1.
 なお、各相入力電圧の零クロス点および各相入力電流の電流値を正確に検出するために3つの零クロス検出回路41,42,43および3つの電流センサ51,52,53を設けたが、各相入力電圧の零クロス点のうち1つは2つの相の入力電圧の位相ずれから検出できること、各相入力電流の値のうち1つは2つの相の入力電流の値から計算して求めることができるので、2つの零クロス検出回路および2つの電流センサを設ける構成としてもよい。部品点数の削減およびコストの低減が図れる。 Note that three zero cross detection circuits 41, 42, 43 and three current sensors 51, 52, 53 are provided to accurately detect the zero cross point of each phase input voltage and the current value of each phase input current. One of the zero cross points of each phase input voltage can be detected from the phase shift of the input voltage of the two phases, and one of the values of each phase input current is calculated from the value of the input current of the two phases Since it can be obtained, two zero cross detection circuits and two current sensors may be provided. The number of parts and the cost can be reduced.
 通信部62は、他の整流装置10の通信部62との間で、通信線を介した相互のデータ通信を行う。 The communication unit 62 performs mutual data communication with the communication unit 62 of the other rectifier 10 via a communication line.
 メモリ61は、MOSFET31,32,33,34,35,36に対するオン,オフ駆動用の複数のスイッチングパターンデータを記憶している。これらスイッチングパターンデータは、三相交流電源1からの各相入力電圧が正レベルとなる位相の少なくとも前縁側および負レベルとなる位相の少なくとも前縁側において各MOSFETを断続的にオンするためのもので、そのオンのタイミングとオフのタイミングを位相の進行に伴って逐次に定めている。これらスイッチングパターンデータは、三相交流電源1からの各相入力電流の値(実効値)にそれぞれ対応付けられている。なお、前縁側とは、各相入力電圧の0Vからの立ち上がり及び立ち下り部分を意味し、具体的には各相入力電圧の波形の0°~60°の範囲及び180°~240°の範囲を意味する。 The memory 61 stores a plurality of switching pattern data for on / off driving of the MOSFETs 31, 32, 33, 34, 35, and 36. These switching pattern data are for intermittently turning on each MOSFET on at least the leading edge side of the phase where each phase input voltage from the three-phase AC power supply 1 is at a positive level and at least the leading edge side of the phase where it is at a negative level. The ON timing and OFF timing are sequentially determined as the phase progresses. These switching pattern data are respectively associated with the value (effective value) of each phase input current from the three-phase AC power source 1. The leading edge side means the rising and falling portions of each phase input voltage from 0V, specifically, the range of 0 ° to 60 ° and the range of 180 ° to 240 ° of the waveform of each phase input voltage. Means.
 すなわち、各相入力電圧の正レベルとなる位相の前縁側は、図2に示すように、R相入力電圧、S相入力電圧、T相入力電圧のそれぞれ零クロス点から次の零クロス点までの電気角0°~180°の半サイクル期間のうち、前寄りの電気角0°~60°の期間Rx1,Sx1,Tx1である。各相入力電圧の負レベルとなる位相の前縁側は、R相入力電圧、S相入力電圧、T相入力電圧のそれぞれ零クロス点から次の零クロス点までの電気角180°~360°の半サイクル期間のうち、前寄りの電気角180°~240°の期間Ry1,Sy1,Ty1である。なお、断続的にオンするとは、所定の時間間隔でオンとオフを繰り返すことである。 That is, as shown in FIG. 2, the leading edge side of the phase at which each phase input voltage is at the positive level is from the zero crossing point to the next zero crossing point of the R phase input voltage, S phase input voltage, and T phase input voltage. Among the half-cycle periods with electrical angles of 0 ° to 180 °, periods Rx1, Sx1, and Tx1 with the forward electrical angles of 0 ° to 60 °. The leading edge side of the phase that is the negative level of each phase input voltage has an electrical angle of 180 ° to 360 ° from the zero cross point to the next zero cross point of the R phase input voltage, S phase input voltage, and T phase input voltage. Among the half-cycle periods, periods Ry1, Sy1, and Ty1 with a forward electrical angle of 180 ° to 240 °. Note that intermittently turning on means repeating on and off at a predetermined time interval.
 制御部60は、主要な機能として次の(1)~(4)の制御手段を有する。 
 (1)メモリ61内の各スイッチングパターンデータのうち電流センサ51~53で検知される各相入力電流の値(実効値)に対応するスイッチングパターンデータをそれぞれ選定し、選定した各スイッチングパターンデータに基づいてMOSFET31~36をオン,オフし、続いて上記選定した各スイッチングパターンデータを力率が改善する方向に逐次に補正しながらその補正後の各スイッチングパターンデータに基づいてMOSFET31~36をオン,オフするとともに、その補正ごとの各スイッチングパターンと上記選定時の各スイッチングパターンとの差を求め、求めた差が予め定められた所定値未満の場合は上記補正を継続し、求めた差が所定値以上の場合は上記選定に戻る第1制御手段。ここで、補正ごとの各スイッチングパターンデータと選定時の各スイッチングパターンデータとの差とは、例えば、同じタイミングにおけるオンデータの時間幅の差である。
The control unit 60 has the following control means (1) to (4) as main functions.
(1) Of the switching pattern data in the memory 61, switching pattern data corresponding to the value (effective value) of each phase input current detected by the current sensors 51 to 53 is selected, and the selected switching pattern data The MOSFETs 31 to 36 are turned on and off based on the above, and then the switching patterns data selected above are sequentially corrected in a direction in which the power factor is improved, and the MOSFETs 31 to 36 are turned on based on the corrected switching pattern data. In addition, the difference between each switching pattern for each correction and each switching pattern at the time of the selection is obtained. If the obtained difference is less than a predetermined value, the correction is continued. First control means for returning to the above selection if the value is greater than or equal to the value. Here, the difference between each switching pattern data for each correction and each switching pattern data at the time of selection is, for example, a difference in time width of on data at the same timing.
 (2)当該整流装置10を含む全ての整流装置10における電流センサ51~53の検知電流(入力電流)を通信部62のデータ通信により把握し、いずれかの検知電流が零近傍(2A未満等)または所定値以上となった場合にMOSFET31~36のオン,オフを停止する第2制御手段。 (2) The detected currents (input currents) of the current sensors 51 to 53 in all the rectifiers 10 including the rectifier 10 are grasped by data communication of the communication unit 62, and any detected current is near zero (less than 2A, etc.) ) Or second control means for stopping on / off of the MOSFETs 31 to 36 when a predetermined value or more is reached.
 (3)上記把握した全ての整流装置10における電流センサ51~53の検知電流の平均値を求め、この平均値に当該整流装置10における検知電流が近づくようにMOSFET31~36のスイッチング素子のオン,オフに際してのオン期間を調整する第3制御手段。 (3) An average value of the detected currents of the current sensors 51 to 53 in all the rectifying devices 10 obtained as described above is obtained, and the switching elements of the MOSFETs 31 to 36 are turned on so that the detected current in the rectifying device 10 approaches this average value. Third control means for adjusting an ON period at the time of OFF.
 (4)当該整流装置10を含む全ての整流装置10における電流検出回路48の検出電流(整流回路20の出力電流)を通信部62のデータ通信により把握し、いずれかの検出電流が予め定めた所定値以上となった場合に全ての整流装置10のMOSFET31~36のオン,オフを停止する第4制御手段。 (4) The detection current of the current detection circuit 48 (the output current of the rectification circuit 20) in all the rectification devices 10 including the rectification device 10 is grasped by data communication of the communication unit 62, and any detection current is determined in advance. Fourth control means for stopping the on / off of the MOSFETs 31 to 36 of all the rectifiers 10 when the predetermined value or more is reached.
 つぎに、動作について説明する。 
 R相入力電圧が正レベルとなる位相では、三相交流電源1からリアクトル11および正側ダイオード21を通って平滑コンデンサ70に電流が流れ、その平滑コンデンサ70を経た電流が、先ず負側ダイオード24およびリアクトル12を通って三相交流電源1のS相に戻り、次にR相の位相が進むにつれ、負側ダイオード26およびリアクトル13を通って三相交流電源1のT相に戻る経路が形成される。そして、この動作に加え、R相入力電圧が正レベルとなる位相の前縁側0°~60°の期間Rx1において、MOSFET32が断続的にオンする。MOSFET32がオンすると、ダイオード21,22の相互接続点が整流回路20の負側出力端と導通し、図1に矢印で示すように、三相交流電源1に対しリアクトル11、MOSFET32、負側ダイオード24、リアクトル12を介した短絡路が形成される。
Next, the operation will be described.
In the phase where the R-phase input voltage is at a positive level, a current flows from the three-phase AC power source 1 through the reactor 11 and the positive diode 21 to the smoothing capacitor 70, and the current passing through the smoothing capacitor 70 is the negative diode 24 first. And the reactor 12 returns to the S phase of the three-phase AC power supply 1, and then the path returning to the T phase of the three-phase AC power supply 1 through the negative diode 26 and the reactor 13 is formed as the phase of the R phase advances. Is done. In addition to this operation, the MOSFET 32 is intermittently turned on in the period Rx1 of 0 ° to 60 ° on the leading edge side of the phase where the R-phase input voltage becomes a positive level. When the MOSFET 32 is turned on, the interconnection point of the diodes 21 and 22 is electrically connected to the negative output terminal of the rectifier circuit 20, and as shown by an arrow in FIG. 1, the reactor 11, the MOSFET 32, and the negative diode are connected to the three-phase AC power source 1. 24, a short circuit is formed through the reactor 12.
 S相入力電圧が正レベルとなる位相では、三相交流電源1からリアクトル12および正側ダイオード23を通って平滑コンデンサ70に電流が流れ、その平滑コンデンサ70を経た電流が、先ず負側ダイオード26およびリアクトル13を通って三相交流電源1のT相に戻り、次にS相の位相が進むにつれ、負側ダイオード22およびリアクトル11を通って三相交流電源1のR相に戻る経路が形成される。そして、この動作に加え、S相入力電圧が正レベルとなる位相の前縁側0°~60°の期間Sx1において、MOSFET34が断続的にオンする。MOSFET34がオンすると、ダイオード23,24の相互接続点が整流回路20の負側出力端と導通し、三相交流電源1に対しリアクトル12、MOSFET34、負側ダイオード26、リアクトル13を介した短絡路が形成される。 In the phase where the S-phase input voltage is at a positive level, a current flows from the three-phase AC power source 1 through the reactor 12 and the positive diode 23 to the smoothing capacitor 70, and the current passing through the smoothing capacitor 70 first becomes the negative diode 26. And the reactor 13 returns to the T phase of the three-phase AC power source 1, and then the path returns to the R phase of the three-phase AC power source 1 through the negative diode 22 and the reactor 11 as the phase of the S phase advances. Is done. In addition to this operation, the MOSFET 34 is intermittently turned on in a period Sx1 of 0 ° to 60 ° on the leading edge side of the phase where the S-phase input voltage is at a positive level. When the MOSFET 34 is turned on, the interconnection point of the diodes 23 and 24 is electrically connected to the negative output terminal of the rectifier circuit 20, and the short-circuit path through the reactor 12, the MOSFET 34, the negative diode 26, and the reactor 13 with respect to the three-phase AC power supply 1. Is formed.
 T相入力電圧が正レベルとなる位相では、三相交流電源1からリアクトル13および正側ダイオード25を通って平滑コンデンサ70に電流が流れ、その平滑コンデンサ70を経た電流が、先ず負側ダイオード22およびリアクトル11を通って三相交流電源1のR相に戻り、次にT相の位相が進むにつれ、負側ダイオード24およびリアクトル12を通って三相交流電源1のS相に戻る経路が形成される。そして、この動作に加え、T相入力電圧が正レベルとなる位相の前縁側0°~60°の期間Tx1において、MOSFET36が断続的にオンする。MOSFET36がオンすると、ダイオード25,26の相互接続点が整流回路20の負側出力端と導通し、三相交流電源1に対しリアクトル13、MOSFET36、負側ダイオード22、リアクトル11を介した短絡路が形成される。 In a phase in which the T-phase input voltage is at a positive level, a current flows from the three-phase AC power source 1 through the reactor 13 and the positive diode 25 to the smoothing capacitor 70, and the current passing through the smoothing capacitor 70 is firstly the negative diode 22. And the reactor 11 returns to the R phase of the three-phase AC power source 1, and then the path returns to the S phase of the three-phase AC power source 1 through the negative diode 24 and the reactor 12 as the phase of the T phase advances. Is done. In addition to this operation, the MOSFET 36 is intermittently turned on in a period Tx1 of 0 ° to 60 ° on the leading edge side of the phase where the T-phase input voltage is at a positive level. When the MOSFET 36 is turned on, the interconnection point between the diodes 25 and 26 is electrically connected to the negative output terminal of the rectifier circuit 20, and the short-circuit path through the reactor 13, the MOSFET 36, the negative diode 22, and the reactor 11 with respect to the three-phase AC power supply 1. Is formed.
 R相入力電圧,S相入力電圧,T相入力電圧が負レベルとなる位相の前縁側期間Ry1,Sy1,Ty1では、正側ダイオード21,23,25と並列接続のMOSFET31,33,35が断続的にオンする。これらMOSFETの断続的なオンに伴う動作については、正負が反対となるだけで、基本的には正レベル期間と同じ動作パターンとなる。よって、その詳細な説明は省略する。 In the leading edge side periods Ry1, Sy1, and Ty1 of the phase in which the R-phase input voltage, the S-phase input voltage, and the T-phase input voltage are negative, the MOSFETs 31, 33, and 35 connected in parallel with the positive diodes 21, 23, and 25 are intermittent. Turn on. About the operation | movement accompanying these intermittent ON of MOSFET, it becomes the same operation pattern as a positive level period fundamentally only by the opposite of positive / negative. Therefore, the detailed description is abbreviate | omitted.
 このように、R相入力電圧,S相入力電圧,T相入力電圧が正レベルとなる位相の前縁側期間Rx1,Sx1,Tx1において整流回路20のMOSFET32,34,36を断続的にオンするとともに、R相入力電圧,S相入力電圧,T相入力電圧が負レベルとなる位相の前縁側期間Ry1,Sy1,Ty1において整流回路20のMOSFET31,33,35を断続的にオンすることにより、整流装置10への入力電流の波形を正弦波に追従性よく近似させることができる。これにより、力率が向上するとともに、整流装置10への入力電流に含まれる高調波電流を抑制することができる。MOSFETを断続的にオンする前縁側0°~60°の期間Rx1,Sx1,Tx1,Ry1,Sy1,Ty1は、1つの相のオン,オフ制御が他の2つの相の電流波形に及ぼす影響が少ない期間で、各相の立ち上がりに当たる。このため、この期間を選定したことにより、少ないスイッチング回数で大きな高調波電流の低減効果が得られる。また、全位相において高い周波数でスイッチングする場合に比べて、スイッチング回数を少なくすることができ、スイッチングノイズを低減できる。 As described above, the MOSFETs 32, 34, and 36 of the rectifier circuit 20 are intermittently turned on in the leading edge periods Rx1, Sx1, and Tx1 of the phase in which the R-phase input voltage, the S-phase input voltage, and the T-phase input voltage are positive levels. The MOSFETs 31, 33, and 35 of the rectifier circuit 20 are intermittently turned on in the leading edge side periods Ry1, Sy1, and Ty1 of the phase in which the R-phase input voltage, the S-phase input voltage, and the T-phase input voltage become negative levels. The waveform of the input current to the device 10 can be approximated to a sine wave with good followability. Thereby, while a power factor improves, the harmonic current contained in the input current to the rectifier 10 can be suppressed. The period Rx1, Sx1, Tx1, Ry1, Sy1, Ty1 of the leading edge side where the MOSFET is intermittently turned on is affected by the ON / OFF control of one phase on the current waveforms of the other two phases. It hits the rise of each phase in a short period. Therefore, by selecting this period, a large harmonic current reduction effect can be obtained with a small number of switching operations. In addition, the number of times of switching can be reduced and switching noise can be reduced as compared with the case of switching at a high frequency in all phases.
 一方、図3のフローチャートに示すように、メモリ61内の各スイッチングパターンデータのうち、電流センサ51~53で検知される各相入力電流の値(実効値)に対応するスイッチングパターンデータがメモリ61から選定され(ステップ101)、その選定されたスイッチングパターンデータに基づいてMOSFET31~36がオン,オフ駆動される(ステップ102)。もともと、メモリ61に記憶されている入力電流の実効値に対応したスイッチングパターンデータは、特定の負荷の運転状態を想定して、実験的に設定したものである。このため、実際の運転中には温度や負荷変動等の影響で、記憶されているスイッチングパターンデータが、力率改善や高調波低減の観点から最適値とならない場合がある。そこで、同じ実行値であってもスイッチングパターンをずらすことで、高調波の発生や力率の向上を得ることができる。その実現のため、後述するステップ103以降において、スイッチングパターンの補正が行なわれる。 On the other hand, as shown in the flowchart of FIG. 3, among the switching pattern data in the memory 61, the switching pattern data corresponding to the value (effective value) of each phase input current detected by the current sensors 51 to 53 is stored in the memory 61. (Step 101), and the MOSFETs 31 to 36 are turned on and off based on the selected switching pattern data (step 102). Originally, the switching pattern data corresponding to the effective value of the input current stored in the memory 61 is experimentally set assuming an operating state of a specific load. For this reason, during actual operation, the stored switching pattern data may not be an optimum value from the viewpoint of power factor improvement and harmonic reduction due to the influence of temperature, load fluctuation and the like. Therefore, even if the execution values are the same, it is possible to obtain harmonics and improve the power factor by shifting the switching pattern. In order to realize this, the switching pattern is corrected in step 103 and later described later.
 すなわち、零クロス検出回路41~43で検出される各相入力電圧の零クロス点と電流センサ51~53で検知される各相入力電流の値とに基づいて各相入力電圧と各相入力電流との位相差θが求められ、その位相差θに基づく力率cosθと各相入力電流の値との積算により力率cosθのずれ量が求められる(ステップ103)。そして、求められた力率cosθのずれ量が減少する方向つまり力率が改善する方向に、初めに選定されたスイッチングパターンデータが逐次に補正される(ステップ104)。この補正ごとのスイッチングパターンデータと初めに選定したスイッチングパターンデータとの差が求められ(ステップ105)、その差と設定値とが比較される(ステップ106)。 That is, each phase input voltage and each phase input current based on the zero cross point of each phase input voltage detected by the zero cross detection circuits 41 to 43 and the value of each phase input current detected by the current sensors 51 to 53. Is obtained, and the amount of deviation of the power factor cos θ is obtained by integrating the power factor cos θ based on the phase difference θ and the value of each phase input current (step 103). Then, the switching pattern data selected first is sequentially corrected in a direction in which the obtained deviation amount of the power factor cos θ is reduced, that is, in a direction in which the power factor is improved (step 104). The difference between the switching pattern data for each correction and the initially selected switching pattern data is obtained (step 105), and the difference is compared with the set value (step 106).
 求められた差が設定値未満であれば(ステップ106のNO)、続いて電流センサ51~53で検知される各相入力電流の値(実効値)が設定値以上変化したか否かが判別される(ステップ107)。電流センサ51~53の検知電流の値(実効値)が設定値以上変化していなければ(ステップ107のNO)、ステップ102に戻り、補正されたスイッチングパターンデータに基づいてMOSFET31~36がオン,オフ駆動される。続いて、力率cosθのずれ量が求められ(ステップ103)、そのずれ量が減少する方向つまり力率が改善する方向に上記補正されたスイッチングパターンデータがさらに補正される(ステップ104)。以上のように力率cosθのずれ量が所定範囲内である限り、繰り返し最適なスイッチングパターンとなるように、スイッチングパターンデータが補正されていく。なお、スイッチングパターンの補正は、例えば山登り法等の方法が用いられる。具体的には、スイッチングパターンを+または-方向に所定位相だけシフトさせてスイッチングし、その結果、力率のずれ量が減少すれば、同じ方向に所定位相だけ再度シフトさせる。一方、新たなスイッチングパターンでスイッチした結果、力率のずれ量が増加すれば、逆方向に所定位相だけ再度シフトさせるという動作を繰り返すものである。 If the obtained difference is less than the set value (NO in step 106), it is then determined whether or not the value (effective value) of each phase input current detected by the current sensors 51 to 53 has changed by more than the set value. (Step 107). If the detected current values (effective values) of the current sensors 51 to 53 have not changed more than the set value (NO in step 107), the process returns to step 102, and the MOSFETs 31 to 36 are turned on based on the corrected switching pattern data. Driven off. Subsequently, a deviation amount of the power factor cos θ is obtained (step 103), and the corrected switching pattern data is further corrected in a direction in which the deviation amount is reduced, that is, in a direction in which the power factor is improved (step 104). As described above, as long as the deviation amount of the power factor cos θ is within the predetermined range, the switching pattern data is corrected so that the switching pattern is optimally repeated. For example, a method such as a hill climbing method is used to correct the switching pattern. Specifically, switching is performed by shifting the switching pattern in the + or − direction by a predetermined phase. As a result, if the power factor shift amount decreases, the switching pattern is shifted again by the predetermined phase in the same direction. On the other hand, if the amount of power factor shift increases as a result of switching with a new switching pattern, the operation of shifting again by a predetermined phase in the reverse direction is repeated.
 また、このような補正動作中に、電流センサ51~53の検知電流の値(実効値)が設定値以上変化した場合には(ステップ107のYES)、電流センサ51~53の検知電流の値に対応したスイッチングパターンデータがメモリ61から選定される(ステップ101)。その後は、再び、スイッチングパターンの補正が実行される。(ステップ103~106)
 一方、上記求められた差が設定値以上の場合は(ステップ106のYES)、周囲や負荷の状況が変動し、補正を繰り返しても最適値に到達できない状況に陥っているとの判断の下に、補正されたスイッチングパターンデータを用いることなく、初めのステップ101に戻り、電流センサ51~53の検知電流の値に対応するスイッチングパターンデータ(初期値)が改めて選定される。スイッチングパターンデータが改めて選定されることにより、スイッチングパターンデータの補正がそのまま続く場合よりも、迅速に適切なスイッチングパターンへと到達することができるようになる。これにより、力率改善および高調波抑制として十分な効果が得られる。
In addition, if the value (effective value) of the detected current of the current sensors 51 to 53 has changed more than the set value during such a correction operation (YES in step 107), the value of the detected current of the current sensors 51 to 53 is determined. Is selected from the memory 61 (step 101). After that, the switching pattern is corrected again. (Steps 103-106)
On the other hand, if the calculated difference is equal to or greater than the set value (YES in step 106), the situation of the surroundings and load fluctuates, and it is determined that the optimum value cannot be reached even after repeated corrections. In addition, the process returns to the first step 101 without using the corrected switching pattern data, and the switching pattern data (initial value) corresponding to the detected current values of the current sensors 51 to 53 is selected again. By selecting the switching pattern data anew, it becomes possible to reach the appropriate switching pattern more quickly than when the correction of the switching pattern data continues. Thereby, sufficient effects can be obtained as power factor improvement and harmonic suppression.
 なお、負荷2の容量に応じて各整流装置10の増設または切り離しが可能なので、負荷2が例えば容量の異なる多種多様の機種を持つ空気調和機である場合、その機種に合せて整流装置10の接続数を選択すればよい。この結果、機種ごとに専用の整流装置を個別に設計するといった処置が不要となり、空気調和機の開発費、開発期間、コストを削減できるとともに、在庫管理が容易となる。 In addition, since each rectifier 10 can be added or detached according to the capacity of the load 2, when the load 2 is an air conditioner having various models having different capacities, for example, the rectifier 10 is adapted to the model. Select the number of connections. As a result, it is not necessary to individually design a dedicated rectifier for each model, and the development cost, development period, and cost of the air conditioner can be reduced, and inventory management is facilitated.
 また、当該整流装置10を含む全ての整流装置10における電流センサ51~53の検知電流が通信部62のデータ通信により各整流装置10で把握されており、いずれかの検知電流が零近傍または所定値以上の異常値となった場合、各整流装置10におけるMOSFET31~36のオン,オフが直ちに停止される。これにより、各整流装置10のMOSFET31~36をはじめとする電気部品の破壊が防止される。なお、各整流装置10は同一仕様でありしかも相互にデータ通信するので、異常判定用の所定値についてはいずれか1つの整流装置10が記憶していればよい。 In addition, the detected currents of the current sensors 51 to 53 in all the rectifiers 10 including the rectifier 10 are grasped by each rectifier 10 by data communication of the communication unit 62, and any of the detected currents is near zero or predetermined. When the abnormal value is equal to or greater than the value, the on / off of the MOSFETs 31 to 36 in each rectifier 10 is immediately stopped. As a result, destruction of electrical components including the MOSFETs 31 to 36 of each rectifier 10 is prevented. Since each rectifier 10 has the same specification and performs data communication with each other, any one rectifier 10 may store a predetermined value for determining an abnormality.
 さらに、上記把握された全ての整流装置10における電流センサ51~53の検知電流の平均値が求められ、この平均値に各整流装置10の個々の電流センサ51~53の検知電流が近づくよう、MOSFET31~36のオン,オフに際してのオン期間が調整される。各整流装置10におけるMOSFET31~36のオン,オフタイミング、オン,オフ周波数、スイッチングパターンなどに相互のずれがあると、いずれかの整流装置10に電流が集中的に流れ、その電流集中によってMOSFET31~36をはじめとする電気部品の消耗が早まるといった不具合を生じる可能性があるが、オン期間を調整することで各整流装置10の相互間の電流バランスを保つことができる。これにより、電気部品の消耗が早まるという不具合を防ぐことができる。 Further, an average value of the detected currents of the current sensors 51 to 53 in all the rectifying devices 10 that are grasped is obtained, and the detected currents of the individual current sensors 51 to 53 of each rectifying device 10 are approximated to the average value. The on period when the MOSFETs 31 to 36 are turned on and off is adjusted. If the MOSFETs 31 to 36 in each rectifier 10 have a shift in the on / off timing, on / off frequency, switching pattern, etc., current flows intensively in any of the rectifiers 10, and the current concentration causes the MOSFETs 31 to 36. Although there is a possibility that electric parts such as 36 are consumed quickly, the current balance between the rectifiers 10 can be maintained by adjusting the ON period. Thereby, the malfunction that consumption of an electrical component is accelerated can be prevented.
 全ての整流装置10における電流検出回路48の検出電流も通信部62のデータ通信により各整流装置10で把握されており、いずれかの整流装置10における電流検出回路48の検出電流が異常判定用の所定値以上となった場合は各整流装置10のMOSFET31~36のオン,オフが停止される。例えば、いずれかの整流装置10の整流回路20において正側のMOSFETと負側のMOSFETとがノイズ等の影響で同時に誤点弧した場合、その整流回路20の正側ラインと負側ラインとが短絡してそこに大きな短絡電流(過電流ともいう)が流れ、MOSFET31~36が破壊に至る可能性があるが、直ちにMOSFET31~36のオン,オフを停止することでMOSFET31~36が破壊に至る不具合を防ぐことができる。しかも、短絡が生じた整流装置10だけでなく、残りの全ての整流装置10でもMOSFET31~36のオン,オフを停止するので、短絡電流が他の整流装置10に流れ込むことによるMOSFET31~36の破壊についても防ぐことができる。 The detected currents of the current detection circuits 48 in all the rectifiers 10 are also grasped by the respective rectifiers 10 by data communication of the communication unit 62, and the detected currents of the current detection circuits 48 in any of the rectifiers 10 are for abnormality determination. When the value exceeds the predetermined value, the on / off of the MOSFETs 31 to 36 of each rectifier 10 is stopped. For example, when the positive side MOSFET and the negative side MOSFET in the rectifier circuit 20 of any of the rectifiers 10 are erroneously fired simultaneously due to the influence of noise or the like, the positive side line and the negative side line of the rectifier circuit 20 are There is a possibility that a large short-circuit current (also referred to as overcurrent) flows through the short circuit and the MOSFETs 31 to 36 may be destroyed. However, the MOSFETs 31 to 36 are destroyed by immediately stopping the on / off of the MOSFETs 31 to 36. A malfunction can be prevented. Moreover, since the MOSFETs 31 to 36 are turned on and off not only in the rectifier 10 in which the short circuit has occurred, but also in the remaining rectifiers 10, the MOSFETs 31 to 36 are destroyed by the short circuit current flowing into the other rectifiers 10. Can also be prevented.
 [2]本発明の第2実施形態について説明する。 
 第1実施形態では、各整流装置10における電流検出回路48のいずれかの検出電流が所定値以上となった場合に各整流装置10のMOSFET31~36のオン,オフを停止した。これに対し、第2実施形態では、図4に示すように、整流回路20の正側出力ラインに常閉型のリレー接点49を挿接し、各整流装置10における電流検出回路48のいずれかの検出電流が所定値以上となった場合に各整流装置10のMOSFET31~36のオン,オフを停止することに加えてリレー接点49を開放する。MOSFET31~36のオン,オフを停止することに加えてリレー接点49を開放することにより、短絡電流が他の整流装置10に流れ込まなくなり、短絡電流に対する保護の確実性が向上する。
[2] A second embodiment of the present invention will be described.
In the first embodiment, when the detected current of any of the current detection circuits 48 in each rectifier 10 becomes a predetermined value or more, the MOSFETs 31 to 36 of each rectifier 10 are turned on and off. On the other hand, in the second embodiment, as shown in FIG. 4, a normally closed relay contact 49 is inserted into the positive output line of the rectifier circuit 20, and any of the current detection circuits 48 in each rectifier 10 is connected. When the detected current exceeds a predetermined value, the relay contact 49 is opened in addition to stopping the on / off of the MOSFETs 31 to 36 of each rectifier 10. By opening the relay contact 49 in addition to stopping the on / off of the MOSFETs 31 to 36, the short-circuit current does not flow into the other rectifiers 10, and the reliability of protection against the short-circuit current is improved.
 他の構成・作用・効果は、第1実施形態と同じである。よって、その説明は省略する。 Other configurations, operations, and effects are the same as those in the first embodiment. Therefore, the description is omitted.
 [3]本発明の第3実施形態について説明する。 
 第1実施形態では、各整流装置10のそれぞれが、他の整流装置10の異常判定も含めて実行するようにした。これに対し、第3実施形態では、複数の整流装置10を通信で接続する際に、1つの三相整流装置を親機に、他の整流装置10を子機に設定し、親機に設定された整流装置10のみが、接続されたすべての整流装置10の異常を判断してすべての整流装置10の動作/異常停止を通信によって指示する。
[3] A third embodiment of the present invention will be described.
In the first embodiment, each of the rectifiers 10 is executed including the abnormality determination of the other rectifiers 10. On the other hand, in the third embodiment, when a plurality of rectifiers 10 are connected by communication, one three-phase rectifier is set as a master unit, the other rectifier 10 is set as a slave unit, and set as a master unit. Only the connected rectifier 10 determines the abnormality of all the connected rectifiers 10 and instructs the operation / abnormal stop of all the rectifiers 10 by communication.
 他の構成・作用・効果は、第1実施形態と同じである。よって、その説明は省略する。 Other configurations, operations, and effects are the same as those in the first embodiment. Therefore, the description is omitted.
 [4]本発明の第4実施形態について説明する。 
 第1実施形態では、MOSFETを断続的にオンする期間として、入力電圧が正レベルとなる位相の前縁側0°~60°の期間Rx1,Sx1,Tx1、および入力電圧が負レベルとなる位相の前縁側0°~60°の期間Ry1,Sy1,Ty1を設定した。第4実施形態では、この設定に加えて、入力電圧が正レベルとなる位相の後縁側120°~180°の期間、および入力電圧が負レベルとなる位相の後縁側120°~180°の期間を設定する。この場合、前縁側の期間Rx1,Sx1,Tx1,Ry1,Sy1,Ty1として0°~(40°±10°)を設定し、後縁側の期間として(160°±10°)~180°を設定してもよい。ここで、後縁側とは、各交流電圧の0Vに向かう立ち下がり(負レベルの位相)及び立ち下り(正レベルの位相)部分を意味し、具体的には各交流電圧波形の120°~180°の範囲及び300°~360°の範囲を意味する。
[4] A fourth embodiment of the present invention will be described.
In the first embodiment, as the period in which the MOSFET is intermittently turned on, the period Rx1, Sx1, Tx1 of the leading edge side 0 ° to 60 ° of the phase in which the input voltage is at a positive level, and the phase in which the input voltage is at a negative level. Periods Ry1, Sy1, Ty1 of 0 ° to 60 ° on the leading edge side were set. In the fourth embodiment, in addition to this setting, a period of 120 ° to 180 ° of the trailing edge side of the phase in which the input voltage becomes positive level, and a period of 120 ° to 180 ° of the trailing edge side of the phase in which the input voltage becomes negative level. Set. In this case, 0 ° to (40 ° ± 10 °) is set as the period Rx1, Sx1, Tx1, Ry1, Sy1, Ty1 on the leading edge side, and (160 ° ± 10 °) to 180 ° is set as the period on the trailing edge side. May be. Here, the trailing edge side means a falling (negative level phase) and falling (positive level phase) portion of each AC voltage toward 0 V, specifically, 120 ° to 180 ° of each AC voltage waveform. It means the range of ° and the range of 300 ° to 360 °.
 例えば、各相入力電圧の零クロス点を正負にかかわらず0°として表わした場合、前縁側の期間Rx1,Sx1,Tx1,Ry1,Sy1,Ty1として0°~30°を設定する場合は、後縁側の期間として長めの150°~180°の期間を設定する。前縁側の期間Rx1,Sx1,Tx1,Ry1,Sy1,Ty1として長めの0°~50°を設定する場合は、後縁側の期間として170°~180°の期間を設定する。要は電気角60°の範囲内で前縁側の期間と後縁側の期間を振り分ければよい。前縁側0°~(40°±10°)および後縁側(160°±10°)~180°の期間でのスイッチングは、前縁側0°~60°および後縁側120°~180°の期間にスイッチングする場合と比較すると、全期間(0°~180°)を通してオン状態となるMOSFET31~36がいずれか1つとなり、制御性向上、スイッチングノイズ減少の効果を得ることができる。 For example, when the zero cross point of each phase input voltage is expressed as 0 ° regardless of whether it is positive or negative, when 0 ° to 30 ° is set as the period Rx1, Sx1, Tx1, Ry1, Sy1, Ty1 on the leading edge side, A longer period of 150 ° to 180 ° is set as the period on the edge side. When a long 0 ° to 50 ° is set as the period Rx1, Sx1, Tx1, Ry1, Sy1, Ty1 on the leading edge side, a period of 170 ° to 180 ° is set as the trailing edge side period. In short, the period of the leading edge side and the period of the trailing edge side may be distributed within an electric angle of 60 °. Switching in the period from 0 ° to (40 ° ± 10 °) on the leading edge side and 160 ° ± 10 ° to the trailing edge side to 180 ° is performed in the period from 0 ° to 60 ° on the leading edge side and 120 ° to 180 ° on the trailing edge side. Compared with the case of switching, the MOSFETs 31 to 36 that are turned on throughout the entire period (0 ° to 180 °) are any one, and the effect of improving controllability and reducing switching noise can be obtained.
 なお、スイッチングノイズを問題としないのであれば、本実施形態のようにスイッチングを各相の特定位相期間のみに制限する必要はない。この場合、スイッチングノイズは増加するが、全位相において適切なタイミングでスイッチング(短絡)を行なうことにより、さらなる高調波の低減、力率の向上を図ることができる。 If switching noise is not a problem, it is not necessary to limit switching to a specific phase period of each phase as in this embodiment. In this case, although switching noise increases, by performing switching (short circuit) at an appropriate timing in all phases, it is possible to further reduce harmonics and improve the power factor.
 他の構成・作用・効果は、第1実施形態と同じである。よって、その説明は省略する。 Other configurations, operations, and effects are the same as those in the first embodiment. Therefore, the description is omitted.
 上記各実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、書き換え、変更を行うことができる。これら実施形態は、発明の範囲は要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 The above embodiments are presented as examples, and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, rewrites, and changes can be made without departing from the scope of the invention. In these embodiments, the scope of the invention is included in the gist, and is included in the invention described in the claims and an equivalent scope thereof.
 本発明の実施形態の整流装置および整流システムは、交流電圧を直流電圧に変換する機器への利用が可能である。 The rectifier and the rectifier system according to the embodiment of the present invention can be used for an apparatus that converts an AC voltage into a DC voltage.

Claims (7)

  1.  交流電源の電圧を整流する整流回路と、
     前記交流電源と前記整流回路との接続間に設けたリアクトルと、
     前記リアクトルおよび前記整流回路を通して前記交流電源に対する短絡路を形成するためのスイッチング素子と、
     前記交流電源からの入力電流を検知する検知手段と、
     力率を検出する検出手段と、
     前記交流電源の電圧の所定の位相において前記スイッチング素子を断続的にオンするためのスイッチングパターンを前記検知手段の検知電流に応じて選定し、選定したスイッチングパターンに基づいて前記スイッチング素子をオン,オフし、続いて前記選定したスイッチングパターンを前記検出手段の検出力率が改善する方向に逐次に補正しながらその補正ごとのスイッチングパターンに基づいて前記スイッチング素子をオン,オフするとともに、その補正ごとのスイッチングパターンと前記選定時のスイッチングパターンとの差を求め、求めた差が所定値未満の場合は前記補正を継続し所定値以上の場合は前記選定に戻る制御手段と、
     を備えることを特徴とする整流装置。
    A rectifier circuit for rectifying the voltage of the AC power supply;
    A reactor provided between the AC power supply and the rectifier circuit;
    A switching element for forming a short circuit for the AC power supply through the reactor and the rectifier circuit;
    Detecting means for detecting an input current from the AC power source;
    Detecting means for detecting the power factor;
    A switching pattern for intermittently turning on the switching element at a predetermined phase of the voltage of the AC power supply is selected according to the detection current of the detection means, and the switching element is turned on / off based on the selected switching pattern Then, while sequentially correcting the selected switching pattern in a direction in which the detection power factor of the detection means is improved, the switching element is turned on / off based on the switching pattern for each correction, and for each correction. A control means for obtaining a difference between the switching pattern and the switching pattern at the time of selection, and if the obtained difference is less than a predetermined value, the correction is continued, and if the difference is greater than or equal to a predetermined value, the control means returns to the selection
    A rectifying device comprising:
  2.  前記交流電源は、三相交流電源であり、
     前記整流回路は、正側ダイオードと負側ダイオードを直列接続しその両ダイオードの相互接続点が三相交流電源のR相に接続されるR相用直列回路、正側ダイオードと負側ダイオードを直列接続しその両ダイオードの相互接続点が前記三相交流電源のS相に接続されるS相用直列回路、正側ダイオードと負側ダイオードを直列接続しその両ダイオードの相互接続点が前記三相交流電源のT相に接続されるT相用直列回路を有し、前記三相交流電源の電圧を直流電圧に変換して出力する、
     前記スイッチング素子は、前記各ダイオードに並列接続されている、
     前記リアクトルは、前記三相交流電源の各相と前記各直列回路との接続間に設けられている、
     前記制御手段は、前記三相交流電源の各相電圧が正レベルとなる位相の少なくとも前縁側および負レベルとなる位相の少なくとも前縁側において前記スイッチング素子を断続的にオンするためのスイッチングパターンを前記検知手段の検知電流に応じて選定する、
     ことを特徴とする請求項1記載の整流装置。
    The AC power supply is a three-phase AC power supply,
    The rectifier circuit is a series circuit for R phase in which a positive diode and a negative diode are connected in series, and an interconnection point between the two diodes is connected to the R phase of a three-phase AC power supply, and a positive diode and a negative diode are connected in series. An S-phase series circuit in which the connection point between the two diodes is connected to the S phase of the three-phase AC power source, and a positive diode and a negative diode are connected in series. Having a T-phase series circuit connected to the T-phase of the AC power source, converting the voltage of the three-phase AC power source into a DC voltage and outputting the DC voltage;
    The switching element is connected in parallel to the diodes.
    The reactor is provided between each phase of the three-phase AC power source and the series circuit.
    The control means includes a switching pattern for intermittently turning on the switching element on at least the leading edge side of a phase where each phase voltage of the three-phase AC power supply is a positive level and at least the leading edge side of a phase where the phase voltage is a negative level. Select according to the detection current of the detection means,
    The rectifier according to claim 1.
  3.  請求項1または請求項2に記載の整流装置を複数備え、これら整流装置を並列接続するとともに、これら整流装置の相互間でデータ通信を行うことを特徴とする整流システム。 A rectifying system comprising a plurality of the rectifiers according to claim 1 or 2, connecting the rectifiers in parallel, and performing data communication between the rectifiers.
  4.  前記各整流装置は、各々の検知手段のいずれかの検知電流が零近傍または所定値以上となった場合に各々のスイッチング素子のオン,オフを停止する、
     ことを特徴とする請求項3記載の整流システム。
    Each of the rectifiers stops on and off of each switching element when the detection current of any of the detection means becomes near zero or a predetermined value or more.
    The rectifying system according to claim 3.
  5.  前記各整流装置は、各々の検知手段の検知電流を前記データ通信により互いに把握してその平均値を求め、この平均値に各々の検知電流が近づくように各々のスイッチング素子のオン,オフに際してのオン期間を調整する、
     ことを特徴とする請求項3記載の整流システム。
    Each of the rectifying devices grasps the detection currents of the respective detection means from each other by the data communication and obtains an average value thereof, and when each switching element is turned on / off so that the respective detection currents approach the average value. Adjust the on-period,
    The rectifying system according to claim 3.
  6.  前記各整流装置は、各々の整流回路の出力電流を検出する検出手段を備え、いずれかの前記整流回路の出力電流が所定値以上となった場合に各々のスイッチング素子のオン,オフを停止する、
     ことを特徴とする請求項3記載の整流システム。
    Each of the rectifiers includes detection means for detecting an output current of each rectifier circuit, and when each output current of the rectifier circuit exceeds a predetermined value, the switching elements are turned on and off. ,
    The rectifying system according to claim 3.
  7.  前記各整流装置は、各々の整流回路の出力電流を検出する検出手段を備え、いずれかの前記整流回路の出力電流が所定値以上となった場合に各々の整流回路の出力ラインを遮断する、
     ことを特徴とする請求項3記載の整流システム。
    Each of the rectifiers includes a detection unit that detects an output current of each rectifier circuit, and shuts off an output line of each rectifier circuit when the output current of any of the rectifier circuits becomes a predetermined value or more.
    The rectifying system according to claim 3.
PCT/JP2013/060094 2012-04-16 2013-04-02 Rectifier and rectifying system WO2013157387A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014511160A JP5802828B2 (en) 2012-04-16 2013-04-02 Rectifier and rectifier system
CN201380020390.2A CN104247243B (en) 2012-04-16 2013-04-02 Rectifier and rectifying system
KR1020147028838A KR101702200B1 (en) 2012-04-16 2013-04-02 Rectifier and rectifying system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012092784 2012-04-16
JP2012-092784 2012-04-16

Publications (1)

Publication Number Publication Date
WO2013157387A1 true WO2013157387A1 (en) 2013-10-24

Family

ID=49383352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/060094 WO2013157387A1 (en) 2012-04-16 2013-04-02 Rectifier and rectifying system

Country Status (4)

Country Link
JP (1) JP5802828B2 (en)
KR (1) KR101702200B1 (en)
CN (1) CN104247243B (en)
WO (1) WO2013157387A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018130025A (en) * 2014-01-24 2018-08-16 東芝キヤリア株式会社 Power conversion device, facility equipment, and facility equipment system
WO2023175779A1 (en) * 2022-03-16 2023-09-21 東芝キヤリア株式会社 Power supply circuit

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108900099B (en) * 2018-07-03 2020-01-03 加码技术有限公司 Microwave frequency conversion circuit and control method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003348892A (en) * 2003-04-21 2003-12-05 Hitachi Ltd Control unit for a plurality of motors, power converter, inverter module and converter module
WO2010021052A1 (en) * 2008-08-22 2010-02-25 東芝三菱電機産業システム株式会社 Power converting apparatus
JP2011200069A (en) * 2010-03-23 2011-10-06 Fujitsu General Ltd Power supply

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1753294A (en) * 2004-09-22 2006-03-29 松下电器产业株式会社 Direct current power supply apparatus and control method for the same, and a compressor drive apparatus
JP2007104859A (en) * 2005-10-07 2007-04-19 Matsushita Electric Ind Co Ltd Dc power supply device
JP4887033B2 (en) * 2005-11-28 2012-02-29 東芝キヤリア株式会社 Inverter apparatus, control method therefor, and refrigeration cycle apparatus
JP5427787B2 (en) * 2008-10-03 2014-02-26 東芝キヤリア株式会社 Three-phase rectifier
JP5304374B2 (en) * 2009-03-26 2013-10-02 富士電機株式会社 Noise reduction method for power conversion system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003348892A (en) * 2003-04-21 2003-12-05 Hitachi Ltd Control unit for a plurality of motors, power converter, inverter module and converter module
WO2010021052A1 (en) * 2008-08-22 2010-02-25 東芝三菱電機産業システム株式会社 Power converting apparatus
JP2011200069A (en) * 2010-03-23 2011-10-06 Fujitsu General Ltd Power supply

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018130025A (en) * 2014-01-24 2018-08-16 東芝キヤリア株式会社 Power conversion device, facility equipment, and facility equipment system
WO2023175779A1 (en) * 2022-03-16 2023-09-21 東芝キヤリア株式会社 Power supply circuit

Also Published As

Publication number Publication date
KR101702200B1 (en) 2017-02-02
CN104247243A (en) 2014-12-24
KR20140133946A (en) 2014-11-20
JP5802828B2 (en) 2015-11-04
CN104247243B (en) 2017-05-24
JPWO2013157387A1 (en) 2015-12-21

Similar Documents

Publication Publication Date Title
US11218107B2 (en) Control device for power converter
US9496802B2 (en) Inverter device
US20150188454A1 (en) Inverter device, control circuit for inverter device, and method for controlling inverter device
JP2012196725A (en) Power tool
EP3054576B1 (en) Rectification device
AU2019245978A1 (en) Power source quality management system and air conditioning apparatus
JP6393787B2 (en) Power management device and power storage device
US9800196B2 (en) Control apparatus for AC rotary machine
JP5802828B2 (en) Rectifier and rectifier system
JP6543872B2 (en) Control device, control method and program
JP6230677B1 (en) Control device and control method for rotating electrical machine
JP5673114B2 (en) Inverter device and electric motor drive system
JP5824339B2 (en) Three-phase rectifier
JP2010110179A (en) Rectifying circuit
JP2015070659A (en) Power supply
JP7370775B2 (en) Power conversion device and control method for power conversion device
JP6044854B2 (en) Electric tool
JP2014036539A (en) Inverter device and switching timing correction method therefor
JP2012080740A (en) Inverter controller
JP6198083B2 (en) Electric tool
JP2016019439A (en) Fault detection device for semiconductor power converter
JP7049770B2 (en) Power converter and motor drive system
JP6251660B2 (en) Voltage control device for power converter
JP6530244B2 (en) Square wave power regeneration device
ES2747698T3 (en) Grinding device and motor drive device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13778694

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014511160

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147028838

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13778694

Country of ref document: EP

Kind code of ref document: A1