WO2013157287A1 - Optical module - Google Patents

Optical module Download PDF

Info

Publication number
WO2013157287A1
WO2013157287A1 PCT/JP2013/053008 JP2013053008W WO2013157287A1 WO 2013157287 A1 WO2013157287 A1 WO 2013157287A1 JP 2013053008 W JP2013053008 W JP 2013053008W WO 2013157287 A1 WO2013157287 A1 WO 2013157287A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser light
rectangular
rectangular surface
optical module
optical
Prior art date
Application number
PCT/JP2013/053008
Other languages
French (fr)
Japanese (ja)
Inventor
建 天野
史雄 佐々木
小森 和弘
Original Assignee
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人産業技術総合研究所 filed Critical 独立行政法人産業技術総合研究所
Publication of WO2013157287A1 publication Critical patent/WO2013157287A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/30Optical coupling means for use between fibre and thin-film device
    • G02B6/305Optical coupling means for use between fibre and thin-film device and having an integrated mode-size expanding section, e.g. tapered waveguide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device

Definitions

  • optical communication has been carried out over a relatively long transmission distance of several kilometers to several hundred kilometers via a large amount of optical communication traffic for transmission between continents, cities, and between base stations and homes. It was. In the future, in order to process large volumes of data without delay, it will be carried out at a very close transmission distance between each transmission device (several meters to several hundreds of meters) and between members in the transmission device (several centimeters to several tens of centimeters). It is required to be done. In the future, in order to handle high-definition image information in consumer equipment such as televisions and personal computers, it will be essential to increase the speed and capacity of video signal transmission, and optical transmission will also be applied to short-distance signal transmission lines. It is required to be. A surface emitting laser is effective for opticalizing the signal transmission line.
  • the structure of the module itself is used as a laser light source, so that the selectivity of the laser light source is limited.
  • Various types of laser light sources have been developed depending on the application, and a degree of freedom of selection is required depending on the application. Further, when the laser light source fails, it cannot be replaced with another laser light source.
  • an electric signal input from an electronic device such as an LSI or a memory element is converted into an optical signal before being attenuated and transmitted to another electronic device. While it is necessary to arrange the laser beam as an optical signal according to the arrangement position of the electronic device on the transmission side, it is necessary to arrange the laser light source and the optical wiring portion in the surface emitting laser module.
  • the laser light source and the optical wiring part are configured separately, and the modules can be arranged so that they can be arranged in the immediate vicinity of the input side and output side electronic devices, it is very advantageous in terms of device design.
  • the laser light source and the optical wiring part are separated from each other, there is a problem that the loss effect of the laser light is increased when these are optically coupled.
  • the present invention is based on the above knowledge, and means for solving the above problems are as follows. That is, ⁇ 1> One rectangular surface into which laser light is incident from a direction substantially orthogonal to the surface, and the one rectangular surface parallel to the one rectangular surface by introducing the laser light incident from the one rectangular surface.
  • a rectangular pyramid-shaped laser beam introducing portion having another square surface having a larger area than the other end surface, and one end surface is connected to the other rectangular surface of the laser beam introducing portion and in the incident direction of the laser beam
  • An optical waveguide that extends and guides the introduced light introduced from the one end face and emits it from the other end face, and reflects the guided light emitted from the optical waveguide and emits the light to the outside.
  • An optical path changing unit having a reflecting surface, and a support substrate that supports the laser light introducing unit, the optical waveguide unit, and the optical path changing unit, and the one rectangular surface of the laser light introducing unit is a right side surface.
  • the other rectangular surface is the left side surface
  • An optical module characterized in that at least one of the surfaces is a tapered surface having a slope that spreads from the one rectangular surface toward the other rectangular surface.
  • the laser beam introduction part has one rectangular surface as the right side surface and the other rectangular surface as the left side surface, the shape in which the flat surface is a tapered surface, and the incident direction of the laser light in front view and the back surface Any of a shape that is a line-symmetric taper surface with the upper extension line as a symmetry axis, and a shape in which the flat surface is a taper surface and the front surface and the back surface are the line-symmetric taper surface ⁇ 1>.
  • the width of the one rectangular surface is 0.1X to 0.9X, where X is the width of the other rectangular surface. And the shortest distance between the one rectangular surface and the other rectangular surface is 1.1X to 8X, and when the height of the other rectangular surface is Y, the height of the one rectangular surface is The optical module according to ⁇ 2>, wherein 0.2Y to 0.9Y.
  • ⁇ 6> The optical module according to any one of ⁇ 1> to ⁇ 5>, wherein the width of the other rectangular surface is 1 ⁇ m to 100 ⁇ m.
  • ⁇ 7> The optical module according to any one of ⁇ 1> to ⁇ 6>, wherein the height of the other rectangular surface is 1 ⁇ m to 100 ⁇ m.
  • ⁇ 8> The optical module according to any one of ⁇ 1> to ⁇ 7>, wherein the laser beam introduction section and the optical waveguide section are integrally formed.
  • the optical waveguide section is formed of a forming material having an optical waveguide loss with respect to light having a wavelength of 1.3 ⁇ m being 0.1 dB / cm to 0.5 dB / cm.
  • the optical module as described in. ⁇ 10> The optical module according to any one of ⁇ 1> to ⁇ 9>, wherein a laser light source that makes laser light incident on one square surface is disposed on a support substrate.
  • ⁇ 11> The optical module according to ⁇ 10>, wherein the distance L between the laser light emission port of the laser light source and the one rectangular surface satisfies the following expression: 0 ⁇ m ⁇ L ⁇ 40 ⁇ m.
  • ⁇ 12> The optical module according to any one of ⁇ 10> to ⁇ 11>, wherein the laser light source is a quantum dot laser.
  • FIG. 5 is a plan view of a laser beam introducing unit 5.
  • 2 is a front view of a laser beam introducing unit 10.
  • FIG. 3 is a plan view of a laser beam introducing unit 10. The shortest distance L tap between one rectangular surface 10a and the other rectangular surface 10b in the laser beam introducing section 10 is changed in the range of 40 ⁇ m to 300 ⁇ m, and the width W p of the one rectangular surface 10a is changed in the range of 4 ⁇ m to 40 ⁇ m.
  • FIG. 3 is a front view of a laser beam introduction unit 15.
  • FIG. 6 is a plan view of a laser beam introducing unit 15. The shortest distance L tap between one rectangular surface 15a and the other rectangular surface 15b in the laser beam introducing portion 15 is changed in the range of 100 ⁇ m to 350 ⁇ m, and the height H p of the one rectangular surface 15a is in the range of 4 ⁇ m to 40 ⁇ m. It is a figure which shows the simulation result at the time of making it change by. It is a top view which shows the outline
  • the optical module of the present invention includes at least a laser beam introduction unit, an optical waveguide unit, an optical path changing unit, and a support substrate, and includes a laser light source and other members as necessary.
  • the laser light introducing section includes a rectangular surface into which laser light is incident from a direction substantially orthogonal to a surface, and the laser light incident from the one rectangular surface is introduced and parallel to the one rectangular surface.
  • a quadrangular frustum-shaped member having another square surface having a larger area than one square surface, the one rectangular surface of the laser light introducing portion as a right side surface, and the other square surface as a left side surface
  • at least one of the remaining surfaces is a tapered surface having a slope that becomes wider from the one rectangular surface toward the other rectangular surface. With such a tapered surface, it is possible to introduce the laser light into the optical waveguide section while keeping the loss efficiency of the laser light incident from the outside low.
  • the shape of the laser beam introducing portion is not particularly limited as long as it has the tapered surface, but when the one rectangular surface is the right side and the other rectangular surface is the left side, the plane is a tapered surface.
  • the front surface and the back surface in a plan view, the shape being a line-symmetric taper surface with the extension line in the incident direction of the laser beam as the axis of symmetry, and the flat surface being a taper surface and the front surface and the back surface Is preferably formed in any of the shapes that are the axisymmetric tapered surfaces.
  • the optical waveguide section has one end face connected to the other rectangular face of the laser light introducing section and extends in the incident direction of the laser light, and introduces introduced light introduced from the one end face inside. It is a member that is guided and emitted from the other end face.
  • the optical module can be designed so that the laser light is acquired from an arbitrary position and guided to an arbitrary position.
  • the laser light source can be appropriately selected according to the purpose, and when the laser light source fails Can be replaced with other laser light sources.
  • the material for forming the optical waveguide part is not particularly limited, but a material having an optical waveguide loss for light having a wavelength of 1.3 ⁇ m of 0.1 dB / cm to 0.5 dB / cm is preferable.
  • the material include a resin material such as an epoxy resin.
  • the method for forming the optical waveguide is not particularly limited and may be appropriately selected depending on the purpose. Examples thereof include a method for forming the optical waveguide by a known photolithography technique.
  • the laser beam introduction section and the optical waveguide section may be formed as separate members, but can be easily formed and formed integrally from the viewpoint of suppressing loss of the laser beam. preferable.
  • each end face of the optical waveguide is not particularly limited, but is preferably 1 ⁇ m to 100 ⁇ m, and more preferably 5 ⁇ m to 50 ⁇ m.
  • the height of each end face is preferably 1 ⁇ m to 100 ⁇ m, more preferably 5 ⁇ m to 50 ⁇ m. Forming the optical waveguide part with such a size is preferable in that light can be transmitted over a long distance without impairing the signal capacity.
  • the optical path changing unit is a member having a reflection surface that reflects the guided light emitted from the optical waveguide unit and emits the light to the outside. By having such a reflection surface, it is possible to change the optical path of the laser light and to emit the laser light to the surface in an arbitrary direction.
  • the structure is not particularly limited, and the entire member may be formed of a light reflecting material, or only the reflecting surface may be formed of the light reflecting material.
  • the light reflection material For example, gold
  • the method for forming the optical path changing portion include a method using a dicing saw.
  • the light path changing portion may be formed by, for example, applying the light reflection material to the surface of the main material that forms the base of the reflection surface by vacuum deposition or sputtering. And a method of forming a film by a method.
  • the support substrate is a member that supports the laser light introducing section, the optical waveguide section, and the optical path changing section.
  • the support substrate may directly support each part or indirectly support through another member. Further, when the laser light introduction part and the optical waveguide part are integrally formed, the laser light introduction part may be indirectly supported by supporting the optical waveguide part.
  • the support substrate is not particularly limited and may be appropriately selected depending on the intended purpose.
  • a known substrate such as a semiconductor substrate may be used.
  • the laser light source for making the laser light incident on the one rectangular surface of the laser light introducing section may be disposed as a separate member from the optical module, but is disposed on the same support substrate of the optical module. Is preferred. Thus, by arranging on the same support substrate, it is possible to easily adjust the incident position of the laser beam with respect to the one rectangular surface.
  • the method of arranging the laser light source on the support substrate is not particularly limited, and examples thereof include a method of fixing and arranging the laser light source on the support substrate by soldering.
  • the laser light source is not particularly limited, and for example, a known semiconductor laser can be used. Among them, a quantum dot laser is preferably used from the viewpoint that a large capacity signal can be handled at high speed. Since the semiconductor laser generally has a relatively large divergence angle component, the laser light is radiated on the condition that the divergence of light in the laser light introducing portion is a gentler angle than the gradient of the tapered surface. It is preferable to make it enter into a light introduction part.
  • covers the exterior is mentioned.
  • the clad portion has a role of confining the laser light in the core portion due to a difference in refractive index from the core portion.
  • the clad portion may be disposed so as to support the laser light introducing portion, the optical waveguide portion, the optical path changing portion, and the laser light source as the support substrate in manufacturing the optical module.
  • a formation material of the said clad part For example, well-known resin materials, such as an epoxy resin, are mentioned.
  • limiting in particular as the formation method It can form by a well-known formation method.
  • FIG. 1A is a plan view showing an outline of an embodiment of an optical module according to the present invention
  • FIG. 1B is a sectional view taken along line AA.
  • a laser light source 4 a laser light introducing unit 5, an optical waveguide unit 6, and an optical path changing unit 7 are arranged on a layered clad part 3 a formed on a support substrate 2, and an optical waveguide A clad 3b is formed on the outer periphery of the optical path changing unit 7 excluding the part 6 and the reflecting surface 7a.
  • the laser light introducing portion 5 and the optical waveguide portion 6 are formed as an integral member, and the laser light introducing portion 5 has a tapered surface, and the optical waveguide portion 6 extends in the incident direction of the laser light. It is formed as a quadrangular columnar member.
  • the optical path changing unit 7 has a reflecting surface 7a that changes the optical path, and the clad 3b is formed on the optical path changing unit 7 so that the upper part of the reflecting surface 7a is opened.
  • FIG. 2A is a front view of the laser beam introducing section 5
  • FIG. 2B is a plan view thereof.
  • the laser beam introducing section 5 has one rectangular surface 5a on which laser light is incident and another rectangular surface 5b that is parallel to the one rectangular surface and has a larger area than the one rectangular surface 5a. This is a quadrangular frustum-shaped member having the rectangular surface 5b as a bottom surface.
  • the flat surface is a tapered surface, and the front and back surfaces are extended in the incident direction of laser light in a plan view. It is formed in a shape that is a line-symmetric taper surface with the line as the axis of symmetry. Each taper surface has a slope that spreads from one square surface 5a to another square surface 5b (hereinafter, this shape is referred to as a “three-dimensional taper shape”).
  • the width W p of one rectangular surface 5a is preferably 0.1X to 0.9X.
  • the shortest distance L tap between the rectangular surface 5a and the other rectangular surface 5b is preferably 1.1X to 8X.
  • H p is 0.2Y ⁇ 0.9Y. That is, with such a shape, the loss efficiency of the laser light incident from the laser light source 4 can be kept extremely low. This is based on the result of summing up the simulation results for two two-dimensional tapered laser light introducing portions described below.
  • the shape of the front and back surfaces being a line-symmetric taper surface with the extended line in the laser beam incident direction as the axis of symmetry in plan view (see FIGS. 3A and 3B) and the surface is tapered.
  • the simulation results for the shapes of the two laser light introducing portions hereinafter sometimes referred to as “two-dimensional taper shapes” and the shapes to be formed (see FIGS. 6A and 6B) Based on the combined result.
  • the laser light introducing section 10 has one rectangular surface 10a as a right side surface, and is parallel to the one rectangular surface 10a and has an area larger than that of the one rectangular surface 10a.
  • the front and back surfaces have a shape that is a line-symmetric taper surface with the extended line in the laser beam incident direction as the axis of symmetry in plan view.
  • 3A is a front view of the laser beam introducing unit 10
  • FIG. 3B is a plan view thereof.
  • the shortest distance L tap between one rectangular surface 10a and the other rectangular surface 10b in the laser beam introducing section 10 is changed in the range of 40 ⁇ m to 300 ⁇ m, and the width W p of the one rectangular surface 10a is changed in the range of 4 ⁇ m to 40 ⁇ m.
  • FIG. 4 shows the simulation result when the change is made. Note that when W p is 40 [mu] m, the simulation result in the absence of the tapered surface. As shown in FIG. 4, a higher coupling efficiency is obtained than in the case where there is no tapered surface under most conditions.
  • the width of the other rectangular surface 10b when the width of the other rectangular surface 10b was set to X, the width W p of one rectangular surface 10a is 0.1X ⁇ 0.9X, one rectangular surface 10a and the other square
  • the shortest distance L tap between the surfaces 10b is preferably 1.1X to 8X.
  • FIG. 5 shows a simulation result when the L tap is fixed to 100 ⁇ m and the distance L sp is varied.
  • the distance L sp satisfies the following equation, 0 ⁇ m ⁇ L sp ⁇ 40 ⁇ m, by adjusting the width W p of one rectangular surface 10a, higher coupling than when there is no tapered surface Efficiency can be obtained.
  • the distance L sp between the laser beam emission port of the laser light source 4 and the one rectangular surface 10a satisfies the following expression: 0 ⁇ m ⁇ L sp ⁇ 40 ⁇ m. Further, from the viewpoint of enabling a design with a higher degree of freedom, it is more preferable to satisfy the following formula: 0 ⁇ m ⁇ L sp ⁇ 30 ⁇ m.
  • the laser light introducing portion 15 has one rectangular surface 15a as a right side surface, and is parallel to the one rectangular surface 15a and has an area larger than that of the one rectangular surface 15a.
  • the flat surface is a tapered surface.
  • 6A is a front view of the laser beam introducing portion 15, and FIG. 6B is a plan view thereof.
  • the height H p of one rectangular surface 15a is It is preferably 0.2Y to 0.9Y.
  • the shape of the laser light introducing portion 5 having the three-dimensional taper shape can be set. Further, in the above simulation of the two-dimensional taper shape, the calculation was performed with the width X and the height Y of the other rectangular surfaces in the laser beam introducing unit 10 and the laser beam introducing unit 15 being 40 ⁇ m, respectively.
  • the surface width is preferably 1 ⁇ m to 100 ⁇ m, more preferably 5 ⁇ m to 50 ⁇ m. That is, if the width is less than 1 ⁇ m, light scattering is increased, which makes it difficult to transmit light. If the width exceeds 100 ⁇ m, the waveguide size increases and the degree of integration does not increase.
  • the height of the other rectangular surface is preferably 1 ⁇ m to 100 ⁇ m, and more preferably 5 ⁇ m to 50 ⁇ m. That is, if the height is less than 1 ⁇ m, light scattering increases, so that light transmission becomes difficult. If the height exceeds 100 ⁇ m, the waveguide size increases and the degree of integration does not increase.
  • the optical module according to this example was manufactured as follows. First, a clad forming polymer (Cosmo Shine A4100 manufactured by Toyobo Co., Ltd.) was applied on the support substrate 22 to form a clad portion 23a. Next, a core-forming photosensitive polymer (phenoxy resin (using phenotote YP-70 manufactured by Toto Chemical Co., Ltd.)) having a refractive index different from that of the cladding-forming polymer is applied on the cladding portion 23a. Using the photomask on which the shapes of the laser beam introduction section 25 and the optical waveguide section 26 are drawn and an exposure machine, pattern transfer and development of the shapes are performed to form the laser beam introduction section 25 and the optical waveguide section 26.
  • a clad forming polymer Cosmo Shine A4100 manufactured by Toyobo Co., Ltd.
  • a core-forming photosensitive polymer phenoxy resin (using phenotote YP-70 manufactured by Toto
  • the laser beam introducing section 25 has a two-dimensional tapered shape in which the front and back surfaces are two-dimensionally tapered with a line extending symmetrically in the incident direction of the laser light as a symmetry axis in plan view. And formed integrally.
  • pattern transfer and development were performed in the same manner as the formation of the optical waveguide 26 to form the clad 23b.
  • a dicer was used to cut the upper portion of the laser beam introducing portion 25 to form a tapered surface on the upper portion, thereby obtaining a three-dimensional tapered shape.
  • the dimensions of the optical waveguide section 26 were a diameter of 40 ⁇ m square and a length (optical waveguide length) of 2 cm. Further, the dimensions of the laser light introducing section 25 are such that the height of one rectangular surface on the laser light source 24 side is 15 ⁇ m, the width is 5 ⁇ m, and the height and width of the other rectangular surface connected to the optical waveguide section 26 are as follows. The thickness was 40 ⁇ m. As the formation position of the taper surface, a symmetrical taper surface on the front surface and the back surface is formed at a position of 450 ⁇ m from one square surface of the laser beam introduction portion 25 to the other square surface, and the flat taper surface is one rectangular surface. To the other rectangular surface at a position of 200 ⁇ m.
  • the boundary between the laser beam introducing section 25 and the optical waveguide section 26 is a position 450 ⁇ m from one rectangular plane on which the symmetrical tapered surface is formed (the position indicated by the dotted line in FIGS. 8 and 9). Bordered by presence or absence.
  • the laser light source 24 was soldered on the clad portion 23a.
  • a quantum dot laser having the same configuration as the quantum dot laser (see Japanese Patent Application Laid-Open No. 2007-53322) filed in the past by the applicant of the present application was used.
  • an optical fiber 30 for measuring the loss efficiency was disposed on the cladding part 23a.
  • the optical module which concerns on an Example was produced by the above.
  • the optical module according to the comparative example was produced in the same manner as the optical module according to the example, except that the tapered surface was not provided in the region to be the light introducing portion 25.
  • the loss efficiency of the optical module which concerns on an Example and a comparative example was computed.
  • the loss efficiency of the optical module according to the embodiment is measured by making the laser light incident on the laser light introducing section 25, guiding the guided light emitted from the optical waveguide section 26 to the optical fiber 30, and connecting to the optical fiber 30.
  • the light intensity was measured with a power meter, and the loss efficiency of the laser light was calculated from the light intensity and the light intensity of the laser light emitted from the laser light source 24.
  • the loss efficiency of the optical module according to the comparative example was calculated in the same manner.
  • the calculation results of the loss efficiencies of the optical modules according to the examples and the comparative examples are shown in Table 1 below.
  • the loss efficiency can be suppressed to 3.6 dB smaller than the optical module according to the comparative example.

Abstract

[Object] An object of the present invention is to provide an optical module that is capable of reducing the effect of laser light loss even when a laser light source and an optical wiring unit are configured to be separated from each other. [Solution] An optical module according to the present invention includes: one square surface where laser light is incident; a truncated pyramid-shaped laser light introduction unit that has another square surface which is in parallel with the one square surface and is larger in size than the one square surface; an optical waveguide unit that is connected to the other square surface of the laser light introduction unit, extends in the incident direction of the laser light, and guides the introduced light inside and emits the light from another cross section; an optical path changing unit that has a reflective surface which reflects the guided light emitted from the optical waveguide unit; and a support substrate that supports the laser light introduction unit, the optical waveguide unit, and the optical path changing unit. When the one square surface of the laser light introduction unit is a right side surface and the other square surface is a left side surface, at least one of the other surfaces is a tapered surface.

Description

光モジュールOptical module
 本発明は、入射されるレーザ光の光路を変更して任意の方向に面出射する光モジュールに関する。 The present invention relates to an optical module that changes the optical path of incident laser light and emits a surface in an arbitrary direction.
 これまで光通信は、大陸間、都市間、及び基地局-各家庭間を伝送対象とし、大量の光通信トラフィックを介して数km~数百kmといった比較的長距離の伝送距離で実施されてきた。今後は、大容量データを遅延なく処理するため、更に各伝送装置間(数m~数百m)、伝送装置内の部材間(数cm~数十cm)といった極めて近距離の伝送距離で実施されることが求められる。また、今後、テレビ、パーソナルコンピュータなどの民生機器において高精細な画像情報を取扱うにあたり、映像信号伝送の高速化・大容量化することが必須であり、近距離の信号伝送線路についても光化されることが求められている。この信号伝送線路の光化には、面出射レーザが有効である。 Up to now, optical communication has been carried out over a relatively long transmission distance of several kilometers to several hundred kilometers via a large amount of optical communication traffic for transmission between continents, cities, and between base stations and homes. It was. In the future, in order to process large volumes of data without delay, it will be carried out at a very close transmission distance between each transmission device (several meters to several hundreds of meters) and between members in the transmission device (several centimeters to several tens of centimeters). It is required to be done. In the future, in order to handle high-definition image information in consumer equipment such as televisions and personal computers, it will be essential to increase the speed and capacity of video signal transmission, and optical transmission will also be applied to short-distance signal transmission lines. It is required to be. A surface emitting laser is effective for opticalizing the signal transmission line.
 こうした面出射型のレーザモジュールとして、例えば、半導体基板と、前記半導体基板に設けられた光出射領域と、前記光出射領域に集積されたレンズと、前記レンズが集積された前記光出射領域を囲むように集積された保持部とを有し、前記光出射領域から、前記半導体基板の主表面に対して垂直方向に光を出射する発光素子と、前記保持部に勘合、保持され、前記レンズを透過した前記発光素子からの光を導波する外部光導波路と、前記発光素子および前記外部光導波路が固定されるステムを有することを特徴とする面出射型レーザモジュールが提案されている(特許文献1参照)。
 この面出射型レーザモジュールでは、面発光タイプの半導体レーザとして機能し、発光素子、ミラー構造、レンズ構造が一体集積されることで小型化可能とされている。
As such a surface emitting laser module, for example, a semiconductor substrate, a light emitting region provided in the semiconductor substrate, a lens integrated in the light emitting region, and the light emitting region in which the lens is integrated are surrounded. A light emitting element that emits light in a direction perpendicular to the main surface of the semiconductor substrate from the light emitting region, and is held in the holding portion to hold the lens. There has been proposed a surface emitting laser module characterized by having an external optical waveguide that guides light transmitted from the light emitting element and a stem to which the light emitting element and the external optical waveguide are fixed (Patent Document) 1).
This surface-emitting laser module functions as a surface-emitting type semiconductor laser and can be miniaturized by integrating the light-emitting element, the mirror structure, and the lens structure.
 しかし、この面出射型レーザモジュールでは、モジュール自身の構造がレーザ光源とされるため、レーザ光源の選択性に制約が生じる。レーザ光源としては、用途によって種々のタイプが開発されており、用途に応じて選択の自由度が求められる。また、該レーザ光源が故障した場合に他のレーザ光源と交換を行うことができない。
 また、面出射タイプのレーザモジュールとしては、LSI、メモリ素子等の電子デバイスから入力される電気信号を減衰する前に光信号に変換して他の電子デバイスに伝送するため、入力側の電子デバイス直近に配設する必要性があるとともに、伝送側の電子デバイスの配設位置に合わせて光信号としてのレーザ光を出射する必要があるが、前記面出射レーザモジュールでは、レーザ光源と光配線部分とが一体的に構成されるため、このような電子デバイスの配設位置に応じたモジュール構成をとることができない。
 レーザ光源と光配線部分を分離して構成し、それぞれを入力側、出力側の電子デバイスの直近に配設可能なようにモジュール構成できれば、デバイス設計上、非常に優位となる。
 しかしながら、レーザ光源と光配線部分を分離して構成すると、これらを光学的に結合する際、レーザ光の損失効果が大きくなる問題がある。
However, in this surface emitting laser module, the structure of the module itself is used as a laser light source, so that the selectivity of the laser light source is limited. Various types of laser light sources have been developed depending on the application, and a degree of freedom of selection is required depending on the application. Further, when the laser light source fails, it cannot be replaced with another laser light source.
In addition, as a surface emitting type laser module, an electric signal input from an electronic device such as an LSI or a memory element is converted into an optical signal before being attenuated and transmitted to another electronic device. While it is necessary to arrange the laser beam as an optical signal according to the arrangement position of the electronic device on the transmission side, it is necessary to arrange the laser light source and the optical wiring portion in the surface emitting laser module. Are integrally configured, it is impossible to adopt a module configuration corresponding to the arrangement position of such an electronic device.
If the laser light source and the optical wiring part are configured separately, and the modules can be arranged so that they can be arranged in the immediate vicinity of the input side and output side electronic devices, it is very advantageous in terms of device design.
However, if the laser light source and the optical wiring part are separated from each other, there is a problem that the loss effect of the laser light is increased when these are optically coupled.
特開2010-251649号公報JP 2010-251649 A
 本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、レーザ光源と光配線部分を分離して構成しても、レーザ光の損失効果を低くすることができる光モジュールを提供することを目的とする。 This invention makes it a subject to solve the said various problems in the past and to achieve the following objectives. That is, an object of the present invention is to provide an optical module that can reduce the loss effect of laser light even if the laser light source and the optical wiring portion are separated.
 本発明者らは、前記課題を解決するために鋭意検討を行ったところ、以下の知見を得た。
 即ち、レーザ光源から出射されるレーザ光を直接、光配線部分(光導波部)に導入すると、前記レーザ光の損失効率が高くなるが、前記レーザ光を導入する部分にテーパを設けると、前記レーザ光の損失効率を小さく抑えることができることの知見を得た。
The inventors of the present invention have made extensive studies in order to solve the above problems, and have obtained the following knowledge.
That is, when laser light emitted from a laser light source is directly introduced into an optical wiring portion (optical waveguide portion), the loss efficiency of the laser light is increased. However, when a taper is provided at a portion where the laser light is introduced, We have found that the loss efficiency of laser light can be kept small.
 本発明は、前記知見に基づくものであり、前記課題を解決するための手段としては、以下の通りである。即ち、
 <1> 面に対し略直交方向からレーザ光が入射される一の方形面と、前記一の方形面から入射される前記レーザ光が導入され前記一の方形面と平行で前記一の方形面よりも面積が大きい他の方形面とを有する四角錐台状のレーザ光導入部と、一の端面が前記レーザ光導入部の前記他の方形面と連接されるとともに前記レーザ光の入射方向に延在され、前記一の端面から導入される導入光を内部に導波させて他の端面から出射させる光導波部と、前記光導波部から出射される導波光を反射させて外部に面出射させる反射面を有する光路変更部と、前記レーザ光導入部、前記光導波部及び前記光路変更部を支持する支持基板と、を有し、前記レーザ光導入部の前記一の方形面を右側面とし、前記他の方形面を左側面としたとき、その余の面の少なくともいずれかの面が前記一の方形面から前記他の方形面に向かって裾広がりとなる勾配を有するテーパ面とされることを特徴とする光モジュール。
 <2> レーザ光導入部が、一の方形面を右側面とし、他の方形面を左側面としたとき、平面がテーパ面とされる形状、正面と背面が平面視においてレーザ光の入射方向上の延長線を対称軸とした線対称のテーパ面とされる形状、及び前記平面がテーパ面とされるとともに前記正面と前記背面が前記線対称のテーパ面とされる形状のいずれかの形状で形成される前記<1>に記載の光モジュール。
 <3> レーザ光導入部が、一の方形面を右側面とし、他の方形面を左側面としたとき、平面がテーパ面とされる形状で形成され、前記他の方形面の幅をXとしたとき、前記一の方形面と前記他の方形面間の最短距離が1.1X~9Xであり、前記他の方形面の高さをYとしたとき、前記一の方形面の高さが、0.2Y~0.9Yである前記<2>に記載の光モジュール。
 <4> 正面と背面が平面視においてレーザ光の入射方向上の延長線を対称軸とした線対称のテーパ面とされる形状で形成され、前記他の方形面の幅をXとしたとき、前記一の方形面の幅が、0.1X~0.9Xであり、前記一の方形面と前記他の方形面間の最短距離が1.1X~8Xである前記<2>に記載の光モジュール。
 <5> レーザ光導入部が、一の方形面を右側面とし、他の方形面を左側面としたとき、平面がテーパ面とされるとともに正面と背面が平面視においてレーザ光の入射方向上の延長線を対称軸とした線対称のテーパ面とされる形状で形成され、前記他の方形面の幅をXとしたとき、前記一の方形面の幅が、0.1X~0.9Xであり、前記一の方形面と前記他の方形面間の最短距離が1.1X~8Xであり、前記他の方形面の高さをYとしたとき、前記一の方形面の高さが、0.2Y~0.9Yである前記<2>に記載の光モジュール。
 <6> 他の方形面の幅が1μm~100μmである前記<1>から<5>のいずれかに記載の光モジュール。
 <7> 他の方形面の高さが1μm~100μmである前記<1>から<6>のいずれかに記載の光モジュール。
 <8> レーザ光導入部と光導波部が一体に形成される前記<1>から<7>のいずれかに記載の光モジュール。
 <9> 光導波部が、1.3μmの波長の光に対する光導波ロスを0.1dB/cm~0.5dB/cmとする形成材料で形成される前記<1>から<8>のいずれかに記載の光モジュール。
 <10> 更に、一の方形面にレーザ光を入射させるレーザ光源が支持基板上に配される前記<1>から<9>のいずれかに記載の光モジュール。
 <11> レーザ光源のレーザ光出射口と、一の方形面との距離Lが、次式、0μm<L≦40μmを満たす前記<10>に記載の光モジュール。
 <12> レーザ光源が量子ドットレーザである前記<10>から<11>のいずれかに記載の光モジュール。
The present invention is based on the above knowledge, and means for solving the above problems are as follows. That is,
<1> One rectangular surface into which laser light is incident from a direction substantially orthogonal to the surface, and the one rectangular surface parallel to the one rectangular surface by introducing the laser light incident from the one rectangular surface. A rectangular pyramid-shaped laser beam introducing portion having another square surface having a larger area than the other end surface, and one end surface is connected to the other rectangular surface of the laser beam introducing portion and in the incident direction of the laser beam An optical waveguide that extends and guides the introduced light introduced from the one end face and emits it from the other end face, and reflects the guided light emitted from the optical waveguide and emits the light to the outside. An optical path changing unit having a reflecting surface, and a support substrate that supports the laser light introducing unit, the optical waveguide unit, and the optical path changing unit, and the one rectangular surface of the laser light introducing unit is a right side surface. When the other rectangular surface is the left side surface, An optical module characterized in that at least one of the surfaces is a tapered surface having a slope that spreads from the one rectangular surface toward the other rectangular surface.
<2> When the laser beam introduction part has one rectangular surface as the right side surface and the other rectangular surface as the left side surface, the shape in which the flat surface is a tapered surface, and the incident direction of the laser light in front view and the back surface Any of a shape that is a line-symmetric taper surface with the upper extension line as a symmetry axis, and a shape in which the flat surface is a taper surface and the front surface and the back surface are the line-symmetric taper surface <1> The optical module according to <1>.
<3> When the laser beam introduction portion has one rectangular surface as the right side surface and the other rectangular surface as the left side surface, the laser light introducing portion is formed in a shape in which the flat surface is a tapered surface, and the width of the other rectangular surface is X When the shortest distance between the one rectangular surface and the other rectangular surface is 1.1X to 9X, and the height of the other rectangular surface is Y, the height of the one rectangular surface is The optical module according to <2>, wherein is 0.2Y to 0.9Y.
<4> When the front surface and the back surface are formed in a shape that is a line-symmetric taper surface with an extension line in the incident direction of the laser light in a plan view as a symmetry axis, and the width of the other rectangular surface is X, The light according to <2>, wherein the width of the one rectangular surface is 0.1X to 0.9X, and the shortest distance between the one rectangular surface and the other rectangular surface is 1.1X to 8X. module.
<5> When the laser beam introduction part has one square surface as the right side surface and the other square surface as the left side surface, the plane is a tapered surface and the front and back surfaces are in the laser beam incident direction in plan view. The width of the one rectangular surface is 0.1X to 0.9X, where X is the width of the other rectangular surface. And the shortest distance between the one rectangular surface and the other rectangular surface is 1.1X to 8X, and when the height of the other rectangular surface is Y, the height of the one rectangular surface is The optical module according to <2>, wherein 0.2Y to 0.9Y.
<6> The optical module according to any one of <1> to <5>, wherein the width of the other rectangular surface is 1 μm to 100 μm.
<7> The optical module according to any one of <1> to <6>, wherein the height of the other rectangular surface is 1 μm to 100 μm.
<8> The optical module according to any one of <1> to <7>, wherein the laser beam introduction section and the optical waveguide section are integrally formed.
<9> Any one of the items <1> to <8>, wherein the optical waveguide section is formed of a forming material having an optical waveguide loss with respect to light having a wavelength of 1.3 μm being 0.1 dB / cm to 0.5 dB / cm. The optical module as described in.
<10> The optical module according to any one of <1> to <9>, wherein a laser light source that makes laser light incident on one square surface is disposed on a support substrate.
<11> The optical module according to <10>, wherein the distance L between the laser light emission port of the laser light source and the one rectangular surface satisfies the following expression: 0 μm <L ≦ 40 μm.
<12> The optical module according to any one of <10> to <11>, wherein the laser light source is a quantum dot laser.
 本発明によれば、従来技術における前記諸問題を解決することができ、レーザ光源と光配線部分を分離して構成しても、レーザ光の損失効果を低くすることができる光モジュールを提供することができる。 According to the present invention, there is provided an optical module that can solve the above-mentioned problems in the prior art and can reduce the loss effect of laser light even if the laser light source and the optical wiring portion are separated. be able to.
本発明に係る光モジュールの実施形態の概要を示す平面図である。It is a top view which shows the outline | summary of embodiment of the optical module which concerns on this invention. 本発明に係る光モジュールの実施形態の概要を示す断面図である。It is sectional drawing which shows the outline | summary of embodiment of the optical module which concerns on this invention. レーザ光導入部5の正面図である。It is a front view of the laser beam introduction part 5. レーザ光導入部5の平面図である。FIG. 5 is a plan view of a laser beam introducing unit 5. レーザ光導入部10の正面図である。2 is a front view of a laser beam introducing unit 10. FIG. レーザ光導入部10の平面図である。FIG. 3 is a plan view of a laser beam introducing unit 10. レーザ光導入部10における一の方形面10aと他の方形面10b間の最短距離Ltapを40μm~300μmの範囲で変更させるとともに、一の方形面10aの幅Wを4μm~40μmの範囲で変更させた場合のシミュレート結果を示す図である。The shortest distance L tap between one rectangular surface 10a and the other rectangular surface 10b in the laser beam introducing section 10 is changed in the range of 40 μm to 300 μm, and the width W p of the one rectangular surface 10a is changed in the range of 4 μm to 40 μm. It is a figure which shows the simulation result at the time of making it change. 一の方形面10aと他の方形面10b間の最短距離Ltapを100μmに固定して、距離Lspを変動させた場合のシミュレート結果を示す図である。It is a figure which shows the simulation result at the time of fixing the shortest distance L tap between one square surface 10a and the other square surface 10b to 100 micrometers , and changing the distance Lsp . レーザ光導入部15の正面図である。FIG. 3 is a front view of a laser beam introduction unit 15. レーザ光導入部15の平面図である。FIG. 6 is a plan view of a laser beam introducing unit 15. レーザ光導入部15における一の方形面15aと他の方形面15b間の最短距離Ltapを100μm~350μmの範囲で変更させるとともに、一の方形面15aの高さHを4μm~40μmの範囲で変更させた場合のシミュレート結果を示す図である。The shortest distance L tap between one rectangular surface 15a and the other rectangular surface 15b in the laser beam introducing portion 15 is changed in the range of 100 μm to 350 μm, and the height H p of the one rectangular surface 15a is in the range of 4 μm to 40 μm. It is a figure which shows the simulation result at the time of making it change by. 実施例に係る光モジュールの概要を示す平面図である。It is a top view which shows the outline | summary of the optical module which concerns on an Example. 実施例に係る光モジュールの概要を示す部分断面図である。It is a fragmentary sectional view which shows the outline | summary of the optical module which concerns on an Example.
(光モジュール)
 本発明の光モジュールは、少なくとも、レーザ光導入部と、光導波部と、光路変更部と、支持基板とを有し、必要に応じて、レーザ光源、その他の部材とを有する。
(Optical module)
The optical module of the present invention includes at least a laser beam introduction unit, an optical waveguide unit, an optical path changing unit, and a support substrate, and includes a laser light source and other members as necessary.
<レーザ光導入部>
 前記レーザ光導入部は、面に対し略直交方向からレーザ光が入射される一の方形面と、前記一の方形面から入射される前記レーザ光が導入され前記一の方形面と平行で前記一の方形面よりも面積が大きい他の方形面とを有する四角錐台状の部材としてなり、前記レーザ光導入部の前記一の方形面を右側面とし、前記他の方形面を左側面としたとき、その余の面の少なくともいずれかの面が前記一の方形面から前記他の方形面に向かって裾広がりとなる勾配を有するテーパ面とされる。
 このようなテーパ面を有すると、外部から入射される前記レーザ光の損失効率を低く抑えつつ、前記レーザ光を前記光導波部に導入させることができる。
<Laser beam introduction part>
The laser light introducing section includes a rectangular surface into which laser light is incident from a direction substantially orthogonal to a surface, and the laser light incident from the one rectangular surface is introduced and parallel to the one rectangular surface. A quadrangular frustum-shaped member having another square surface having a larger area than one square surface, the one rectangular surface of the laser light introducing portion as a right side surface, and the other square surface as a left side surface In this case, at least one of the remaining surfaces is a tapered surface having a slope that becomes wider from the one rectangular surface toward the other rectangular surface.
With such a tapered surface, it is possible to introduce the laser light into the optical waveguide section while keeping the loss efficiency of the laser light incident from the outside low.
 前記レーザ光導入部の形状としては、前記テーパ面を有する限り特に制限はないが、前記一の方形面を右側面とし、前記他の方形面を左側面としたとき、平面がテーパ面とされる形状、正面と背面が平面視において前記レーザ光の入射方向上の延長線を対称軸とした線対称のテーパ面とされる形状、及び前記平面がテーパ面とされるとともに前記正面と前記背面が前記線対称のテーパ面とされる形状のいずれかの形状で形成されることが好ましい。
 なお、これらの形状については、図2(a)、(b)、図3(a)、(b)及び図6(a)、(b)を用いて後述する。
The shape of the laser beam introducing portion is not particularly limited as long as it has the tapered surface, but when the one rectangular surface is the right side and the other rectangular surface is the left side, the plane is a tapered surface. The front surface and the back surface in a plan view, the shape being a line-symmetric taper surface with the extension line in the incident direction of the laser beam as the axis of symmetry, and the flat surface being a taper surface and the front surface and the back surface Is preferably formed in any of the shapes that are the axisymmetric tapered surfaces.
In addition, about these shapes, it mentions later using FIG. 2 (a), (b), FIG. 3 (a), (b) and FIG. 6 (a), (b).
 前記レーザ光導入部の形成材料としては、前記レーザ光を導入できる限り、特に制限はなく、公知の透光性材料が挙げられ、例えば、エポキシ系樹脂などの樹脂材料が挙げられる。 The material for forming the laser beam introduction part is not particularly limited as long as the laser beam can be introduced, and includes a known translucent material, for example, a resin material such as an epoxy resin.
 前記レーザ光導入部の形成方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、公知のフォトリソグラフィ技術により形成する方法、ダイサー等の切削加工機器により切削加工する方法が挙げられる。 There is no restriction | limiting in particular as a formation method of the said laser beam introducing | transducing part, According to the objective, it can select suitably, For example, the method of forming by a well-known photolithography technique, the cutting process by cutting machines, such as a dicer Is mentioned.
<光導波部>
 前記光導波部は、一の端面が前記レーザ光導入部の前記他の方形面と連接されるとともに前記レーザ光の入射方向に延在され、前記一の端面から導入される導入光を内部に導波させて他の端面から出射させる部材としてなる。
 このような光導波部の延在長さを調整することで、前記レーザ光を任意の位置から取得し、かつ、任意の位置に導くように前記光モジュールを設計することができる。
 また、前記レーザ光導入部及び前記光導波部と、前記レーザ光のレーザ光源とを分離することで、前記レーザ光源を目的に応じて適宜選択することができ、前記レーザ光源が故障した場合には、他のレーザ光源に代えることができる。
<Optical wave guide>
The optical waveguide section has one end face connected to the other rectangular face of the laser light introducing section and extends in the incident direction of the laser light, and introduces introduced light introduced from the one end face inside. It is a member that is guided and emitted from the other end face.
By adjusting the extension length of such an optical waveguide section, the optical module can be designed so that the laser light is acquired from an arbitrary position and guided to an arbitrary position.
In addition, by separating the laser light introducing section and the optical waveguide section from the laser light source of the laser light, the laser light source can be appropriately selected according to the purpose, and when the laser light source fails Can be replaced with other laser light sources.
 前記光導波部の形成材料としては、特に制限はないが、1.3μmの波長の光に対する光導波ロスを0.1dB/cm~0.5dB/cmとする形成材料が好ましく、このような形成材料としては、例えば、エポキシ系樹脂などの樹脂材料が挙げられる。
 このような光導波ロスの少ない形成材料を用いて形成することで、前記光導波部の延在長さが比較的長くなる場合であっても、光導波ロスを抑えることができる。
The material for forming the optical waveguide part is not particularly limited, but a material having an optical waveguide loss for light having a wavelength of 1.3 μm of 0.1 dB / cm to 0.5 dB / cm is preferable. Examples of the material include a resin material such as an epoxy resin.
By using such a forming material with a small optical waveguide loss, the optical waveguide loss can be suppressed even when the extension length of the optical waveguide portion is relatively long.
 前記光導波部の形成方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、公知のフォトリソグラフィ技術により形成する方法が挙げられる。 The method for forming the optical waveguide is not particularly limited and may be appropriately selected depending on the purpose. Examples thereof include a method for forming the optical waveguide by a known photolithography technique.
 前記レーザ光導入部と前記光導波部とは、別部材で形成されてもよいが、容易に形成することができ、かつ、前記レーザ光の損失を抑える観点から、一体に形成されることが好ましい。 The laser beam introduction section and the optical waveguide section may be formed as separate members, but can be easily formed and formed integrally from the viewpoint of suppressing loss of the laser beam. preferable.
 前記光導波部の前記各端面の幅としては、特に制限はないが、1μm~100μmであることが好ましく、5μm~50μmがより好ましい。また、前記各端面の高さとしては、1μm~100μmであることが好ましく、5μm~50μmがより好ましい。
 このような大きさで前記光導波部を形成すると、信号容量を損なわずに長い距離を光伝送できる点で好適である。
The width of each end face of the optical waveguide is not particularly limited, but is preferably 1 μm to 100 μm, and more preferably 5 μm to 50 μm. The height of each end face is preferably 1 μm to 100 μm, more preferably 5 μm to 50 μm.
Forming the optical waveguide part with such a size is preferable in that light can be transmitted over a long distance without impairing the signal capacity.
<光路変更部>
 前記光路変更部は、前記光導波部から出射される導波光を反射させて外部に面出射させる反射面を有する部材としてなる。
 このような反射面を有することで、前記レーザ光の光路を変更して、任意の方向に前記レーザ光を面出射させることができる。
<Optical path changing unit>
The optical path changing unit is a member having a reflection surface that reflects the guided light emitted from the optical waveguide unit and emits the light to the outside.
By having such a reflection surface, it is possible to change the optical path of the laser light and to emit the laser light to the surface in an arbitrary direction.
 前記光路変更部としては、前記反射面を有する限り、その構造に特に制限はなく、部材全体を光反射材料で形成してもよいし、前記反射面のみを前記光反射材料で形成してもよい。
 前記光反射材料としては、特に制限はなく、例えば、金、銅などが挙げられる。
 前記部材全体を光反射材料で形成する場合、前記光路変更部の形成方法としては、例えば、ダイシングソーを用いて削る方法が挙げられる。
 また、前記反射面のみを前記光反射材料で形成する場合、前記光路変更部の形成方法としては、例えば、前記反射面の下地をなす主材の表面に前記光反射材料を真空蒸着法やスパッタリング法で成膜する方法が挙げられる。
As long as the optical path changing portion has the reflecting surface, the structure is not particularly limited, and the entire member may be formed of a light reflecting material, or only the reflecting surface may be formed of the light reflecting material. Good.
There is no restriction | limiting in particular as said light reflection material, For example, gold | metal | money, copper, etc. are mentioned.
In the case where the entire member is formed of a light reflecting material, examples of the method for forming the optical path changing portion include a method using a dicing saw.
When only the reflection surface is formed of the light reflection material, the light path changing portion may be formed by, for example, applying the light reflection material to the surface of the main material that forms the base of the reflection surface by vacuum deposition or sputtering. And a method of forming a film by a method.
<支持基板>
 前記支持基板としては、前記レーザ光導入部、前記光導波部及び前記光路変更部を支持する部材としてなる。
 前記支持基板としては、前記各部を直接支持してもよく、他の部材を介して間接的に支持するものであってもよい。
 また、前記レーザ光導入部と前記光導波部とが一体形成される場合、前記光導波部を支持することで、前記レーザ光導入部を間接的に支持するものであってもよい。
<Support substrate>
The support substrate is a member that supports the laser light introducing section, the optical waveguide section, and the optical path changing section.
The support substrate may directly support each part or indirectly support through another member.
Further, when the laser light introduction part and the optical waveguide part are integrally formed, the laser light introduction part may be indirectly supported by supporting the optical waveguide part.
 前記支持基板としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、半導体基板等の公知の基板などを用いることができる。 The support substrate is not particularly limited and may be appropriately selected depending on the intended purpose. For example, a known substrate such as a semiconductor substrate may be used.
<レーザ光源>
 前記レーザ光導入部の前記一の方形面に前記レーザ光を入射させるレーザ光源としては、前記光モジュールと別部材として配されてもよいが、前記光モジュールの同一支持基板上に配されることが好ましい。
 このように同一支持基板上に配することで、前記一の方形面に対する前記レーザ光の入射位置調整を容易に行うことができる。
<Laser light source>
The laser light source for making the laser light incident on the one rectangular surface of the laser light introducing section may be disposed as a separate member from the optical module, but is disposed on the same support substrate of the optical module. Is preferred.
Thus, by arranging on the same support substrate, it is possible to easily adjust the incident position of the laser beam with respect to the one rectangular surface.
 前記レーザ光源を前記支持基板上に配する方法としては、特に制限はなく、例えば、半田付けにより、前記支持基板上に前記レーザ光源を固定配置させる方法が挙げられる。 The method of arranging the laser light source on the support substrate is not particularly limited, and examples thereof include a method of fixing and arranging the laser light source on the support substrate by soldering.
 前記レーザ光源としては、特に制限はなく、例えば、公知の半導体レーザを用いることができるが、中でも、大容量の信号を高速に取扱い可能である観点から、量子ドットレーザを用いることが好ましい。なお、前記半導体レーザとしては、一般に比較的大きな発散角度成分を有することから、前記レーザ光導入部における光の発散が前記テーパ面の勾配よりも緩やかな角度となる条件で前記レーザ光を前記レーザ光導入部に入射させることが好ましい。 The laser light source is not particularly limited, and for example, a known semiconductor laser can be used. Among them, a quantum dot laser is preferably used from the viewpoint that a large capacity signal can be handled at high speed. Since the semiconductor laser generally has a relatively large divergence angle component, the laser light is radiated on the condition that the divergence of light in the laser light introducing portion is a gentler angle than the gradient of the tapered surface. It is preferable to make it enter into a light introduction part.
<その他の部材>
 前記その他の部材としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記光導波部をコア部としたときに、その外部を被覆するクラッド部が挙げられる。このクラッド部は、前記コア部との屈折率の違いにより、前記コア部内に前記レーザ光を閉じ込める役割を有する。なお、前記クラッド部としては、前記光モジュールの製造上、前記支持基板として前記レーザ光導入部、前記光導波部、前記光路変更部及び前記レーザ光源を支持するように配されていてもよい。
 前記クラッド部の形成材料としては、特に制限はなく、例えば、エポキシ系樹脂などの公知の樹脂材料が挙げられる。また、その形成方法としても特に制限はなく、公知の形成方法により形成することができる。
<Other members>
There is no restriction | limiting in particular as said other member, According to the objective, it can select suitably, For example, when the said optical waveguide part is made into a core part, the clad part which coat | covers the exterior is mentioned. The clad portion has a role of confining the laser light in the core portion due to a difference in refractive index from the core portion. The clad portion may be disposed so as to support the laser light introducing portion, the optical waveguide portion, the optical path changing portion, and the laser light source as the support substrate in manufacturing the optical module.
There is no restriction | limiting in particular as a formation material of the said clad part, For example, well-known resin materials, such as an epoxy resin, are mentioned. Moreover, there is no restriction | limiting in particular as the formation method, It can form by a well-known formation method.
 前記光モジュールの実施形態について、図面を用いて説明する。
 図1(a)は、本発明に係る光モジュールの実施形態の概要を示す平面図であり、図1(b)は、そのA-A線断面図である。
 光モジュール1は、支持基板2上に形成された層状のクラッド部3a上に、レーザ光源4と、レーザ光導入部5と、光導波部6と、光路変更部7とが配され、光導波部6及び反射面7aを除く光路変更部7の外周には、クラッド部3bが形成されている。
An embodiment of the optical module will be described with reference to the drawings.
FIG. 1A is a plan view showing an outline of an embodiment of an optical module according to the present invention, and FIG. 1B is a sectional view taken along line AA.
In the optical module 1, a laser light source 4, a laser light introducing unit 5, an optical waveguide unit 6, and an optical path changing unit 7 are arranged on a layered clad part 3 a formed on a support substrate 2, and an optical waveguide A clad 3b is formed on the outer periphery of the optical path changing unit 7 excluding the part 6 and the reflecting surface 7a.
 レーザ光導入部5と光導波部6とは、一体の部材として形成され、レーザ光導入部5にテーパ面が形成されるとともに、光導波部6は、レーザ光の入射方向に延在される四角柱状の部材として形成される。
 光路変更部7は、光路を変更する反射面7aを有し、該反射面7aの上方が開口されるように、光路変更部7上にクラッド3bが形成される。
The laser light introducing portion 5 and the optical waveguide portion 6 are formed as an integral member, and the laser light introducing portion 5 has a tapered surface, and the optical waveguide portion 6 extends in the incident direction of the laser light. It is formed as a quadrangular columnar member.
The optical path changing unit 7 has a reflecting surface 7a that changes the optical path, and the clad 3b is formed on the optical path changing unit 7 so that the upper part of the reflecting surface 7a is opened.
 レーザ光源4からレーザ光導入部5に入射されるレーザ光は、レーザ光導入部5内で発散されながらレーザ光導入部5から光導波部6に導入され、光導波部6内に導波されて光路変更部7側から出射される。この際、光導波部6内に導波される導波光は、クラッド3a、3bによる光閉じ込め効果により屈折されながら、光路変更部7側に出射される。光路変更部7側に出射された出射光は、光路変更部7の反射面7aにより光路が変更され、図示の例では、上方に向けて面出射される。 The laser light incident on the laser light introducing section 5 from the laser light source 4 is introduced into the optical waveguide section 6 from the laser light introducing section 5 while being diffused in the laser light introducing section 5, and guided into the optical waveguide section 6. And is emitted from the optical path changing unit 7 side. At this time, the guided light guided into the optical waveguide 6 is emitted toward the optical path changing unit 7 while being refracted by the optical confinement effect by the clads 3a and 3b. The emitted light emitted to the optical path changing unit 7 side is changed in its optical path by the reflecting surface 7a of the optical path changing unit 7, and is emitted upward in the illustrated example.
 この光モジュール1では、レーザ光導入部5がテーパ面を有することで、レーザ光源4から入射されるレーザ光の損失効率を低く抑えることができる。
 ここで、レーザ光導入部5の形状を図2(a)及び図2(b)を用いてより詳細に説明する。図2(a)は、レーザ光導入部5の正面図であり、図2(b)は、その平面図である。
 レーザ光導入部5は、レーザ光が入射される一の方形面5aと、該一の方形面と平行で一の方形面5aよりも面積が大きい他の方形面5bとを有し、他の方形面5bを底面とした四角錐台状の部材としてなる。
 また、一の方形面5aを右側面とし、他の方形面5bを左側面としたとき、その平面がテーパ面とされるとともに、その正面及び背面が平面視においてレーザ光の入射方向上の延長線を対称軸とした線対称のテーパ面とされる形状で形成される。各テーパ面は、一の方形面5aから他の方形面5bに向かって裾広がりとなる勾配を有する(以下、この形状を「3次元テーパ形状」と呼ぶ)。
In the optical module 1, the loss efficiency of the laser light incident from the laser light source 4 can be kept low because the laser light introducing portion 5 has a tapered surface.
Here, the shape of the laser beam introducing portion 5 will be described in more detail with reference to FIGS. 2 (a) and 2 (b). FIG. 2A is a front view of the laser beam introducing section 5, and FIG. 2B is a plan view thereof.
The laser beam introducing section 5 has one rectangular surface 5a on which laser light is incident and another rectangular surface 5b that is parallel to the one rectangular surface and has a larger area than the one rectangular surface 5a. This is a quadrangular frustum-shaped member having the rectangular surface 5b as a bottom surface.
Further, when one square surface 5a is a right side surface and the other square surface 5b is a left side surface, the flat surface is a tapered surface, and the front and back surfaces are extended in the incident direction of laser light in a plan view. It is formed in a shape that is a line-symmetric taper surface with the line as the axis of symmetry. Each taper surface has a slope that spreads from one square surface 5a to another square surface 5b (hereinafter, this shape is referred to as a “three-dimensional taper shape”).
 前記3次元テーパ形状のレーザ光導入部5では、他の方形面5bの幅をXとしたとき、一の方形面5aの幅Wが0.1X~0.9Xであることが好ましく、一の方形面5aと他の方形面5b間の最短距離Ltapが1.1X~8Xであることが好ましく、他の方形面5bの高さをYとしたとき、一の方形面5aの高さHが0.2Y~0.9Yであることが好ましい。
 即ち、このような形状を有すると、レーザ光源4から入射されるレーザ光の損失効率を極めて低く抑えることができる。
 このことは、以下に説明する、2つの2次元テーパ形状のレーザ光導入部に対するシミュレート結果を合算した結果に基づく。即ち、正面と背面が平面視においてレーザ光の入射方向の延長線を対称軸とした線対称のテーパ面とされる形状(図3(a)及び図3(b)参照)と、平面がテーパ面とされる形状(図6(a)及び図6(b)参照)との2つのレーザ光導入部の形状(以下、「2次元テーパ形状」と呼ぶことがある)についてのシミュレート結果を合算した結果に基づく。
In the three-dimensional tapered laser beam introducing portion 5, when the width of the other rectangular surface 5b is X, the width W p of one rectangular surface 5a is preferably 0.1X to 0.9X. The shortest distance L tap between the rectangular surface 5a and the other rectangular surface 5b is preferably 1.1X to 8X. When the height of the other rectangular surface 5b is Y, the height of one rectangular surface 5a it is preferable that H p is 0.2Y ~ 0.9Y.
That is, with such a shape, the loss efficiency of the laser light incident from the laser light source 4 can be kept extremely low.
This is based on the result of summing up the simulation results for two two-dimensional tapered laser light introducing portions described below. That is, the shape of the front and back surfaces being a line-symmetric taper surface with the extended line in the laser beam incident direction as the axis of symmetry in plan view (see FIGS. 3A and 3B) and the surface is tapered. The simulation results for the shapes of the two laser light introducing portions (hereinafter sometimes referred to as “two-dimensional taper shapes”) and the shapes to be formed (see FIGS. 6A and 6B) Based on the combined result.
 先ず、正面と背面が平面視においてレーザ光の入射方向の延長線を対称軸とした線対称のテーパ面とされる形状のレーザ光導入部10のシミュレート結果について説明する。
 レーザ光導入部10は、図3(a)及び図3(b)に示すように、一の方形面10aを右側面とし、一の方形面10aと平行で一の方形面10aよりも面積が大きい他の方形面10bを左側面としたとき、正面と背面が平面視においてレーザ光の入射方向の延長線を対称軸とした線対称のテーパ面とされる形状とされる。なお、図3(a)は、レーザ光導入部10の正面図であり、図3(b)は、その平面図である。
First, a simulation result of the laser light introducing unit 10 having a shape in which the front and rear surfaces are line-symmetric taper surfaces with an extension line in the laser light incident direction as a symmetry axis in a plan view will be described.
As shown in FIGS. 3A and 3B, the laser light introducing section 10 has one rectangular surface 10a as a right side surface, and is parallel to the one rectangular surface 10a and has an area larger than that of the one rectangular surface 10a. When the other large rectangular surface 10b is the left side surface, the front and back surfaces have a shape that is a line-symmetric taper surface with the extended line in the laser beam incident direction as the axis of symmetry in plan view. 3A is a front view of the laser beam introducing unit 10, and FIG. 3B is a plan view thereof.
 前記シミュレートは、図1(a)及び図1(b)に示す光モジュール1において、レーザ光導入部5に代えてレーザ光導入部10を配したときに、レーザ光源4から出射されるレーザ光と光導波部6から出射される導波光の各光強度の差を結合効率(Coupling Efficiency(dB))として算出することで行った。なお、前記結合効率は、前記レーザ光の損失効率を指標するものである。
 また、前記シミュレートには、RSoft社製のビーム伝搬法(BPM)を利用したシミュレータBeamprop(ver.8.2.RC2)を用い、広角の発散角を計算できるように、pade近似オーダとして(4,4)の設定とした。
 また、レーザ光導入部10の他の方形面10b及び光導波路6の各端面の寸法は、40μm角とし、光導波路6とクラッド部3a、3bの屈折率は、それぞれ1.58、1.55とした。
 また、レーザ光導入部10に導入されるレーザ光の発散角は、他の方形面10bの幅方向(x軸方向)で40°、高さ方向(y軸方向)で53°とした。
 また、レーザ光は、レーザ光導入部10の一の方形面10aに対して、その中心に直交方向からレーザ光を導入させることとし、レーザ光源4のレーザ光出射口と、一の方形面10aとの距離Lspを10μmとした。
In the simulation, in the optical module 1 shown in FIGS. 1A and 1B, a laser beam emitted from the laser light source 4 when the laser beam introducing unit 10 is arranged instead of the laser beam introducing unit 5 is used. This was performed by calculating the difference between the light intensities of the light and the guided light emitted from the optical waveguide unit 6 as coupling efficiency (Coupling Efficiency (dB)). The coupling efficiency is an index of the loss efficiency of the laser beam.
In addition, in the simulation, a simulator Beamprop (ver. 8.2.RC2) using a beam propagation method (BPM) manufactured by RSsoft is used, and a pad approximation order is used so that a wide-angle divergence angle can be calculated ( 4, 4).
The dimensions of the other rectangular surface 10b of the laser beam introducing portion 10 and the end faces of the optical waveguide 6 are 40 μm square, and the refractive indexes of the optical waveguide 6 and the cladding portions 3a and 3b are 1.58 and 1.55, respectively. It was.
Further, the divergence angle of the laser light introduced into the laser light introducing portion 10 was 40 ° in the width direction (x-axis direction) of the other rectangular surface 10b and 53 ° in the height direction (y-axis direction).
Further, the laser light is introduced into the rectangular surface 10a of the laser light introducing portion 10 from the orthogonal direction to the center thereof, and the laser light emitting port of the laser light source 4 and the one rectangular surface 10a. And the distance Lsp to 10 μm.
 レーザ光導入部10における一の方形面10aと他の方形面10b間の最短距離Ltapを40μm~300μmの範囲で変更させるとともに、一の方形面10aの幅Wを4μm~40μmの範囲で変更させた場合の前記シミュレート結果を図4に示す。なお、Wが40μmのとき、テーパ面がない場合のシミュレート結果となる。
 該図4に示すように、ほとんどの条件でテーパ面がない場合よりも高い結合効率が得られている。したがって、レーザ光源4と光配線部分(レーザ光導入部10及び光導波部6)を分離して構成した場合であっても、これらを光学的に結合する際のレーザ光の損失効果を低く抑えることができる。
 よって、正面と背面が平面視においてレーザ光の入射方向の延長線を対称軸とした線対称のテーパ面とされる2次元テーパ形状を有するレーザ光導入部10(図3(a)及び図3(b)参照)においては、他の方形面10bの幅をXとしたとき、一の方形面10aの幅Wが0.1X~0.9Xであり、一の方形面10aと他の方形面10b間の最短距離Ltapが1.1X~8Xであることが好ましい。
The shortest distance L tap between one rectangular surface 10a and the other rectangular surface 10b in the laser beam introducing section 10 is changed in the range of 40 μm to 300 μm, and the width W p of the one rectangular surface 10a is changed in the range of 4 μm to 40 μm. FIG. 4 shows the simulation result when the change is made. Note that when W p is 40 [mu] m, the simulation result in the absence of the tapered surface.
As shown in FIG. 4, a higher coupling efficiency is obtained than in the case where there is no tapered surface under most conditions. Therefore, even when the laser light source 4 and the optical wiring part (laser light introducing part 10 and optical waveguide part 6) are separated from each other, the loss effect of the laser light when optically coupling them is kept low. be able to.
Therefore, the laser light introducing section 10 having a two-dimensional tapered shape in which the front and rear surfaces are axisymmetric taper surfaces with an extension line in the laser light incident direction as a symmetry axis in plan view (FIGS. 3A and 3). in (b) refer), when the width of the other rectangular surface 10b was set to X, the width W p of one rectangular surface 10a is 0.1X ~ 0.9X, one rectangular surface 10a and the other square The shortest distance L tap between the surfaces 10b is preferably 1.1X to 8X.
 前記シミュレートでは、レーザ光源4のレーザ光出射口と、一の方形面10aとの距離Lspを10μmに固定して行ったが、一の方形面10aと他の方形面10b間の最短距離Ltapを100μmに固定して、距離Lspを変動させた場合のシミュレート結果を図5に示す。
 該図5に示すように、距離Lspが次式、0μm<Lsp≦40μmを満たす場合に、一の方形面10aの幅Wを調整することにより、テーパ面がない場合よりも高い結合効率を得ることが可能とされる。
 したがって、レーザ光源4のレーザ光出射口と、一の方形面10aとの距離Lspとしては、次式、0μm<Lsp≦40μmを満たすことが好ましい。また、より自由度の高い設計を可能とする観点から、次式、0μm<Lsp≦30μmを満たすことがより好ましい。
In the simulated laser beam emitting port of the laser source 4, it was performed by fixing the distance L sp with one rectangular face 10a to 10 [mu] m, the shortest distance between one rectangular surface 10a and the other rectangular surface 10b FIG. 5 shows a simulation result when the L tap is fixed to 100 μm and the distance L sp is varied.
As shown in FIG. 5, when the distance L sp satisfies the following equation, 0 μm <L sp ≦ 40 μm, by adjusting the width W p of one rectangular surface 10a, higher coupling than when there is no tapered surface Efficiency can be obtained.
Therefore, it is preferable that the distance L sp between the laser beam emission port of the laser light source 4 and the one rectangular surface 10a satisfies the following expression: 0 μm <L sp ≦ 40 μm. Further, from the viewpoint of enabling a design with a higher degree of freedom, it is more preferable to satisfy the following formula: 0 μm <L sp ≦ 30 μm.
 次に、平面がテーパ面とされる2次元テーパ形状のレーザ光導入部15のシミュレート結果について説明する。
 レーザ光導入部15は、図6(a)及び図6(b)に示すように、一の方形面15aを右側面とし、一の方形面15aと平行で一の方形面15aよりも面積が大きい他の方形面15bを左側面としたとき、平面がテーパ面とされる形状とされる。なお、図6(a)は、レーザ光導入部15の正面図であり、図6(b)は、その平面図である。
Next, a simulation result of the two-dimensional tapered laser beam introducing unit 15 whose plane is a tapered surface will be described.
As shown in FIGS. 6A and 6B, the laser light introducing portion 15 has one rectangular surface 15a as a right side surface, and is parallel to the one rectangular surface 15a and has an area larger than that of the one rectangular surface 15a. When the other large rectangular surface 15b is the left side surface, the flat surface is a tapered surface. 6A is a front view of the laser beam introducing portion 15, and FIG. 6B is a plan view thereof.
 このシミュレートでは、図1(a)及び図1(b)に示す光モジュール1において、レーザ光導入部5に代えてレーザ光導入部15を配した設定としたこと以外は、レーザ光導入部10について行ったシミュレートと同様にした。
 レーザ光導入部15における一の方形面15aと他の方形面15b間の最短距離Ltapを100μm~350μmの範囲で変更させるとともに、一の方形面15aの高さHを4μm~40μmの範囲で変更させた場合の前記シミュレート結果を図7に示す。
 該図7に示すように、Hを8μm以上とすれば、全てのLtapの条件で、テーパ面がない場合(H=40μm)よりも高い結合効率が得られている。
 したがって、平面がテーパ面とされる2次元テーパ形状を有するレーザ光導入部15(図6(a)及び図6(b)参照)においては、他の方形面の幅をXとしたとき、一の方形面15aと他の方形面15b間の最短距離Ltapが1.1X~9Xであり、他の方形面15bの高さをYとしたとき、一の方形面15aの高さHが0.2Y~0.9Yであることが好ましい。
In this simulation, in the optical module 1 shown in FIG. 1A and FIG. 1B, the laser light introducing section is set except that the laser light introducing section 15 is arranged instead of the laser light introducing section 5. Same as the simulation performed for 10.
The shortest distance L tap between one rectangular surface 15a and the other rectangular surface 15b in the laser beam introducing portion 15 is changed in the range of 100 μm to 350 μm, and the height H p of the one rectangular surface 15a is in the range of 4 μm to 40 μm. FIG. 7 shows the simulation result when the change is made.
As shown in figure 7, if the H p or more 8 [mu] m, the condition of all the L tap, the coupling efficiency is obtained higher than without the tapered surface (H p = 40 [mu] m).
Therefore, in the laser beam introducing section 15 (see FIGS. 6A and 6B) having a two-dimensional tapered shape whose plane is a tapered surface, when the width of the other rectangular surface is X, the When the shortest distance L tap between the rectangular surface 15a and the other rectangular surface 15b is 1.1X to 9X, and the height of the other rectangular surface 15b is Y, the height H p of one rectangular surface 15a is It is preferably 0.2Y to 0.9Y.
 以上の2次元テーパ形状のシミュレート結果を合算することで、前記3次元テーパ形状のレーザ光導入部5の形状を設定することができる。
 また、以上の2次元テーパ形状のシミュレートでは、レーザ光導入部10及びレーザ光導入部15における他の方形面の幅Xと高さYをそれぞれ40μmとして算出を行ったが、前記他の方形面の幅としては、1μm~100μmが好ましく、5μm~50μmがより好ましい。
 即ち、前記幅が1μm未満であると光散乱が大きくなるため、光伝送が困難となり、100μmを超えると導波路サイズが大きくなり、集積度が上がらない点で不利である。
 また、前記他の方形面の高さとしては、1μm~100μmが好ましく、5μm~50μmがより好ましい。
 即ち、前記高さが1μm未満であると光散乱が大きくなるため、光伝送が困難となり、100μmを超えると導波路サイズが大きくなり、集積度が上がらない点で不利である。
By adding together the simulation results of the above two-dimensional taper shape, the shape of the laser light introducing portion 5 having the three-dimensional taper shape can be set.
Further, in the above simulation of the two-dimensional taper shape, the calculation was performed with the width X and the height Y of the other rectangular surfaces in the laser beam introducing unit 10 and the laser beam introducing unit 15 being 40 μm, respectively. The surface width is preferably 1 μm to 100 μm, more preferably 5 μm to 50 μm.
That is, if the width is less than 1 μm, light scattering is increased, which makes it difficult to transmit light. If the width exceeds 100 μm, the waveguide size increases and the degree of integration does not increase.
The height of the other rectangular surface is preferably 1 μm to 100 μm, and more preferably 5 μm to 50 μm.
That is, if the height is less than 1 μm, light scattering increases, so that light transmission becomes difficult. If the height exceeds 100 μm, the waveguide size increases and the degree of integration does not increase.
(実施例)
 実施例として本発明に係る光モジュールを図8及び図9に示す構成で試作した。図8は、実施例に係る光モジュールの概要を示す平面図であり、図9は、そのA-A線部分断面図である。なお、この実施例に係る光モジュールにおいては、レーザ光導入部及び光導波部におけるレーザ光の損失効率を測定するため、光路変更部の形成を省略し、該光路変更部に代えて光ファイバを形成している。
 即ち、図8に示すように、実施例に係る光モジュールは、支持基板22上に層状のクラッド部23aを配し、該クラッド部23a上に、レーザ光源24と、一体に形成されるレーザ光導入部25及び光導波部26と、光ファイバ30とを配し、更に、光導波部26上にクラッド部23bを配して形成される。
(Example)
As an example, an optical module according to the present invention was prototyped with the configuration shown in FIGS. FIG. 8 is a plan view showing an outline of the optical module according to the embodiment, and FIG. 9 is a partial cross-sectional view taken along line AA of FIG. In the optical module according to this embodiment, in order to measure the loss efficiency of the laser light in the laser light introducing section and the optical waveguide section, the formation of the optical path changing section is omitted, and an optical fiber is used instead of the optical path changing section. Forming.
That is, as shown in FIG. 8, in the optical module according to the embodiment, a layered clad portion 23a is arranged on a support substrate 22, and the laser light integrally formed with the laser light source 24 on the clad portion 23a. The introduction portion 25, the optical waveguide portion 26, and the optical fiber 30 are disposed, and further, the cladding portion 23 b is disposed on the optical waveguide portion 26.
 この実施例に係る光モジュールは、以下のように作製した。
 先ず、支持基板22上に、クラッド形成用のポリマー(東洋紡績株式会社製コスモシャインA4100)を塗工し、クラッド部23aを形成した。
 次いで、クラッド部23a上にクラッド形成用のポリマーと屈折率の異なるコア形成用の感光性ポリマー(ベース材としてフェノキシ樹脂(東都化学株式会社製フェノトートYP-70を使用))を塗工後、レーザ光導入部25及び光導波部26の形状が描画されたフォトマスクと露光機を用いて、該形状のパターン転写と現像を行ってレーザ光導入部25及び光導波部26を形成した。なお、この段階でレーザ光導入部25は、正面及び背面が平面視においてレーザ光の入射方向上の延長線を対称軸とした線対称のテーパ面とされる二次元テーパ形状として光導波部26と一体に形成される。
 次いで、光導波部26上に前記クラッド形成用のポリマーを塗工後、光導波部26の形成と同様にパターン転写と現像を行ってクラッド部23bを形成した。
 次いで、ダイサーを用いて、レーザ光導入部25の上部を切削加工することで上部にテーパ面を形成して、3次元テーパ形状とした。
 ここで、光導波部26の寸法としては、径を40μm角とし、長さ(光導波路長)を2cmとした。また、レーザ光導入部25の寸法としては、レーザ光源24側の一の方形面の高さを15μmとし、幅を5μmとし、光導波部26と連接する他の方形面の高さ及び幅を40μmとした。テーパ面の形成位置としては、正面及び背面における対称テーパ面がレーザ光導入部25の一の方形面から他の方形面に向けて450μmの位置で形成され、平面のテーパ面が一の方形面から他の方形面に向けて200μmの位置で形成されている。なお、レーザ光導入部25と光導波部26の境界は、対称テーパ面が形成される一の方形面から450μmの位置であり(図8及び図9中の点線で示す位置)、テーパ面の有無で境界付られる。
 次いで、クラッド部23a上にレーザ光源24を半田付けした。このレーザ光源24としては、本願出願人が過去に出願を行った量子ドットレーザ(特開2007-53322号公報参照)と同じ構成の量子ドットレーザを用いた。
 最後に、クラッド部23a上に損失効率測定用の光ファイバ30を配した。
 以上により、実施例に係る光モジュールを作製した。
The optical module according to this example was manufactured as follows.
First, a clad forming polymer (Cosmo Shine A4100 manufactured by Toyobo Co., Ltd.) was applied on the support substrate 22 to form a clad portion 23a.
Next, a core-forming photosensitive polymer (phenoxy resin (using phenotote YP-70 manufactured by Toto Chemical Co., Ltd.)) having a refractive index different from that of the cladding-forming polymer is applied on the cladding portion 23a. Using the photomask on which the shapes of the laser beam introduction section 25 and the optical waveguide section 26 are drawn and an exposure machine, pattern transfer and development of the shapes are performed to form the laser beam introduction section 25 and the optical waveguide section 26. At this stage, the laser beam introducing section 25 has a two-dimensional tapered shape in which the front and back surfaces are two-dimensionally tapered with a line extending symmetrically in the incident direction of the laser light as a symmetry axis in plan view. And formed integrally.
Next, after coating the clad forming polymer on the optical waveguide 26, pattern transfer and development were performed in the same manner as the formation of the optical waveguide 26 to form the clad 23b.
Next, a dicer was used to cut the upper portion of the laser beam introducing portion 25 to form a tapered surface on the upper portion, thereby obtaining a three-dimensional tapered shape.
Here, the dimensions of the optical waveguide section 26 were a diameter of 40 μm square and a length (optical waveguide length) of 2 cm. Further, the dimensions of the laser light introducing section 25 are such that the height of one rectangular surface on the laser light source 24 side is 15 μm, the width is 5 μm, and the height and width of the other rectangular surface connected to the optical waveguide section 26 are as follows. The thickness was 40 μm. As the formation position of the taper surface, a symmetrical taper surface on the front surface and the back surface is formed at a position of 450 μm from one square surface of the laser beam introduction portion 25 to the other square surface, and the flat taper surface is one rectangular surface. To the other rectangular surface at a position of 200 μm. Note that the boundary between the laser beam introducing section 25 and the optical waveguide section 26 is a position 450 μm from one rectangular plane on which the symmetrical tapered surface is formed (the position indicated by the dotted line in FIGS. 8 and 9). Bordered by presence or absence.
Next, the laser light source 24 was soldered on the clad portion 23a. As the laser light source 24, a quantum dot laser having the same configuration as the quantum dot laser (see Japanese Patent Application Laid-Open No. 2007-53322) filed in the past by the applicant of the present application was used.
Finally, an optical fiber 30 for measuring the loss efficiency was disposed on the cladding part 23a.
The optical module which concerns on an Example was produced by the above.
(比較例)
 実施例に係る光モジュールの作製において、光導入部25とされる領域にテーパ面を設けないこと以外は、実施例に係る光モジュールと同様に作製して比較例に係る光モジュールを作製した。
(Comparative example)
In the production of the optical module according to the example, the optical module according to the comparative example was produced in the same manner as the optical module according to the example, except that the tapered surface was not provided in the region to be the light introducing portion 25.
 実施例及び比較例に係る光モジュールの各損失効率を算出した。
 実施例に係る光モジュールの損失効率の測定は、レーザ光導入部25にレーザ光を入射させ、光導波部26から出射される導波光を光ファイバ30に導き、該光ファイバ30に接続されるパワーメータで光強度を測定することとし、この光強度とレーザ光源24から出射されるレーザ光の光強度からレーザ光の損失効率を算出することで行った。
 また、比較例に係る光モジュールの損失効率の算出も同様にして行った。
 実施例及び比較例に係る光モジュールの各損失効率の算出結果を下記表1に示す。
Each loss efficiency of the optical module which concerns on an Example and a comparative example was computed.
The loss efficiency of the optical module according to the embodiment is measured by making the laser light incident on the laser light introducing section 25, guiding the guided light emitted from the optical waveguide section 26 to the optical fiber 30, and connecting to the optical fiber 30. The light intensity was measured with a power meter, and the loss efficiency of the laser light was calculated from the light intensity and the light intensity of the laser light emitted from the laser light source 24.
Further, the loss efficiency of the optical module according to the comparative example was calculated in the same manner.
The calculation results of the loss efficiencies of the optical modules according to the examples and the comparative examples are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 この表1に示すように、実施例に係る光モジュールでは、比較例に係る光モジュールに対して、損失効率を3.6dBも小さく抑えることができている。 As shown in Table 1, in the optical module according to the example, the loss efficiency can be suppressed to 3.6 dB smaller than the optical module according to the comparative example.
 以上のように本発明の光モジュールは、レーザ光源と光配線部分を分離して構成しても、レーザ光の損失効果を低くすることができ、離れた電子デバイス間を光化して接続することができることから、これまで電気的配線で接続されていた各種の分野において、これを好適に光化することができる。 As described above, the optical module of the present invention can reduce the loss effect of the laser light even if the laser light source and the optical wiring portion are separated, and can connect the distant electronic devices by making them light. Therefore, in various fields that have been connected by electrical wiring so far, this can be suitably converted into light.
   1   光モジュール
  2,22 支持基板
  3a,3b,23a,23b クラッド部
  4,24 レーザ光源
  5a,10a,15a 一の方形面
  5b,10b,15b 他の方形面
  5,10,15,25 レーザ光導入部
  6,26 光導波部
   7   光路変更部
   7a  反射面
   30  光ファイバ
DESCRIPTION OF SYMBOLS 1 Optical module 2,22 Support substrate 3a, 3b, 23a, 23b Cladding part 4,24 Laser light source 5a, 10a, 15a One square surface 5b, 10b, 15b Other square surfaces 5, 10, 15, 25 Laser beam introduction Portions 6, 26 Optical waveguide portion 7 Optical path changing portion 7a Reflecting surface 30 Optical fiber

Claims (12)

  1.  面に対し略直交方向からレーザ光が入射される一の方形面と、前記一の方形面から入射される前記レーザ光が導入され前記一の方形面と平行で前記一の方形面よりも面積が大きい他の方形面とを有する四角錐台状のレーザ光導入部と、
     一の端面が前記レーザ光導入部の前記他の方形面と連接されるとともに前記レーザ光の入射方向に延在され、前記一の端面から導入される導入光を内部に導波させて他の端面から出射させる光導波部と、
     前記光導波部から出射される導波光を反射させて外部に面出射させる反射面を有する光路変更部と、
     前記レーザ光導入部、前記光導波部及び前記光路変更部を支持する支持基板と、を有し、
     前記レーザ光導入部の前記一の方形面を右側面とし、前記他の方形面を左側面としたとき、その余の面の少なくともいずれかの面が前記一の方形面から前記他の方形面に向かって裾広がりとなる勾配を有するテーパ面とされることを特徴とする光モジュール。
    One rectangular surface into which laser light is incident from a direction substantially orthogonal to the surface, and the laser light incident from the one rectangular surface is introduced and is parallel to the one rectangular surface and has an area larger than that of the one rectangular surface. A quadrangular pyramid-shaped laser light introducing portion having another rectangular surface with a large
    One end surface is connected to the other rectangular surface of the laser light introducing portion and extends in the incident direction of the laser light, and guides the introduced light introduced from the one end surface to the other. An optical waveguide to be emitted from the end face;
    An optical path changing unit having a reflection surface that reflects the guided light emitted from the optical waveguide unit and emits the light to the outside;
    A support substrate that supports the laser beam introduction section, the optical waveguide section, and the optical path changing section,
    When the one rectangular surface of the laser beam introducing portion is a right side surface and the other square surface is a left side surface, at least one of the other surfaces is changed from the one rectangular surface to the other rectangular surface. An optical module characterized in that the optical module has a taper surface having a slope that becomes wider toward the bottom.
  2.  レーザ光導入部が、一の方形面を右側面とし、他の方形面を左側面としたとき、平面がテーパ面とされる形状、正面と背面が平面視においてレーザ光の入射方向上の延長線を対称軸とした線対称のテーパ面とされる形状、及び前記平面がテーパ面とされるとともに前記正面と前記背面が前記線対称のテーパ面とされる形状のいずれかの形状で形成される請求項1に記載の光モジュール。 When the laser beam introduction part has one square surface as the right side surface and the other square surface as the left side surface, the flat surface is a tapered surface, and the front and back surfaces are extended in the laser light incident direction in plan view. A shape that is a line-symmetric taper surface with a line as an axis of symmetry, and a shape in which the plane is a taper surface and the front surface and the back surface are a line-symmetric taper surface. The optical module according to claim 1.
  3.  レーザ光導入部が、一の方形面を右側面とし、他の方形面を左側面としたとき、平面がテーパ面とされる形状で形成され、
     前記他の方形面の幅をXとしたとき、前記一の方形面と前記他の方形面間の最短距離が1.1X~9Xであり、前記他の方形面の高さをYとしたとき、前記一の方形面の高さが、0.2Y~0.9Yである請求項2に記載の光モジュール。
    When the laser light introducing portion is a right side surface of one square surface and a left side surface of the other square surface, the laser light introducing portion is formed in a shape having a flat surface as a tapered surface,
    When the width of the other rectangular surface is X, the shortest distance between the one rectangular surface and the other rectangular surface is 1.1X to 9X, and the height of the other rectangular surface is Y The optical module according to claim 2, wherein a height of the one rectangular surface is 0.2Y to 0.9Y.
  4.  正面と背面が平面視においてレーザ光の入射方向上の延長線を対称軸とした線対称のテーパ面とされる形状で形成され、
     前記他の方形面の幅をXとしたとき、前記一の方形面の幅が、0.1X~0.9Xであり、前記一の方形面と前記他の方形面間の最短距離が1.1X~8Xである請求項2に記載の光モジュール。
    The front and back are formed in a shape that is a line-symmetric taper surface with an extension line in the incident direction of the laser beam as a symmetry axis in plan view,
    When the width of the other rectangular surface is X, the width of the one rectangular surface is 0.1X to 0.9X, and the shortest distance between the one rectangular surface and the other rectangular surface is 1. The optical module according to claim 2, which is 1X to 8X.
  5.  レーザ光導入部が、一の方形面を右側面とし、他の方形面を左側面としたとき、平面がテーパ面とされるとともに正面と背面が平面視においてレーザ光の入射方向上の延長線を対称軸とした線対称のテーパ面とされる形状で形成され、
     前記他の方形面の幅をXとしたとき、前記一の方形面の幅が、0.1X~0.9Xであり、前記一の方形面と前記他の方形面間の最短距離が1.1X~8Xであり、前記他の方形面の高さをYとしたとき、前記一の方形面の高さが、0.2Y~0.9Yである請求項2に記載の光モジュール。
    When the laser beam introduction part has one square surface as the right side surface and the other square surface as the left side surface, the flat surface is a tapered surface and the front and back surfaces are extended lines in the laser light incident direction in plan view. Is formed in a shape that is a line-symmetric taper surface with the axis of symmetry as
    When the width of the other rectangular surface is X, the width of the one rectangular surface is 0.1X to 0.9X, and the shortest distance between the one rectangular surface and the other rectangular surface is 1. 3. The optical module according to claim 2, wherein the height of the one rectangular surface is 0.2Y to 0.9Y, where Y is 1X to 8X, and Y is the height of the other rectangular surface.
  6.  他の方形面の幅が1μm~100μmである請求項1から5のいずれかに記載の光モジュール。 6. The optical module according to claim 1, wherein the width of the other rectangular surface is 1 μm to 100 μm.
  7.  他の方形面の高さが1μm~100μmである請求項1から6のいずれかに記載の光モジュール。 7. The optical module according to claim 1, wherein the height of the other rectangular surface is 1 μm to 100 μm.
  8.  レーザ光導入部と光導波部が一体に形成される請求項1から7のいずれかに記載の光モジュール。 The optical module according to any one of claims 1 to 7, wherein the laser beam introducing section and the optical waveguide section are integrally formed.
  9.  光導波部が、1.3μmの波長の光に対する光導波ロスを0.1dB/cm~0.5dB/cmとする形成材料で形成される請求項1から8のいずれかに記載の光モジュール。 9. The optical module according to claim 1, wherein the optical waveguide section is formed of a forming material having an optical waveguide loss for light having a wavelength of 1.3 μm of 0.1 dB / cm to 0.5 dB / cm.
  10.  更に、一の方形面にレーザ光を入射させるレーザ光源が支持基板上に配される請求項1から9のいずれかに記載の光モジュール。 The optical module according to any one of claims 1 to 9, further comprising a laser light source that allows laser light to be incident on one rectangular surface.
  11.  レーザ光源のレーザ光出射口と、一の方形面との距離Lが、次式、0μm<L≦40μmを満たす請求項10に記載の光モジュール。 The optical module according to claim 10, wherein the distance L between the laser light emission port of the laser light source and the one rectangular surface satisfies the following expression: 0 μm <L ≦ 40 μm.
  12.  レーザ光源が量子ドットレーザである請求項10から11のいずれかに記載の光モジュール。 The optical module according to claim 10, wherein the laser light source is a quantum dot laser.
PCT/JP2013/053008 2012-04-16 2013-02-08 Optical module WO2013157287A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-092631 2012-04-16
JP2012092631A JP2015121568A (en) 2012-04-16 2012-04-16 Optical module

Publications (1)

Publication Number Publication Date
WO2013157287A1 true WO2013157287A1 (en) 2013-10-24

Family

ID=49383256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/053008 WO2013157287A1 (en) 2012-04-16 2013-02-08 Optical module

Country Status (2)

Country Link
JP (1) JP2015121568A (en)
WO (1) WO2013157287A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0743552A (en) * 1993-08-02 1995-02-14 Hitachi Cable Ltd Optical waveguide element for coupling semiconductor laser diode and waveguide type module using the same
JP2000114581A (en) * 1998-10-09 2000-04-21 Fujitsu Ltd Multilayered photoelectron substrate with electrical intercoupling and optical intercoupling, and manufacture thereof
JP2002107681A (en) * 2000-09-29 2002-04-10 Fujitsu Quantum Devices Ltd Optical semiconductor device
JP2005115346A (en) * 2003-09-17 2005-04-28 Fujitsu Ltd Optical waveguide structure and optical module
JP2006091679A (en) * 2004-09-27 2006-04-06 Nec Corp Optical waveguide device
JP2006201372A (en) * 2005-01-19 2006-08-03 Nitto Denko Corp Optical path conversion mirror, optical path conversion apparatus using the same, and method for manufacturing optical path conversion mirror
JP2011221195A (en) * 2010-04-07 2011-11-04 Sumitomo Bakelite Co Ltd Optical waveguide structure and electronic device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0743552A (en) * 1993-08-02 1995-02-14 Hitachi Cable Ltd Optical waveguide element for coupling semiconductor laser diode and waveguide type module using the same
JP2000114581A (en) * 1998-10-09 2000-04-21 Fujitsu Ltd Multilayered photoelectron substrate with electrical intercoupling and optical intercoupling, and manufacture thereof
JP2002107681A (en) * 2000-09-29 2002-04-10 Fujitsu Quantum Devices Ltd Optical semiconductor device
JP2005115346A (en) * 2003-09-17 2005-04-28 Fujitsu Ltd Optical waveguide structure and optical module
JP2006091679A (en) * 2004-09-27 2006-04-06 Nec Corp Optical waveguide device
JP2006201372A (en) * 2005-01-19 2006-08-03 Nitto Denko Corp Optical path conversion mirror, optical path conversion apparatus using the same, and method for manufacturing optical path conversion mirror
JP2011221195A (en) * 2010-04-07 2011-11-04 Sumitomo Bakelite Co Ltd Optical waveguide structure and electronic device

Also Published As

Publication number Publication date
JP2015121568A (en) 2015-07-02

Similar Documents

Publication Publication Date Title
US9613886B2 (en) Optical coupling module
US9077450B2 (en) Wavelength division multiplexing with multi-core fiber
US9086551B2 (en) Double mirror structure for wavelength division multiplexing with polymer waveguides
US8777497B2 (en) Bidirectional optical transceiver module
WO2013118390A1 (en) Lens array and light module comprising same
JP2014110257A (en) Optical device
US7664357B2 (en) Vertical-type photonic-crystal plate and optical device assembly
JP5747721B2 (en) Optical transmission line, optical connector, and optical module
JP5304209B2 (en) Spot size converter
JP2017049613A (en) Lens array and optical module provided with the same
WO2013157287A1 (en) Optical module
JP5104568B2 (en) Light guide plate and optical module
JP2010266541A (en) Optical element
JP2019138927A (en) Optical fiber and optical transmission system
JP3964768B2 (en) Optical module
JP2016212414A (en) Waveguide coupling circuit
JP2017134228A (en) Optical waveguide
JP6897554B2 (en) Optical circuit and light source with monitoring function using it
US9638864B2 (en) Optical device
JP5772436B2 (en) Optical coupler and optical device
US20230236368A1 (en) Optical module package using bi-angled silica waveguide
JP2005309413A (en) Optical element and demultiplexing element using it
JP2018105932A (en) Optical transmission path
JP2009210609A (en) Optical waveguide body
JP2002169048A (en) Self waveguide optical circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13777579

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13777579

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP