WO2013156407A1 - Compositions tensioactives et leur utilisation pour la recuperation assistee d'hydrocarbures - Google Patents

Compositions tensioactives et leur utilisation pour la recuperation assistee d'hydrocarbures Download PDF

Info

Publication number
WO2013156407A1
WO2013156407A1 PCT/EP2013/057696 EP2013057696W WO2013156407A1 WO 2013156407 A1 WO2013156407 A1 WO 2013156407A1 EP 2013057696 W EP2013057696 W EP 2013057696W WO 2013156407 A1 WO2013156407 A1 WO 2013156407A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon atoms
compound
salinity
surfactant composition
surfactant
Prior art date
Application number
PCT/EP2013/057696
Other languages
English (en)
Inventor
Maurice Bourrel
Manuel CHAMEROIS
Christian DUR
Nadège LAGASSE
Corinne RICHARD
Marcelle SAINT-LOUBERT
Original Assignee
Total S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Total S.A. filed Critical Total S.A.
Priority to RU2014141627A priority Critical patent/RU2014141627A/ru
Publication of WO2013156407A1 publication Critical patent/WO2013156407A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
    • C09K23/12Sulfonates of aromatic or alkylated aromatic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/58Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids
    • C09K8/584Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids characterised by the use of specific surfactants
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
    • C09K23/017Mixtures of compounds

Definitions

  • the present invention relates to surfactant compositions and their use in the context of enhanced oil recovery or EOR ("Enhanced Oil Recovery”).
  • Crude oil accumulated in an underground reservoir is recovered or produced by means of one or more wells drilled in the reservoir. Before the start of production, the formation (a porous medium) is saturated with hydrocarbons and the pores are filled with these hydrocarbons.
  • Initial hydrocarbon recovery is usually done by "primary recovery” techniques, in which only the natural forces present in the reservoir are used to produce the oil. In this primary recovery, only part of the crude oil is ejected from the pores by the pressure of the formation. Typically, once natural forces are exhausted and primary recovery is complete, there is still a large volume of crude oil in the reservoir, usually more than two-thirds.
  • Water is the fluid whose use is most widespread, especially for economic reasons. When water is injected into the tank, it pushes the oil to a production system consisting of one or more wells through which the oil is recovered. However, the movement of oil through water is not very effective because: - poor volumetric sweep due to the heterogeneities of the porous medium at the reservoir scale; and
  • the conditions of formation of the microemulsion depend on several factors, in particular the type of surfactant used, the nature of the oil (mainly its naphthenate content or TAN and its density / viscosity), the salinity of the aqueous phase. .
  • the optimum conditions for hydrocarbon recovery depend on all of these parameters.
  • the optimal conditions are validated and refined on a case-by-case basis using core sweeps.
  • alkylarylsulphonates As surfactants, it is known to use sulfonates, and in particular alkylarylsulphonates. Alkylarylsulphonates suitable for the enhanced recovery of hydrocarbons (as well as combinations of alkylarylsulphonates) are described for example in the documents EP 01 1 1354, EP 0158486, US 3,601,198, US 4,452,708, US 4,608,204, US 4,682,653, US 4,690,785. , US 4,873,025, US 6,043,391 and US 6,269,881.
  • alkylarylsulfonates and polysaccharides have also been proposed (for example in US Pat. No. 4,932,473), as well as combinations of alkylarylsulfonates and glycol (for example in EP 0413374), or combinations of alkylarylsulfonates and polyisobutylene (for example in WO 01/98432), or combinations of alkylarylsulphonates and alpha-olefin-sulfonates (for example in EP 0148517).
  • a characteristic of ionic surfactants is that their physico-chemical properties are strongly dependent on the salinity of the phase. aqueous. At low salinity, the surfactants are preferentially in the lower aqueous phase, where they form oil-type microemulsions in water, the excess oil being in the upper phase. At high salinity, these surfactants are preferentially in the higher oleic phase where they form water-in-oil microemulsions, the excess water being in the lower phase.
  • a microemulsion phase occurs between the aqueous and oleic phases.
  • the microemulsion phase contains varying amounts of oil and water.
  • each anionic surfactant has optimal efficiency only for a given salinity, called optimal salinity.
  • alkylarylsulphonate having an optimum hydrocarbon recovery potential.
  • the document WO 2005/018300 identifies alkylxylenesulphonates which are particularly suitable for enhanced hydrocarbon recovery when the salinity is between 0.2 and 0.5% (that is to say between 2 and 5 g / l). ).
  • a first subject of the present invention relates to a surfactant composition
  • a surfactant composition comprising:
  • composition may comprise one or more of the following characteristics:
  • R a represents an alkyl group of 5 to 30 carbon atoms
  • R ' a represents an alkyl or alkylether or alcohol group of 1 to 12 carbon atoms
  • M a represents a monovalent cation
  • R b represents an alkyl group of 5 to 30 carbon atoms
  • R'b represents an alkyl or alkylether alcohol group of 1 to 12 carbon atoms
  • M b represents a monovalent cation; o alkylarylsulphonate of formula ( ⁇ ):
  • R represents an alkyl group of 6 to 30 carbon atoms
  • M represents a monovalent cation
  • the group R a comprises from 10 to 30 carbon atoms, preferably from 14 to 20 carbon atoms; and or
  • the group R ' a comprises from 1 to 6 carbon atoms, preferably from 1 to 3 carbon atoms; and or
  • the group R b comprises from 10 to 30 carbon atoms, preferably from 12 to 20 carbon atoms; and or
  • the group R ' b comprises from 1 to 6 carbon atoms, preferably from 1 to 3 carbon atoms; or
  • the group R comprises from 8 to 24 carbon atoms, preferably from 10 to 20 carbon atoms, more preferably from 12 to 18 carbon atoms;
  • the surfactant composition comprises two compounds (b) of alkylarylsulphonate type of formula ( ⁇ ) in which the R groups have a different number of carbons, preferably the first alkylarylsulphonate has from 14 to 20 carbon atoms, preferably 15 carbon atoms, carbon, and the second alkylarylsulfonate has from 10 to 14 carbon atoms, preferably 12 carbon atoms;
  • the composition comprises from 1 to 99% by weight of compound (a), preferably from 30 to 80%, more preferably from 40 to 70%, relative to the total weight of compounds (a) and (b), and / or from 1 to 99% by weight of compound (b), preferably from 5 to 65%, more preferably from 10 to 40%, based on the total weight of compounds (a) and (b).
  • the compound (a) has an optimum salinity greater than or equal to 1 10 g / l.
  • the compound (b) has an optimum salinity of less than or equal to 75 g / l.
  • composition further comprises one or more additives chosen from salts, additional surfactants, sacrificial agents, mobility control polymers, a clarifying agent, or their mixture.
  • the composition is in dry form or in the form of an aqueous solution, the mass proportion of surfactants in the aqueous solution preferably ranging from 0.2 to 3%.
  • the invention also relates to a process for extracting hydrocarbons from a subterranean formation, comprising injecting a surfactant composition as above, in the form of an aqueous solution into the subterranean formation, and producing hydrocarbons. displaced by the surfactant composition injected.
  • the subterranean formation is characterized by a salinity of between 30 and 250 g / l, more particularly between 40 and 220 g / l.
  • the invention also relates to a method for selecting a surfactant composition adapted to the enhanced recovery of hydrocarbons in an underground formation with a mixture comprising a surfactant composition as defined above and water for injection, said method comprising :
  • candidate surfactant compositions each comprising at least one sulfonated alkyl ester compound (a) and at least one sulfonated alkyl or sulfonated alkyl ester compound;
  • each candidate surfactant composition with an aqueous solution having an intermediate salinity S m between S f and S ,, and with a liquid hydrocarbon sample from the subterranean formation, to provide a candidate mixture; selecting a surfactant composition from all of the candidate surfactant compositions, the candidate mixture comprising the selected surfactant composition being a three-phase mixture comprising:
  • an intermediate phase which is a microemulsion consisting of aqueous solution, liquid hydrocarbons and compounds (a) and (b).
  • the method may include one or more of the following features:
  • the intermediate phase of the candidate mixture comprising the selected surfactant composition comprises an equal volume of liquid hydrocarbons and of aqueous solution
  • the method comprises, after the estimation of the salinity of the underground formation S f , the estimation of the salinity S, the water for injection, and the choice of the salinity S m :
  • the optimum salinity of a compound being defined as the concentration of sodium chloride in water to which said compound, when added at a level of 0.5% by mass of dry matter to an isovolumetric octane / water, in the presence of 1% isobutanol, at atmospheric pressure and at 83 ° C, generates a three-phase mixture comprising:
  • An intermediate phase which is a microemulsion consisting of water, octane and said compound; mixture in which the intermediate phase has an equal volume of octane and water.
  • the present invention overcomes the disadvantages of the state of the art. More particularly, it provides surfactant compositions which can be adapted in a simple manner to various operating conditions, and in particular to various salinity conditions, to provide optimum enhanced hydrocarbon recovery. These surfactant compositions are particularly useful for the enhanced recovery of hydrocarbons under conditions of high salinity, that is to say for example a salinity of between 30 and 250 g / l, and in particular between 60 and 120 g / l and under conditions in which the water available for injection has a high content of divalent cations, for example a content of 10 to 40%, more particularly 20 to 30%.
  • reference conditions means a content of 0.5% by weight of dry matter in an isovolumetric mixture n-octane / water in the presence of 1% of isobutanol, at atmospheric pressure and at 83 ° C.
  • the hydrocarbon used in this reference system is an oil analogue of the deposit to be treated.
  • the octane may be replaced by another alkane, for example by decane.
  • the difference in optimal salinity of two compounds is not modified by an alkane change.
  • the invention proposes to adjust the proportions of each of the two compounds to generate the conditions of formation of a microemulsion comprising equal volumes of oil and water, thus optimizing enhanced oil recovery.
  • a compound (s) (a) sulfonated alkyl ester constituting the hydrophilic pole, that is to say having a high optimum salinity is preferably used at least one compound of formula (I), that is to say an alpha-sulfocarboxylic acid ester; and as a compound (s) (b) constituting the hydrophobic pole, that is to say having a low optimum salinity, is preferably used at least one compound of formula (II), that is to say an alpha-sulfocarboxylic acid ester, or at least one compound of formula ( ⁇ ), i.e. alkylbenzenesulfonate.
  • the combination of these two compound types allows a particularly effective optimization of the composition.
  • FIG 1 schematically shows Winsor type mixtures 1, 2 and 3.
  • Figure 2 provides an illustration of the determination of the optimum salinity of a surfactant compound.
  • Figure 3 provides an illustration of the determination of an optimal surfactant composition for a given saline concentration and a given type of oil.
  • the invention is based on the combination of at least one hydrophilic sulphonated alkyl ester surfactant (a) and at least one hydrophobic alkyl sulphonated or alkylarylsulphonate surfactant (b) in a surfactant composition.
  • sulfonated alkyl ester any ⁇ -sulfocarboxylic acid ester comprising an alkyl or arylalkyl radical having from 5 to 30 carbon atoms.
  • alkylarylsulfonate any compound comprising a phenyl ring substituted by one or more alkyl groups as well as by a sulfonate group.
  • At least one alkyl substituent comprises at least 10 carbon atoms, more particularly the alkyl group comprises from 10 to 40 carbon atoms, more preferably from 14 to 32 carbon atoms.
  • the phenyl ring is substituted by an alkyl group and a sulfonate group.
  • oil emulsified mixtures of aqueous solutions and liquid hydrocarbons (hereinafter referred to as oil) can be classified into three categories:
  • the Winsor 1 type system is a biphasic system comprising a lower phase which is a microemulsion of oil in water, and an upper phase comprising excess oil. If a surfactant is present in the mixture, it is in the lower phase.
  • the Winsor 2 type system is a biphasic system comprising an upper phase which is a microemulsion of water in the oil, and a lower phase comprising excess water. If a surfactant is present in the mixture, it is in the upper phase.
  • the Winsor type system 3 is a three-phase system comprising a higher phase comprising excess oil, a lower phase comprising excess water, and an intermediate phase which is a microemulsion consisting of water, oil and surfactant.
  • the microemulsion is in equilibrium with both the aqueous phase and the oily phase.
  • FIG. 1 provides an illustration of the three types of systems.
  • the test tube A represents a Winsor type system 1
  • the test tube B represents a Winsor type system 3
  • the test tube C represents a Winsor type system 2.
  • the oil phase is referenced by the number 1
  • the water phase by the number 3
  • the microemulsion phase by the number 2.
  • the formulation of the system is qualified as optimal.
  • the simultaneous solubilization of the oil and water is maximal. It is known that these conditions correspond to a regime of low interfacial tensions (see Reed RL, Healy, RN, Some physicochemical aspects of microemulsion floodings: a review in Improved Oil Recovery by Surfactant and Polymer Flooding, Ed DO Shah, RS Schechter, Academy Press, New York, 1977, pp 383-437).
  • Winsor 3 type mixture and more particularly an optimal Winsor 3 type mixture, the simplest is to use visual inspection; however, direct measurement of interfacial tensions (by means of a tensiometer) can be performed for greater accuracy.
  • the optimum salinity of a surfactant compound is defined as the concentration of sodium chloride in water to which said compound, when added for example to a content of 0.5% by weight of dry matter to an isovolumetric octane / water mixture, in the presence of 1% of isobutanol, generates an optimal Winsor 3 type system, that is to say a three-phase mixture comprising:
  • an intermediate phase which is a microemulsion consisting of water, octane and said compound
  • the octane used in the present application to evaluate the optimum salinity of the surfactant compound employed for hydrocarbon recovery in a subsurface formation can be replaced by another alkane, such as decane.
  • the difference in optimal salinity of two compounds is not modified by an alkane change.
  • the optimal salinity of a surfactant compound is determined by mixing in graduated test tubes equal volumes of water (2ml), octane (2ml) and the surfactant, with increasing sodium chloride concentrations.
  • the concentration of surfactant is 0.5% (by weight of active surfactant material).
  • a co-surfactant, isobutanol, is also present at a concentration of 1%.
  • the tests are carried out at atmospheric pressure, and at 83 ° C.
  • the test tube in which an optimal Winsor 3 type system is present is identified (typically by visual inspection): the concentration of sodium chloride used in this test tube is the optimum salinity of the surfactant compound in question.
  • Figure 2 is an illustration of the determination of the optimal salinity of a sulfonated alkyl ester surfactant compound according to the procedure described above.
  • Test tubes No. 1 and 2 (on the left) contain Winsor 1 systems (two-phase system with a higher phase of oil type and a lower phase of microemulsion type oil in the water).
  • the surfactant compound is therefore hydrophilic for the corresponding salt concentrations.
  • Test tubes No. 6, 7, 8, 9 and 10 (on the right) contain Winsor 2 systems (two-phase system with a lower aqueous phase and a higher phase of the water-in-oil microemulsion type).
  • the surfactant compound is therefore hydrophobic for the corresponding salt concentrations.
  • Test tubes 3, 4 and 5 (centrally located) contain a Winsor 3 system (three-phase system with an intermediate microemulsion phase).
  • Test tube No. 4 represents the optimum formulation, that is, for the particular saline concentration, the microemulsion of the intermediate phase comprises as much oil as water.
  • This test tube is identified by the fact that the volume of the microemulsion is distributed symmetrically on either side of a marker separating the total volume of the three phases into two equal parts. This saline concentration is therefore the optimum salinity of the surfactant compound.
  • the surfactant compositions according to the invention are chosen so as to optimize the enhanced recovery of hydrocarbons under particular operating conditions. Also, the invention provides a method for selecting an effective surfactant composition, depending on the operating conditions, in particular depending on the nature and composition of the underground formation considered as well as on the available water for injection.
  • the method for selecting a surfactant composition suitable for the enhanced recovery of hydrocarbons in an underground formation using a mixture comprising a surfactant composition and water for injection comprises:
  • candidate surfactant compositions each comprising one or more sulfonated alkyl ester compounds (a) and one or more (b) alkyl sulfonated or alkyl aryl sulfonate compounds, the two compounds (a) and (b) having a different hydrophilicity; and
  • each candidate surfactant composition in the presence of liquid hydrocarbons from the subterranean formation in question.
  • the hydrophilic or hydrophobic character of a surfactant compound depends on the actual operating conditions.
  • a practical method for defining this hydrophilic or hydrophobic character is to refer to the salinity S m chosen for injecting the surfactant solution.
  • the salinity S m being between the salinity of the subsurface formation Sf and the salinity of the water available for the injection S, (S, ⁇ S m ⁇ Sf), Sf being equal to S ,.
  • a compound (a) capable of constituting a hydrophilic pole it is advantageous to choose a sulphonated alkyl ester compound having an optimal salinity greater than or equal to S m
  • a compound (b) capable of constituting a hydrophobic pole it It is advantageous to choose a sulphonated or alkylarylsulphonated alkyl ester compound having an optimum salinity of less than or equal to 5 m .
  • the salinity Sf of the underground formation within the meaning of the present application is estimated as theoretical equivalent salinity in sodium chloride of the underground formation. This estimate is made with reference to equivalent conductivity or ionic strength.
  • salinity S is estimated as water available for injection.
  • the hydrophilic or hydrophobic character of a compound surfactant can be determined by measuring or calculating the HLB (Hydrophilic Lipophilic Balance) or by direct measurement of the interfacial tension.
  • HLB Hydrophilic Lipophilic Balance
  • the surfactant composition selected at the end of the second step depends on the physico-chemical conditions considered, in particular the characteristics of the oil and the water in the underground formation.
  • candidate mixtures are prepared by mixing each candidate surfactant composition with an aqueous solution. having a salinity equal to S m , and with a sample of liquid hydrocarbons resulting from the underground formation.
  • the various candidate surfactant compositions comprising, for example, variable relative proportions of two compounds (a) and (b)
  • test tubes graduated in the presence of equal volumes of water (2 ml, at the estimated salinity underground formation) and hydrocarbons (2ml, oil from underground formation).
  • concentration of the surfactant composition is, for example, between 0.5 and 3%.
  • the candidate mixtures are evaluated by visual inspection, verifying if they form Winsor type systems 1, 2 or 3, as defined above.
  • a surfactant composition which provides a candidate mixture forming a Winsor 3 type system is retained. If several Winsor 3 type systems are obtained, the surfactant composition for which the mixture is of optimal Winsor 3 type is preferably selected is that is, in which the intermediate phase contains equal volumes of oil and water.
  • the test tube will be chosen in which the intermediate microemulsion phase is distributed symmetrically on either side of a reference mark separating the internal volume of the test tube into two equal volumes.
  • the surfactant composition thus retained is that for which the interfacial tensions, between the microemulsion and the oil on the one hand, and the microemulsion and water on the other hand, are equal. If tests make it possible to identify several surfactant compositions making it possible to generate an optimal Winsor 3 type mixture, the surfactant composition for which the intermediate microemulsion phase has the greatest volume will be chosen.
  • Winsor 3 type mixture and more particularly an optimal Winsor 3 type mixture, a direct measurement of the interfacial tensions (by means of a tensiometer) can be carried out, for greater precision.
  • the above method makes it possible to select an ideal surfactant composition for given operating conditions.
  • the tests are carried out at atmospheric pressure and at the temperature of the deposit (with the oil of the deposit, and a saline concentration equivalent to that of the deposit).
  • the selection of the surfactant composition can be refined by adding to the aqueous medium the various additives that will be used under actual operating conditions.
  • the concentration of surfactant used is typically 1% by weight. In any case, it is also possible to refine the selection of the composition for different concentrations of surfactants (for example from 0.2% to 3%).
  • the selected surfactant composition comprises a hydrophilic pole (for the operating conditions under consideration), namely the compound (s) (a), and a hydrophobic pole (for the operating conditions under consideration), namely the compound (s) (b), adjusted optimally.
  • the hydrophilic compound generates with the oil and water S m Winsor type 1 systems.
  • the hydrophobic compound generates, with the oil and the water S m, Winsor type systems 2.
  • the surfactant composition comprising the two compounds generates, with the oil and the water S m, Winsor type systems 3, preferably optimal.
  • the surfactant compositions according to the invention whose effectiveness according to the operating conditions can be determined according to the method described above, comprise at least one sulfonated alkyl ketone (a) surfactant compound and at least one a compound (b) alkyl sulfonated or alkylarylsulfonate hydrophobic type. Therefore, the optimum salinity of the compound (a) is greater than the optimal salinity of the compound (b).
  • a particularly suitable type of compound (a) is an ⁇ -sulfocarboxylic acid ester of formula (I):
  • R a represents an alkyl group of 5 to 30 carbon atoms
  • R ' a represents an alkyl or alkylether or alcohol group of
  • M a represents a monovalent cation.
  • a particularly suitable type of compound (b) is an ⁇ -sulfocarboxylic acid ester of formula (II) or an alkylbenzene sulfonate of formula ( ⁇ ) below:
  • Rb represents an alkyl group of 5 to 30 carbon atoms
  • R'b represents an alkyl or alkylether group or alcohol of
  • M b represents a monovalent cation
  • Rb and / or R'b different respectively from R a and / or R ' a ;
  • R represents an alkyl group of 6 to 30 carbon atoms
  • M represents a monovalent cation
  • the surfactant composition according to the invention may comprise one or more ⁇ -sulphocarboxylic acid esters of formula (II) and / or one or more alkylbenzene sulphonates of formula ( ⁇ ) above.
  • the R 'groups of the sulfonated alkyl esters are opposed to the stacking of the molecules and thus promote the mobility of the interfaces and the coalescence phenomena, which make them compounds of particular interest for the applications referred to in the present application.
  • the composition comprises from 1 to 99% of compound (a), preferably from 30 to 80%, more preferably from 40 to 70%, based on the total weight of the compounds (a) and ( b).
  • the composition comprises from 1 to 99% of compound (b), preferably from 5 to 65%, more particularly preferred from 10 to 40%, based on the total mass of the compounds (a) and (b).
  • the surfactant composition comprises a sulfonated alkyl ester compound of formula (I) and two alkylarylsulphonate compounds of formula ( ⁇ ), the two alkylarylsulphonates being differentiated by the length of their alkyl chain R.
  • the first alkylarylsulfonate has from 14 to 20 carbon atoms, preferably 15 carbon atoms
  • the second alkylarylsulfonate has from 10 to 14 carbon atoms, preferably 12 carbon atoms.
  • Preferred compounds of formula (I) are those in which the group R a comprises from 10 to 30 carbon atoms, more particularly from 14 to 20 carbon atoms, and / or in which the group R ' a contains from 1 to 6 preferably, the group R ' a is an alkyl radical such as ethyl or an alcohol radical of the ethanol type or a 2-methoxyethyl, 2- (2-methoxyethoxy) ethyl type alkyl ether radical, and the like;
  • Preferred compounds of formula (II) are those in which the group R b comprises from 10 to 30 carbon atoms, more particularly from 12 to 20 carbon atoms, and / or in which the group R ' b contains from 2 to 5 carbon atoms. carbon atoms, preferably the group R ' b is an alkyl radical such as propyl or an alkyl ether radical such as methoxypropyl.
  • Preferred compounds of formula ( ⁇ ) are those in which the group R comprises from 8 to 24 carbon atoms, more particularly from 10 to 20 carbon atoms, more particularly from 12 to 18 carbon atoms.
  • the groups R a , Rb and R may be, independently of one another, saturated or unsaturated, preferably saturated.
  • the groups R a , Rb and R can be linear or branched. According to one embodiment of the invention, the groups R a and R b comprise the same number of carbon atoms and the groups R ' a and R' b are different, more particularly the group R ' a is an alkyl ether group. or alcohol and the group R ' b is an alkyl group.
  • the group R a is different from the group R b and the group R ' a is different from the group R' b .
  • R groups preferably from 1 to 60% of the R groups are branched, more preferably from 3 to 50%, more preferably from 5 to 20%.
  • the monovalent cations M a , M b and M 'sulfonate conjugates in the formulas (I), (II) and ( ⁇ ) are preferably alkali metal cations, especially potassium or sodium, and more particularly sodium.
  • the compound or compounds (a) have an optimal salinity greater than or equal to 1 10 g / L, preferably greater than or equal to 130 g / L, more preferably greater than or equal to
  • the compound (s) (b) have an optimum salinity of less than or equal to 75 g / l, preferably less than or equal to 70 g / l, more preferably less than or equal to 50 g. / L.
  • the surfactant compositions according to the invention may be characterized by an optimum difference in salinity between the compound (a) and the compound (b) greater than or equal to 25 g / l, preferably greater than or equal to 30 g / l.
  • a surfactant compound (a) having an optimum salinity greater than 1 10 g / L is sufficiently hydrophilic, because for a salinity (concentration of sodium chloride) of less than 1 10 g / L, the surfactant compound will preferably be in the phase aqueous, and a surfactant compound (b) having an optimum salinity of less than 75 g / l is sufficiently hydrophobic, because for a salinity (concentration of sodium chloride) greater than 75 g / l, the surfactant compound will preferably be in the oil phase.
  • the surfactant composition according to the invention may be in dry form (for example powder) or in liquid form, that is to say in aqueous solution, concentrated or diluted, that is to say at the nominal concentration of use for the assisted oil recovery.
  • the mass concentration of surfactants is typically between 0.1% and 3%.
  • the surfactant composition may also comprise other additives, in particular salts, additional surfactants (for example other alkylarylsulphonates, or other sulphonated alkyl esters or else an alcohol such as diethylene glycol butyl ether or a polyethoxylated alcohol, such to reduce the equilibrium equilibrium time of the systems), sacrificial agents, mobility control polymers, a clarifying agent to obtain a clear solution ...
  • additional surfactants for example other alkylarylsulphonates, or other sulphonated alkyl esters or else an alcohol such as diethylene glycol butyl ether or a polyethoxylated alcohol, such to reduce the equilibrium equilibrium time of the systems
  • sacrificial agents for example other alkylarylsulphonates, or other sulphonated alkyl esters or else an alcohol such as diethylene glycol butyl ether or a polyethoxylated alcohol, such to reduce the equilibrium equilibrium time of the systems
  • sacrificial agents for example other al
  • the clarifying agent is a mineral oil.
  • the clarifying agent makes it possible to ensure excellent solubility of the surfactant composition in the aqueous solution to be injected, an excellent solubility being desired in order to avoid clogging at the inlet of the reservoir.
  • the surfactant compositions of the invention are particularly useful for enhanced hydrocarbon recovery (EOR).
  • EOR enhanced hydrocarbon recovery
  • an injection well is injected with a surface-active composition according to the invention, in the form of an aqueous solution, into the subterranean formation containing hydrocarbons, and in particular crude oil.
  • the surfactant composition displaces the oil by forming an oil / water microemulsion locally. This zone of low interfacial tension then propagates in the formation.
  • an injection of water, hydrocarbon fluid or brine can be performed prior to the injection of the surfactant composition.
  • the hydrocarbons are recovered by one or more production wells remote from the injection well.
  • the invention is particularly useful for the recovery of hydrocarbons which are conventional oils, preferably light ones, and which have for example the following characteristics:
  • Example 1 illustrates the invention without limiting it.
  • a hydrophilic sodium alkyl ester sulfonate compound of formula (I) is manufactured according to method A described above. This compound has the following characteristics:
  • a hydrophobic sodium alkylbenzene sulfonate compound of formula ( ⁇ ) is manufactured according to method B described above. This compound has the following characteristics:
  • the mixture of these two surfactant compounds is tested in the presence of water containing 80 g / L of total salts.
  • the respective optimum salinities of the two selected compounds frame the theoretical salinity value.
  • Tests are then carried out to determine the relative proportions of the two constituents of the mixture.
  • test tubes are filled with the isobutometric mixture water / petroleum supplemented with a mixture of the two compounds in the respective weight ratios hydrophilic compound compound following hydrophobic properties: 75/25, 60/40, 55/45, 50/50, 45/55, 40/60, 35/65, 30/70, 25/75, 20/80.
  • the surfactant composition comprising in relative amounts 35% of the above sodium alkylsulfonate and 65% of the above sodium alkylbenzene sulfonate is particularly effective for the enhanced recovery of the subject oil, by means of the water in question.
  • a hydrophilic sodium alkyl ester sulfonate compound of formula (I) is manufactured according to method A described above. This compound has the following characteristics:
  • hydrophobic alkyl ester sulfonate compound of formula (II) is manufactured according to method A described above. This compound has the following characteristics:
  • the mixture of these two surfactant compounds is tested in the presence of water containing 80 g / L of total salts.
  • the respective optimum salinities of the two selected compounds frame the theoretical salinity value.
  • Tests are then carried out to determine the relative proportions of the two constituents of the mixture.
  • test tubes were filled with an isovolumetric mixture water / petroleum supplemented with a mixture of the two compounds in the respective weight ratios hydrophilic compound / hydrophobic compound 60/40; 55/45; 50/50; 48/52; 46/44; 44/46; 42/48; 40/60; 30/70. It is seen visually that the 40/60 ratio is that which makes it possible to obtain a Winsor 3 system, with optimum equal volumes of oil and water in the microemulsion phase.
  • the surfactant composition comprising in relative amounts 40% of the above sodium alkyl sulfonate (I) and 60% of the above sodium alkyl sulfonate (II) is particularly effective for enhanced oil recovery. in question, using the water in question.
  • Example 3
  • sodium alkylsulfonate compound of formula (I), hydrophilic, described in Example 2 above, is used.
  • hydrophobic alkyl ester sulfonate compound of formula (II) is manufactured according to method A described above. This compound has the following characteristics:
  • the mixture of these two surfactant compounds is tested in the presence of water containing 80 g / L of total salts.
  • the respective optimum salinities of the two selected compounds frame the theoretical salinity value.
  • Tests are then carried out to determine the relative proportions of the two constituents of the mixture.
  • test tubes were filled with an isovolumetric mixture of water and oil with a mixture of the two compounds in the respective weight ratios hydrophilic compound / hydrophobic compound: 75/25, 50/50, 45/55, 40 / 60, 35/65, 30/70, 25/75.
  • ratio 50/50 is that which makes it possible to obtain a Winsor system 3, with optimum equal volumes of oil and water in the microemulsion phase.
  • the surfactant composition comprising in relative amounts 50% of the above sodium alkyl sulfonate (1) and 50% of the above sodium (II) alkyl ester sulfonate is particularly effective for enhanced oil recovery. in question, using the water in question.
  • Example 4 A hydrophilic sodium alkyl sulfonate compound (a) of formula (I) is manufactured according to method A described above. This compound has the following characteristics:
  • a hydrophobic sodium alkylbenzene sulfonate compound of formula ( ⁇ ) is manufactured according to process B described above. This compound has the following characteristic:
  • This compound is mixed in proportions 50/50 by weight with the sodium alkylbenzenesulphonate compound also obeying the formula II 'described in Example 1.
  • the optimum salinity of this hydrophobic mixture b is 75 g / L.
  • the mixture of compounds (a) and (b) is tested in the presence of water containing 80 g / L of total salts.
  • the respective optimum salinities of the two hydrophilic and hydrophobic components selected frame well the theoretical salinity value.
  • test tubes are filled with the iso-volumetric mixture of water / oil with a mixture of the compounds (a) and (b) in the respective weight ratios of the following hydrophilic compound (a) / hydrophobic compound (b). : 50/50, 60/40, 65/35, 70/30 75/25, 80/20.
  • the ratio 70/30 is that which makes it possible to obtain a Winsor 3 system with, at optimum, equal volumes of oil and water in the microemulsion phase.
  • the surfactant composition comprising in relative amounts 70% of the above sodium alkyl sulfonate is particularly effective for the enhanced recovery of the oil in question, by means of the water in question.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)

Abstract

L'invention concerne une composition tensioactive comprenant au moins un composé alkylester sulfoné (a) et au moins un composé (b) de type alkylester sulfoné ou alkylarylsulfonate. La composition tensioactive peut être adaptée de manière simple à diverses conditions d'exploitation, et notamment à diverses conditions de salinité, pour fournir une récupération assistée d'hydrocarbures optimale.

Description

COMPOSITIONS TENSIOACTIVES ET LEUR UTILISATION POUR LA RECUPERATION ASSISTEE D'HYDROCARBURES
DOMAINE DE L'INVENTION
La présente invention concerne des compositions tensioactives et leur utilisation dans le cadre de la récupération assistée d'hydrocarbures ou EOR (« Enhanced Oil Recovery »).
ARRIERE-PLAN TECHNIQUE
Le pétrole brut accumulé dans un réservoir souterrain est récupéré ou produit au moyen d'un ou plusieurs puits forés dans le réservoir. Avant le début de la production, la formation (un milieu poreux) est saturée d'hydrocarbures et les pores sont remplis de ces hydrocarbures.
La récupération initiale d'hydrocarbures est généralement effectuée par des techniques de « récupération primaire », dans lesquelles seules les forces naturelles présentes dans le réservoir sont utilisées pour produire le pétrole. Dans cette récupération primaire, une partie seulement du pétrole brut est éjectée des pores par la pression de la formation. Typiquement, une fois que les forces naturelles sont épuisées et que la récupération primaire est achevée, il reste un volume important de pétrole brut dans le réservoir, en général plus des deux tiers.
Ce phénomène est connu depuis longtemps et a conduit au développement de nombreuses techniques de récupération assistée d'hydrocarbures. Une grande partie de ces techniques suppose l'injection d'un fluide dans le réservoir souterrain pour produire une quantité supplémentaire de pétrole brut. A titre de fluide, on utilise de l'eau, de la vapeur, un gaz miscible tel que le dioxyde de carbone ou le gaz naturel, ou un gaz immiscible tel que l'azote.
L'eau est le fluide dont l'utilisation est la plus répandue, notamment pour des raisons économiques. Lorsque de l'eau est injectée dans le réservoir, elle pousse le pétrole vers un système de production composé d'un ou plusieurs puits par lesquels le pétrole est récupéré. Toutefois, le déplacement du pétrole par l'eau n'est pas très efficace en raison : - du mauvais balayage volumétrique, dû aux hétérogénéités du milieu poreux à l'échelle du réservoir ; et
- de la mauvaise récupération microscopique due à l'immiscibilité de l'eau et du pétrole et à la grande tension interfaciale entre les deux phases, ce qui conduit au piégeage capillaire des gouttelettes de pétrole.
Afin d'augmenter l'efficacité microscopique de la récupération assistée d'hydrocarbures par injection d'eau, il est connu d'ajouter des tensioactifs dans l'eau pour abaisser la tension interfaciale huile / eau. Les microémulsions présentent une tension interfaciale nulle ou très faible avec l'huile, ce qui permet de mobiliser les hydrocarbures piégés dans les pores de la roche.
Ainsi, les gouttes de pétrole se déforment plus facilement, et donc se déplacent plus facilement au sein des canaux poreux du réservoir.
C'est dans les conditions de formation d'une microémulsion que le potentiel de récupération d'hydrocarbures est le plus élevé.
Cependant, les conditions de formation de la microémulsion dépendent de plusieurs facteurs, notamment le type de tensioactif utilisé, la nature de l'huile (principalement sa teneur en naphténates ou TAN et sa densité / viscosité), la salinité de la phase aqueuse...
In fine, les conditions optimales de récupération des hydrocarbures dépendent de l'ensemble de ces paramètres. Les conditions optimales sont validées et affinées au cas par cas, à l'aide de balayages sur carottes.
A titre de tensioactifs, il est connu d'utiliser des sulfonates, et notamment des alkylarylsulfonates. Des alkylarylsulfonates appropriés pour la récupération assistée d'hydrocarbures (ainsi que des combinaisons d'alkylarylsulfonates) sont décrits par exemple dans les documents EP 01 1 1354, EP 0158486, US 3,601 ,198, US 4,452,708, US 4,608,204, US 4,682,653, US 4,690,785, US 4,873,025, US 6,043,391 et US 6,269,881 .
Des combinaisons d'alkylarylsulfonates et de polysaccharides ont également été proposées (par exemple dans le document US 4,932,473), ainsi que des combinaisons d'alkylarylsulfonates et de glycol (par exemple dans le document EP 0413374), ou des combinaisons d'alkylarylsulfonates et de polyisobutylène (par exemple dans le document WO 01/98432), ou encore des combinaisons d'alkylarylsulfonates et d'alpha-oléfine-sulfonates (par exemple dans le document EP 0148517).
Une caractéristique des tensioactifs ioniques est que leurs propriétés physico-chimiques sont fortement dépendantes de la salinité de la phase aqueuse. A faible salinité, les tensioactifs se trouvent préférentiellement dans la phase inférieure aqueuse, où ils forment des microémulsions de type huile dans l'eau, l'huile en excès se trouvant dans la phase supérieure. A forte salinité, ces tensioactifs se trouvent préférentiellement dans la phase supérieure oléique où ils forment des microémulsions de type eau dans l'huile, l'eau en excès se trouvant dans la phase inférieure.
Dans une gamme de salinité intermédiaire, une phase de microémulsion apparaît entre les phases aqueuse et oléique. Dans cette gamme de salinité, la phase de microémulsion contient des quantités variables d'huile et d'eau.
Il existe une concentration saline, dite optimale, telle que le régime de tension interfaciale atteint un minimum. Pour cette concentration saline optimale, les volumes d'eau et d'huile dans la microémulsion sont identiques.
Ce type de microémulsion entraîne une meilleure mobilisation des hydrocarbures.
Il en résulte que chaque tensioactif anionique ne présente une efficacité optimale que pour une salinité donnée, appelée salinité optimale.
Réciproquement, pour des conditions de salinité données, il est connu de rechercher un type d'alkylarylsulfonate présentant un potentiel de récupération d'hydrocarbures optimal. Par exemple, le document WO 2005/018300 identifie des alkylxylènesulfonates particulièrement adaptés pour une récupération assistée d'hydrocarbures lorsque la salinité est comprise entre 0,2 et 0,5 % (c'est-à-dire entre 2 et 5 g/L).
Dans le cas des alkylarylsulfonates, la salinité optimale est en général faible, et cette famille de tensioactifs est adaptée seulement aux réservoirs pétroliers peu salés (salinité typiquement inférieure à 30 g/L).
Aussi, compte tenu de la variété des tensioactifs envisageables, il peut être long et difficile d'identifier des tensioactifs permettant une récupération optimale d'hydrocarbures pour des conditions d'exploitation données (notamment la salinité de l'eau et les caractéristiques physico-chimiques des hydrocarbures).
Il existe donc un réel besoin de mettre au point des compositions tensioactives pouvant être adaptées de manière simple à diverses conditions d'exploitation, et notamment à diverses conditions de salinité, pour fournir une récupération assistée d'hydrocarbures optimale. Il existe plus particulièrement un besoin de mettre au point des compositions tensioactives permettant une récupération assistée d'hydrocarbures optimale lorsque l'eau disponible pour l'injection présente une forte salinité, par exemple une salinité comprise entre 30 et 250 g/L, et notamment entre 40 et 120 g/L, et contenant en général une fraction significative de cations divalents (Ca, Mg...), de l'ordre de 10 à 40%, plus particulièrement de 20 à 30%. RESUME DE L'INVENTION
Un premier objet de la présente invention concerne une composition tensioactive comprenant :
au moins un composé alkylester sulfoné (a), portant une fonction sulfonate en position alpha de l'ester d'acide carboxylique et comprenant un radical alkyle ou arylalkyle possédant de 5 à 30 atomes de carbone, et
au moins un composé (b) choisi parmi un alkylarylsulfonate et un alkylester sulfoné, le ou les alkylesters sulfonés de type (b) portant une fonction sulfonate en position alpha de l'ester d'acide carboxylique et comprenant un radical alkyle ou arylalkyle possédant de 5 à 30 atomes de carbone et étant différents du ou des alkylesters sulfonés de type (a).
Suivant des exemples, la composition peut comprendre l'une ou plusieurs des caractéristiques suivantes :
- le ou les composé(s) (a) sont des composés de formule (I) :
Ra - CH - COOR'a
(I) I
SO3Ma
dans laquelle,
Ra représente un groupement alkyle de 5 à 30 atomes de carbone,
R'a représente un groupement alkyle ou alkyléther ou alcool de 1 à 12 atomes de carbone, et
Ma représente un cation monovalent ; et/ou
le ou les composé(s) (b) sont des composés de formule (II) et/ou (Ι ) ci- dessous :
o alkylester sulfoné de formule (II) :
Rb - CH - COOR'b
(II) I
SO3Mb
dans laquelle,
Rb représente un groupement alkyle de 5 à 30 atomes de carbone, R'b représente un groupement alkyle ou alkyléther alcool de 1 à 12 atomes de carbone,
Mb représente un cation monovalent ; o alkylarylsulfonate de formule (ΙΓ) :
Figure imgf000006_0001
SO3M
dans laquelle,
R représente un groupement alkyle de 6 à 30 atomes de carbone,
M représente un cation monovalent ;
- les composés de formule (I), (II) et (ΙΓ) ci-dessus peuvent être tels que :
o le groupement Ra comprend de 10 à 30 atomes de carbone, de préférence de 14 à 20 atomes de carbone ; et/ou
o le groupement R'a comprend de 1 à 6 atomes de carbone, de préférence de 1 à 3 atomes de carbone ; et/ou
o le groupement Rb comprend de 10 à 30 atomes de carbone, de préférence de 12 à 20 atomes de carbone ; et/ou
o le groupement R'b comprend de 1 à 6 atomes de carbone, de préférence de 1 à 3 atomes de carbone ; ou
o le groupement R comprend de 8 à 24 atomes de carbone, de préférence de 10 à 20 atomes de carbone, de préférence encore de 12 à 18 atomes de carbone ;
- la composition tensioactive comprend deux composés (b) de type alkylarylsulfonate de formule (ΙΓ) dans lesquels les groupements R ont un nombre de carbones différent, de préférence, le premier alkylarylsulfonate possède de 14 à 20 atomes de carbone, de préférence 15 atomes de carbone, et le deuxième alkylarylsulfonate possède de 10 à 14 atomes de carbone, de préférence 12 atomes de carbone ;
- Ma, et/ou Mb, et/ou M sont chacun un cation sodium.
- dans le composé (ΙΓ), de 1 à 60% des groupements R sont ramifiés, de préférence de 3 à 50%, de préférence encore de 5 à 20% ; - la composition comprend de 1 à 99% en masse de composé (a), de préférence de 30 à 80%, de préférence encore de 40 à 70%, par rapport à la masse totale des composés (a) et (b), et/ou de 1 à 99% en masse de composé (b), de préférence de 5 à 65%, de préférence encore de 10 à 40%, par rapport à la masse totale des composés (a) et (b).
- le composé (a) présente une salinité optimale supérieure ou égale à 1 10 g/L.
- le composé (b) présente une salinité optimale inférieure ou égale à 75 g/L.
- la composition comprend en outre un ou plusieurs additifs choisis parmi les sels, les tensioactifs supplémentaires, les agents sacrificiels, les polymères de contrôle de la mobilité, un agent clarifiant, ou leur mélange.
- la composition est sous forme sèche ou sous forme de solution aqueuse, la proportion massique de tensioactifs dans la solution aqueuse allant de préférence de 0,2 à 3%.
L'invention concerne également un procédé d'extraction d'hydrocarbures d'une formation souterraine, comprenant l'injection d'une composition tensioactive telle que ci-dessus, sous forme de solution aqueuse dans la formation souterraine, et la production d'hydrocarbures déplacés par la composition tensioactive injectée.
Selon un mode de réalisation, la formation souterraine est caractérisée par une salinité comprise entre 30 et 250 g/L, plus particulièrement entre 40 et 220 g/L.
L'invention concerne également une méthode de sélection d'une composition tensioactive adaptée à la récupération assistée d'hydrocarbures dans une formation souterraine avec un mélange comprenant une composition tensioactive telle que définie ci-dessus et de l'eau pour injection, ladite méthode comprenant :
- l'estimation de la salinité Sf de la formation souterraine ;
- l'estimation de la salinité S, de l'eau pour injection ;
- la fourniture d'une pluralité de compositions tensioactives candidates comprenant chacune au moins un composé alkylester sulfoné (a) et au moins un composé (b) alkylester sulfoné ou alkylarylsulfonate ;
- le mélange de chaque composition tensioactive candidate avec une solution aqueuse présentant une salinité Sm intermédiaire comprise entre Sf et S,, et avec un échantillon d'hydrocarbures liquides issu de la formation souterraine, pour fournir un mélange candidat ; - la sélection d'une composition tensioactive parmi l'ensemble des compositions tensioactives candidates, le mélange candidat comprenant la composition tensioactive sélectionnée étant un mélange triphasique comprenant :
- une phase supérieure d'hydrocarbures liquides ;
- une phase inférieure de solution aqueuse ; et
- une phase intermédiaire qui est une microémulsion constituée de solution aqueuse, d'hydrocarbures liquides et des composés (a) et (b).
Suivant des exemples, la méthode peut comprendre l'une ou plusieurs des caractéristiques suivantes :
- la phase intermédiaire du mélange candidat comprenant la composition tensioactive sélectionnée comporte un volume égal d'hydrocarbures liquides et de solution aqueuse ;
- la méthode comprend à l'issue de l'estimation de la salinité de la formation souterraine Sf, de l'estimation de la salinité S, de l'eau pour injection, et du choix de la salinité Sm :
o le choix d'un composé alkylester sulfoné présentant une salinité optimale supérieure à la salinité Sm, en tant que composé alkylester sulfoné (a) pour l'ensemble des compositions tensioactives candidates ; et
o le choix d'un composé alkylester sulfoné ou d'un alkylarylsulfonate présentant une salinité optimale inférieure à Sm, en tant que composé (b) alkylester sulfoné ou alkylarylsulfonate pour l'ensemble des compositions tensioactives candidates ;
méthode dans laquelle le rapport massique entre le composé alkylester sulfoné (a) et le composé (b) alkylester sulfoné ou alkylarylsulfonate varie selon les compositions tensioactives candidates ;
la salinité optimale d'un composé étant définie comme étant la concentration de chlorure de sodium dans l'eau à laquelle ledit composé, lorsqu'il est ajouté à une teneur de 0,5 % en masse de matière sèche à un mélange isovolumétrique octane / eau, en présence de 1 % d'isobutanol, à pression atmosphérique et à 83°C, génère un mélange triphasique comprenant :
• une phase supérieure d'octane ;
· une phase inférieure d'eau ; et
• une phase intermédiaire qui est une microémulsion constituée d'eau, d'octane et dudit composé ; mélange dans lequel la phase intermédiaire comporte un volume égal d'octane et d'eau.
La présente invention permet de surmonter les inconvénients de l'état de la technique. Elle fournit plus particulièrement des compositions tensioactives pouvant être adaptées de manière simple à diverses conditions d'exploitation, et notamment à diverses conditions de salinité, pour fournir une récupération assistée d'hydrocarbures optimale. Ces compositions tensioactives sont particulièrement utiles à la récupération assistée d'hydrocarbures dans des conditions de forte salinité, c'est-à-dire par exemple une salinité comprise entre 30 et 250 g/L, et notamment entre 60 et 120 g/L et dans des conditions dans laquelle l'eau disponible pour l'injection présente une forte teneur en cations divalents, par exemple une teneur de 10 à 40%, plus particulièrement de 20 à 30%.
Cela est accompli grâce à l'utilisation conjointe, dans une même composition, d'au moins un composé alkylester sulfoné constituant un pôle hydrophile, c'est-à-dire présentant une forte salinité optimale lorsqu'il est utilisé seul dans des conditions de référence, et d'au moins un composé alkylester sulfoné ou d'un ou plusieurs alkylarylsulfonate(s) constituant un pôle hydrophobe, c'est-à-dire présentant une faible salinité optimale lorsqu'il est utilisé seul dans des conditions de référence.
On entend par conditions de référence, une teneur de 0,5 % en masse de matière sèche dans un mélange isovolumétrique n-octane/eau en présence de 1 % d'isobutanol, à pression atmosphérique et à 83°C. L'hydrocarbure employé dans ce système de référence constitue un analogue du pétrole du gisement à traiter. Dans un autre contexte de récupération d'hydrocarbures, l'octane peut être remplacé par un autre alcane, par exemple par du décane. En particulier, la différence de salinité optimale de deux composés n'est pas modifiée par un changement d'alcane.
Ainsi, pour des conditions d'exploitation données, et notamment pour une salinité donnée et pour un type d'hydrocarbures donné, l'invention propose d'ajuster les proportions de chacun des deux composés pour engendrer les conditions de formation d'une microémulsion comprenant des volumes égaux d'huile et d'eau, et ainsi optimiser la récupération assistée des hydrocarbures.
A titre de composé(s) (a) alkylester sulfoné constituant le pôle hydrophile, c'est-à-dire présentant une forte salinité optimale, on utilise préférentiellement au moins un composé de formule (I), c'est-à-dire un ester d'acide alpha-sulfocarboxylique ; et à titre de composé(s) (b) constituant le pôle hydrophobe, c'est-à-dire présentant une faible salinité optimale, on utilise préférentiellement au moins un composé de formule (II), c'est-à-dire un ester d'acide alpha-sulfocarboxylique, ou bien au moins un composé de formule (ΙΓ), c'est-à-dire un alkylbenzènesulfonate. L'association de ces deux types composés permet une optimisation particulièrement efficace de la composition.
BREVE DESCRIPTION DES FIGURES
La figure 1 représente de manière schématique des mélanges de type Winsor 1 , 2 et 3.
La figure 2 fournit une illustration de la détermination de la salinité optimale d'un composé tensioactif.
La figure 3 fournit une illustration de la détermination d'une composition de tensioactifs optimale pour une concentration saline donnée et un type d'huile donné.
DESCRIPTION DE MODES DE REALISATION DE L'INVENTION
L'invention est maintenant décrite plus en détail et de façon non limitative dans la description qui suit.
Définitions générales
L'invention repose sur la combinaison d'au moins un tensioactif alkylester sulfoné hydrophile (a) et d'au moins un tensioactif (b) alkylester sulfoné ou alkylarylsulfonate hydrophobe au sein d'une composition tensioactive.
Par « alkylester sulfoné » on entend tout ester d'acide a-sulfocar- boxylique comprenant un radical alkyle ou arylalkyle possédant de 5 à 30 atomes de carbone.
Par « alkylarylsulfonate » on entend tout composé comprenant un noyau phényle substitué par un ou plusieurs groupements alkyles ainsi que par un groupement sulfonate.
De préférence, au moins un substituant alkyle comprend au moins 10 atomes de carbone, plus particulièrement le groupement alkyle comprend de 10 à 40 atomes de carbone, de préférence encore de 14 à 32 atomes de carbone.
De préférence, le noyau phényle est substitué par un groupement alkyle et un groupement sulfonate. De manière générale, les mélanges émulsionnés de solutions aqueuses et d'hydrocarbures liquides (appelés huile dans ce qui suit) peuvent être classés en trois catégories :
- Le système de type Winsor 1 est un système biphasique comprenant une phase inférieure qui est une microémulsion d'huile dans l'eau, et une phase supérieure comportant de l'huile en excès. Si un tensioactif est présent dans le mélange, il se trouve dans la phase inférieure.
- Le système de type Winsor 2 est un système biphasique comprenant une phase supérieure qui est une microémulsion d'eau dans l'huile, et une phase inférieure comportant de l'eau en excès. Si un tensioactif est présent dans le mélange, il se trouve dans la phase supérieure.
- Le système de type Winsor 3 est un système triphasique comprenant une phase supérieure comportant de l'huile en excès, une phase inférieure comportant de l'eau en excès, et une phase intermédiaire qui est une microémulsion constituée d'eau, d'huile et de tensioactif. La microémulsion est en équilibre à la fois avec la phase aqueuse et avec la phase huileuse.
La figure 1 fournit une illustration des trois types de systèmes. Le tube à essai A représente un système de type Winsor 1 , le tube à essai B représente un système de type Winsor 3 et le tube à essai C représente un système de type Winsor 2. La phase d'huile est référencée par le numéro 1 , la phase d'eau par le numéro 3, et la phase microémulsion par le numéro 2.
Lorsque, dans un système de type Winsor 3, la phase intermédiaire contient des volumes égaux d'huile et d'eau, la formulation du système est qualifiée d'optimale. Pour cette formulation particulière, la solubilisation simultanée de l'huile et de l'eau est maximale. Il est connu que ces conditions correspondent à un régime de tensions interfaciales basses (voir Reed R. L.; Healy, R. N., Some physicochemical aspects of microémulsion floodings: a review. In Improved Oil Recovery by Surfactant and Polymer Flooding, Ed D. O. Shah; R. S. Schechter, Académie Press, New York, 1977, pp 383-437).
Pour identifier un mélange de type Winsor 3, et plus particulièrement un mélange de type Winsor 3 optimal, le plus simple est de recourir à l'inspection visuelle ; on peut toutefois procéder à une mesure directe des tensions interfaciales (au moyen d'un tensiomètre), pour une plus grande précision. Dans ce qui suit, la salinité optimale d'un composé tensioactif est définie comme étant la concentration de chlorure de sodium dans l'eau à laquelle ledit composé, lorsqu'il est ajouté par exemple à une teneur de 0,5% en masse de matière sèche à un mélange isovolumétrique octane / eau, en présence de 1 % d'isobutanol, génère un système de type Winsor 3 optimal, c'est à dire un mélange triphasique comprenant :
- une phase supérieure comportant de l'octane (en excès) ;
- une phase inférieure comportant de l'eau (en excès) ; et
- une phase intermédiaire qui est une microémulsion constituée d'eau, d'octane et dudit composé ;
et dans lequel la phase intermédiaire comporte un volume égal de d'octane et d'eau.
Comme indiqué précédemment, l'octane utilisé dans la présente demande pour évaluer la salinité optimale du composé tensioactif employé pour la récupération d'hydrocarbures dans une formation souterraine peut- être remplacé par un autre alcane, tel que du décane. En particulier, la différence de salinité optimale de deux composés n'est pas modifiée par un changement d'alcane.
La salinité optimale d'un composé tensioactif est déterminée en mélangeant dans des tubes à essai gradués des volumes égaux d'eau (2ml), de d'octane (2ml) et le tensioactif, avec des concentrations de chlorure de sodium croissantes. La concentration en tensioactif est de 0,5 % (en masse de matière active de tensioactif). Un co-tensioactif, de l'isobutanol, est également présent à une concentration de 1 %. Les tests sont réalisés à pression atmosphérique, et à 83°C. On repère (typiquement par inspection visuelle) le tube à essai dans lequel un système de type Winsor 3 optimal est présent : la concentration de chlorure de sodium utilisée dans ce tube à essai est la salinité optimale du composé tensioactif en question.
La figure 2 est une illustration de la détermination de la salinité optimale d'un composé tensioactif alkylester sulfoné selon la procédure décrite ci-dessus.
Sur la figure on peut voir un ensemble de tubes à essai gradués contenant des mélanges d'eau et de d'octane, avec une concentration saline croissante.
Les tubes à essai n°1 et 2 (situés à gauche) contiennent des systèmes de type Winsor 1 (système biphasique avec une phase supérieure de type huile et une phase inférieure de type microémulsion huile dans l'eau). Le composé tensioactif est donc hydrophile pour les concentrations salines correspondantes.
Les tubes à essai n°6, 7, 8, 9 et 10 (situés à droite) contiennent des systèmes de type Winsor 2 (système biphasique avec une phase inférieure aqueuse et une phase supérieure de type microémulsion eau dans l'huile). Le composé tensioactif est donc hydrophobe pour les concentrations salines correspondantes.
Les tubes à essai n°3, 4 et 5 (situés au centre) contiennent un système de type Winsor 3 (système triphasique avec une phase microémulsion intermédiaire).
Le tube à essai n°4 représente la formulation optimale, c'est-à-dire que pour la concentration saline particulière correspondante, la microémulsion de la phase intermédiaire comprend autant d'huile que d'eau. Ce tube à essai est identifié par le fait que le volume de la microémulsion est réparti symétriquement de part et d'autre d'un repère séparant le volume total des trois phases en deux parties égales. Cette concentration saline est donc la salinité optimale du composé tensioactif.
Choix d'une composition tensioactive adaptée
Les compositions tensioactives selon l'invention sont choisies de façon à optimiser la récupération assistée des hydrocarbures dans des conditions d'exploitation particulières. Aussi, l'invention fournit une méthode de sélection d'une composition tensioactive efficace, en fonction des conditions d'exploitation, notamment en fonction de la nature et de la composition de la formation souterraine considérée ainsi qu'en fonction de l'eau disponible pour l'injection.
La méthode de sélection d'une composition tensioactive adaptée à la récupération assistée d'hydrocarbures dans une formation souterraine à l'aide d'un mélange comprenant une composition tensioactive et de l'eau pour injection, selon l'invention, comprend :
- la fourniture d'une pluralité de compositions tensioactives candidates comprenant chacune un ou plusieurs composés alkylester sulfoné (a) et un ou plusieurs composés (b) alkylester sulfoné ou alkylarylsulfonate, les deux composés (a) et (b) présentant une hydrophilie différente ; et
- le test de l'efficacité de chaque composition tensioactive candidate en présence d'hydrocarbures liquides issus de la formation souterraine en question. En ce qui concerne la première étape de fourniture d'une pluralité de compositions tensioactives candidates, il peut être utile de choisir un ou plusieurs composés (a) susceptibles de constituer un pôle hydrophile et un ou plusieurs composés (b) susceptibles de constituer un pôle hydrophobe, les différentes compositions tensioactives étant obtenues en variant le rapport massique des composés (a) et (b) dans les compositions.
Le caractère hydrophile ou hydrophobe d'un composé tensioactif dépend des conditions réelles d'exploitation. Une méthode pratique pour définir ce caractère hydrophile ou hydrophobe consiste à se référer à la salinité Sm choisie pour injecter la solution tensioactive. La salinité Sm étant comprise entre la salinité de la formation souterraine Sf et la salinité de l'eau disponible pour l'injection S, (S, < Sm < Sf), Sf pouvant être égale à S,.
En tant que composé (a) susceptible de constituer un pôle hydrophile, il est avantageux de choisir un composé alkylester sulfoné présentant une salinité optimale supérieure ou égale à Sm, et en tant que composé (b) susceptible de constituer un pôle hydrophobe, il est avantageux de choisir un composé alkylester sulfoné ou alkylarylsulfonate présentant une salinité optimale inférieure ou égale à Sm.
La salinité Sf de la formation souterraine au sens de la présente demande est estimée en tant que salinité équivalente théorique en chlorure de sodium de la formation souterraine. Cette estimation est effectuée en se référant à une conductivité ou à une force ionique équivalente.
On estime de la même façon la salinité S, de l'eau disponible pour l'injection.
Alternativement, le caractère hydrophile ou hydrophobe d'un tensioactif composé peut être déterminé par la mesure ou le calcul du HLB (Hydrophile Lipophile Balance) ou encore par mesure directe de la tension interfaciale.
En ce qui concerne la deuxième étape de test de l'efficacité de chaque composition tensioactive candidate, celle-ci a pour but d'évaluer le comportement de chaque composition tensioactive candidate dans des conditions aussi proches que possible des conditions d'exploitation réelles. La composition tensioactive retenue à l'issue de la deuxième étape dépend des conditions physico-chimiques considérées, notamment les caractéristiques de l'huile et de l'eau dans la formation souterraine.
Pour cela, on prépare des mélanges candidats, en mélangeant chaque composition tensioactive candidate avec une solution aqueuse présentant une salinité égale à Sm, et avec un échantillon d'hydrocarbures liquides issu de la formation souterraine.
Concrètement, les différentes compositions tensioactives candidates (comprenant par exemple des proportions relatives variables de deux composés (a) et (b) uniques) sont placées dans des tubes à essai gradués en présence de volumes égaux d'eau (2ml, à la salinité estimée de la formation souterraine) et d'hydrocarbures (2ml, huile issue de la formation souterraine). La concentration de la composition tensioactive est comprise par exemple entre 0,5 et 3 %.
Puis on évalue par inspection visuelle les mélanges candidats, en vérifiant s'ils forment des systèmes de type Winsor 1 , 2 ou 3, tels que définis précédemment. On retient une composition tensioactive qui a fourni un mélange candidat formant un système de type Winsor 3. Si plusieurs systèmes de type Winsor 3 sont obtenus, on retient de préférence la composition tensioactive pour laquelle le mélange est de type Winsor 3 optimal, c'est-à-dire dans lequel la phase intermédiaire contient des volumes égaux d'huile et d'eau. En pratique, on choisira le tube à essai dans lequel la phase intermédiaire de microémulsion est répartie de façon symétrique de part et d'autre d'un repère séparant le volume intérieur du tube à essais en deux volumes égaux.
La composition tensioactive ainsi retenue est celle pour laquelle les tensions interfaciales, entre la microémulsion et l'huile d'une part, et la microémulsion et l'eau d'autre part, sont égales. Si des essais permettent d'identifier plusieurs compositions tensioactives permettant de générer un mélange de type Winsor 3 optimal, on choisira la composition tensioactive pour laquelle la phase de microémulsion intermédiaire présente le plus grand volume.
Pour identifier un mélange de type Winsor 3, et plus particulièrement un mélange de type Winsor 3 optimal, on peut éventuellement procéder à une mesure directe des tensions interfaciales (au moyen d'un tensiomètre), pour plus de précision.
Si aucun système de type Winsor 3 ne peut être identifié, on choisit un autre couple de composés (a) et (b) pour former un nouveau jeu de compositions tensioactives candidates.
La méthode ci-dessus permet de sélectionner une composition tensioactive idéale pour des conditions d'exploitation données. Pour choisir la composition tensioactive, on réalise les essais à pression atmosphérique et à la température du gisement (avec l'huile du gisement, et une concentration saline équivalente à celle du gisement). On peut affiner la sélection de la composition tensioactive en ajoutant au milieu aqueux les différents additifs qui seront utilisés dans les conditions réelles d'exploitation.
La concentration de tensioactif utilisée est typiquement de 1 % massique. En tout état de cause, on peut également affiner la sélection de la composition pour différentes concentrations de tensioactifs (par exemple de 0,2 % à 3 %).
La composition tensioactive sélectionnée comporte un pôle hydrophile (pour les conditions d'exploitation considérées), à savoir le ou les composé(s) (a), et un pôle hydrophobe (pour les conditions d'exploitation considérées), à savoir le ou les composé(s) (b), ajustés de façon optimale.
Ainsi, le composé hydrophile engendre avec l'huile et l'eau Sm des systèmes de type Winsor 1 . Le composé hydrophobe engendre avec l'huile et l'eau Sm des systèmes de type Winsor 2. Et la composition tensioactive comprenant les deux composés engendre avec l'huile et l'eau Sm considérée des systèmes de type Winsor 3, de préférence optimaux.
Compositions tensioactives selon l'invention
De manière générale, les compositions tensioactives selon l'invention, dont l'efficacité selon les conditions d'exploitation peut être déterminée selon la méthode décrite ci-dessus, comportent au moins un composé tensioactif alkylester sulfoné (a) de type hydrophile et au moins un composé (b) alkylester sulfoné ou alkylarylsulfonate de type hydrophobe. Par conséquent, la salinité optimale du composé (a) est supérieure à la salinité optimale du composé (b).
Un type de composé (a) particulièrement approprié est un ester d'acide α-sulfocarboxylique de formule (I) :
(i)
Figure imgf000016_0001
SO3Ma
dans laquelle,
Ra représente un groupement alkyle de 5 à 30 atomes de carbone,
R'a représente un groupement alkyle ou alkyléther ou alcool de
1 à 12 atomes de carbone, et
Ma représente un cation monovalent. Un type de composé (b) particulièrement approprié est un ester d'acide α-sulfocarboxylique de formule (II) ou un alkylbenzène sulfonate de formule (ΙΓ) ci-dessous :
Rb - CH - COOR'b
(II) I
SO3Mb
dans laquelle,
Rb représente un groupement alkyle de 5 à 30 atomes de carbone,
R'b représente un groupement alkyle ou alkyléther ou alcool de
1 à 12 atomes de carbone,
Mb représente un cation monovalent,
avec Rb et/ou R'b différent(s) respectivement de Ra et/ou R'a ;
Figure imgf000017_0001
SO3M
dans laquelle,
R représente un groupement alkyle de 6 à 30 atomes de carbone,
M représente un cation monovalent.
La composition tensioactive selon l'invention peut comprendre un ou plusieurs esters d'acide α-sulfocarboxylique de formule (II) et/ou un ou plusieurs alkylbenzène sulfonate de formule (ΙΓ) ci-dessus.
Les groupements R' des alkylesters sulfonés s'opposent à l'empilement des molécules et favorisent donc la mobilité des interfaces et les phénomènes de coalescence, ce qui en font des composés particulièrement intéressants pour les applications visées dans la présente demande.
De manière typique, la composition comprend de 1 à 99 % de composé (a), de préférence de 30 à 80 %, de manière plus particulièrement préférée de 40 à 70 %, par rapport à la masse totale des composés (a) et (b).
De manière typique, la composition comprend de 1 à 99 % de composé (b), de préférence de 5 à 65 %, de manière plus particulièrement préférée de 10 à 40 %, par rapport à la masse totale des composés (a) et (b).
Selon un mode de réalisation de l'invention, la composition tensioactive comprend un composé alkylester sulfoné de formule (I) et deux composés alkylarylsulfonates de formule (ΙΓ), les deux alkylarylsulfonates se différenciant par la longueur de leur chaîne alkyle R. De préférence, le premier alkylarylsulfonate possède de 14 à 20 atomes de carbone, de préférence 15 atomes de carbone, et le deuxième alkylarylsulfonate possède de 10 à 14 atomes de carbone, de préférence 12 atomes de carbone.
Toutes les caractéristiques énoncées dans le cadre de la demande concernant le composé de formule (I) et les composés de formule (II) et (ΙΓ) correspondent à des valeurs moyennes. En effet, le composé de formule (I) et les composés de formule (II) et (ΙΓ), dans le cadre de la demande, n'ont pas une structure chimique unique, mais correspondent à un ensemble de structures chimiques diverses répondant toutes à la formule (I), respectivement aux formules (II) et (Ι ). Par exemple, l'expression « le groupement R comprend X atomes de carbone » signifie, dans le cadre de la demande, «en moyenne, le groupement R comprend X atomes de carbone».
Des composés de formule (I) préférés sont ceux dans lesquels le groupement Ra comprend de 10 à 30 atomes de carbone, plus particulièrement de 14 à 20 atomes de carbone, et/ou dans lesquels le groupement R'a contient de 1 à 6 atomes de carbone, de préférence, le groupement R'a est un radical alkyle tel que l'éthyle ou un radical alcool du type éthanol ou un radical alkyléther du type 2-méthoxyéthyle, 2-(2- méthoxyéthoxy) éthyle etc.
Des composés de formule (II) préférés sont ceux dans lesquels le groupement Rb comprend de 10 à 30 atomes de carbone, plus particulièrement de 12 à 20 atomes de carbone, et/ou dans lesquels le groupement R'b contient de 2 à 5 atomes de carbone, de préférence le groupement R'b est un radical alkyle tel que le propyle ou un radical alkyléther tel que le méthoxypropyle.
Des composés de formule (ΙΓ) préférés sont ceux dans lesquels le groupement R comprend de 8 à 24 atomes de carbone, plus particulièrement de 10 à 20 atomes de carbone, plus particulièrement encore de 12 à 18 atomes de carbone.
Les groupements Ra, Rb et R peuvent être, indépendamment les uns des autres, saturés ou insaturés, de préférence saturés.
Les groupements Ra, Rb et R peuvent être linéaires ou ramifiés. Selon un mode de réalisation de l'invention, les groupements Ra et Rb comprennent le même nombre d'atomes de carbone et les groupements R'a et R'b sont différents, plus particulièrement le groupement R'a est un groupement alkyléther ou alcool et le groupement R'b est un groupement alkyle.
Selon un autre mode de réalisation, le groupement Ra est différent du groupement Rb et le groupement R'a est différent du groupement R'b.
En valeurs moyennes, de préférence de 1 à 60 % des groupements R sont ramifiés, plus particulièrement de 3 à 50 %, de manière plus particulièrement préférée de 5 à 20 %.
D'autres caractéristiques des molécules ci-dessus peuvent également être déterminées selon les normes usuelles, notamment la teneur en matière active (norme ISO 2271 ), la teneur en eau (norme ISO 4317) et l'indice d'acide (norme ISO 4314).
Les cations monovalents Ma, Mb et M' conjugués du sulfonate dans les formules (I), (II) et (ΙΓ) sont de préférence des cations de métal alcalin, notamment potassium ou sodium, et plus particulièrement sodium.
Les composés de formule (I) et (II) peuvent être obtenus en utilisant la méthode A décrite dans les documents WO 2009/098176A1 , ou dans « Organic Synthèses, Coll. » Vol 4, p 862 (1963) ; Vol. 36, p. 83 (1956)
Les composés de formule (ΙΓ) peuvent être obtenus en utilisant la méthode B décrite dans le document FR 2589858.
Selon un mode de réalisation de l'invention, le ou les composés (a) ont une salinité optimale supérieure ou égale à 1 10 g/L, de préférence supérieure ou égale à 130 g/L, de préférence encore supérieure ou égale à
150 g/L.
Selon un mode de réalisation de l'invention, le ou les composés (b) ont une salinité optimale inférieure ou égale à 75 g/L, de préférence inférieure ou égale à 70 g/L, de préférence encore inférieure ou égale à 50 g/L.
Les compositions tensioactives selon l'invention peuvent être caractérisées par une différence de salinité optimale entre le composé (a) et le composé (b) supérieure ou égale à 25 g/L, de préférence supérieure ou égale à 30 g/L.
En général, un composé tensioactif (a) présentant une salinité optimale supérieure à 1 10 g/L est suffisamment hydrophile, car pour une salinité (concentration de chlorure de sodium) inférieure à 1 10 g/L le composé tensioactif sera préférentiellement dans la phase aqueuse, et un composé tensioactif (b) présentant une salinité optimale inférieure à 75 g/L est suffisamment hydrophobe, car pour une salinité (concentration de chlorure de sodium) supérieure à 75 g/L, le composé tensioactif sera préférentiel lement dans la phase huile.
Plusieurs conditionnements sont possibles pour la composition tensioactive selon l'invention. Celle-ci peut être sous forme sèche (par exemple de poudre) ou sous forme liquide, c'est-à-dire en solution aqueuse, concentrée ou diluée, c'est-à-dire à la concentration nominale d'utilisation pour la récupération assistée d'hydrocarbures. En conditions d'exploitation, la concentration massique de tensioactifs est typiquement comprise entre 0,1 % et 3%.
La composition tensioactive peut également comprendre d'autres additifs, notamment des sels, des tensioactifs supplémentaires (par exemple d'autres alkylarylsulfonates, ou d'autres alkylester sulfonés ou encore un alcool tel que le diéthylène glycol butyle éther ou un alcool polyéthoxylé, de manière à réduire le temps d'atteinte à l'équilibre des systèmes), des agents sacrificiels, des polymères de contrôle de la mobilité, un agent clarifiant pour obtenir une solution limpide...
Selon un mode de réalisation, l'agent clarifiant est une huile minérale.
L'agent clarifiant permet d'assurer une excellente solubilité de la composition tensioactive dans la solution aqueuse devant être injectée, une excellente solubilité étant souhaitée afin d'éviter un colmatage à l'entrée du réservoir.
Dans le cadre de la présente demande, toutes les proportions sont exprimées en masse, sauf mention contraire.
Utilisation des compositions tensioactives pour la récupération assistée d'hydrocarbures
Les compositions tensioactives de l'invention sont particulièrement utiles pour la récupération assistée d'hydrocarbures (EOR). Pour ce faire, on injecte au moyen d'un puits d'injection une composition tensioactive selon l'invention, sous forme de solution aqueuse, dans la formation souterraine contenant des hydrocarbures, et notamment du pétrole brut.
La composition tensioactive déplace le pétrole en formant localement une microémulsion huile/eau. Cette zone de tension interfaciale basse se propage ensuite dans la formation. Eventuellement, une injection d'eau, de fluide d'hydrocarbures ou de saumure peut être effectuée préalablement à l'injection de la composition tensioactive.
Les hydrocarbures sont récupérés par un ou plusieurs puits de production distants du puits d'injection.
L'invention est particulièrement utile pour la récupération d'hydrocarbures qui sont des huiles conventionnelles, de préférence légères, et qui présentant par exemple les caractéristiques suivantes :
- indice EACN (Equivalent Alkane Carbon Number) compris entre 6 et 15 ; et / ou
- degré API compris entre 25 et 45.
EXEMPLES
Les exemples suivants illustrent l'invention sans la limiter. Exemple 1
On fabrique un composé alkylester sulfonate de sodium de formule (I), hydrophile, selon le procédé A décrit ci-dessus. Ce composé présente les caractéristiques suivantes :
- longueur de chaîne du groupement Ra : 14 ;
- groupement R'a : éthyle ;
- salinité optimale : 130 g/L.
On fabrique un composé alkylbenzènesulfonate de sodium de formule (Ι ), hydrophobe, selon le procédé B décrit ci-dessus. Ce composé présente les caractéristiques suivantes :
- longueur de chaîne du groupement R : 15 ;
- proportion de groupements R ramifiés : 6 % ;
- salinité optimale : 63 g/L.
On teste le mélange de ces deux composés tensioactifs en présence d'eau contenant 80 g/L de sels totaux. Les salinités optimales respectives des deux composés choisis encadrent bien la valeur de salinité théorique.
On réalise ensuite des essais pour déterminer les proportions relatives des deux constituants du mélange.
Pour ce faire, on remplit 10 tubes à essai avec le mélange iso- volumétrique eau/pétrole additionné d'un mélange des deux composés dans les rapports pondéraux respectifs composé hydrophile / composé hydrophobe suivants : 75/25, 60/40, 55/45, 50/50, 45/55, 40/60, 35/65, 30/70, 25/75, 20/80.
L'ensemble de ces tubes sont représentés dans l'ordre ci-dessus, sur la figure 3.
On constate visuellement que le rapport 35/65 est celui qui permet d'obtenir un système Winsor 3, avec à l'optimum des volumes égaux d'huile et d'eau dans la phase de microémulsion.
Par conséquent, la composition tensioactive comprenant en quantités relatives 35 % de l'alkylester sulfonate de sodium ci-dessus et 65 % de l'alkylbenzène sulfonate de sodium ci-dessus est particulièrement efficace pour la récupération assistée du pétrole en question, au moyen de l'eau en question.
Exemple 2
On fabrique un composé alkylester sulfonate de sodium de formule (I), hydrophile, selon le procédé A décrit ci-dessus. Ce composé présente les caractéristiques suivantes :
- longueur de chaîne du groupement Ra : 16
- groupement R'a : 2-méthoxyéthyle
- salinité optimale : 162 g/L.
On fabrique en outre un composé alkylester sulfonate de sodium de formule (II), hydrophobe, selon le procédé A décrit ci-dessus. Ce composé présente les caractéristiques suivantes :
- longueur de chaîne du groupement Rb : 16 ;
- groupement R'b : propyle ;
- salinité optimale : 50 g/L.
On teste le mélange de ces deux composés tensioactifs en présence d'eau contenant 80 g/L de sels totaux. Les salinités optimales respectives des deux composés choisis encadrent bien la valeur de salinité théorique.
On réalise ensuite des essais pour déterminer les proportions relatives des deux constituants du mélange.
Pour ce faire, on remplit 9 tubes à essai avec un mélange isovolumétrique eau/pétrole additionné d'un mélange des deux composés dans les rapports pondéraux respectifs composé hydrophile / composé hydrophobe suivants : 60/40 ; 55/45 ; 50/50 ; 48/52 ; 46/44 ; 44/46 ; 42/48 ; 40/60 ; 30/70. On constate visuellement que le rapport 40/60 est celui qui permet d'obtenir un système Winsor 3, avec à l'optimum des volumes égaux d'huile et d'eau dans la phase de microémulsion.
Par conséquent, la composition tensioactive comprenant en quantités relatives 40 % de l'alkylester sulfonate de sodium (I) ci-dessus et 60 % de l'alkylester sulfonate de sodium (II) ci-dessus est particulièrement efficace pour la récupération assistée du pétrole en question, au moyen de l'eau en question. Exemple 3
On utilise dans cet exemple le composé alkylester sulfonate de sodium de formule (I), hydrophile, décrit à l'exemple 2 ci-dessus.
On fabrique en outre un composé alkylester sulfonate de sodium de formule (II), hydrophobe, selon le procédé A décrit ci-dessus. Ce composé présente les caractéristiques suivantes :
- longueur de chaîne du groupement Rb : 20 ;
- groupement R'b : méthoxypropyle
- salinité optimale : 54 g/L.
On teste le mélange de ces deux composés tensioactifs en présence d'eau contenant 80 g/L de sels totaux. Les salinités optimales respectives des deux composés choisis encadrent bien la valeur de salinité théorique.
On réalise ensuite des essais pour déterminer les proportions relatives des deux constituants du mélange.
Pour ce faire, on remplit 7 tubes à essai avec un mélange isovolumétrique eau/pétrole additionné d'un mélange des deux composés dans les rapports pondéraux respectifs composé hydrophile / composé hydrophobe suivants : 75/25, 50/50, 45/55, 40/60, 35/65, 30/70, 25/75.
On constate visuellement que le rapport 50/50 est celui qui permet d'obtenir un système Winsor 3, avec à l'optimum des volumes égaux d'huile et d'eau dans la phase de microémulsion.
Par conséquent, la composition tensioactive comprenant en quantités relatives 50 % de l'alkylester sulfonate de sodium(l) ci-dessus et 50 % de l'alkylester sulfonate de sodium (II) ci-dessus est particulièrement efficace pour la récupération assistée du pétrole en question, au moyen de l'eau en question.
Exemple 4 On fabrique un composé alkylester sulfonate de sodium hydrophile (a) de formule (I), selon le procédé A décrit ci-dessus. Ce composé présente les caractéristiques suivantes :
- longueur de chaîne du groupement Ra : 20 ;
- groupement R'a : éthanol ;
- salinité optimale : 1 14 g/L.
On fabrique un composé alkylbenzène sulfonate de sodium hydrophobe de formule (ΙΓ), hydrophobe, selon le procédé B décrit ci-dessus. Ce composé présente la caractéristique suivante :
- longueur de chaîne du groupement R : 12.
On mélange ce composé en proportions 50/50 en masse avec le composé alkylbenzènesulfonate de sodium obéissant également à la formule II' décrit dans l'exemple 1 . La salinité optimale de ce mélange hydrophobe b est 75 g/L.
On teste le mélange des composés (a) et (b) en présence d'eau contenant 80 g/L de sels totaux. Les salinités optimales respectives des deux composants hydrophile et hydrophobe choisis encadrent bien la valeur de salinité théorique.
On réalise ensuite des essais pour déterminer les proportions relatives de (a) et (b) conduisant à un comportement optimal.
Pour ce faire, on remplit 6 tubes à essai avec le mélange iso- volumétrique eau/pétrole additionné d'un mélange des composés (a) et (b) dans les rapports pondéraux respectifs composé hydrophile (a) / composé hydrophobe (b) suivants : 50/50, 60/40, 65/35, 70/30 75/25, 80/20.
On constate visuellement que le rapport 70/30 est celui qui permet d'obtenir un système Winsor 3 avec, à l'optimum, des volumes égaux d'huile et d'eau dans la phase microémulsion.
Par conséquent, la composition tensioactive comprenant en quantités relatives 70 % de l'alkylester sulfonate de sodium ci-dessus est particulièrement efficace pour la récupération assistée du pétrole en question, au moyen de l'eau en question.

Claims

REVENDICATIONS
1 . Composition tensioactive comprenant :
au moins un composé alkylester sulfoné (a), portant une fonction sulfonate en position alpha de l'ester d'acide carboxylique et comprenant un radical alkyle ou arylalkyle possédant de 5 à 30 atomes de carbone, et
au moins un composé (b) choisi parmi un alkylarylsulfonate et un alkylester sulfoné, le ou les alkylesters sulfonés de type (b) portant une fonction sulfonate en position alpha de l'ester d'acide carboxylique et comprenant un radical alkyle ou arylalkyle possédant de 5 à 30 atomes de carbone et étant différents du ou des alkylesters sulfonés de type (a).
2. Composition tensioactive selon la revendication 1 , dans laquelle le ou les composé(s) (a) sont des composés de formule (I) :
(i)
Figure imgf000025_0001
SO3Ma
dans laquelle,
Ra représente un groupement alkyle de 5 à 30 atomes de carbone,
R'a représente un groupement alkyle ou alkyléther ou alcool de
1 à 12 atomes de carbone, et
Ma représente un cation monovalent ; et/ou le ou les composé(s) (b) sont des composés de formule (II) et/ou (Ι ) ci- dessous :
- alkylester sulfoné de formule (II) :
(| |) Rb - CH - COOR'b
SO3Mb dans laquelle,
Rb représente un groupement alkyle de 5 à 30 atomes de carbone,
R'b représente un groupement alkyle ou alkyléther ou alcool de
1 à 12 atomes de carbone,
Mb représente un cation monovalent ; - alkylarylsulfonate de formule (ΙΓ) :
Figure imgf000026_0001
dans laquelle,
R représente un groupement alkyle de 6 à 30 atomes de carbone,
M représente un cation monovalent.
3. Composition tensioactive selon la revendication 2, dans laquelle :
- le groupement Ra comprend de 10 à 30 atomes de carbone, de préférence de 14 à 20 atomes de carbone ; et/ou
- le groupement R'a comprend de 1 à 6 atomes de carbone, de préférence de 1 à 3 atomes de carbone ; et/ou
- le groupement Rb comprend de 10 à 30 atomes de carbone, de préférence de 12 à 20 atomes de carbone ; et/ou
- le groupement R'b comprend de 1 à 6 atomes de carbone, de préférence de 1 à 3 atomes de carbone ; ou
- le groupement R comprend de 8 à 24 atomes de carbone, de préférence de 10 à 20 atomes de carbone, de préférence encore de 12 à 18 atomes de carbone.
4. Composition tensioactive selon la revendication 2 ou 3, comprenant deux composés (b) de type alkylarylsulfonate de formule (ΙΓ) dans lesquels les groupements R ont un nombre de carbones différent.
5. Composition tensioactive selon la revendication 4, dans laquelle un premier alkylarylsulfonate possède de 14 à 20 atomes de carbone, de préférence 15 atomes de carbone, et le deuxième alkylarylsulfonate possède de 10 à 14 atomes de carbone, de préférence 12 atomes de carbone.
6. Composition tensioactive selon l'une des revendications 2 à 5, dans laquelle Ma, et/ou Mb, et/ou M sont chacun un cation sodium.
7. Composition tensioactive selon l'une des revendications 2 à 6, dans laquelle,
- dans le composé (ΙΓ), de 1 à 60% des groupements R sont ramifiés, de préférence de 3 à 50%, de préférence encore de 5 à 20%.
8. Composition tensioactive selon l'une des revendications 1 à 7, comprenant :
- de 1 à 99% en masse de composé (a), de préférence de 30 à 80%, de préférence encore de 40 à 70%, par rapport à la masse totale des composés (a) et (b), et/ou
- de 1 à 99% en masse de composé (b), de préférence de 5 à 65%, de préférence encore de 10 à 40%, par rapport à la masse totale des composés (a) et (b).
9. Composition tensioactive selon l'une des revendications 1 à 8, dans laquelle le composé (a) présente une salinité optimale supérieure ou égale à 1 10 g/L.
10. Composition tensioactive selon l'une des revendications 1 à 9, dans laquelle le composé (b) présente une salinité optimale inférieure ou égale à
75 g/L.
1 1 . Composition tensioactive selon l'une des revendications 1 à 10, comprenant en outre un ou plusieurs additifs choisis parmi les sels, les tensioactifs supplémentaires, les agents sacrificiels, les polymères de contrôle de la mobilité, un agent clarifiant, ou leur mélange.
12. Composition tensioactive selon l'une des revendications 1 à 1 1 , sous forme sèche ou sous forme de solution aqueuse, la proportion massique de tensioactifs dans la solution aqueuse allant de préférence de 0,2 à 3%.
13. Procédé d'extraction d'hydrocarbures d'une formation souterraine, comprenant l'injection d'une composition tensioactive selon l'une des revendications 1 à 12, sous forme de solution aqueuse dans la formation souterraine, et la production d'hydrocarbures déplacés par la composition tensioactive injectée.
14. Procédé d'extraction d'hydrocarbures selon la revendication 13, dans lequel la formation souterraine est caractérisée par une salinité comprise entre 30 et 250 g/L, plus particulièrement entre 40 et 220 g/L.
15. Méthode de sélection d'une composition tensioactive adaptée à la récupération assistée d'hydrocarbures dans une formation souterraine avec un mélange comprenant une composition tensioactive selon l'une des revendications 1 à 12 et de l'eau pour injection, ladite méthode comprenant :
- l'estimation de la salinité Sf de la formation souterraine ;
- l'estimation de la salinité S, de l'eau pour injection ;
- la fourniture d'une pluralité de compositions tensioactives candidates comprenant chacune au moins un composé alkylester sulfoné (a) et au moins un composé (b) alkylester sulfoné ou alkylarylsulfonate ;
- le mélange de chaque composition tensioactive candidate avec une solution aqueuse présentant une salinité Sm intermédiaire comprise entre Sf et S,, et avec un échantillon d'hydrocarbures liquides issu de la formation souterraine, pour fournir un mélange candidat ;
- la sélection d'une composition tensioactive parmi l'ensemble des compositions tensioactives candidates, le mélange candidat comprenant la composition tensioactive sélectionnée étant un mélange triphasique comprenant :
- une phase supérieure d'hydrocarbures liquides ;
- une phase inférieure de solution aqueuse ; et
- une phase intermédiaire qui est une microémulsion constituée de solution aqueuse, d'hydrocarbures liquides et des composés (a) et (b).
16. Méthode selon la revendication 15, dans laquelle la phase intermédiaire du mélange candidat comprenant la composition tensioactive sélectionnée comporte un volume égal d'hydrocarbures liquides et de solution aqueuse.
17. Méthode selon l'une des revendications 15 à 16, comprenant, à l'issue de l'estimation de la salinité de la formation souterraine Sf, de l'estimation de la salinité S, de l'eau pour injection, et du choix de la salinité Sm :
le choix d'un composé alkylester sulfoné présentant une salinité optimale supérieure à la salinité Sm, en tant que composé alkylester sulfoné (a) pour l'ensemble des compositions tensioactives candidates ; et le choix d'un composé alkylester sulfoné ou d'un alkylarylsulfonate présentant une salinité optimale inférieure à Sm, en tant que composé (b) alkylester sulfoné ou alkylarylsulfonate pour l'ensemble des compositions tensioactives candidates ;
méthode dans laquelle le rapport massique entre le composé alkylester sulfoné (a) et le composé (b) alkylester sulfoné ou alkylarylsulfonate varie selon les compositions tensioactives candidates ;
la salinité optimale d'un composé étant définie comme étant la concentration de chlorure de sodium dans l'eau à laquelle ledit composé, lorsqu'il est ajouté à une teneur de 0,5 % en masse de matière sèche à un mélange isovolumétrique octane / eau, en présence de 1 % d'isobutanol, à pression atmosphérique et à 83°C, génère un mélange triphasique comprenant :
o une phase supérieure d'octane ;
o une phase inférieure d'eau ; et
o une phase intermédiaire qui est une microémulsion constituée d'eau, d'octane et dudit composé ;
mélange dans lequel la phase intermédiaire comporte un volume égal d'octane et d'eau.
PCT/EP2013/057696 2012-04-17 2013-04-12 Compositions tensioactives et leur utilisation pour la recuperation assistee d'hydrocarbures WO2013156407A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014141627A RU2014141627A (ru) 2012-04-17 2013-04-12 Композиции поверхностно-активных веществ и их применение для повышения нефтеотдачи

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR12/53506 2012-04-17
FR1253506 2012-04-17

Publications (1)

Publication Number Publication Date
WO2013156407A1 true WO2013156407A1 (fr) 2013-10-24

Family

ID=48083203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/057696 WO2013156407A1 (fr) 2012-04-17 2013-04-12 Compositions tensioactives et leur utilisation pour la recuperation assistee d'hydrocarbures

Country Status (2)

Country Link
RU (1) RU2014141627A (fr)
WO (1) WO2013156407A1 (fr)

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3601198A (en) 1969-01-27 1971-08-24 Exxon Production Research Co Hydraulic fracturing operations
FR2373328A1 (fr) * 1976-12-10 1978-07-07 Elf Aquitaine Concentre pour la preparation de microemulsions d'huile et d'eau de forte salinite
US4452708A (en) 1982-02-18 1984-06-05 Exxon Production Research Co. Oil recovery method using sulfonate surfactants derived from extracted aromatic feedstocks
EP0111354A1 (fr) 1982-12-13 1984-06-20 Shell Internationale Researchmaatschappij B.V. Sulphonates d'alkylxylène, leur préparation et emploi
EP0148517A1 (fr) 1983-11-28 1985-07-17 Shell Internationale Researchmaatschappij B.V. Utilisation de compositions d'oléfine sulfonates dans les procédés d'extraction poussée d'hydrocarbures
EP0158486A1 (fr) 1984-04-03 1985-10-16 Sun Refining and Marketing Company Formes stables de sulfonates dialkyl aromatiques
US4608204A (en) 1984-06-29 1986-08-26 Chevron Research Company Process for the preparation of a low viscosity alkyl toluene or alkyl xylene sulfonate
FR2589858A1 (fr) 1985-11-14 1987-05-15 Exxon Production Research Co Procede d'alkylation selective de composes aromatiques
US4682653A (en) 1984-04-03 1987-07-28 Sun Refining And Marketing Company Steam recovery processes employing stable forms of alkylaromatic sulfonates
US4690785A (en) 1985-06-21 1987-09-01 Witco Corporation Low water neutralization to produce a highly active alkaryl sulfonate
US4932473A (en) 1988-12-29 1990-06-12 Shell Oil Company Enhancing the salt tolerance of aqueous sulfonate surfactant solutions
EP0413374A2 (fr) 1989-07-14 1991-02-20 Shell Internationale Researchmaatschappij B.V. Composition contenant un alkylxylÀ¨ne-sulfonate et un glycol et l'utilisation en récupération assistée du pétrole
US6043391A (en) 1998-01-20 2000-03-28 Berger; Paul D. Anionic surfactants based on alkene sulfonic acid
US6269881B1 (en) 1998-12-22 2001-08-07 Chevron U.S.A. Inc Oil recovery method for waxy crude oil using alkylaryl sulfonate surfactants derived from alpha-olefins and the alpha-olefin compositions
WO2001098432A2 (fr) 2000-06-16 2001-12-27 Crompton Corporation Melanges de tensio-actifs pour solutions aqueuses, permettant d'ameliorer la recuperation des hydrocarbures
WO2005018300A2 (fr) 2004-07-15 2005-03-03 Chevron Oronite Company Llc Sulfonates d'alkylxylene pour des traitements de recuperation du petrole ameliores
US20080196893A1 (en) * 2007-02-15 2008-08-21 Christie Huimin Berger Process for oil recovery using mixed surfactant composition
US20090194276A1 (en) * 2008-01-31 2009-08-06 Total E&P Usa, Inc. Determination of an actual optimum salinity and an actual optimum type of microemulsion for surfactant/polymer flooding
WO2009098176A1 (fr) 2008-02-05 2009-08-13 Desmet Ballesta Spa Procédé de production d'esters d'acides α-sulfo gras et de leurs sels

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3601198A (en) 1969-01-27 1971-08-24 Exxon Production Research Co Hydraulic fracturing operations
FR2373328A1 (fr) * 1976-12-10 1978-07-07 Elf Aquitaine Concentre pour la preparation de microemulsions d'huile et d'eau de forte salinite
US4452708A (en) 1982-02-18 1984-06-05 Exxon Production Research Co. Oil recovery method using sulfonate surfactants derived from extracted aromatic feedstocks
US4873025A (en) 1982-12-13 1989-10-10 Shell Oil Company Alkylxylene sulfonate compositions
EP0111354A1 (fr) 1982-12-13 1984-06-20 Shell Internationale Researchmaatschappij B.V. Sulphonates d'alkylxylène, leur préparation et emploi
EP0148517A1 (fr) 1983-11-28 1985-07-17 Shell Internationale Researchmaatschappij B.V. Utilisation de compositions d'oléfine sulfonates dans les procédés d'extraction poussée d'hydrocarbures
EP0158486A1 (fr) 1984-04-03 1985-10-16 Sun Refining and Marketing Company Formes stables de sulfonates dialkyl aromatiques
US4682653A (en) 1984-04-03 1987-07-28 Sun Refining And Marketing Company Steam recovery processes employing stable forms of alkylaromatic sulfonates
US4608204A (en) 1984-06-29 1986-08-26 Chevron Research Company Process for the preparation of a low viscosity alkyl toluene or alkyl xylene sulfonate
US4690785A (en) 1985-06-21 1987-09-01 Witco Corporation Low water neutralization to produce a highly active alkaryl sulfonate
FR2589858A1 (fr) 1985-11-14 1987-05-15 Exxon Production Research Co Procede d'alkylation selective de composes aromatiques
US4932473A (en) 1988-12-29 1990-06-12 Shell Oil Company Enhancing the salt tolerance of aqueous sulfonate surfactant solutions
EP0413374A2 (fr) 1989-07-14 1991-02-20 Shell Internationale Researchmaatschappij B.V. Composition contenant un alkylxylÀ¨ne-sulfonate et un glycol et l'utilisation en récupération assistée du pétrole
US6043391A (en) 1998-01-20 2000-03-28 Berger; Paul D. Anionic surfactants based on alkene sulfonic acid
US6269881B1 (en) 1998-12-22 2001-08-07 Chevron U.S.A. Inc Oil recovery method for waxy crude oil using alkylaryl sulfonate surfactants derived from alpha-olefins and the alpha-olefin compositions
WO2001098432A2 (fr) 2000-06-16 2001-12-27 Crompton Corporation Melanges de tensio-actifs pour solutions aqueuses, permettant d'ameliorer la recuperation des hydrocarbures
WO2005018300A2 (fr) 2004-07-15 2005-03-03 Chevron Oronite Company Llc Sulfonates d'alkylxylene pour des traitements de recuperation du petrole ameliores
US20080196893A1 (en) * 2007-02-15 2008-08-21 Christie Huimin Berger Process for oil recovery using mixed surfactant composition
US20090194276A1 (en) * 2008-01-31 2009-08-06 Total E&P Usa, Inc. Determination of an actual optimum salinity and an actual optimum type of microemulsion for surfactant/polymer flooding
WO2009098176A1 (fr) 2008-02-05 2009-08-13 Desmet Ballesta Spa Procédé de production d'esters d'acides α-sulfo gras et de leurs sels

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ORGANIC SYNTHESES, COLL., vol. 4, 1963, pages 862
ORGANIC SYNTHESIS, COLL., vol. 36, 1956, pages 83
REED R. L.; HEALY, R. N.: "Improved Oil Recovery by Surfactant and Polymer Flooding", 1977, ACADEMIC PRESS, article "Some physicochemical aspects of microemulsion floodings: a review", pages: 383 - 437

Also Published As

Publication number Publication date
RU2014141627A (ru) 2016-06-10

Similar Documents

Publication Publication Date Title
US8183182B2 (en) Composition of microemulsion and method for advanced recovery of heavy oil
CA2793499C (fr) Tensioactifs alcoxylate d&#39;alcool de guerbet et leur utilisation dans le cadre d&#39;applications de recuperation d&#39;huile ameliorees
FR2461090A1 (fr)
US20060046948A1 (en) Chemical system for improved oil recovery
BR112020020353A2 (pt) Composição aquosa e composição de emulsão
EP2102305B1 (fr) Recuperation assistee de petrole
Ferreira et al. Novel glycerin-based microemulsion formulation for enhanced oil recovery
Puerto et al. Effects of hardness and cosurfactant on phase behavior of alcohol-free alkyl propoxylated sulfate systems
WO2012143306A1 (fr) Compositions d&#39;alkylarylsulfonates et leur utilisation pour la recuperation assistee d&#39;hydrocarbures
FR2485082A1 (fr) Procede pour la recuperation du petrole brut contenu dans un gisement par injection d&#39;emulsions stabilisees par le cisaillement
EP3699255A1 (fr) Formulations moussantes pour la recuperation assistee du petrole
FR3066500B1 (fr) Additifs pour l&#39;elimination des fluides de fracturation employes pour l&#39;extraction petroliere
FR3116283A1 (fr) Procédé de traitement d’un effluent de production issu d’un procédé de récupération assistée du pétrole au moyen d’une formulation désémulsifiante à base de gomme guar modifiée cationique
WO2013156407A1 (fr) Compositions tensioactives et leur utilisation pour la recuperation assistee d&#39;hydrocarbures
CN107384358A (zh) 一种用于提高低渗透储层注水井降压增注效果的润湿反转剂及其制备方法
FR2458671A1 (fr) Procede pour recuperer l&#39;huile d&#39;une formation petrolifere
FR2574470A1 (fr) Procede de recuperation assistee de petrole dans un intervalle de fortes et faibles salinites, utilisant des surfactants propoxyles
EP3481912A1 (fr) Stabilisation de mousses par des particules d&#39;argile
WO2021023633A1 (fr) Formulations moussantes pour la recuperation assistee du petrole
EP3820963A1 (fr) Formulations à base de cétones internes sulfonées pour la récupération assistée du pétrole
FR3037596A1 (fr) Agents desorbants alkyl polyglucosides pour la recuperation assistee du petrole
FR3060407B1 (fr) Procede de traitement d&#39;un effluent petrolier issu d&#39;une recuperation assistee utilisant un tensioactif
EP3916197B1 (fr) Procédé pour la récupération d&#39;hydrocarbures d&#39;une formation souterraine par injection d&#39;une solution aqueuse saline comportant un tensio-actif
WO2020254290A1 (fr) Formulations moussantes pour la recuperation assistee du petrole
FR2970880A1 (fr) Agents moussants phosphores stables a haute temperature

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13715246

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: IDP00201406072

Country of ref document: ID

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2014141627

Country of ref document: RU

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13715246

Country of ref document: EP

Kind code of ref document: A1