EP3481912A1 - Stabilisation de mousses par des particules d'argile - Google Patents

Stabilisation de mousses par des particules d'argile

Info

Publication number
EP3481912A1
EP3481912A1 EP17734731.7A EP17734731A EP3481912A1 EP 3481912 A1 EP3481912 A1 EP 3481912A1 EP 17734731 A EP17734731 A EP 17734731A EP 3481912 A1 EP3481912 A1 EP 3481912A1
Authority
EP
European Patent Office
Prior art keywords
surfactant
foaming composition
foam
mixture
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP17734731.7A
Other languages
German (de)
English (en)
Inventor
Mikel Morvan
Max Chabert
Amandine CUENCA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Rhodia Operations SAS
Original Assignee
IFP Energies Nouvelles IFPEN
Rhodia Operations SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN, Rhodia Operations SAS filed Critical IFP Energies Nouvelles IFPEN
Publication of EP3481912A1 publication Critical patent/EP3481912A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/58Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids
    • C09K8/594Compositions used in combination with injected gas, e.g. CO2 orcarbonated gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/235Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids for making foam
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/02Well-drilling compositions
    • C09K8/03Specific additives for general use in well-drilling compositions
    • C09K8/032Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/02Well-drilling compositions
    • C09K8/03Specific additives for general use in well-drilling compositions
    • C09K8/035Organic additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/58Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids
    • C09K8/584Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids characterised by the use of specific surfactants
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/58Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids
    • C09K8/592Compositions used in combination with generated heat, e.g. by steam injection
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/52Compositions for preventing, limiting or eliminating depositions, e.g. for cleaning
    • C09K8/536Compositions for preventing, limiting or eliminating depositions, e.g. for cleaning characterised by their form or by the form of their components, e.g. encapsulated material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/92Compositions for stimulating production by acting on the underground formation characterised by their form or by the form of their components, e.g. encapsulated material
    • C09K8/94Foams

Definitions

  • the present invention relates to aqueous foams which are particularly useful for the enhanced recovery of crude oil in underground formations, and more particularly to foam stability problems in such cases of enhanced oil recovery.
  • a fluid is injected (re-injection of the diluted or non-diluted produced water, injection of sea or river water, or injection of gas, for example) into the hydrocarbon reservoir, with a view to exerting a positive overpressure in the tank to drive the oil to the production well (s).
  • a common technique in this context is the injection of water (also referred to as flooding or “waterflooding”), in which large volumes of water are injected under pressure into the reservoir via injection wells. The injected water causes some of the oil it meets and pushes it to one or more producing wells.
  • thermal EOR methods of heating the oil to facilitate its flow have been developed, which advantageously implement foams.
  • thermal EOR methods the so-called SAGD (Steam Assisted Gravity Drainage), CSS (for example: “Cyclic Steam Stimulation”, “Steam Flooding”, or even air injection methods, especially those of the LTO type (for the first time).
  • the present invention relates to foams for use in these enhanced oil recovery methods, which are typically formed and used under relatively extreme conditions within underground formations (high temperature, pressure, pH, salinity, etc.).
  • a problem encountered with these foams is that of their stability under these conditions.
  • many surfactants tend to lysate under these conditions, especially under the effect of temperature and pH.
  • An object of the present invention is to provide a method of forming foam improving stability.
  • the present invention relates to a method of forming a stabilized foam comprising:
  • preferably a heat treatment step of the foam formed, which may be subsequently or simultaneously with said step of the foam forming expansion at a temperature higher than the temperature of thermolysis of said surfactant or surfactant mixture.
  • the expansion fluid employed in the process of the invention contains water vapor, optionally mixed with a gas or mixture of gases such as nitrogen.
  • the foam is referred to as "steam foam”.
  • Other foams are nevertheless conceivable according to the invention, which are overrun by an expansion fluid containing no water vapor (air-based foam for example, or based on another gas).
  • the expansion and heat treatment steps of the process of the invention can typically be carried out as part of a petroleum extraction operation, in particular enhanced oil recovery.
  • the stabilized foam formed is used for hydrocarbon extraction, advantageously in an underground formation where the conditions of the thermolysis of said surfactant or surfactant mixture are combined.
  • the process of the invention is typically conducted (i) by injecting the foaming composition into an underground formation where the temperature is between 30 to 350 ° C, and preferably at a temperature above the temperature of thermolysis of said surfactant or mixture of surfactants; and (ii):
  • the method of the invention which specifically implements the clay particles, leads to the formation of a particular foam, gelled type.
  • the aqueous foam formed during the expansion step can be described as a particular heterogeneous medium which comprises a plurality of gas bubbles contiguous to one another, separated from each other by liquid films, which are called lamellae, which are based on the foaming composition.
  • the clay particles present within the lamellae are organized into a network and form a microstructure of the physical gel type which confers interesting rheological properties on the constituent fluid of the lamellae, typically that of a fluid with a threshold of flow which makes it possible to slow, or even to inhibit, the phenomena of drainage of water out of the lamellae and thus to increase the resistance of the foam to coalescence and to ripening.
  • the heat treatment when carried out in the process of the invention (which is most often unavoidable in the case of a petroleum extraction), induces lysis of all or part of the surfactants which does not call into question the stabilization by clay particles.
  • the process of the invention comprises a heat treatment which lyses all or part of the surfactants, it makes it possible to obtain a stabilized foam which has the advantage of containing a reduced amount of surfactants.
  • This reduction of the surfactant content ("replaced” in some way in whole or in part by clay particles) has interesting repercussions: on the one hand, it allows, in a general way, to limit any potential "pollution" of the formations underground by tensiocatives, which is an advantage in terms of environmental impact; on the other hand, and more fundamentally, it leads to a reduction of the surfactant content in the water / hydrocarbon mixture extracted from the formation underground, which ultimately allows a better separation of the hydrocarbons contained in these mixtures. Indeed, the more the water / hydrocarbon mixture is rich in surfactants and the more this mixture is difficult to separate in view of the formation of an emulsion that is more stable as there are surfactants.
  • the clay particles have the advantage of leading to an effective stabilization of the foam by their effect on the rheology, but not to a stabilization of water / hydrocarbon emulsions recovered in fine.
  • the clay used in the context of the present invention is a synthetic or natural clay. It may for example be a bentonite, a hectorite or a montmorillonite. Advantageously it is a hectorite.
  • the clays according to the invention may optionally be treated for example with quaternary ammonium compounds. Untreated clays can however also be used.
  • the clay used according to the invention is a laponite, typically synthetic.
  • laponite adapted to the invention reference may be made to Laponite XLG® available from Safic Alcan which is the subject of the examples given at the end of the present description.
  • the clay is used in the compositions of the invention in the form of "particles", namely in the form of small scattered objects, typically less than one millimeter, and generally much lower.
  • Clay particles consist of more elemental sheets or less aggregate whose state of aggregation can be measured in particular by transmission electron microscopy (Cryo MET) or by light scattering techniques which give access to the average hydrodynamic diameter of the particles in the foaming composition.
  • the foaming composition employed according to the invention comprises at least 0.001%, typically at least 0.01%, for example at least 0.05% by weight relative to to the total mass of the foaming composition.
  • interesting results are obtained in particular when the clay content is greater than 0.1%, for example at least 0.15% by weight relative to the total weight of the foaming composition.
  • the more the amount of clay increases the more the stabilizing effect increases.
  • the clays have a significant thickening character and that for most applications it is preferable to limit their content to avoid obtaining excessive viscosities.
  • the clay content in the foaming composition remains less than or equal to 5%, and more preferably less than 1% or even 0.5% by weight relative to the total mass of the foam. Foaming composition, in particular for applications in the field of petroleum extraction.
  • the foaming composition employed comprises the clay at a content between 0.01 and 1% by weight. mass relative to the total mass of the foaming composition, for example between 0.02 and 0.5%, especially between 0.05 and 0.2%.
  • any surfactant or surfactant system suitable for forming a foam may be used according to the invention.
  • the surfactants will be further selected to be able to be degraded in whole or in part after or during the formation of the foam.
  • the mass ratio surfactant (s) / clay is preferably between 1 and 2000.
  • the foaming composition preferably comprises from 0.005 to 5% of surfactants or of a surfactant mixture, preferably from 0.1 to 1% by weight relative to the total weight of the foaming composition.
  • the surfactant or mixture of surfactants present in the foaming composition used according to the invention comprises a tensiaoctif of alkyl sulphate or alkyl ether sulphate type where the alkyl chain advantageously comprises from 8 to 18 carbon atoms, for example from 10 to 16, such as sodium laureth sulfate.
  • a surfactant of this type is Rhodapex® ESB-70 / A2 available from the company Solvay illustrated in the examples given below.
  • a surfactant of the alkyl sulphate or alkyl ether sulphate type may be employed at a level of 0.1 to 1% by weight relative to the total weight of the foaming composition.
  • alkyl sulphate or alkyl ether sulphate are particularly interesting because they are both good foaming agents and they are generally quite thermally sensitive. Typically, by forming a foam from these agents at a temperature above 100 ° C., especially at 150 ° C., for example of the order of 200 ° C., the formation of the foam and the thermolysis according to US Pat. invention.
  • Other interesting surfactants that degrade in the same temperature ranges are:
  • alkyl ampho dipropionate s mixtures of two or more of these compounds and mixtures of these compounds with alkyl sulphates or alkyl ether sulphates.
  • the surfactant or mixture of surfactants present in the foaming composition used according to the invention comprises a zwitterionic surfactant, in particular an alkylamidobetaine, an alkylamidohydroxysultaine, an alkylbetaine, or an alkylhydroxysultaine, in which the alkyl chain advantageously comprises 8 to 18 carbon atoms, such as cocoamidohydroxypropyl sultaine illustrated in the examples, which are quite thermally sensitive.
  • mixtures of surfactants according to the invention in particular when it is desired to obtain a thermal degradation effect at a relatively low temperature (typically below 250 ° C., for example between 150 and 200 ° C.) with a good foaming effect, are the mixtures of alkyl ether sulphate and zwitterionic surfactants of the abovementioned type, in particular of the amido type; and mixtures of alkyl ether sulphate with alkyl poly glycoside.
  • the surfactant or mixture of surfactants present in the foaming composition used according to the invention comprises an alkyl sulfonate tensiaoctif, in which the alkyl chain advantageously comprises from 8 to 18 carbon atoms, for example from 10 to 16, such as, for example, C14-16 alfa olefin sulfonate.
  • the alkylsulfonates are preferably employed in admixture with alkyl sulfates.
  • the invention relates to foaming compositions for implementing the process of the invention, comprising:
  • At least one surfactant preferably degraded at a temperature of less than or equal to 250 ° C, more preferably less than or equal to 200 ° C, preferably of one of the abovementioned types;
  • the stability was tested for foams made at 200 ° C. and 25 bar (2.5 ⁇ 10 6 Pa) from various foaming solutions including clay particles.
  • the foaming solution brought to 200 ° C. and injected at the operating pressure via a high-pressure liquid pump with a constant flow rate of 3.2 ml / min; nitrogen brought to 200 ° C. and injected at the pressure of working via a high pressure gas pump with a constant flow rate of 4.8 mL / min
  • the foam formed at the outlet of the sinter is injected into the bottle from above.
  • a tube dipping into the bottle and opening at the bottom of it ensures an outlet of too much liquid from below.
  • the tube which opens on one side at the bottom of the tube has been connected at its other end to a back pressure regulator, which keeps the pressure constant in the bottle.
  • the gas used is nitrogen to avoid the artifacts associated with the vapor recondensation.
  • a CCD camera allows the temporal acquisition of formed foam images observed through the transparent tube. The analysis of the images thus makes it possible to follow the evolution of the foam height as a function of time.
  • the foam height increases and reaches a maximum (initial volume of foam) and the foam height decreases over time.
  • the measured half-life time for the foams formed with each of the foaming compositions tested in the present example is the time at which the foam height is equal to half the initial foam height (the section of the tube being constant, this also corresponds to the time that the initial volume of foam to halve).
  • foaming compositions tested include the following products: Surfactants:
  • Rhodapex® ESB-70 / A2 alkyl ether sulfate - source: Solvay
  • the surfactant is solubilized in demineralized water at a total mass concentration of 0.5% by weight of active material, then stirred for 24 hours at room temperature.
  • compositions tested nature of the surfactant and content in the composition, in weight percentage relative to the total mass of the composition - clay content (Laponite XLG) in percentage by mass relative to the total mass of the composition) and the half-life time (ti / 2 ) measured for each of them.
  • the surfactants employed are degraded by thermolysis, which is not the case with clays. Whatever the nature of the surfactants, the addition of clay improves the stability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
  • Detergent Compositions (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

L'invention concerne un procédé de formation d'une mousse stabilisée adaptée notamment pour la récupération assistée du pétrole, par foisonnement d'une composition moussante par au moins un gaz et/ou de la vapeur d'eau, où ladite composition moussante comprend, au sein d'un milieu aqueux : - un tensioactif ou un mélange de tensioactifs propre à former une mousse, sous l'effet de l'introduction du gaz et/ou de la vapeur;et - des particules d'argile. La mousse formée est avantageusement soumise à une étape de traitement thermique, subséquente ou simultanée à sa formation, à une température supérieure à la température de thermolyse dudit tensioactif ou mélange de tensioactifs.

Description

STABILISATION DE MOUSSES PAR DES PARTICULES D'ARGILE
La présente invention a trait à des mousses aqueuses qui sont notamment utilisables pour la récupération assistée du pétrole brut dans des formations souterraines, et plus particulièrement aux problématiques de stabilité des mousses dans de tels cas de récupération assistée du pétrole.
Lors de l'extraction du pétrole à partir d'un réservoir hydrocarboné (réservoir pétrolifère telle qu'une formation rocheuse, consolidée ou non, ou un sable, par exemple), selon une première étape dite de « récupération primaire », le pétrole est entraîné hors du réservoir via un puits de production par la surpression régnant naturellement au sein du réservoir. Cette récupération primaire ne permet d'accéder qu'à une faible quantité du pétrole contenu dans le réservoir, typiquement de l'ordre de 10 à 15% tout au plus.
Pour permettre de poursuivre l'extraction du pétrole suite à cette récupération primaire, des méthodes de production dites « secondaires » sont employées, quand la pression du réservoir devient insuffisante pour déplacer le pétrole encore en place. Typiquement, on injecte un fluide (ré-injection de l'eau produite diluée ou non, injection d'eau de mer ou de rivière, ou encore injection de gaz, par exemple) au sein du réservoir hydrocarboné, en vue d'exercer au sein du réservoir une surpression propre à entraîner le pétrole vers le(s) puits de production. Une technique usuelle dans ce cadre est l'injection d'eau (désignée également par inondation ou « waterflooding »), dans laquelle de grands volumes d'eau sont injectés sous pression dans le réservoir via des puits d'injecteurs. L'eau injectée entraîne une partie du pétrole qu'elle rencontre et le pousse vers un ou plusieurs puits producteur(s). Les méthodes secondaires de production telles que l'injection d'eau ne permettent toutefois d'extraire qu'une partie relativement faible des hydrocarbures en place (typiquement de l'ordre de 30%). Ce balayage partiel est dû notamment au piégeage de l'huile par les forces capillaires, aux différences de viscosité et de densité existant entre le fluide injecté et les hydrocarbures en place, ainsi qu'à des hétérogénéités à des échelles micro- ou macroscopiques (échelle des pores et aussi échelle du réservoir).
Pour essayer de récupérer le reste du pétrole, qui demeure dans les formations souterraines à l'issue de la mise en œuvre des méthodes primaires et secondaires de production, il a été proposé différentes techniques dites de « récupération assistée du pétrole » (ou récupération assistée (ou améliorée) d'hydrocarbures RAH), ou bien encore « EOR » (pour l'anglais « Enhanced OU Recovery »), Parmi les techniques de l'EOR, on peut citer, entre autres, des méthodes employant la formation de mousses, qui visent à assurer un entraînement du pétrole piégé dans les constrictions de pores.
Notamment dans le cas des huiles dites « lourdes », particulièrement visqueuses, des méthodes dites d'EOR thermique consistant à chauffer l'huile pour faciliter son écoulement ont été développées, qui mettent avantageusement en œuvre des mousses. A titre d'exemple de méthodes d'EOR thermique on peut par exemple citer les méthodes de récupérations dites SAGD (pour l'anglais : « Steam Assisted Gravity Drainage » : drainage gravitaire assisté par la vapeur), CSS (pour l'anglais : « Cyclic Steam Stimulation » : stimulation cyclique par de la vapeur), « Steam Flooding » (« innondation » par de la vapeur,), ou bien encore des procédés d'injection d'air, notamment ceux dits de type LTO (pour l'anglais : « Low Température Oxydization » : oxydation à basse température où l'air est utilisé pour générer, par combustion des huiles légères, un gaz de combustion qui induit un déplacement de l'huile) ou ISC (pour l'anglais : « ln-situ Combustion » : combustion in situ opérée à une température plus élevée que la LTO où on réalise une combustion effective propre à générer de la chaleur permettant typiquement de réduire la viscosité des huiles lourdes et donc d'améliorer leur déplacement, cette méthode pouvant produire de la vapeur d'eau). Dans toutes ces méthodes dites thermiques, de la vapeur d'eau et/ou d'autres gaz introduits et/ou générés in situ sont employés. Dans ce cadre, l'utilisation de mousses permet de mieux contrôler le déplacement de ces gaz et in fine d'améliorer leur efficacité. Ces mousses sont générées par foisonnement de la vapeur d'eau ou des gaz employés à partir d'une composition moussante.
La présente invention a trait aux mousses utilisables pour ces méthodes de récupération assistée du pétrole, qui sont typiquement formées et employées dans des conditions relativement extrêmes au sein des formations souterraines (haute température, pression, pH, salinité..). Une problématique rencontrée avec ces mousses est celle de leur stabilité dans ces conditions. En particulier, nombre de tensioactifs tendent à se lyser dans ces conditions, notamment sous l'effet de la température et du pH.
Un but de la présente invention est de fournir une méthode de formation de mousse améliorant leur stabilité.
A cet effet, il est proposé selon la présente invention d'employer un agent particulier pour la stabilisation de la mousse, à savoir des particules d'argiles, dont les travaux des inventeurs ont maintenant permis de mettre en évidence qu'elles permettent non seulement une bonne stabilisation, notamment à haute température, mais également d'autres avantages décrits plus en détails ci-après.
Ainsi, selon un premier aspect, la présente invention a pour objet un procédé de formation d'une mousse stabilisée comprenant :
une étape de foisonnement d'une composition moussante au moyen d'un fluide de foisonnement formé par au moins un gaz et/ou de vapeur d'eau, où ladite composition moussante comprend, au sein d'un milieu aqueux :
- un tensioactif ou un mélange de tensioactifs propre à former une mousse, sous l'effet de l'introduction dudit fluide de foisonnement ;et
- des particules d'argile;
de préférence, une étape de traitement thermique de la mousse formée, qui peut- être subséquente ou simultanée à l'étape précitée de formation de la mousse par foisonnement, à une température supérieure à la température de thermolyse dudit tensioactif ou mélange de tensioactifs.
Typiquement, le fluide de foisonnement employé dans le procédé de l'invention contient de la vapeur d'eau, optionnellement en mélange avec un gaz ou mélange de gaz tel que de l'azote. Dans ce cas, la mousse est désignée par « mousse de vapeur ». D'autres mousses sont néanmoins envisageables selon l'invention, qui sont foisonnées par un fluide de foisonnement ne contenant pas de vapeur d'eau (mousse à base d'air par exemple, ou à base d'un autre gaz).
Les étapes de foisonnement et de traitement thermiques du procédé de l'invention peuvent typiquement être conduites dans le cadre d'une opération extraction pétrolière, en particulier une récupération assistée de pétrole. Dans ce cadre, la mousse stabilisée formée est employée pour l'extraction d'hydrocarbures, avantageusement dans une formation souterraine où les conditions de la thermolyse des dudit tensioactif ou mélange de tensioactifs sont réunies. Lorsqu'il est employé pour l'extraction d'hydrocarbures, le procédé de l'invention est typiquement conduit (i) en injectant la composition moussante au sein d'une formation souterraine où la température est entre 30 à 350°C, et de préférence à une température supérieure à la température de thermolyse dudit tensioactif ou mélange de tensioactifs ; et (ii) :
- en co-injectant dans ladite formation souterraine tout ou partie du fluide de foisonnement conjointement à la composition moussante;
et/ou
- en formant in situ tout ou partie du fluide de foisonnement dans ladite formation souterraine où la composition est injectée, typiquement en formant des gaz de combustion d'hydrocarbures et/ou de la vapeur d'eau dans la formation souterraine (par exemple selon les techniques LTO ou ISC précitées). Quelle que soit la nature du fluide de foisonnement employé, le procédé de l'invention, qui met spécifiquement en œuvre les particules d'argile, conduit à la formation d'une mousse particulière, de type gélifiée. On peut décrire la mousse aqueuse formée lors de l'étape de foisonnement comme un milieu hétérogène particulier qui comprend une pluralité de bulles de gaz accolées entre elles, séparées les unes des autres par des films liquides, qu'on appelle des lamelles, qui sont à base de la composition moussante. Sans vouloir être lié à une théorie particulière, on peut considérer que les particules d'argiles présentes au sein des lamelles s'organisent en réseau et y forment une microstructure de type gel physique qui confère des propriétés rhéologiques intéressantes au fluide constitutif des lamelles, typiquement celui d'un fluide à seuil d'écoulement qui permet de freiner, voire d'inhiber, les phénomènes de drainage d'eau hors des lamelles et donc d'augmenter la résistance de la mousse à la coalescence et au mûrissement.
Le traitement thermique, lorsqu'il est conduit dans le procédé de l'invention (ce qui est le plus souvent inévitable dans le cas d'une extraction pétrolière), induit une lyse de tout ou partie des tensioactifs qui ne remet pas en cause la stabilisation par les particules d'argile. En d'autres termes, lorsque le procédé de l'invention comprend un traitement thermique qui lyse tout ou partie des tensioactifs, il permet d'obtenir une mousse stabilisée qui présente l'avantage de contenir une quantité réduite de tensioactifs. Cette réduction de la teneur en tensioactif (« remplacés » en quelque sorte en tout ou partie par des particules d'argile) a des répercussions intéressantes : d'une part, elle permet, de façon générale de limiter toute « pollution » potentielle des formations souterraines par des agents tensiocatifs, ce qui constitue un avantage en termes de répercussion sur l'environnement ; d'autre part, et de façon plus fondamentale, elle conduit à une réduction de la teneur en tensioactifs dans les mélange eau/hydrocarbures extraits de la formation souterraine, ce qui permet in fine une meilleure séparation des hydrocarbures contenus dans ces mélange. En effet, plus le mélange eau/hydrocarbures est riche en tensioactifs et plus ce mélange est difficile à séparer compte tenu de la formation d'une émulsion d'autant plus stable qu'il y a de tensioactifs. Les particules d'argile présentent l'avantage de conduire à une stabilisation efficace de la mousse de par leur effet sur la rhéologie, mais non à une stabilisation des émulsions eau/hydrocarbures récupérées in fine.
Les travaux qui ont été conduits par les inventeurs dans le cadre de la présente invention ont par ailleurs permis de mettre en lumière que les effets de stabilisation de mousse décrits ci-dessus sont observés y compris lorsque la mousse est formée dans un milieu comprenant des espèces salines. Ce qui ouvre la possibilité de former des mousses selon l'invention à partir de toute source d'eau disponible à proximité du lieu d'un forage (eau de mer par exemple) ou bien encore de former des mousses dans la plupart des formations souterraines.
Différents modes de réalisations préférentiels de l'invention vont maintenant être décrits plus en détails.
Les particules d'argile
L'argile employée dans le cadre de la présente invention est une argile synthétique ou naturelle. Il peut par exemple s'agir d'une bentonite, d'une hectorite ou d'une montmorillonite. Avantageusement il s'agit d'une hectorite.
Les argiles selon l'invention peuvent optionnellement être traitées par exemple par des composés de type ammonium quaternaires. Des argiles non traitées peuvent cependant aussi être employées.
Selon un mode de réalisation intéressant, l'argile employée selon l'invention est une laponite, typiquement synthétique. A titre d'exemple non restrictif de laponite adaptée à l'invention, il peut être fait référence à la Laponite XLG ® disponible auprès de la société Safic Alcan qui fait l'objet des exemples donnés à la fin de la présente description.
Quelle que soit sa nature exacte, l'argile est employée dans les compositions de l'invention sous forme de « particules », à savoir sous forme d'objets dispersés de faible dimension, typiquement inférieures au millimètre, et généralement biens inférieures. Les particules d'argile sont constituées de feuillets élémentaires plus ou moins agrégés dont l'état d'agrégation peut être mesure notamment par microscopie électronique à transmission (Cryo MET) ou bien par des techniques de diffusion de la lumière qui donnent accès au diamètre hydrodynamique moyen des particules dans la composition moussante.
Notamment de façon à obtenir un effet de stabilisation le plus élevé possible, il est préférable que la composition moussante employée selon l'invention comprenne au moins 0,001 %, typiquement au moins 0,01 %, par exemple au moins 0.05% en masse par rapport à la masse totale de la composition moussante. Des résultats intéressants sont notamment obtenus lorsque la teneur en argile est supérieure à 0,1 %, par exemple au moins égale à 0,15% en masse par rapport à la masse totale de la composition moussante. En général, plus la quantité d'argile augmente et plus l'effet de stabilisation augmente.
Il est cependant à noter que les argiles ont un caractère épaississant notables et que, pour la plupart des applications, il est préférable de limiter leur teneur pour éviter d'obtenir des viscosités trop importantes. Dans le cadre de la présente invention, il est préférable que la teneur en argile dans la composition moussante reste inférieure ou égale à 5 %, et plus préférentiellement inférieure à 1 %, voire à 0.5% en masse par rapport à la masse totale de la composition moussante, en particulier pour des applications dans le domaine de l'extraction pétrolière.
Ainsi, selon un mode de réalisation intéressant, bien adapté notamment à l'emploi des mousses selon l'invention pour des opérations de récupération assistée du pétrole, la composition moussante employée comprend l'argile à une teneur entre 0,01 et 1 % en masse par rapport à la masse totale de la composition moussante, par exemple entre 0,02 et 0,5 %, notamment entre 0,05 et 0,2%.
Les tensioactifs utilisables dans la composition moussante
On peut employer selon l'invention tout tensioactif ou système de tensioactif propre à former une mousse. Avantageusement, les tensioactifs seront en outre choisis pour pouvoir être dégradés en tout ou partie après ou pendant la formation de la mousse. A cet effet, il sera intéressant de choisir des tensioactifs se dégradant à la température la plus basse possible, notamment à une température inférieure ou égale à 250°C, voire à une température inférieure ou égale à 200°C, voire inférieure ou égale à 150°C.
Quelle que soit la nature des tensioactifs, dans les compositions moussantes employées dans la présente invention, le rapport massique tensioactif(s)/argile est de préférence compris entre 1 et 2000.
Par ailleurs, la composition moussante comprend de préférence de 0,005 à 5 % de tensioactifs ou de mélange de tensioactif, de préférence entre 0.1 et 1 % , en masse par rapport à la masse totale de la composition moussante.
Selon un mode de réalisation particulier, le tensioactif ou mélange de tensioactifs présent dans la composition moussante utilisée selon l'invention comprend un tensiaoctif de type alkyl sulfate ou alkyl ether sulfate où la chaîne alkyle comprend avantageusement de 8 à 18 atomes de carbone, par exemple de 10 à 16, comme par exemple le Laureth sulfate de sodium. Un exemple de tensioactif de ce type est le Rhodapex® ESB-70/A2 disponible auprès de la société Solvay illustré dans les exemples donnés ci-après. Typiquement, un tensioactif de type alkyl sulfate ou alkyl ether sulfate peut être employé à hauteur de 0,1 à 1 % en masse par rapport à la masse totale de la composition moussante.
Les alkyl sulfate ou alkyl ether sulfate sont particulièrement intéressants car ils sont à la fois de bons agents moussants et ils sont en général assez sensibles thermiquement. Typiquement, en formant une mousse à partir de ces agents à une température supérieure à 100°C, notamment à 150°C, par exemple de l'ordre de 200°C, on obtient la formation de la mousse et la thermolyse selon l'invention. D'autres tensioactifs intéressants qui se dégradent dans les mêmes gammes de température sont :
- les sulfosuccinates
- les sulfosuccinamates,
- les taurates
- les oxydes d'amine
- les alkylamido alcools
- les alkyl polyglucosides
- les alkylammonium quaternaires
- les alkyl ampho dipropionates - les mélanges de deux ou plus de ces composés et les mélanges de ces composés avec des alkyl sulfates ou alkyl ether sulfate.
Selon un mode de réalisation possible, le tensioactif ou mélange de tensioactifs présent dans la composition moussante utilisée selon l'invention comprend un tensiaoctif zwitterionique, notamment une alkylamidobetaine, une alkylamidohydroxysultaine, une alkylbetaine, ou une alkylhydroxysultaine, où la chaîne alkyle comprend avantageusement de 8 à 18 atomes de carbone, comme par exemple la cocoamidohydroxypropyl sultaine illustrée dans les exemples, qui sont assez sensibles thermiquement. Des mélanges de tensioactifs intéressants selon l'invention, notamment lorsqu'on souhaite obtenir un effet de dégradation thermique à relativement basse température (typiquement en dessous de 250°C, par exemple entre 150 et 200°C) avec un bon effet moussant sont les mélanges d'alkyl ether sulfate et de tensioactifs zwitterioniques du type précité notamment de type amido ; et les mélanges d'alkyl ether sulfate avec des alkyl poly glycoside.
Selon un autre mode de réalisation, le tensioactif ou mélange de tensioactifs présent dans la composition moussante utilisée selon l'invention comprend un tensiaoctif de type alkyl sulfonate, où la chaîne alkyle comprend avantageusement de 8 à 18 atomes de carbone, par exemple de 10 à 16, comme par exemple le le C14-16 alfa olefin sulfonate. Ces agents sont de bons agents moussants, mais nécessitent en général des températures plus élevées pour être dégradés thermiquement (typiquement d'au moins 250°C). les alkylsulfonate sont de préférence employés en mélange avec des alkyl sulfates.
Selon un aspect particulier, l'invention concerne les compositions moussantes pour la mise en œuvre du procédé de l'invention, comprenant :
- au moins un tensioactif, se dégradant de préférence à une température inférieure ou égale à 250°C, plus avantageusement inférieure ou égale à 200°C, de préférence d'un des types précités ; et
- des particules d'argile. L'exemple ci-après illustre un mode de réalisation non limitatif de l'invention et certains de ses avantages. EXEMPLE
Dans cet exemple, la stabilité a été testée pour des mousses réalisées à 200°C et sous 25 bars (2,5.106 Pa) à partir de différentes solutions moussantes incluant des particules d'argile.
A titre comparatif, des mousses obtenues dans les mêmes conditions avec les mêmes compositions mais dépourvues d'argile ont également été testées. La stabilité de chaque mousse a été évaluée en mesurant son temps de demi-vie selon le protocole suivant :
Dans un flacon tubulaire en verre, équilibré à la pression de travail de 25 bars (2,5.106 Pa) et à la température de travail de 200°C, préalablement rempli par la composition moussante on a co-injecté au travers d'un fritté assurant le rôle de mousseur :
- de la solution moussante portée à 200°C et injectée à la pression de travail via une pompe liquide à haute pression avec un débit constant de 3.2 mL/min, - de l'azote porté à 200°C et injecté à la pression de travail via une pompe gaz à haute pression avec un débit constant de 4.8 mL/min
La mousse formée en sortie du frittée est injectée dans le flacon par le haut. Un tube plongeant dans le flacon et débouchant au fond de celui-ci assure une sortie du trop plein de liquide par le bas. Le tube qui débouche d'un côté au fond du tube été relié à son autre extrémité à un régulateur de contre-pression, qui permet de maintenir la pression constante dans le flacon.
Le gaz employé est de l'azote pour éviter les artefacts liés à la recondensation de vapeur.
Une caméra CCD permet l'acquisition temporelle des images de mousses formées qu'on observe au travers du tube transparent. L'analyse des images permet ainsi de suivre l'évolution de la hauteur de mousse en fonction du temps. Au départ de l'injection de mousse, la hauteur de mousse augmente et atteint un maximum (volume initial de mousse) puis la hauteur de mousse diminue au cours du temps. Le temps de demi-vie mesurée pour les mousses formées avec chacune des compositions moussantes testées dans le présent exemple est le temps au bout duquel la hauteur de mousse est égale à la moitié de la hauteur de mousse initiale (la section du tube étant constante, cela correspond aussi au temps que met le volume initial de mousse pour diminuer de moitié).
Les compositions moussantes testées, dont les compositions sont données ci- après, comprennent les produits suivants : ■ Tensioactifs :
Rhodapex® ESB-70/A2 (alkyl ether sulfate - source : Solvay)
Mackam® CBS (sulfobetaine - source : Solvay) ■ Argile :
Laponite XLG ® (source : Safic Alcan)
Chaque solution moussante a été préparée comme suit :
Le tensioactif est solubilisé dans l'eau déminéralisée à une concentration massique totale de 0.5 % en masse de matière active, puis mis sous agitation pendant 24h à température ambiante.
Hormis dans le cas des compositions comparatives (témoins), de l'argile est ajouté à la solution ; dans tous les cas, le pH est ajusté à pH=7 par addition d'acide citrique et la solution est de nouveau agitée pendant 24h.
Le tableau-ci-après reporte les détails des compositions moussantes testées (nature du tensioactif et teneur dans la composition, en pourcentage masse par rapport à la masse totale de la composition - teneur en argile (Laponite XLG) en pourcentage en masse par rapport à la masse totale de la composition) et le temps de demi-vie (ti/2) mesuré pour chacune d'elle. Composition
Tensioactif argile ti/2 (min) moussante
Témoin 1 Rhodapex ESB-70/A2 - 0.5% 8
-
C1 .1 Rhodapex ESB-70/A2 - 0.5% 0,05% 34
C1 .2 Rhodapex ESB-70/A2 - 0.5% 0,1 % 38
C1 .3 Rhodapex ESB-70/A2 - 0.5% 0,125% 94
Témoin 2 Mackam CBS - 0.5% - 3
C2 Mackam CBS - 0.5% 0,125% 20
Dans les conditions expérimentales, les tensioactifs employés se dégradent par thermolyse, ce qui n'est pas le cas des argiles. Quelle que soit la nature des tensioactifs, l'ajout de l'argile améliore la stabilité.

Claims

REVENDICATIONS
1 . Procédé de formation d'une mousse stabilisée comprenant :
- une étape de foisonnement d'une composition moussante au moyen d'un fluide de foisonnement formé par au moins un gaz et/ou de vapeur d'eau, où ladite composition moussante comprend, au sein d'un milieu aqueux :
- un tensioactif ou un mélange de tensioactifs propre à former une mousse, sous l'effet de l'introduction dudit fluide de foisonnement ;et
- des particules d'argile;
- de préférence, une étape de traitement thermique de la mousse formée, qui peut- être subséquente ou simultanée à la formation de la mousse, à une température supérieure à la température de thermolyse dudit tensioactif ou mélange de tensioactifs.
2. Procédé selon la revendication 1 , où la mousse stabilisée est employée pour l'extraction d'hydrocarbures, dans lequel la composition moussante est injectée dans une formation souterraine où la température est entre 30 à 350°C, et de préférence à une température supérieure à la température de thermolyse dudit tensioactif ou mélange de tensioactifs ; et dans lequel :
- tout ou partie du fluide de foisonnement est co-injecté dans ladite formation souterraine conjointement à la composition moussante; et/ou tout ou partie du fluide de foisonnement est formé in situ dans ladite formation souterraine où la composition est injectée, typiquement en formant des gaz de combustion d'hydrocarbures et/ou de la vapeur d'eau dans ladite formation souterraine.
3. Procédé selon la revendication 1 ou 2, où l'argile est une laponite.
4. Procédé selon l'une des revendications précédentes, où la composition moussante comprend de l'argile à une teneur de 0,001 à 5 %, de préférence entre 0,01 et 5% en masse par rapport à la masse totale de la composition moussante.
5. Procédé selon l'une des revendications précédentes, où le tensioactif mélange de tensioactifs comprend un alkyl ether sulfate
6. Procédé selon l'une des revendications précédentes, où le tensioactif ou mélange de tensioactifs comprend un tensiaoctif zwitterionique, notamment une alkylamidobetaine, une alkylamidohydroxysultaine, une alkylbetaine, ou une alkylhydroxysultaine
7. Procédé selon l'une des revendications précédentes, où le tensioactif ou mélange de tensioactifs comprend un alkyisulfonate, de préférence en mélange avec un alkyl ether sulfate.
8. Procédé selon l'une des revendications précédentes, où le rapport massique tensioactif(s)/argile est compris entre 1 et 2000
9. Procédé selon l'une des revendications précédentes, où la composition moussante comprend de 0,005 à 5 % de tensioactifs ou de mélange de tensioactif, en masse par rapport à la masse totale de la composition moussante.
10.- Composition moussante pour la mise en œuvre du procédé de l'une des revendications 1 à 9, comprenant :
- au moins un tensioactif, se dégradant de préférence à une température inférieure ou égale à 250°C, plus avantageusement inférieure ou égale à 200°C ; et
- des particules d'argile.
EP17734731.7A 2016-07-08 2017-07-03 Stabilisation de mousses par des particules d'argile Withdrawn EP3481912A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1656597A FR3053690B1 (fr) 2016-07-08 2016-07-08 Stabilisation de mousses par des particules d'argile
PCT/EP2017/066474 WO2018007305A1 (fr) 2016-07-08 2017-07-03 Stabilisation de mousses par des particules d'argile

Publications (1)

Publication Number Publication Date
EP3481912A1 true EP3481912A1 (fr) 2019-05-15

Family

ID=57539335

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17734731.7A Withdrawn EP3481912A1 (fr) 2016-07-08 2017-07-03 Stabilisation de mousses par des particules d'argile

Country Status (4)

Country Link
EP (1) EP3481912A1 (fr)
CA (1) CA3030057A1 (fr)
FR (1) FR3053690B1 (fr)
WO (1) WO2018007305A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115058238B (zh) * 2022-06-20 2024-02-06 中国石油大学(华东) 一种表面改性纳米颗粒高温泡沫稳定剂及其制备方法和应用
CN115011319B (zh) * 2022-06-22 2023-07-14 中国地质大学(武汉) 一种耐温耐盐驱油用三相泡沫体系及其制备方法与应用

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1155050B (de) * 1959-06-17 1963-09-26 Adicon Ltd Verfahren zur Herstellung von Leichtmoertel oder Leichtbeton mittels eines Schaumbildners durch Begasung einer Zementmischung
US6297295B1 (en) * 1999-03-03 2001-10-02 Mbt Holding Ag Transport of solid particulates
US20030228270A1 (en) * 2002-06-10 2003-12-11 Erika Tazberik Foaming clay cleanser composition
US20120220502A1 (en) * 2011-02-24 2012-08-30 Basf Se Compositions comprising alkylalkoxysulfonates for the production of high temperature stable foams
CA2827323A1 (fr) * 2011-02-24 2012-08-30 Basf Se Compositions comprenant des alkyle alcoxy sulfonates pour la production de mousses stables a hautes temperatures
US8997868B2 (en) * 2012-06-21 2015-04-07 Halliburton Energy Services, Inc. Methods of using nanoparticle suspension aids in subterranean operations
CN103694983B (zh) * 2014-01-06 2016-08-17 中国石油大学(华东) 一种泡沫驱油用粘土稳泡复合剂及其制备方法与应用
CN104119853B (zh) * 2014-07-02 2017-03-29 成都理工大学 一种空气泡沫压裂液的制备方法

Also Published As

Publication number Publication date
CA3030057A1 (fr) 2018-01-11
FR3053690A1 (fr) 2018-01-12
WO2018007305A1 (fr) 2018-01-11
FR3053690B1 (fr) 2019-12-06

Similar Documents

Publication Publication Date Title
RU2548266C2 (ru) Способ извлечения тяжелой нефти из подземного месторождения
US20190085236A1 (en) Siloxane surfactant additives for oil and gas applications
US20180282611A1 (en) Methods and compositions for stimulating the production of hydrocarbons from subterranean formations
US9809741B2 (en) Methods and compositions for stimulating the production of hydrocarbons from subterranean formations
EP2265688B1 (fr) Composition viscoelastique a stabilite amelioree
US11066914B2 (en) Foam from low cost petroleum sulfonate surfactants for fracturing along with wettability alteration
CA3130959A1 (fr) Emulsion inverse pour la fracturation hydraulique
EP2102305B1 (fr) Recuperation assistee de petrole
CA2927071C (fr) Composition fluide pour la stimulation dans le domaine de la production de petrole et de gaz
FR2461090A1 (fr)
FR3059039A1 (fr) Nanoemulsions pour une utilisation dans des traitements de fracturation souterraine
WO2018007305A1 (fr) Stabilisation de mousses par des particules d'argile
WO2020169478A1 (fr) Formulations moussantes pour la recuperation assistee du petrole
EP2424952B1 (fr) Composition viscoelastique a viscosite amelioree
FR2735524A1 (fr) Methode de recuperation assistee de fluides petroliers dans un gisement souterrain
EP1412448B1 (fr) Methode pour controler la saturation d'une formation aux abords d'un puits
FR3116283A1 (fr) Procédé de traitement d’un effluent de production issu d’un procédé de récupération assistée du pétrole au moyen d’une formulation désémulsifiante à base de gomme guar modifiée cationique
WO2012143306A1 (fr) Compositions d'alkylarylsulfonates et leur utilisation pour la recuperation assistee d'hydrocarbures
RU2254459C1 (ru) Эмульсия для обработки нефтяных пластов
CA1218229A (fr) PROCEDE DE RECUPERATION DU PETROLE EMPLOYANT DES TENSIO-ACTIFS ANIONIQUES DE LA FAMILLE DES ESTERS D'ACIDES .alpha.-SULFOCARBOXYLIQUES
WO2020254290A1 (fr) Formulations moussantes pour la recuperation assistee du petrole
Canbolat et al. Adsorption of anionic surfactants in limestone medium during oil recovery
RU2236571C2 (ru) Концентрат для приготовления состава для регулирования разработки нефтяной залежи и состав для регулирования разработки нефтяной залежи
RU2286375C2 (ru) Состав для водоизоляции скважин
RU2236570C2 (ru) Концентрат для приготовления состава для вытеснения нефти и состав для вытеснения нефти

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190208

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200422

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: IFP ENERGIES NOUVELLES

Owner name: RHODIA OPERATIONS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20210202