WO2013156359A1 - Mittels schmelzspinnverfahren hergestellte faser - Google Patents

Mittels schmelzspinnverfahren hergestellte faser Download PDF

Info

Publication number
WO2013156359A1
WO2013156359A1 PCT/EP2013/057433 EP2013057433W WO2013156359A1 WO 2013156359 A1 WO2013156359 A1 WO 2013156359A1 EP 2013057433 W EP2013057433 W EP 2013057433W WO 2013156359 A1 WO2013156359 A1 WO 2013156359A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
polymer
filaments
fiber according
monofilament
Prior art date
Application number
PCT/EP2013/057433
Other languages
English (en)
French (fr)
Inventor
Claudia Stern
Michael Schlipf
Original Assignee
Elringklinger Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elringklinger Ag filed Critical Elringklinger Ag
Priority to CN201380017782.3A priority Critical patent/CN104204312A/zh
Priority to EP13716266.5A priority patent/EP2839062A1/de
Publication of WO2013156359A1 publication Critical patent/WO2013156359A1/de
Priority to US14/488,749 priority patent/US20150079391A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/16Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one other macromolecular compound obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds as constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/28Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
    • D01D5/30Conjugate filaments; Spinnerette packs therefor
    • D01D5/32Side-by-side structure; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/28Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
    • D01D5/30Conjugate filaments; Spinnerette packs therefor
    • D01D5/34Core-skin structure; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/10Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one other macromolecular compound obtained by reactions only involving carbon-to-carbon unsaturated bonds as constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/12Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyamide as constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/14Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyester as constituent
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/04Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polymers of halogenated hydrocarbons
    • D10B2321/042Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polymers of halogenated hydrocarbons polymers of fluorinated hydrocarbons, e.g. polytetrafluoroethene [PTFE]
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/06Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyethers
    • D10B2331/061Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyethers polyetherketones, polyetheretherketones, e.g. PEEK
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2929Bicomponent, conjugate, composite or collateral fibers or filaments [i.e., coextruded sheath-core or side-by-side type]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2973Particular cross section

Definitions

  • the present invention relates to a novel fiber made by a melt spinning process.
  • thermoplastic polymers can be made by melt spinning. These fibers may be monofilaments, i. E. individual filaments, or multifilaments formed from a plurality of filaments, the fibers being continuous in virtually unlimited length, i. can be produced as continuous fibers.
  • a prerequisite for the applicability of the melt spinning process is that the polymer in question is melt processable, ie. has a sufficiently high melt viscosity.
  • PTFE fibers are produced by splicing and stretching films, which films may be formed from expanded PTFE or from suspension PTFE.
  • splicing and stretching films which films may be formed from expanded PTFE or from suspension PTFE.
  • such fibers have a number of disadvantages, in particular the limited fiber length due to the discontinuous production, the high roughness of the fiber surface and the lack of profilability of the fiber cross-section. This leads u.a. to a poor wearability of the fibers. The missing
  • melt processability of PTFE further leads to the disadvantage that the fibers or textile materials made therefrom can not be welded. It is therefore an object of the present invention to provide a melt-spun fiber having improved properties.
  • the fiber comprising a first portion comprising a melt-processable, fully fluorinated first polymer, and a second portion comprising a thermoplastic second polymer.
  • the invention encompasses both the case where the two parts or polymers as a compound, ie. as a homogeneous mixture, as well as the case that the two parts form spatially separated regions of the fiber.
  • the proportions can be arranged in the latter case in a variety of ways, which will be described in more detail below.
  • the advantages of the melt spinning process can be combined with the advantageous properties of a fully fluorinated polymer since the first polymer employs a fluoropolymer that is melt processable unlike normal PTFE.
  • the properties of the fiber can be further influenced by the intended second portion of a thermoplastic second polymer and adapted to the respective requirements. In particular, this second portion can serve to impart to the fiber increased mechanical strength compared to PTFE or other fully fluorinated polymers.
  • the first polymer is conveniently a copolymer of tetrafluoroethylene and at least one fully fluorinated comonomer, wherein the comonomer content is about 1 mole% or less, preferably from about 0.1 mole% to about 1 mole%.
  • a comonomer level in this low range is already sufficient to impart melt processability to the fluoropolymer while retaining the beneficial properties of PTFE such as temperature and chemical resistance. This effect is due to the lower molecular weight the copolymer, which significantly increases the melt flow rate compared to normal PTFE.
  • the comonomer of the first polymer is particularly preferably selected from hexafluoropropylene, perfluoroalkyl vinyl ethers (in particular perfluoroethyl vinyl ether and perfluoropropyl vinyl ether), perfluoro (2,2-dimethyl-1,3-dioxole) and mixtures thereof. Copolymers of this type are described for example in EP 1 263 877 Bl.
  • a melt, fully fluorinated polymer, which may be used as the first polymer in the invention is advantageously marketed by ElringKlinger Kunststofftechnik GmbH in Bietigheim-Bissingen under the trademark Moldflon ®.
  • the first polymer has an amorphous content of at least 50%, typically in the range of about 60%.
  • the high amorphous content results from the irregularities in the molecular structure caused by the comonomer.
  • thermoplastic polymers in principle all thermoplastic polymers are suitable, which are likewise melt-processable, and which can be selected depending on the desired property profile of the fiber.
  • the second polymer is preferably selected from polyethylene terephthalate, polybutylene terephthalate, polyamides, polyimides (in particular polyetherimide), polyether ketones (in particular polyether ether ketone), polyphenylene sulfide or mixtures thereof.
  • the use of high-temperature plastics such as polyimides, polyether ketones or polyphenylene sulfide, whose melting points are in some cases above that of the fully fluorinated first polymer, as the second polymer is particularly favorable.
  • another fluoropolymer may be used as the second polymer of the fiber of the present invention.
  • the fiber is formed from a compound comprising about 20 to about 80 weight percent of the first polymer and about 20 to about 80 weight percent of the second polymer.
  • the fiber which may be a monofilament or a multifilament, consists in this case of a homogeneous material whose properties can be varied over a wide range by the type and proportion of the second polymer.
  • the compound may in addition to the two polymers include other ingredients such. For example, different types of fillers or other polymers.
  • the first and second portions form spatially separated regions of the fiber.
  • particularly advantageous properties of the fiber can be achieved, as will be described below.
  • the first portion of the fiber substantially completely consists of the first polymer and contains no or only insignificant further constituents.
  • the first portion may consist of a compound of the first polymer with one or more further polymers and / or with one or more fillers.
  • the properties of the first portion of the fiber can be varied or optimized. Molybdenum sulfide and graphite, in particular, by means of which the wear resistance of the first polymer can be increased, are to be mentioned as possible fillers.
  • first and second portions of the fiber of the invention form spatially separated regions, they may be arranged and / or interconnected in any suitable manner. Some preferred variants of such arrangements are described below.
  • the fiber is a multifilament comprising filaments of the first polymer forming the first portion and filaments of the second polymer forming the second portion.
  • Such multifilaments of different filaments can be replaced by a melt spinning method using spinnerets having a plurality of holes known per se in the art.
  • a multifilament fiber according to the invention comprises a total of about 10 to about 150 filaments, with about 20% to about 80% of the filaments of the first polymer and about 20% to about 80% of the filaments of the second Polymer are formed.
  • the ratio between the first portion and the second portion may be chosen according to whether the properties of the first polymer or of the second polymer should predominate in the fiber of the invention.
  • the fiber is a monofilament, in which the first and the second portion each extend in the fiber direction and are bonded together in a material-locking manner.
  • the two parts of the fiber are therefore in this case within a monofilament before, but not as a compound, but spatially separated from each other.
  • the fiber according to the invention may furthermore also be a multifilament with a plurality of filaments which are constructed in accordance with the monofilament described above.
  • the first and the second portion of the fiber according to the invention can be arranged side by side within the monofilament in cross section.
  • Such a fiber can be produced by means of a melt spinning process in which two spinnerets for the first and second polymer are arranged directly next to each other.
  • the first or the second portion forms the core of the monofilament and the other portion forms a shell surrounding the core.
  • a core-shell structure of the fiber particularly advantageous properties can be achieved.
  • the core may be formed of a second polymer having low chemical resistance (but having, for example, high strength) due to the shielding of the core by the shell as a whole a fiber with a high strength and high chemical resistance results.
  • the proportions of the first and of the second polymer can be varied within a wide range in order to adapt the properties of the fiber to the respective requirements.
  • the first portion with the first polymer may form about 5 to about 95 weight percent of the monofilament and the second portion with the second polymer corresponding to about 95 to about 5 weight percent.
  • the fiber or filaments according to the invention preferably have a regular cross-sectional profile, in particular a round, oval or polygonal cross-sectional profile.
  • the preferred cross-sectional profile may be dictated by the geometry of the spinneret, depending on the intended use of the fiber, which represents a significant advantage of the fibers of the present invention over PTFE fibers made by splicing.
  • the fibers or their filaments according to the invention also have a low surface roughness as a result of the production, which is advantageous in particular during interweaving or other further processing into textile materials.
  • the fineness of the fiber according to the invention or its filaments can be varied within a wide range, depending on the type of polymers used and on the intended use of the fiber, the fineness preferably being in the range from about 1 to about 1000 dtex, in particular in the range from about 2 to about 100 dtex.
  • the fineness of the individual filaments will mainly depend on whether the fiber according to the invention is a monofilament or a multifilament.
  • the fiber can be stretched after emerging from the hole or holes of the spinneret, as is generally known in the melt spinning of thermoplastic polymers. By stretching, the polymer molecules are oriented at least partially along the fiber direction, whereby the mechanical strength of the fiber can be increased.
  • the fiber of the invention has a tensile strength of about 4 to about 200 cN / tex.
  • the elongation at break of the fiber is preferably in the range of about 10% to about 50%.
  • the fibers of the invention can be used for a variety of technical applications, in particular for the production of textile materials such as fabrics or nonwovens, which can be made up by means of welding due to the melt-processability of the polymers used. Both loose fibers and corresponding textile materials can be used in particular for the production of filter elements, in which a high chemical resistance is required.
  • Another field of application is the production of water-repellent textiles due to the high hydrophobicity of the fully fluorinated polymers used.
  • hydrophobic properties of the fibers of the invention may also be used for the production of electrochemical elements, e.g. Gas diffusion electrodes are exploited.
  • FIG. 1 A schematic cross-sectional view of a first embodiment of a fiber according to the invention
  • Fig. 2 is a schematic representation of a spinneret device for
  • Fig. 3 is a schematic cross-sectional view of a second embodiment of a fiber according to the invention.
  • the Fig. 1 shows a first embodiment of a fiber 10 according to the invention with a round cross-sectional profile and a core-sheath structure.
  • the shell 12 forms the first portion of the fiber 10 and comprises a melt processable, fully fluorinated first polymer.
  • the core 14 forms the second portion of the fiber 10 and comprises a thermoplastic second polymer.
  • the fiber 10 is a monofilament, whereby several such monofilaments can be combined to form a multifilament.
  • the fiber 10 comprises approximately equal proportions of the first and second polymers, i. E. the core 14 and the shell 12 each constitute about 50% of the mass of the fiber 10. Alternatively, however, these proportions can be varied within a wide range, e.g. For example, the proportion of the first polymer can be reduced so that the shell 12 becomes thinner.
  • the first polymer is a melt-processable copolymer of tetrafluoroethylene in a proportion of 0.1 to 1 mole percent perfluoropropyl vinyl ether having a melt temperature in the range of 314 to 320 ° C
  • the second polymer is a polyether ether ketone (PEEK) with a melting temperature of at least 335 ° C.
  • PEEK has a very high mechanical strength and thereby gives the fiber 10 also a high strength (eg up to 200 cN / tex), while the TFE copolymer in the shell 12 by its low coefficient of friction, chemical resistance and UV stability the corresponding Properties of the fiber 10 is determined.
  • the shell 12 of the TFE copolymer allows also a slight staining of the fiber 10, which is much more difficult with pure PEEK fibers.
  • Both the core 14 and the sheath 12 of the fiber 10 may include other components besides the second and the first polymer, respectively, to modify the properties of the fiber 10 accordingly, e.g. B. filling or reinforcing substances. Furthermore, it is possible to electrically modify the core 14 or the shell 12.
  • FIG. 2 schematically shows a spinnerette device 20 used to manufacture the fiber 10 of FIG. 1 is suitable.
  • a melt 22 of the first polymer (TFE copolymer) is pressed through a bath 24 of the melt 26 of the second polymer (PEEK), this preparation being made possible by the viscosity of the second melt 26 in the bath 24 being less than that Viscosity of the first melt 22.
  • PEEK the second polymer
  • the fiber 10 exits two spinning holes 28 in the device 20, whereby a larger number of spinning holes (eg in the range of 50) may also be provided.
  • the fibers 10 leaving the spinning holes 28 can either be picked up individually as monofilaments or combined as filaments into a multifilament.
  • temperatures of up to about 400 ° C can be used, and this also for other high temperature plastics such.
  • polyimides PI
  • PEKK polyether ketone ketone
  • PES polyphenylene sulfide
  • the temperature at three zones of the extruder may be 355 ° C, 375 ° C, and 380 ° C, and the temperature at the spinneret may be 390 ° C.
  • the two portions of the fiber according to the invention may also be arranged in a monofilament in another way, for. B. in cross section of the fiber side by side.
  • This variant is shown schematically in FIG.
  • the first portion 32 with the first polymer forms the left half of the fiber cross section and the second portion 34 forms the right half with the second polymer.

Abstract

Die vorliegende Erfindung betrifft eine Faser, die mittels eines Schmelzspinnverfahrens hergestellt ist, umfassend einen ersten Anteil umfassend ein schmelzverarbeitbares, vollfluoriertes erstes Polymer, und einen zweiten Anteil umfassend ein thermoplastisches zweites Polymer.

Description

Mittels Schmelzspinnverfahren hergestellte Faser
Die vorliegende Erfindung betrifft eine neuartige Faser, die mittels eines Schmelzspinnverfahrens hergestellt ist.
Es ist seit langem bekannt, dass synthetische Fasern aus einer Vielzahl von thermoplastischen Polymeren durch Schmelzspinnen hergestellt werden können. Bei diesen Fasern kann es sich um Monofile handeln, d .h. um einzelne Filamente, oder um Multifile, die aus einer Mehrzahl von Filamenten gebildet sind, wobei die Fasern kontinuierlich in praktisch unbegrenzter Länge, d .h . als Endlosfasern, herstellbar sind . Grundvoraussetzung für die Anwendbarkeit des Schmelzspinnverfahrens ist, dass das betreffende Polymer schmelzverarbeit- bar ist, d .h. eine ausreichend hohe Schmelzviskosität aufweist.
Für verschiedene technische Anwendungen besteht ein großes Interesse an Fasern aus vollfluorierten Polymeren wie PTFE, um dessen besondere Eigenschaften wie Chemikalien- und Temperaturresistenz sowie geringer Reibungskoeffizient für die Herstellung von entsprechenden textilen Materialien ausnutzen zu können. Eine Anwendung des Schmelzspinnverfahrens scheidet für ho- mopolymeres PTFE jedoch aus, da dieses aufgrund seiner extrem hohen Schmelzviskosität nicht thermoplastisch verarbeitbar ist.
Aus diesem Grund werden gemäß dem Stand der Technik PTFE-Fasern durch das Spleißen und Recken von Folien hergestellt, wobei diese Folien aus expandiertem PTFE oder aus Suspensions-PTFE gebildet sein können. Derartige Fasern weisen jedoch eine Reihe von Nachteilen auf, insbesondere die begrenzte Faserlänge aufgrund der diskontinuierlichen Herstellung, die hohe Rauheit der Faseroberfläche und die fehlende Profilierbarkeit des Faserquerschnitts. Dies führt u.a. zu einer schlechten Verwebbarkeit der Fasern. Die fehlende
Schmelzverarbeitbarkeit von PTFE führt weiterhin zu dem Nachteil, dass die Fasern oder daraus hergestellte textile Materialien nicht verschweißt werden können. Der vorliegenden Erfindung liegt daher die Aufgabe zu Grunde, eine mittels Schmelzspinnverfahren hergestellte Faser mit verbesserten Eigenschaften zur Verfügung zu stellen.
Diese Aufgabe wird bei der Faser der eingangs genannten Art erfindungsgemäß dadurch gelöst, dass die Faser einen ersten Anteil umfassend ein schmelzverarbeitbares, vollfluoriertes erstes Polymer umfasst, und einen zweiten Anteil umfassend ein thermoplastisches zweites Polymer. Die Erfindung umfasst dabei sowohl den Fall, dass die beiden Anteile bzw. Polymere als Compound, d .h. als homogene Mischung, vorliegen, als auch den Fall, dass die beiden Anteile räumlich voneinander getrennte Bereiche der Faser bilden. Die Anteile können im letzteren Fall auf verschiedenste Weise angeordnet sein, was weiter unten noch im Detail beschrieben wird.
Bei der erfindungsgemäßen Faser können die Vorteile des Schmelzspinnverfahrens mit den vorteilhaften Eigenschaften eines vollfluorierten Polymers kombiniert werden, da mit dem ersten Polymer ein Fluorpolymer eingesetzt wird, das im Gegensatz zu normalem PTFE schmelzverarbeitbar ist. Zusätzlich können die Eigenschaften der Faser durch den vorgesehenen zweiten Anteil eines thermoplastischen zweiten Polymers weiter beeinflusst und an die jeweiligen Anforderungen angepasst werden. Insbesondere kann dieser zweite Anteil dazu dienen, der Faser eine im Vergleich zu PTFE bzw. anderen vollfluorierten Polymeren erhöhte mechanische Festigkeit zu verleihen.
Das erste Polymer ist günstigerweise ein Copolymer von Tetrafluorethylen und mindestens einem vollfluorierten Comonomer, wobei der Comonomeranteil ca. 1 Mol-% oder weniger beträgt, bevorzugt von ca. 0,1 Mol-% bis ca. 1 Mol-%. Ein Comonomeranteil in diesem niedrigen Bereich ist bereits ausreichend, um dem Fluorpolymer Schmelzverarbeitbarkeit zu verleihen, wobei die vorteilhaften Eigenschaften von PTFE wie Temperatur- und Chemikalienbeständigkeit erhalten bleiben. Dieser Effekt beruht auf dem niedrigeren Molekulargewicht der Copolymere, wodurch die Schmelzflussrate im Vergleich zu normalen PTFE deutlich erhöht wird.
Besonders bevorzugt ist das Comonomer des ersten Polymers ausgewählt aus Hexafluorpropylen, Perfluoralkylvinylethern (insbesondere Perfluorethylvinyl- ether und Perfluorpropylvinylether), Perfluor-(2,2-dimethyl-l,3-dioxol) und Mischungen hiervon. Copolymere dieser Art sind beispielsweise in der EP 1 263 877 Bl beschrieben.
Ein schmelzverarbeitbares, vollfluoriertes Polymer, welches als erstes Polymer im Rahmen der Erfindung vorteilhaft eingesetzt werden kann, wird von der ElringKlinger Kunststofftechnik GmbH in Bietigheim-Bissingen unter der Marke Moldflon® vertrieben.
Günstig ist es, wenn das erste Polymer einen Amorphanteil von mindestens 50% aufweist, typischerweise im Bereich von ca. 60%. Der hohe Amorphanteil ergibt sich durch die Unregelmäßigkeiten in der Molekülstruktur, die durch das Comonomer bedingt werden.
Für das zweite Polymer des zweiten Anteils der erfindungsgemäßen Faser kommen prinzipiell alle thermoplastischen Polymere in Frage, die ebenfalls schmelzverarbeitbar sind, und die in Abhängigkeit von dem gewünschten Eigenschaftsprofil der Faser ausgewählt werden können. Bevorzugt ist das zweite Polymer ausgewählt aus Polyethylenterephthalat, Polybutylenterephthalat, Polyamiden, Polyimiden (insbesondere Polyetherimid), Polyetherketonen (insbesondere Polyetheretherketon), Polyphenylensulfid oder Mischungen hiervon.
Besonders günstig ist insbesondere die Verwendung von Hochtemperaturkunststoffen wie Polyimiden, Polyetherketonen oder Polyphenylensulfid, deren Schmelzpunkte zum Teil über demjenigen des vollfluorierten ersten Polymers liegen, als zweites Polymer. Alternativ kann auch ein weiteres Fluorpolymer als zweites Polymer der erfindungsgemäßen Faser verwendet werden. Bei einer der Ausführungsformen der Erfindung ist die Faser aus einem Compound gebildet ist, der ca. 20 bis ca. 80 Gew.% des ersten Polymers und ca. 20 bis ca. 80 Gew.% des zweiten Polymers umfasst. Die Faser, die ein Monofil oder ein Multifil sein kann, besteht hierbei aus einem homogenen Material, dessen Eigenschaften durch die Art und den Anteil des zweiten Polymers über einen weiten Bereich variiert werden können. Der Compound kann neben den beiden Polymeren noch weitere Bestandteile umfassen, wie z. B. verschiedene Arten von Füllstoffen oder weitere Polymere.
Gemäß einer weiteren bevorzugten Ausführungsform bilden der erste und der zweite Anteil räumlich voneinander getrennte Bereiche der Faser. In diesem Fall können besonders vorteilhafte Eigenschaften der Faser erzielt werden, wie weiter unten beschrieben wird.
Es kann in diesem Fall vorgesehen sein, dass der erste Anteil der Faser im Wesentlichen vollständig aus dem ersten Polymer besteht und keine oder nur unwesentliche weitere Bestandteile enthält. Alternativ kann der erste Anteil aus einem Compound des ersten Polymers mit einem oder mehreren weiteren Polymeren und/oder mit einem oder mehreren Füllstoffen bestehen. Durch eine solche Abmischung können die Eigenschaften des ersten Anteils der Faser variiert bzw. optimiert werden. Als mögliche Füllstoffe sind insbesondere Molybdänsulfid und Graphit zu nennen, durch die die Verschleißfestigkeit des ersten Polymers erhöht werden kann.
Wenn der erste und der zweite Anteil der erfindungsgemäßen Faser räumlich voneinander getrennte Bereiche bilden, können diese in jeder geeigneten Weise angeordnet und/oder miteinander verbunden sein. Einige bevorzugte Varianten solcher Anordnungen werden nachfolgend beschrieben .
Gemäß einer bevorzugten Ausführungsform der Erfindung ist die Faser ein Multifil, umfassend Filamente aus dem ersten Polymer, die den ersten Anteil bilden, und Filamente aus dem zweiten Polymer, die den zweiten Anteil bilden. Derartige Multifile aus verschiedenen Filamenten können durch ein Schmelz- spinnverfahrens unter Verwendung von Spinndüsen mit einer Mehrzahl von Löchern, die aus dem Stand der Technik an sich bekannt sind, hergestellt werden.
Bevorzugt umfasst eine erfindungsgemäße Faser in Form eines Multifils insgesamt ca. 10 bis ca. 150 Filamente, wobei ca. 20% bis ca. 80% der Filamente aus dem ersten Polymer und ca. 20% bis ca. 80% der Filamente aus dem zweiten Polymer gebildet sind. Das Verhältnis zwischen dem ersten Anteil und dem zweiten Anteil kann danach gewählt werden, ob die Eigenschaften des ersten Polymers oder des zweiten Polymers bei der erfindungsgemäßen Faser überwiegen sollen.
Bei einer weiteren bevorzugten Ausführungsform der Erfindung ist die Faser ein Monofil, bei dem der erste und der zweite Anteil sich jeweils in Faserrichtung erstrecken und stoffschlüssig miteinander verbunden sind. Die beiden Anteile der Faser liegen in diesem Fall also innerhalb eines Monofils vor, jedoch nicht als Compound, sondern räumlich voneinander getrennt. Bei der erfindungsgemäßen Faser kann es sich des Weiteren auch um ein Multifil handeln mit einer Mehrzahl von Filamenten, die entsprechend dem vorstehend beschriebenen Monofil aufgebaut sind.
Der erste und der zweite Anteil der erfindungsgemäßen Faser können innerhalb des Monofils im Querschnitt nebeneinander angeordnet sein. Eine solche Faser ist mittels eines Schmelzspinnverfahrens herstellbar, bei dem zwei Spinndüsen für das erste bzw. zweite Polymer direkt nebeneinander angeordnet sind.
Bei einer weiteren vorteilhaften Ausführungsform der Erfindung bildet der erste oder der zweite Anteil den Kern des Monofils und der andere Anteil eine den Kern umgebende Hülle. Durch eine solche Kern-Hülle-Struktur der Faser können besonders vorteilhafte Eigenschaften erzielt werden. Wenn z. B. die Hülle von dem ersten Anteil mit dem ersten Polymer gebildet wird, welches eine sehr hohe Chemikalienbeständigkeit aufweist, kann der Kern aus einem zweiten Polymer mit einer geringen Chemikalienbeständigkeit gebildet sein (welches aber z. B. eine hohe Festigkeit aufweist), so dass aufgrund der Abschirmung des Kerns durch die Hülle insgesamt eine Faser mit einer hohen Festigkeit und hohen Chemikalienbeständigkeit resultiert.
Die Anteile des ersten und des zweiten Polymers können bei den vorstehend beschriebenen Ausführungsformen in einem weiten Bereich variiert werden, um die Eigenschaften der Faser an die jeweiligen Anforderungen anzupassen. Beispielsweise kann der erste Anteil mit dem ersten Polymer ca. 5 bis ca. 95 Gew.% des Monofils bilden und der zweite Anteil mit dem zweiten Polymer entsprechend ca. 95 bis ca. 5 Gew.%.
Die erfindungsgemäße Faser oder deren Filamente weisen bevorzugt ein regelmäßiges Querschnittsprofil auf, insbesondere ein rundes, ovales oder polygonales Querschnittsprofil . Das bevorzugte Querschnittsprofil kann je nach vorgesehener Verwendung der Faser durch die Geometrie der Spinndüse vorgegeben werden, was einen wesentlichen Vorteil der erfindungsgemäßen Fasern gegenüber PTFE-Fasern, die durch Spleißen hergestellt sind, darstellt. Im Gegensatz zu den letztgenannten Fasern weisen die erfindungsgemäßen Fasern bzw. deren Filamente herstellungsbedingt auch eine niedrige Oberflächenrauheit auf, was insbesondere beim Verweben oder einer sonstigen Weiterverarbeitung zu textilen Materialien vorteilhaft ist.
Die Feinheit der erfindungsgemäßen Faser oder deren Filamente kann je nach Art der verwendeten Polymere und je nach Einsatzzweck der Faser in einem weiten Bereich variiert werden, wobei die Feinheit bevorzugt in einem Bereich von ca. 1 bis ca. 1000 dtex liegt, insbesondere im Bereich von ca. 2 bis ca. 100 dtex. In der Regel wird die Feinheit der einzelnen Filamente vorwiegend auch davon abhängen, ob die erfindungsgemäße Faser ein Monofil oder ein Multifil ist. Bei der Herstellung der erfindungsgemäßen Faser mittels eines Schmelzspinnverfahrens kann die Faser nach dem Austritt aus dem oder den Löchern der Spinndüse gereckt werden, wie dies beim Schmelzspinnen von thermoplastischen Polymeren grundsätzlich bekannt ist. Durch das Recken werden die Polymermoleküle zumindest teilweise entlang der Faserrichtung orientiert, wodurch die mechanische Festigkeit der Faser erhöht werden kann.
Günstigerweise weist die erfindungsgemäße Faser eine Reißfestigkeit von ca. 4 bis ca. 200 cN/tex auf. Die Bruchdehnung der Faser liegt vorzugsweise im Bereich von ca. 10% bis ca. 50%.
Die erfindungsgemäßen Fasern können für eine Vielzahl technischer Anwendungen eingesetzt werden, insbesondere zur Herstellung textiler Materialien wie Geweben oder Vliesen, die aufgrund der Schmelzverarbeitbarkeit der verwendeten Polymere mittels Schweißen konfektioniert werden können. Sowohl lose Fasern als auch entsprechende textile Materialien können insbesondere zur Herstellung von Filterelementen eingesetzt werden, bei denen eine hohe Chemikalienbeständigkeit erforderlich ist.
Ein weiteres Anwendungsgebiet ist die Herstellung von Wasser abweisenden Textilien aufgrund der hohen Hydrophobizität der eingesetzten vollfluorierten Polymere.
Die hydrophoben Eigenschaften der erfindungsgemäßen Fasern können des Weiteren auch zur Herstellung von elektrochemischen Elementen wie z.B. Gasdiffusionselektroden ausgenutzt werden.
Diese und weitere Vorteile der Erfindung werden anhand der nachfolgenden Ausführungsbeispiele unter Bezugnahme auf die Figuren näher erläutert.
Es zeigen im Einzelnen : Fig. 1 : Eine schematische Querschnittsdarstellung eines ersten Ausführungsbeispiels einer erfindungsgemäßen Faser;
Fig. 2 : eine schematische Darstellung einer Spinndüsenvorrichtung zur
Herstellung der Faser gemäß Fig . 1; und
Fig. 3 eine schematische Querschnittsdarstellung eines zweiten Ausführungsbeispiels einer erfindungsgemäßen Faser.
Die Fig . 1 zeigt ein erstes Ausführungsbeispiel einer erfindungsgemäßen Faser 10 mit einem runden Querschnittsprofil und einer Kern-Hülle-Struktur. Die Hülle 12 bildet den ersten Anteil der Faser 10 und umfasst ein schmelzverar- beitbares, vollfluoriertes erstes Polymer. Der Kern 14 bildet den zweiten Anteil der Faser 10 und umfasst ein thermoplastisches zweites Polymer. Die Faser 10 ist ein Monofil, wobei auch mehrere solcher Monofile zu einem Multifil zusam- mengefasst werden können.
Die Faser 10 umfasst in etwa gleiche Anteile des ersten und des zweiten Polymers, d .h. der Kern 14 und die Hülle 12 bilden jeweils etwa 50% der Masse der Faser 10. Alternativ können diese Anteile jedoch in einem weiten Bereich variiert werden, z.B. kann der Anteil des ersten Polymers reduziert werden, so dass die Hülle 12 dünner wird.
Bei dem hier beschriebenen Ausführungsbeispiel ist das erste Polymer ein schmelzverarbeitbares Copolymer aus Tetrafluorethylen mit einem Anteil von 0,1 bis 1 Mol-% Perfluorpropylvinylether, welches eine Schmelztempereratur im Bereich von 314 bis 320 °C aufweist, und das zweite Polymer ist ein Poly- etheretherketon (PEEK) mit einer Schmelztemperatur von mindestens 335 °C. PEEK weist eine sehr hohe mechanische Festigkeit auf und verleiht dadurch der Faser 10 ebenfalls eine hohe Festigkeit (z.B. bis zu 200 cN/tex), während das TFE-Copolymer in der Hülle 12 durch seinen geringen Reibungskoeffizienten, chemische Beständigkeit und UV-Stabilität die entsprechenden Eigenschaften der Faser 10 bestimmt. Die Hülle 12 aus dem TFE-Copolymer erlaubt auch eine leichte Anfärbung der Faser 10, was bei reinen PEEK-Fasern wesentlich schwieriger ist.
Sowohl der Kern 14 als auch die Hülle 12 der Faser 10 können neben dem zweiten bzw. dem ersten Polymer weitere Bestandteile umfassen, um die Eigenschaften der Faser 10 entsprechend zu modifizieren, z. B. Füll- oder Verstärkung sstoffe. Ferner ist es möglich, den Kern 14 oder die Hülle 12 elektrisch leitend zu modifizieren.
Die Fig . 2 zeigt schematisch eine Spinndüsenvorrichtung 20, die zur Herstellung der Faser 10 gemäß der Fig . 1 geeignet ist. Hierbei wird eine Schmelze 22 des ersten Polymers (TFE-Copolymer) durch eine Bad 24 der Schmelze 26 des zweiten Polymers (PEEK) hindurchgepresst, wobei diese Herstellungsweise dadurch ermöglicht wird, dass die Viskosität der zweiten Schmelze 26 in dem Bad 24 geringer ist als die Viskosität der ersten Schmelze 22. Für die Kombination des TFE-Copolymers mit PEEK ist diese Voraussetzung erfüllt.
Die Faser 10 tritt bei der Vorrichtung 20 aus zwei Spinnlöchern 28 aus, wobei auch eine größere Zahl von Spinnlöchern (z. B. im Bereich von 50) vorgesehen sein kann. Die aus den Spinnlöchern 28 austretenden Fasern 10 können entweder als Monofile einzeln aufgenommen oder als Filamente zu einem Multifil vereinigt werden.
Bei der Durchführung des Schmelzspinnverfahrens mit einem TFE-Copolymer und PEEK können Verarbeitungstemperaturen von bis zu ca. 400 °C eingesetzt werden, wobei dies auch für weitere Hochtemperaturkunststoffen wie z. B. Polyimide (PI), Polyetherketonketon (PEKK) oder Polyphenylensulfid (PES) gilt. Beispielsweise können die Temperatur an drei Zonen des Extruders 355 °C, 375 °C und 380 °C betragen, und die Temperatur an der Spinndüse 390 °C.
Alternativ zu der Kern-Hülle-Struktur der Faser 10 können die beiden Anteile der erfindungsgemäßen Faser bei einem Monofil auch in anderer Weise angeordnet sein, z. B. im Querschnitt der Faser nebeneinander. Diese Variante ist schematisch in der Fig. 3 dargestellt. Bei der Faser 30 gemäß diesem zweiten Ausführungsbeispiel bildet der erste Anteil 32 mit dem ersten Polymer die linke Hälfte des Faserquerschnitts und der zweite Anteil 34 mit dem zweiten Polymer die rechte Hälfte. Um die stoffschlüssige Verbindung der beiden Anteile 32 und 34 entlang der Kontaktfläche 36 zu verbessern, können dem ersten und/oder den zweiten Polymer entsprechende Additive zugesetzt werden, die eine chemische Verknüpfung zwischen den Materialien ermöglichen .

Claims

P a t e n t a n s p r ü c h e
1. Faser, die mittels eines Schmelzspinnverfahrens hergestellt ist, umfassend einen ersten Anteil umfassend ein schmelzverarbeitbares, vollfluoriertes erstes Polymer, und einen zweiten Anteil umfassend ein thermoplastisches zweites Polymer.
2. Faser nach Anspruch 1, wobei das erste Polymer ein Copolymer von Te- trafluorethylen und mindestens einem vollfluorierten Comonomer ist, wobei der Comonomeranteil ca. 1 Mol-% oder weniger beträgt, insbesondere von ca. 0,1 Mol-% bis ca. 1 Mol-%.
3. Faser nach Anspruch 2, wobei das Comonomer ausgewählt ist aus Hexa- fluorpropylen, Perfluoralkylvinylethern und Perfluor-(2,2-dimethyl-l,3- dioxol).
4. Faser nach einem der vorangehenden Ansprüche, wobei das erste Polymer einen Amorphanteil von mindestens 50% aufweist.
5. Faser nach einem der vorangehenden Ansprüche, wobei das zweite Polymer ausgewählt ist aus Polyethylenterephthalat, Polybutylentereph- thalat, Polyamiden, Polyimiden, Polyetherketonen, Polyphenylensulfid oder Mischungen hiervon.
6. Faser nach einem der vorangehenden Ansprüche, wobei die Faser aus einem Compound gebildet ist, der ca. 20 bis ca. 80 Gew.% des ersten Polymers und ca. 20 bis ca. 80 Gew.% des zweiten Polymers umfasst.
7. Faser nach einem der Ansprüche 1 bis 5, wobei der erste und der zweite Anteil räumlich voneinander getrennte Bereiche der Faser bilden.
8. Faser nach Anspruch 7, wobei der erste Anteil der Faser im Wesentlichen vollständig aus dem ersten Polymer besteht, oder aus einem Compound des ersten Polymers mit einem oder mehreren weiteren Polymeren und/oder mit einem oder mehreren Füllstoffen.
9. Faser nach Anspruch 7 oder 8, wobei die Faser ein Multifil ist, umfassend Filamente aus dem ersten Polymer, die den ersten Anteil bilden, und Filamente aus dem zweiten Polymer, die den zweiten Anteil bilden.
10. Faser nach Anspruch 9, wobei das Multifil ca. 10 bis ca. 150 Filamente umfasst, und wobei ca. 20% bis ca. 80% der Filamente aus dem ersten Polymer und ca. 20% bis ca. 80% der Filamente aus dem zweiten Polymer gebildet sind.
11. Faser nach Ansprüche 7 oder 8, wobei die Faser ein Monofil ist, bei dem der erste und der zweite Anteil sich jeweils in Faserrichtung erstrecken und stoffschlüssig miteinander verbunden sind, oder ein Multifil mit einer Mehrzahl derartiger Monofile als Filamente.
12. Faser nach Anspruch 11, wobei der erste und der zweite Anteil innerhalb des Monofils im Querschnitt nebeneinander angeordnet sind.
13. Faser nach Anspruch 11, wobei der erste oder der zweite Anteil den Kern des Monofils bildet und der andere Anteil eine den Kern umgebende Hülle.
14. Faser nach einem der Ansprüche 11 bis 13, wobei der erste Anteil mit dem ersten Polymer ca. 5 bis ca. 95 Gew.% des Monofils bildet und der zweite Anteil mit dem zweiten Polymer ca. 95 bis ca. 5 Gew.%.
15. Faser nach einem der vorangehenden Ansprüche, wobei die Faser oder deren Filamente ein regelmäßiges Querschnittsprofil aufweisen, insbesondere ein rundes, ovales oder polygonales Querschnittsprofil.
Faser nach einem der vorangehenden Ansprüche, wobei die Faser oder deren Filamente eine Feinheit von ca. 1 bis ca. 1000 dtex aufweisen, insbesondere von ca. 2 bis ca. 100 dtex.
17. Faser nach einem der vorangehenden Ansprüche, wobei die Faser eine Reißfestigkeit von ca. 4 bis ca. 200 cN/tex aufweist.
PCT/EP2013/057433 2012-04-17 2013-04-10 Mittels schmelzspinnverfahren hergestellte faser WO2013156359A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380017782.3A CN104204312A (zh) 2012-04-17 2013-04-10 借助于熔融纺丝法制造的纤维
EP13716266.5A EP2839062A1 (de) 2012-04-17 2013-04-10 Mittels schmelzspinnverfahren hergestellte faser
US14/488,749 US20150079391A1 (en) 2012-04-17 2014-09-17 Fiber produced by means of a melt spinning method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012103301A DE102012103301A1 (de) 2012-04-17 2012-04-17 Mittels Schmelzspinnverfahren hergestellte Faser
DE102012103301.3 2012-04-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/488,749 Continuation US20150079391A1 (en) 2012-04-17 2014-09-17 Fiber produced by means of a melt spinning method

Publications (1)

Publication Number Publication Date
WO2013156359A1 true WO2013156359A1 (de) 2013-10-24

Family

ID=48095837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/057433 WO2013156359A1 (de) 2012-04-17 2013-04-10 Mittels schmelzspinnverfahren hergestellte faser

Country Status (5)

Country Link
US (1) US20150079391A1 (de)
EP (1) EP2839062A1 (de)
CN (1) CN104204312A (de)
DE (1) DE102012103301A1 (de)
WO (1) WO2013156359A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021069472A1 (de) * 2019-10-08 2021-04-15 Württembergische Spiralsiebfabrik Gmbh Kern-mantel-faden, flächengebilde, verfahren zum herstellen eines kern-mantel-fadens, verfahren zum herstellen eines flächengebildes

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106192445B (zh) * 2016-06-24 2018-07-06 东莞市东佶新材料制带科技有限公司 耐磨皮带的制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5407736A (en) * 1993-08-12 1995-04-18 Shakespeare Company Polyester monofilament and paper making fabrics having improved abrasion resistance
US5804659A (en) * 1996-12-18 1998-09-08 Asten, Inc. Processing of polyphthalamide monofilament
WO2001048280A1 (en) * 1999-12-24 2001-07-05 E.I. Dupont De Nemours And Company Melt processible fluoropolymer composites
WO2003000969A1 (en) * 2001-06-22 2003-01-03 Cachet Medical Limited Bicomponent fibers and textiles made therefrom
US20040265579A1 (en) * 2003-04-09 2004-12-30 Fiber Innovations Technology, Inc. Fibers formed of a biodegradable polymer and having a low friction surface
US20050159552A1 (en) * 2004-01-21 2005-07-21 Reed Jon S. Flame retarded fibers and filaments and process of production therefor
EP1263877B1 (de) 2000-02-16 2007-06-27 Eidgenössische Technische Hochschule Zürich Verfahren zur herstellung von artikeln aus schmelzen von copolymeren des tetrafluorethylen
US20070232170A1 (en) * 2005-12-22 2007-10-04 Atwood Kenneth B Polyester and modified fluoropolymer blends
WO2009079310A1 (en) * 2007-12-14 2009-06-25 3M Innovative Properties Company Multi-component fibers

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA8289B (en) * 1981-01-15 1982-11-24 Akzo Nv Synthetic technical multifilament yarn and process for the manufacture thereof
US4406850A (en) * 1981-09-24 1983-09-27 Hills Research & Development, Inc. Spin pack and method for producing conjugate fibers
GB2138738B (en) * 1983-04-01 1986-10-22 Kureha Chemical Ind Co Ltd Ultrafine fiber of an ethylene tetrafluoride copolymer and a porous membrane thereof
JPH0291210A (ja) * 1988-09-29 1990-03-30 Toray Ind Inc 極細熱可塑性弗素繊維およびその製法
DE4131746A1 (de) * 1991-09-24 1993-03-25 Hoechst Ag Fasern aus tetrafluorethylen-copolymeren, verfahren zu deren herstellung und deren verwendung
IT1255935B (it) * 1992-10-29 1995-11-17 Ausimont Spa Filato multifilamento di polimeri a base di tetrafluoroetilene e relativo processo di preparazione.
KR100466355B1 (ko) * 1996-07-31 2005-06-16 미쯔비시 레이온 가부시끼가이샤 폴리테트라플루오로에틸렌함유혼합분체,이를함유하는열가소성수지조성물및그성형체
ATE222966T1 (de) * 1997-06-19 2002-09-15 Du Pont Schmelzgesponnene fasern aus fluoropolymeren und herstellungsverfahren
JP2002517537A (ja) * 1998-05-29 2002-06-18 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 染色できるフルオロ重合体の繊維及びフィルム
JP2002535507A (ja) * 1999-01-29 2002-10-22 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー フルオロ重合体繊維の高速熔融紡糸
DE10249585B4 (de) * 2002-10-24 2007-10-04 Teijin Monofilament Germany Gmbh Leitfähige, schmutzabweisende Kern-Mantel-Faser mit hoher Chemikalienresistenz, Verfahren zu deren Herstellung und Verwendung

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5407736A (en) * 1993-08-12 1995-04-18 Shakespeare Company Polyester monofilament and paper making fabrics having improved abrasion resistance
US5804659A (en) * 1996-12-18 1998-09-08 Asten, Inc. Processing of polyphthalamide monofilament
WO2001048280A1 (en) * 1999-12-24 2001-07-05 E.I. Dupont De Nemours And Company Melt processible fluoropolymer composites
EP1263877B1 (de) 2000-02-16 2007-06-27 Eidgenössische Technische Hochschule Zürich Verfahren zur herstellung von artikeln aus schmelzen von copolymeren des tetrafluorethylen
WO2003000969A1 (en) * 2001-06-22 2003-01-03 Cachet Medical Limited Bicomponent fibers and textiles made therefrom
US20040265579A1 (en) * 2003-04-09 2004-12-30 Fiber Innovations Technology, Inc. Fibers formed of a biodegradable polymer and having a low friction surface
US20050159552A1 (en) * 2004-01-21 2005-07-21 Reed Jon S. Flame retarded fibers and filaments and process of production therefor
US20070232170A1 (en) * 2005-12-22 2007-10-04 Atwood Kenneth B Polyester and modified fluoropolymer blends
WO2009079310A1 (en) * 2007-12-14 2009-06-25 3M Innovative Properties Company Multi-component fibers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021069472A1 (de) * 2019-10-08 2021-04-15 Württembergische Spiralsiebfabrik Gmbh Kern-mantel-faden, flächengebilde, verfahren zum herstellen eines kern-mantel-fadens, verfahren zum herstellen eines flächengebildes

Also Published As

Publication number Publication date
DE102012103301A1 (de) 2013-10-17
EP2839062A1 (de) 2015-02-25
CN104204312A (zh) 2014-12-10
US20150079391A1 (en) 2015-03-19

Similar Documents

Publication Publication Date Title
DE19630523C1 (de) Spinnvliesstoff und Vorrichtung zu dessen Herstellung
DE3122497C2 (de)
DE3151294C2 (de) Polypropylen-Spinnvliesstoff mit niedrigem Fallkoeffizienten
DE2735187C2 (de) Gewebe aus Polytetrafluoräthylen und Verfahren zu seiner Herstellung
DE1660651A1 (de) Verfahren und Vorrichtung zur Herstellung von synthetischen Faeden od.dgl.
DE60317094T2 (de) Vliesstoff mit hohem arbeitsvermögen sowie herstellverfahren
DE102007009119A1 (de) Elektrisch leitfähige Fäden, daraus hergestellte Flächengebilde und deren Verwendung
DE2657050A1 (de) Verfahren zum gemeinsamen erspinnen von mindestens zwei synthetischen dreifluegeligen faeden
EP3523472B1 (de) Verfahren zur herstellung eines plissierbaren textilen gebildes mit elektrostatisch geladenen fasern und plissierbares textiles gebilde
DE102014002231B4 (de) Reinigungstuch, Verfahren zur Herstellung eines Reinigungstuchs und dessen Verwendung
DE102007030159A1 (de) Mechanisch strukturierte PET-Monofilamente, insbesondere daraus bestehende Saiten für Ballspielschläger
WO2021018574A1 (de) Spunbond-vliesstoff aus endlosfilamenten und vorrichtung zur erzeugung des spunbond-vliesstoffes
DE69808917T3 (de) Garn für kunstrasen, verfahren zu seiner hertstellung und aus diesem garn hergestellte kunstrasenfeld
EP2839062A1 (de) Mittels schmelzspinnverfahren hergestellte faser
EP0398221B2 (de) Garn aus Kern-Mantel-Fäden und Verfahren zu dessen Herstellung
DE102019132028B3 (de) Piezoresistiver Kraftsensor
DE102007009118A1 (de) Elektrisch leitfähige Fäden, daraus hergestellte Flächengebilde und deren Verwendung
DE2042798A1 (de) Besonderes extrafeines synthetisches Filamentbündel und Verbundfilament mit inselartigem Aufbau zur Erzeugung des FiIamentbündels, sowie Verfahren zu deren Herstellung
EP0617743B1 (de) Schmutzabweisendes monofilament fuer papiermaschinensiebe, verfahren zu dessen herstellung und verwendung
DE102008028617A1 (de) Mit Perfluorpolyethern modifizierte Monofilamente
DE19630524C1 (de) Spinnvliesstoff und Vorrichtung zu dessen Herstellung
DE3915819A1 (de) Garn aus kern-mantel-faeden und verfahren zu dessen herstellung
DE102007009117A1 (de) Elektrisch leitfähige Fäden, daraus hergestellte Flächengebilde und deren Verwendung
DE3036931C2 (de)
EP4036297A1 (de) Spinnvlieslaminat und verfahren zur herstellung eines spinnvlieslaminates

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13716266

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013716266

Country of ref document: EP