WO2013155954A1 - 用于压缩机的温控设备及方法、压缩机组件和制冷系统 - Google Patents

用于压缩机的温控设备及方法、压缩机组件和制冷系统 Download PDF

Info

Publication number
WO2013155954A1
WO2013155954A1 PCT/CN2013/074246 CN2013074246W WO2013155954A1 WO 2013155954 A1 WO2013155954 A1 WO 2013155954A1 CN 2013074246 W CN2013074246 W CN 2013074246W WO 2013155954 A1 WO2013155954 A1 WO 2013155954A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
temperature
liquid
liquid supply
refrigerant
Prior art date
Application number
PCT/CN2013/074246
Other languages
English (en)
French (fr)
Inventor
许旺蓓
隋勇
姚文虎
瓦特·斯蒂芬
热纳瓦·戴维
刘英杰
Original Assignee
丹佛斯(天津)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 丹佛斯(天津)有限公司 filed Critical 丹佛斯(天津)有限公司
Publication of WO2013155954A1 publication Critical patent/WO2013155954A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/19Temperature
    • F04C2270/195Controlled or regulated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor

Definitions

  • the present invention relates to the field of compressors, and more particularly to a temperature control apparatus for a compressor, a compressor assembly, a refrigeration system, and a temperature control method for a compressor. Background technique
  • compressors As a key component in refrigeration equipment, compressors have received extensive attention for their efficiency and stability.
  • the compressor operates in conjunction with a condenser, throttle, and evaporator to achieve a refrigeration cycle.
  • the exhaust temperature of the compressor ie the temperature of the refrigerant fluid flowing from the refrigerant outlet of the compressor
  • the compressor may increase and the working efficiency may occur. Reduced problems. If the compressor is operated in this state for a long time, it will cause serious damage to the compressor itself.
  • An object of the present invention is to provide a temperature control apparatus and a temperature control method capable of accurately and stably controlling the exhaust gas temperature of a compressor.
  • a temperature control apparatus for a compressor comprising: a temperature detecting device, wherein the temperature detecting device is configured to detect The temperature of the refrigerant fluid at the outlet of the refrigerant fluid of the compressor;
  • a liquid supply line for supplying liquid refrigerant to the compressor; a liquid supply valve, the liquid supply valve being disposed in the liquid supply line for controlling supply to the Compressor a control device, the control device receives a temperature value detected by the temperature detecting device and controls the liquid supply valve according to the temperature value such that the temperature value is increased when the temperature value is higher than a first threshold a flow rate of the liquid refrigerant, and wherein the flow rate of the liquid refrigerant is decreased if the temperature value is lower than a second threshold, the first threshold being greater than or equal to the second threshold.
  • control means may be arranged to maintain the flow rate of the liquid refrigerant unchanged if the temperature value is not higher than the first threshold and not lower than the second threshold.
  • liquid refrigerant may have the same composition as the refrigerant fluid.
  • the initial value of the flow rate of the liquid refrigerant may be zero.
  • the liquid refrigerant may be supplied to the compression chamber of the compressor to be mixed with the refrigerant fluid in the compressor.
  • the liquid supply line may further include a liquid guiding channel and a liquid discharging hole in the compressor, and the liquid refrigerant is supplied into the compression chamber through the liquid guiding channel and the liquid discharging hole.
  • liquid supply valve may be an expansion valve that adjusts the flow rate of the liquid refrigerant by changing the degree of opening.
  • the first threshold may be greater than the second threshold by 1 to 5 degrees Celsius.
  • a compressor assembly comprising:
  • the compressor may be provided with a receiving box, the control device is installed in the receiving box, and the temperature detecting device is disposed at a refrigerant fluid outlet of the compressor.
  • the compressor may be a scroll compressor.
  • liquid supply line may extend into the interior of the compressor and communicate with the compression chamber of the compressor.
  • a refrigeration system comprising:
  • a condenser an inlet of the condenser is connected to a refrigerant fluid outlet of the compressor, and an outlet of the condenser is connected to the liquid supply pipeline;
  • a temperature control method for a compressor comprising the steps of: detecting a temperature of a refrigerant fluid at a compressor refrigerant fluid outlet by a temperature detecting device and transmitting a temperature detection result to the control device ; with
  • control device Using the control device to generate a liquid supply valve control signal based on the received temperature detection result, and transmitting a liquid supply valve control signal to a liquid supply valve disposed in the liquid supply line to supply the liquid supply line via the liquid supply line Controlling the flow rate of the liquid refrigerant to the compressor, the liquid supply valve control signal causing the liquid supply valve to increase the flow rate of the liquid refrigerant when the temperature value is higher than the first threshold, The flow rate of the liquid refrigerant is reduced if the temperature value is lower than the second threshold, the first threshold being greater than or equal to the second threshold.
  • the two steps can be performed cyclically.
  • liquid supply valve control signal may cause the liquid supply valve to maintain the flow rate of the liquid refrigerant unchanged if the temperature value is not higher than the first threshold and not lower than the second threshold.
  • the temperature control method further includes: performing self-test on the control device before detecting the temperature of the refrigerant fluid at the compressor refrigerant fluid outlet by the temperature detecting device, if the control device is connected to the temperature detecting device Normally, the liquid supply valve is closed to make the flow rate of the liquid refrigerant zero. If the connection between the control device and the temperature detecting device is abnormal, the control device stops working and alarms.
  • At least one aspect of the above technical solution of the present invention is capable of temperature control device and temperature control method for temperature control of a compressor by monitoring temperature at a compressor refrigerant fluid outlet and supplying a compressor with a flow rate controlled liquid refrigerant To ensure stable and efficient operation of the compressor and refrigeration system.
  • FIG. 1 shows a schematic block diagram of a temperature control apparatus for a compressor according to an embodiment of the present invention
  • FIG. 2 shows a schematic structure of a compressor used in conjunction with the temperature control apparatus according to an embodiment of the present invention. ;
  • FIG. 3 shows a schematic block diagram of a refrigeration system in accordance with an embodiment of the present invention.
  • Fig. 4 shows a flow chart of a temperature control method for a compressor in accordance with an embodiment of the present invention. detailed description
  • Fig. 1 schematically shows a temperature control device 100 for a compressor in accordance with an embodiment of the present invention.
  • the temperature control device 100 includes: a temperature detecting device 101, a control device 102, a liquid supply valve 103, and a liquid supply pipe 104.
  • the temperature detecting means 101 for example, a temperature sensor, is for detecting the temperature of the refrigerant fluid at the refrigerant outlet of the compressor 200.
  • the supply line 104 is for supplying liquid refrigerant to the compressor 200, such as to a compression chamber of the compressor 200.
  • the liquid supply valve 103 is disposed in the liquid supply line 104 for controlling the flow rate of the liquid refrigerant supplied to the compressor 200.
  • the temperature value detected by the temperature detecting device 101 is sent to the control device 102, such as a control circuit board.
  • the control device 102 receives the temperature value detected by the temperature detecting device 101 and controls the liquid supply valve 103 according to the temperature value, so that the liquid cooling is increased when the temperature value is higher than the first threshold.
  • the temperature of the refrigerant fluid discharged from the compressor 200 (also referred to as the exhaust gas temperature due to the fact that the refrigerant fluid discharged from the compressor 200 is normally a gas) is an important indicator of the operation of the compressor 200. . Excessive exhaust temperatures will reduce the efficiency and reliability of the compressor 200. Further, the temperature control apparatus 100 of the compressor according to the present invention detects the exhaust temperature of the compressor 200 through the temperature detecting means 101, and supplies the liquid refrigerant to the compressor 200 through the liquid supply line 104 on the other hand. The refrigerant can cool the refrigerant fluid in the compressor 200.
  • the control device 102 adjusts the flow rate of the liquid refrigerant supplied to the compressor 200 based on the temperature value detected by the temperature detecting device 101.
  • the temperature value is higher than the first threshold, the flow rate of the liquid refrigerant is increased, and when the temperature value is lower than the second threshold, the flow rate of the liquid refrigerant is decreased, thereby controlling the exhaust temperature of the compressor 200 to be reasonable.
  • the first threshold may be greater than or equal to a second threshold, for example, the first threshold may be greater than the second threshold by one to five degrees Celsius, and more specifically, the first threshold may be greater than the second threshold by four degrees Celsius.
  • control device 102 may be configured to maintain the flow rate of the liquid refrigerant unchanged when the temperature value is not higher than the first threshold and not lower than the second threshold, thereby simplifying the liquid refrigerant.
  • the control of the flow It will be understood by those skilled in the art that the flow rate of the liquid refrigerant supplied to the compressor 200 may also be changed if the temperature value is not higher than the first threshold and not lower than the second threshold, as long as the exhaust gas can be achieved. A reasonable control of the temperature is sufficient.
  • the initial value of the flow rate of the liquid refrigerant supplied to the compressor 200 may be zero.
  • the temperature detecting means 101 when the temperature detecting means 101 does not detect that the exhaust gas temperature is higher than the first threshold, the liquid refrigerant is not supplied to the compressor 200. This can prevent the presence of excess liquid in the compressor 200 due to blind supply of liquid refrigerant, thereby reducing efficiency.
  • the liquid refrigerant may be supplied to the compression chamber of the compressor 200 to be the refrigerant fluid in the compressor 200 in the case where the flow rate of the liquid refrigerant supplied to the compressor 200 is not zero. mixing.
  • the liquid refrigerant in the heat exchange tube to exchange heat with the refrigerant fluid in the compressor 200 through the heat exchange tube wall for cooling purposes.
  • this requires the arrangement of the heat exchange tubes in the compressor 200, which complicates the design of the internal structure of the compressor and may reduce the performance of the compressor and increase the cost.
  • the liquid refrigerant may have the same composition as the refrigerant fluid in the compressor 200. This helps to fully and cyclically utilize the refrigerant fluid. Particularly in the case where the liquid refrigerant is supplied to the compression chamber of the compressor 200 to be mixed with the refrigerant fluid in the compressor 200, the liquid refrigerant and the refrigerant fluid in the compression chamber have the same composition to avoid liquid of different compositions.
  • the refrigerant and the refrigerant fluid generate a physicochemical reaction to reduce the cooling efficiency and the like, and the liquid refrigerant and the refrigerant fluid can be completely fused to increase the utilization rate of the refrigerant fluid.
  • the temperature of the liquid refrigerant supplied to the compressor 200 may be lower than the temperature of the refrigerant fluid in the compressor 200.
  • a liquid refrigerant having a temperature not lower than or higher than the refrigerant fluid for example, in the case where the liquid refrigerant is directly mixed with the refrigerant fluid in the compressor 200 in the compression chamber.
  • the liquid refrigerant may be a liquid refrigerant from an outlet of the condenser.
  • the refrigerant fluid in the refrigeration cycle can be utilized as much as possible.
  • the liquid refrigerant supplied to the compressor 200 described above may be supplied in other manner as long as it satisfies the requirement for cooling the refrigerant fluid in the compressor 200.
  • the liquid supply line 104 may further include a liquid guiding channel and a liquid discharging hole in the compressor 200, and the liquid refrigerant is supplied into the compression cavity through the liquid guiding channel and the liquid discharging hole. Thereby mixing with the refrigerant fluid in the compressor 200.
  • the liquid supply valve 103 may be an expansion valve, such as a stepper motor type electromagnetic expansion valve, and the flow rate of the liquid refrigerant may be adjusted by the degree of opening of the expansion valve.
  • the compressor assembly includes a compressor 200 and a temperature control device 100 for the compressor as described above.
  • the temperature control device 100 for the compressor can be integrated with the compressor 200 at the factory.
  • the compressor 200 may be provided with a containment box, the control device 102 is mounted in a containment tank, and the temperature detecting device 101 is disposed at the refrigerant fluid outlet of the compressor 200.
  • the compressor assembly can be easily transported, sold, and conveniently used by the user, saving space and saving component commissioning costs.
  • compressor manufacturers only provide compressors with liquid discharge function, and it is necessary for the unit manufacturers to install control components such as control valves.
  • the components of the compressor 200 and the temperature detecting device 101, the control device 102, and the like in the temperature control device 100 may also be discrete structures with necessary electrical connections and flows therebetween. The roads are connected together.
  • compressor assembly A specific embodiment of the compressor assembly will be described below by taking a scroll compressor as an example.
  • present invention is not limited thereto, and other types of compressors are also possible.
  • an exemplary scroll compressor 200' mainly includes: a fixed scroll 1 on which a vortex tooth 51 is formed; a movable scroll 2 on which a vortex tooth 52 is formed; a support member 3 , an assembly for supporting the fixed scroll 1 and the movable scroll 2; a crankshaft 4 for driving the movable scroll 2; an electric motor 5 connected to the crankshaft 4 to drive the movable scroll 2,
  • the moving scroll 2 moves relative to the fixed scroll 1; a substantially cylindrical housing 6 for forming a cylindrical closed space of the scroll compressor 200' to accommodate the scroll compressor 200'
  • the vortex teeth 51 of the fixed scroll 1 may be milled into a spiral shape, and the vortex teeth 52 of the orbiting scroll 2 correspond to the vortex teeth 51 on the fixed scroll 1.
  • the crankshaft 4, driven by the motor 5 drives the orbiting scroll 2 relative to the fixed scroll under the constraints of a track device (e.g., a cross mechanism) (not shown in detail) 1 performing eccentric rotation to form a relative movement between the fixed scroll 1 and the movable scroll 2, and the relative movement causes the volume of the compression chamber to continuously decrease during compression, thereby increasing the pressure in the compression chamber , compressing the refrigerant.
  • a track device e.g., a cross mechanism
  • the fixed scroll 1 is provided with a liquid discharge hole 21 and a fluid passage 11, one end of which is in fluid communication with the liquid discharge hole 21, and the fluid passage 11 is The other end is in fluid communication with the conduit member 10, wherein the conduit member 10 can be sealingly coupled to the fluid passage 11 by welding or the like.
  • a connecting member 8 is provided inside the casing 6, which communicates the duct member 10 with the external passage member 9, and fixes the duct member 10 and the external passage member 9 with respect to the casing 6.
  • the supply line 104 includes an outer passage member 9, a connecting member 8, a duct member 10, a fluid passage 11, and a liquid discharge hole 21.
  • the liquid refrigerant is injected into the compression chamber 20 through the external passage member 9, the connecting member 8, the duct member 10, the fluid passage 11, and the liquid discharge hole 21 under the control of a liquid supply valve (not shown) connected to the external passage member 9 in this order. It is mixed with the refrigerant fluid in the compressor 200 to achieve a cooling effect.
  • the supply line 104 may include any portion that can extend into the interior of the compressor 200 and communicate with the compression chamber of the compressor 200 to effect supply of liquid refrigerant into the compression chamber of the compressor 200.
  • the above embodiment is exemplified by a scroll compressor, it will be understood by those skilled in the art that the temperature control apparatus according to the present invention is also applicable to various other compressors as long as the liquid supply line 104 can supply the liquid refrigerant to the compression.
  • the compressor assembly in accordance with the present invention may also include various other types of compressors.
  • the invention also relates to a refrigeration system 1000.
  • the refrigeration system 1000 includes: a compressor 200, a condenser 300, a throttle valve 400, an evaporator 500, and a temperature control device 100 for a compressor in accordance with the present invention.
  • the arrows in Fig. 3 indicate the flow direction of the refrigerant fluid, the liquid refrigerant, and the flow direction of the signal.
  • An inlet of the condenser 300 is connected to a refrigerant outlet of the compressor 200, and an outlet of the condenser 300 is connected to the supply line 104.
  • the inlet of the throttle valve 400 is also connected to the outlet of the condenser 300.
  • the inlet of the evaporator 500 is connected to the outlet of the throttle valve 400.
  • the outlet of the evaporator 500 is connected to the refrigerant fluid inlet of the compressor 200.
  • the refrigerant fluid is compressed in the compressor 200, supplied to the condenser 300, depressurized by the throttle valve 400, supplied to the evaporator 500, and then returned from the evaporator 500 to the compressor 200.
  • a part of the refrigerant fluid flowing out from the outlet of the condenser 300 flows into the liquid supply line 104 and is supplied as a liquid refrigerant to the compressor 200 as described above, and is controlled by the control device 102 based on the compressor detected by the temperature detecting device 101.
  • the exhaust temperature controls the temperature of the compressor. Under the action of the temperature control device 100 for a compressor according to the present invention, the refrigeration system 1000 can achieve good work efficiency and stability.
  • the present invention also relates to a temperature control method for a compressor.
  • the temperature control method includes:
  • Step S602 detecting the temperature of the refrigerant fluid at the refrigerant outlet of the compressor 200 by the temperature detecting device 101 and transmitting the temperature detection result to the control device 102;
  • Step S603 using the control device 102 to generate a liquid supply valve control signal according to the received temperature detection result, and send the liquid supply valve control signal to the liquid supply valve 103 disposed in the liquid supply line 104 to
  • the flow rate of the liquid refrigerant supplied to the compressor 200 via the liquid supply line 104 is controlled, and the liquid supply valve control signal causes the liquid supply valve 103 to increase the liquid state when the temperature value is higher than the first threshold value.
  • a flow rate of the refrigerant wherein the flow rate of the liquid refrigerant is reduced if the temperature value is lower than a second threshold, the second threshold being no greater than the first threshold.
  • the generation of the supply valve control signal can be achieved by comparing the detected temperature value with a first threshold and a second threshold using a comparator or by means of other threshold determination circuits or programs.
  • the control of the flow rate of the liquid refrigerant by the liquid supply valve control signal can be achieved by adjusting the degree of opening of the liquid supply valve 103.
  • the control means may for example be a control circuit board, a logic control unit or the like, which may be a separate device from the compressor 200 or may be mounted integrally with the compressor 200.
  • the liquid supply valve control signal may be configured to maintain the liquid supply valve to maintain the liquid refrigerant when the temperature value is not higher than the first threshold and not lower than the second threshold. The flow rate is unchanged.
  • steps S602 and S603 may be performed cyclically. This ensures that the compressor discharge temperature is automatically maintained within a suitable range to allow the compressor to operate efficiently and stably.
  • the temperature control method may further include an optional step S601 (see FIG. 4): before initially detecting the temperature of the refrigerant fluid at the compressor refrigerant fluid outlet by the temperature detecting device, The control device 102 performs a self-test. If the connection between the control device 102 and the temperature detecting device 101 is normal, the liquid supply valve 103 is closed to make the flow rate of the liquid refrigerant zero. If the connection between the control device 102 and the temperature detecting device 101 is abnormal, control is performed. Device 102 stops working and alerts. This avoids errors in the temperature control of the compressor due to equipment failure and connection problems. While the invention has been described in connection with the drawings, the embodiments of the invention

Abstract

一种用于压缩机的温控设备及方法、压缩机组件和制冷系统。该温控设备包括:温度检测装置,用于检测压缩机制冷流体出口处的制冷流体的温度;供液管路,用于将液态制冷剂供给至所述压缩机;供液阀,设置在所述供液管路中,用于控制供给至所述压缩机的液态制冷剂的流量;控制装置,接收所述温度检测装置所检测到的温度值并根据所述温度值对所述供液阀进行控制,使得在所述温度值高于第一阈值的情况下增大液态制冷剂的流量,而在所述温度值低于第二阈值的情况下减小液态制冷剂的流量,所述第二阈值不大于所述第一阈值。该温控设备及方法能够避免排气温度上升导致的压缩机工作性能下降的问题,保证压缩机稳定高效地工作。

Description

用于压缩机的温控设备及方法、 压缩机组件和制冷系统 本申请要求 2012年 4月 16日递交的、 申请号为 201210110314.8、 发明名 称为 "用于压缩机的温控设备及方法、 压缩机组件和制冷系统" 的中国专利申 请的优先权, 其通过引用整体并入本文。 技术领域
本发明涉及压缩机领域, 尤其涉及一种用于压缩机的温控设备、 一种压缩 机组件、 一种制冷系统以及一种用于压缩机的温度控制方法。 背景技术
压缩机作为制冷设备中的关键部件,其工作效率和稳定性受到广泛的关注。 在典型的制冷设备中, 压缩机与冷凝器、 节流阀和蒸发器协同操作, 实现制冷 循环。 然而, 当蒸发温度较低而冷凝温度较高时(尤其在北方的冬天), 可能出 现压缩机的排气温度 (即从压缩机的制冷流体出口流出的制冷流体的温度) 升 高和工作效率降低的问题。 压缩机如果长期在此状态下工作, 将会对压缩机本 身造成严重的危害。
为了解决上述问题, 需要一种能够对压缩机的排气温度进行精确和稳定的 控制的装置和方法, 从而确保压缩机及制冷设备稳定高效的运转。 发明内容
本发明的目的是提供一种能够对压缩机的排气温度进行精确和稳定控制的 温控设备和温度控制方法。
为了实现上述发明目的, 本发明的技术方案通过以下方式来实现: 根据本发明的一个方面, 提供一种用于压缩机的温控设备, 包括: 温度检测装置, 所述温度检测装置用于检测压缩机的制冷流体出口处的制 冷流体的温度;
供液管路, 所述供液管路用于将液态制冷剂供给至所述压缩机; 供液阀, 所述供液阀设置在所述供液管路中, 用于控制供给至所述压缩机 控制装置, 所述控制装置接收所述温度检测装置所检测到的温度值并根据 所述温度值对所述供液阀进行控制, 使得在所述温度值高于第一阈值的情况下 增大液态制冷剂的流量, 而在所述温度值低于第二阈值的情况下减小液态制冷 剂的流量, 所述第一阈值大于或等于所述第二阈值。
进一步地, 所述控制装置可以设置成在所述温度值不高于第一阈值且不低 于第二阈值的情况下维持液态制冷剂的流量不变。
进一步地, 所述液态制冷剂可以与所述制冷流体具有相同的成分。
进一步地, 所述液态制冷剂的流量的初始值可以为零。
更进一步地, 在所述液态制冷剂的流量不为零的情况下, 所述液态制冷剂 可以被供给至压缩机的压缩腔中以与压缩机中的制冷流体混合。
具体地, 所述供液管路还可以包括位于压缩机中的引液通道和喷液孔, 所 述液态制冷剂经由所述引液通道和喷液孔供给至压缩腔中。
更进一步地, 所述供液阀可以为膨胀阀, 所述膨胀阀通过改变张开程度来 调整液态制冷剂的流量。
更进一步地, 所述第一阈值可以比第二阈值大 1至 5摄氏度。
根据本发明的另一方面, 提供一种压缩机组件, 包括:
压缩机; 以及
上述任一种温控设备。
进一步地, 所述压缩机可以设有容纳箱, 所述控制装置安装在所述容纳箱 中, 所述温度检测装置设置在压缩机的制冷流体出口处。
更进一步地, 所述压缩机可以为涡旋压缩机。
更进一步地, 所述供液管路可以延伸入压缩机内部并与压缩机的压缩腔连 通。
根据本发明的另一方面, 提供一种制冷系统, 包括:
上述任一种压缩机组件;
冷凝器, 所述冷凝器的入口与压缩机的制冷流体出口相连接, 所述冷凝器 的出口与所述供液管路相连接;
节流阀, 所述节流阀的入口与所述冷凝器的出口相连接; 和
蒸发器, 所述蒸发器的入口与所述节流阀的出口相连接, 所述蒸发器的出 口与压缩机的制冷流体入口相连接。 根据本发明的又一方面, 提供一种用于压缩机的温度控制方法, 包括步骤: 通过温度检测装置对压缩机制冷流体出口处的制冷流体的温度进行检测并 将温度检测结果发送至控制装置; 和
使用所述控制装置根据所接收到的温度检测结果生成供液阀控制信号, 并 将供液阀控制信号发送至设置在供液管路中的供液阀以对经由所述供液管路供 给至所述压缩机的液态制冷剂的流量进行控制, 所述供液阀控制信号使得供液 阀在所述温度值高于第一阈值的情况下增大液态制冷剂的流量, 而在所述温度 值低于第二阈值的情况下减小液态制冷剂的流量, 所述第一阈值大于或等于所 述第二阈值。
进一步地, 所述两个步骤可以被反复循环地执行。
进一步地, 所述供液阀控制信号可以使供液阀在所述温度值不高于第一阈 值且不低于第二阈值的情况下维持液态制冷剂的流量不变。
更进一步地, 所述温度控制方法还包括: 在最初通过温度检测装置对压缩 机制冷流体出口处的制冷流体的温度进行检测之前, 对控制装置进行自检, 如 果控制装置与温度检测装置的连接正常, 则关闭供液阀使液态制冷剂的流量为 零, 如果控制装置与温度检测装置的连接异常, 则控制装置停止工作并报警。
本发明的上述技术方案中的至少一个方面能够通过对压缩机制冷流体出口 处温度的监测和供给压缩机以流量受控的液态制冷剂来对压缩机进行温度控制 的温控设备和温度控制方法,从而确保压缩机及制冷系统的稳定和有效地工作。 附图说明
图 1示出根据本发明的 实施例的用于压缩机的温控设备的示意性框图; 图 2示出根据本发明的 实施例的与所述温控设备配合使用的压缩机的示 意性结构;
图 3示出根据本发明的 实施例的制冷系统的示意性框图; 和
图 4示出根据本发明的 实施例的用于压缩机的温度控制方法的流程图。 具体实施方式
下面通过实施例, 并结合附图, 对本发明的技术方案作进一步具体的说明。 在说明书中, 相同或相似的附图标号表示相同或相似的部件。 下述参照附图对 本发明实施方式的说明旨在对本发明的总体发明构思进行解释, 而不应当理解 为对本发明的一种限制。
图 1示意性地示出根据本发明的一实施例的用于压缩机的温控设备 100。 该温控设备 100包括: 温度检测装置 101、控制装置 102、供液阀 103和供液管 路 104。所述温度检测装置 101, 例如温度传感器, 用于检测压缩机 200的制冷 流体出口处的制冷流体的温度。 所述供液管路 104用于将液态制冷剂供给至所 述压缩机 200, 如供给至压缩机 200的压缩腔。 所述供液阀 103设置在所述供 液管路 104中, 用于控制供给至所述压缩机 200的液态制冷剂的流量。 温度检 测装置 101所检测到的温度值被发送给所述控制装置 102, 例如控制电路板。 控制装置 102接收所述温度检测装置 101所检测到的温度值并根据所述温度值 对所述供液阀 103进行控制, 使得在所述温度值高于第一阈值的情况下增大液 态制冷剂的流量, 而在所述温度值低于第二阈值的情况下减小液态制冷剂的流 量, 所述第一阈值大于或等于所述第二阈值。
从之前背景技术部分中的描述可知, 从压缩机 200排出的制冷流体的温度 (由于通常压缩机 200排出的制冷流体为气体, 所以又称为排气温度) 是压缩 机 200工作情况的重要指标。 过高的排气温度将降低压缩机 200的工作效率和 可靠性。 而根据本发明的压缩机的温控设备 100—方面通过温度检测装置 101 对压缩机 200的排气温度进行检测, 另一方面通过供液管路 104向压缩机 200 提供液态制冷剂, 该液态制冷剂可以对压缩机 200中的制冷流体进行冷却。 控 制装置 102根据由温度检测装置 101 检测到的温度值来调节供给至压缩机 200 的液态制冷剂的流量。 当温度值高于第一阈值时, 增大液态制冷剂的流量, 而 当温度值低于第二阈值时, 减小液态制冷剂的流量, 从而将压缩机 200的排气 温度控制在合理的范围内。 所述第一阈值可以大于或等于第二阈值, 例如, 第 一阈值可以比第二阈值大 1至 5摄氏度, 更具体地, 第一阈值可以比第二阈值 大 4摄氏度。
在一实施例中, 所述控制装置 102可以设置成在所述温度值不高于第一阈 值且不低于第二阈值的情况下维持液态制冷剂的流量不变, 从而简化对液态制 冷剂的流量的控制。 本领域普通技术人员应当理解, 在所述温度值不高于第一 阈值且不低于第二阈值的情况下供给至压缩机 200的液态制冷剂的流量也可以 变化, 只要能够实现对排气温度的合理控制即可。 在一实施例中,供给至压缩机 200的液态制冷剂的流量的初始值可以为零。 也就是说, 从设备工作开始起, 在温度检测装置 101没有检测到排气温度高于 第一阈值时, 都不会向压缩机 200供给液态制冷剂。 这可以防止由于盲目供给 液态制冷剂而导致压缩机 200中存在过多的液体而降低效率。
在一实施例中,在供给至压缩机 200的液态制冷剂的流量不为零的情况下, 所述液态制冷剂可以被供给至压缩机 200的压缩腔中以与压缩机 200中的制冷 流体混合。 当然, 也可以考虑例如将液态制冷剂置于热交换管中而通过热交换 管壁与压缩机 200中的制冷流体进行热交换而达到冷却目的。 然而, 这需要将 热交换管布置在压缩机 200中, 这将使得压缩机内部构造的设计复杂化且可能 降低压缩机的工作性能和增加成本。 而采用将液态制冷剂供给至压缩机 200的 压缩腔中以与压缩机 200中的制冷流体混合, 避免了压缩机 200内部设置热交 换管的复杂结构, 而且可以使得制冷剂与制冷流体更充分地混合, 以提高热交 换效率。
在一实施例中, 所述液态制冷剂可以与压缩机 200中的制冷流体具有相同 的成分。 这有助于充分地、 循环地利用制冷流体。 尤其是在将液态制冷剂供给 至压缩机 200的压缩腔中以与压缩机 200中的制冷流体混合的方案中, 液态制 冷剂和压缩腔中的制冷流体具有相同的成分可以避免不同成分的液态制冷剂和 制冷流体产生物理化学反应而降低制冷效率等问题, 而且可以使得液态制冷剂 和制冷流体完全融合而提高制冷流体的利用率。
在一实施例中,供给至压缩机 200的液态制冷剂的温度可以低于压缩机 200 中的制冷流体的温度。 然而, 也可以考虑使用温度不低于甚至高于制冷流体的 液态制冷剂, 譬如在液态制冷剂直接与压缩机 200中的制冷流体在压缩腔中混 合的情况下。
在一实施例中,所述液态制冷剂可以是来自于冷凝器的出口的液态制冷剂。 这样, 可以尽可能大限度地利用制冷循环中的制冷流体。 然而, 上述供给至压 缩机 200的液态制冷剂也可以是以其它方式供给的, 只要其能够满足对压缩机 200中的制冷流体进行冷却的要求即可。
在一实施例中, 所述供液管路 104还可以包括位于压缩机 200中的引液通 道和喷液孔, 所述液态制冷剂经由所述引液通道和喷液孔供给至压缩腔中, 从 而与压缩机 200中的制冷流体相混合。 在一实施例中, 供液阀 103可以为膨胀阀, 例如步进电机式电磁膨胀阀, 液态制冷剂的流量可以通过膨胀阀的张开程度来调整。
下面参照图 2对包含上述温控设备的压缩机组件进行介绍。 所述压缩机组 件包括压缩机 200以及如上所述的用于压缩机的温控设备 100。 用于压缩机的 温控设备 100可以与压缩机 200可以在出厂时就集成在一起。 例如, 在一实施 例中, 压缩机 200可以设有容纳箱, 控制装置 102安装在容纳箱中, 所述温度 检测装置 101设置在压缩机 200的制冷流体出口处。 以这样的方式, 压缩机组 件可以便于整体运输、 销售和被使用者方便地使用, 还可以节省空间和节约组 件的调试成本。 相反地, 目前压缩机厂商只提供带有喷液功能的压缩机, 需要 机组厂商自行安装控制阀等控制部件, 但是厂商很难配置到与压缩机匹配性很 好的控制部件, 控制的效果不理想。 而本发明实施例的通过为各个压缩机设置 控制装置和调试控制装置, 可以保证控制装置与压缩机的良好匹配, 提高对压 缩机控制的可靠性。 然而这并不是必须的, 在压缩机组件中, 压缩机 200与温 控设备 100中的温度检测装置 101、控制装置 102等部件也可以是分立的结构, 它们之间用必要的电连接和流路连接在一起。
下文将以涡旋压缩机为例对压缩机组件的具体的实施例进行介绍, 然而, 本发明不限于此, 其它类型的压缩机也是可行的。
如图 2所示, 一种示例性涡旋压缩机 200' 主要包括: 固定涡旋盘 1, 其上 形成有涡齿 51 ; 运动涡旋盘 2, 其上形成有涡齿 52; 支撑部件 3, 用于支撑固 定涡旋盘 1 与运动涡旋盘 2 构成的组件; 曲轴 4, 用于驱动运动涡旋盘 2; 电 动机 5, 其与曲轴 4 相连接以驱动运动涡旋盘 2, 使所述运动涡旋盘 2 相对于 固定涡旋盘 1 运动; 大致圆筒形的壳体 6, 用于形成该涡旋压缩机 200' 的圆 筒形封闭空间, 以容纳涡旋压缩机 200' 的各主要部件, 其中所述壳体 6由上 壳体部 22、 下壳体部 23和中间壳体部 24 焊接而成。 固定涡旋盘 1的涡齿 51 可以采用铣削加工成螺旋线形, 而运动涡旋盘 2的涡齿 52与固定涡旋盘 1 上 的涡齿 51 相对应。 在该涡旋压缩机 200' 工作期间, 曲轴 4 在电动机 5 的驱 动下带动运动涡旋盘 2 在轨道装置 (例如十字架机构) (图中未详细示出) 的 约束下相对于固定涡旋盘 1 进行偏心转动以形成固定涡旋盘 1 与运动涡旋盘 2 之间的相对运动, 而该相对运动引起压缩腔的体积在压缩过程中不断减小, 从 而增大所述压缩腔内的压力, 对制冷剂进行压缩。 在一种具体的实施例中,固定涡旋盘 1 设置有喷液孔 21以及流体通道 11, 所述流体通道 11 的一端与所述的喷液孔 21 流体连通, 而所述流体通道 11 的 另一端与管道部件 10 流体连通,其中所述管道部件 10 可以采用焊接等方式密 封连接到所述流体通道 11。 在所述壳体 6 内部进一步设置有连接部件 8, 其将 管道部件 10 与外接通道部件 9连通,并使管道部件 10 与外接通道部件 9相对 于壳体 6 固定。
在图 2所示的实施例中, 供液管路 104包括外接通道部件 9、 连接部件 8、 管道部件 10、 流体通道 11以及喷液孔 21。 液态制冷剂在与外接通道部件 9相 连的供液阀(未示出) 的控制下依次经过外接通道部件 9、 连接部件 8、 管道部 件 10、 流体通道 11以及喷液孔 21被注入压缩腔 20以与压缩机 200中的制冷 流体相混合以达到降温效果。
尽管在图 2所示出的实施例中, 位于压缩机 200中的引液通道由管道部件 10和流体通道 11构成, 但是应当理解, 引液通道的结构不限于此。 供液管路 104可以包括任何能够延伸入压缩机 200内部并与压缩机 200的压缩腔连通的 部分, 从而实现将液态制冷剂供给至压缩机 200的压缩腔中。 尽管上述实施例 以涡旋压缩机为例, 但是本领域技术人员应当理解, 根据本发明的温控设备也 适用于各种其它压缩机, 只要供液管路 104可以将液态制冷剂供给至压缩机内 部, 例如压缩腔中。 因此, 根据本发明的压缩机组件也可以包括各种其它类型 的压缩机。
本发明还涉及一种制冷系统 1000。 如图 3所示, 该制冷系统 1000包括: 压缩机 200、 冷凝器 300、 节流阀 400、 蒸发器 500以及根据本发明的用于压缩 机的温控设备 100。 图 3中的箭头表示制冷流体、 液态制冷剂的流向和信号的 流向。 所述冷凝器 300的入口与压缩机 200的制冷流体出口相连接, 所述冷凝 器 300的出口与所述供液管路 104相连接。 所述节流阀 400的入口也与所述冷 凝器 300的出口相连接。 所述蒸发器 500的入口与所述节流阀 400的出口相连 接。 所述蒸发器 500的出口与压缩机 200的制冷流体入口相连接。 制冷流体在 压缩机 200中被压缩后供给至冷凝器 300, 再经过节流阀 400减压后供给至蒸 发器 500中, 之后再从蒸发器 500回到压缩机 200。 其中, 从冷凝器 300的出 口流出的一部分制冷流体流入供液管路 104中并作为液态制冷剂如前所述供给 至压缩机 200,通过控制装置 102根据温度检测装置 101所检测到的压缩机 200 的排气温度对压缩机进行温度控制。在根据本发明的用于压缩机的温控设备 100 的作用下, 该制冷系统 1000可以获得良好的工作效率和稳定性。
针对于上述用于压缩机的温控设备 100, 本发明还涉及一种用于压缩机的 温度控制方法。 参照图 4 (图 4中由虚线表示的部分为可选步骤), 所述温度控 制方法包括:
步骤 S602: 通过温度检测装置 101对压缩机 200的制冷流体出口处的制冷 流体的温度进行检测并将温度检测结果发送至控制装置 102; 和
步骤 S603 : 使用所述控制装置 102根据所接收到的温度检测结果生成供液 阀控制信号, 并将供液阀控制信号发送至设置在所述供液管路 104中的供液阀 103以对经由供液管路 104供给至所述压缩机 200的液态制冷剂的流量进行控 制, 所述供液阀控制信号使得供液阀 103在所述温度值高于第一阈值的情况下 增大液态制冷剂的流量, 而在所述温度值低于第二阈值的情况下减小液态制冷 剂的流量, 所述第二阈值不大于所述第一阈值。
其中, 所述供液阀控制信号的生成可以通过利用比较器将所检测到的温度 值与第一阈值和第二阈值进行比较或借助于其它的阈值判定电路或程序来实 现。 所述供液阀控制信号对液态制冷剂的流量的控制可以通过对供液阀 103的 打开程度的调节来实现。 所述控制装置例如可以是控制电路板、 逻辑控制单元 等, 其可以是与压缩机 200相独立的装置, 也可以与压缩机 200—体安装。
在一实施例中,在步骤 S603中,所述供液阀控制信号可以设置成使供液阀 在所述温度值不高于第一阈值且不低于第二阈值的情况下维持液态制冷剂的流 量不变。
在一实施例中, 可以反复循环地执行步骤 S602和 S603。 这样可以确保压 缩机的排气温度被自动地维持在适合的范围内, 以使压缩机能够高效、 稳定地 工作。
在可选的实施例中, 所述温度控制方法还可以包括可选的步骤 S601 (参见 图 4): 在最初通过温度检测装置对压缩机制冷流体出口处的制冷流体的温度进 行检测之前,对控制装置 102进行自检,如果控制装置 102与温度检测装置 101 的连接正常, 则关闭供液阀 103使液态制冷剂的流量为零, 如果控制装置 102 与温度检测装置 101的连接异常, 则控制装置 102停止工作并报警。 这样可以 避免由于设备故障和连接问题而导致对压缩机的温度控制出现错误。 虽然结合附图对本发明进行了说明, 但是附图中公开的实施例旨在对本发 明优选实施方式进行示例性说明, 而不能理解为对本发明的一种限制。
虽然本发明总体构思的一些实施例已被显示和说明, 本领域普通技术人员 将理解, 在不背离本总体发明构思的原则和精神的情况下, 可对这些实施例做 出改变, 本发明的范围以权利要求和它们的等同物限定。

Claims

权 利 要 求
1. 一种用于压缩机的温控设备, 包括:
温度检测装置, 所述温度检测装置用于检测压缩机的制冷流体出口处的制 冷流体的温度;
供液管路, 所述供液管路用于将液态制冷剂供给至所述压缩机; 供液阀, 所述供液阀设置在所述供液管路中, 用于控制供给至所述压缩机 的液态制冷剂的流量; 和
控制装置, 所述控制装置接收所述温度检测装置所检测到的温度值并根据 所述温度值对所述供液阀进行控制, 使得在所述温度值高于第一阈值的情况下 增大液态制冷剂的流量, 而在所述温度值低于第二阈值的情况下减小液态制冷 剂的流量, 所述第一阈值大于或等于所述第二阈值。
2.根据权利要求 1所述的温控设备, 其特征在于, 所述控制装置设置成在 所述温度值不高于第一阈值且不低于第二阈值的情况下维持液态制冷剂的流量 不变。
3. 根据权利要求 1所述的温控设备, 其特征在于, 所述液态制冷剂与所述 制冷流体具有相同的成分。
4. 根据权利要求 1所述的温控设备, 其特征在于, 所述液态制冷剂的流量 的初始值为零。
5. 根据权利要求 1-4中任一项所述的温控设备, 其特征在于, 在所述液态 制冷剂的流量不为零的情况下, 所述液态制冷剂被供给至压缩机的压缩腔中以 与压缩机中的制冷流体混合。
6. 根据权利要求 5所述的温控设备, 其特征在于, 所述供液管路还包括位 于压缩机中的引液通道和喷液孔, 所述液态制冷剂经由所述引液通道和喷液孔 供给至压缩腔中。
7. 根据权利要求 1-4中任一项所述的温控设备, 其特征在于, 所述供液阀 为膨胀阀, 所述膨胀阀通过改变张开程度来调整液态制冷剂的流量。
8. 根据权利要求 1-4中任一项所述的温控设备, 其特征在于, 所述第一阈 值比第二阈值大 1至 5摄氏度。
9. 一种压缩机组件, 包括:
压缩机; 以及
根据权利要求 1-8中任一项所述的温控设备。
10. 根据权利要求 9所述的压缩机组件, 其特征在于, 所述压缩机设有容 纳箱, 所述控制装置安装在所述容纳箱中, 所述温度检测装置设置在压缩机的 制冷流体出口处。
11. 根据权利要求 9或 10所述的压缩机组件, 其特征在于, 所述压缩机为 涡旋压缩机。
12. 根据权利要求 9或 10所述的压缩机组件, 其特征在于, 所述供液管路 延伸入压缩机内部并与压缩机的压缩腔连通。
13. 一种制冷系统, 包括:
根据权利要求 9-12中任一项所述的压缩机组件;
冷凝器, 所述冷凝器的入口与压缩机的制冷流体出口相连接, 所述冷凝器 的出口与所述供液管路相连接;
节流阀, 所述节流阀的入口与所述冷凝器的出口相连接; 和
蒸发器, 所述蒸发器的入口与所述节流阀的出口相连接, 所述蒸发器的出 口与压缩机的制冷流体入口相连接。 种用于压缩机的温度控制方法, 包括步骤: 通过温度检测装置对压缩机制冷流体出口处的制冷流体的温度进行检测并 将温度检测结果发送至控制装置; 和
使用所述控制装置根据所接收到的温度检测结果生成供液阀控制信号, 并 将供液阀控制信号发送至设置在供液管路中的供液阀以对经由所述供液管路供 给至所述压缩机的液态制冷剂的流量进行控制, 所述供液阀控制信号使得供液 阀在所述温度值高于第一阈值的情况下增大液态制冷剂的流量, 而在所述温度 值低于第二阈值的情况下减小液态制冷剂的流量, 所述第一阈值大于或等于所 述第二阈值。
15. 根据权利要求 14所述的温度控制方法, 其特征在于, 所述两个步骤被 反复循环地执行。
16. 根据权利要求 14所述的温度控制方法, 其特征在于, 所述供液阀控制 信号使供液阀在所述温度值不高于第一阈值且不低于第二阈值的情况下维持液 态制冷剂的流量不变。
17. 根据权利要求 14-16中任一项所述的温度控制方法,其特征在于,还包 括: 在最初通过温度检测装置对压缩机制冷流体出口处的制冷流体的温度进行 检测之前, 对控制装置进行自检, 如果控制装置与温度检测装置的连接正常, 则关闭供液阀使液态制冷剂的流量为零, 如果控制装置与温度检测装置的连接 异常, 则控制装置停止工作并报警。
PCT/CN2013/074246 2012-04-16 2013-04-16 用于压缩机的温控设备及方法、压缩机组件和制冷系统 WO2013155954A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2012101103148A CN103375408A (zh) 2012-04-16 2012-04-16 用于压缩机的温控设备及方法、压缩机组件和制冷系统
CN201210110314.8 2012-04-16

Publications (1)

Publication Number Publication Date
WO2013155954A1 true WO2013155954A1 (zh) 2013-10-24

Family

ID=49382914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/074246 WO2013155954A1 (zh) 2012-04-16 2013-04-16 用于压缩机的温控设备及方法、压缩机组件和制冷系统

Country Status (2)

Country Link
CN (1) CN103375408A (zh)
WO (1) WO2013155954A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104728091A (zh) * 2013-12-23 2015-06-24 珠海格力电器股份有限公司 压缩机的排气温度控制方法和装置
CN106352633A (zh) * 2016-08-29 2017-01-25 浪潮电子信息产业股份有限公司 一种压缩机控制装置、方法和空调系统
CN109900003A (zh) * 2017-12-08 2019-06-18 丹佛斯(天津)有限公司 流体喷射控制系统和流体循环系统
CN114688031A (zh) * 2020-12-29 2022-07-01 丹佛斯(天津)有限公司 压缩机和控制该压缩机的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09159288A (ja) * 1995-12-14 1997-06-20 Hitachi Ltd 冷凍装置
CN1164007A (zh) * 1995-12-06 1997-11-05 运载器有限公司 制冷系统中的电动机冷却系统
CN1677016A (zh) * 2004-03-30 2005-10-05 株式会社日立空调系统 制冷系统
CN201748728U (zh) * 2010-07-22 2011-02-16 康特能源科技(苏州)有限公司 空气源热泵排气温度控制系统
CN202746208U (zh) * 2012-04-16 2013-02-20 丹佛斯(天津)有限公司 用于压缩机的温控设备、压缩机组件和制冷系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09133435A (ja) * 1995-11-08 1997-05-20 Mitsubishi Heavy Ind Ltd 膨脹弁
US7194871B2 (en) * 2004-04-20 2007-03-27 Danfoss Commercial Compressors Electrical and electronic component cabinet for a refrigeration compressor
US7509929B2 (en) * 2007-02-05 2009-03-31 Ford Global Technologies, Llc System and method to control temperature of an alternator and/or an engine in a vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1164007A (zh) * 1995-12-06 1997-11-05 运载器有限公司 制冷系统中的电动机冷却系统
JPH09159288A (ja) * 1995-12-14 1997-06-20 Hitachi Ltd 冷凍装置
CN1677016A (zh) * 2004-03-30 2005-10-05 株式会社日立空调系统 制冷系统
CN201748728U (zh) * 2010-07-22 2011-02-16 康特能源科技(苏州)有限公司 空气源热泵排气温度控制系统
CN202746208U (zh) * 2012-04-16 2013-02-20 丹佛斯(天津)有限公司 用于压缩机的温控设备、压缩机组件和制冷系统

Also Published As

Publication number Publication date
CN103375408A (zh) 2013-10-30

Similar Documents

Publication Publication Date Title
US9897360B2 (en) Refrigeration apparatus
CN212431402U (zh) 气悬浮压缩机的电机冷却系统和制冷系统
WO2013155954A1 (zh) 用于压缩机的温控设备及方法、压缩机组件和制冷系统
EP2918941B1 (en) Heat pump hot water supply device
JP5806581B2 (ja) 冷却システム及び冷却方法
CN106030222A (zh) 空调装置
JP2009209864A (ja) 蒸気システム
JP5327351B2 (ja) 空気調和装置
WO2024066240A1 (zh) 空调器及其控制方法
WO2019184332A1 (zh) 制冷设备的防护系统和用于压缩机安全运行的保护方法
KR101184929B1 (ko) 냉각 장치
JP2007092582A (ja) 流体制御装置及び流体制御方法
WO2006095572A1 (ja) 冷凍サイクル装置
JP4795977B2 (ja) 圧縮機の運転方法
JP2007327697A (ja) 冷凍装置
JP6255832B2 (ja) 空気調和機
US10648681B2 (en) Heat source unit and refrigeration cycle apparatus
CN113803910A (zh) 气悬浮压缩机的电机冷却系统和制冷系统
CN202746208U (zh) 用于压缩机的温控设备、压缩机组件和制冷系统
JP2014125914A (ja) スクロール圧縮機
WO2009098900A1 (ja) 冷凍装置
JP2003248516A (ja) 流量制御装置
CN220151602U (zh) 风机转换装置
JP2008064331A (ja) 逆相検知装置、それを備えた空気調和装置、及び、逆相検知方法
KR100691233B1 (ko) 에어컨의 압축기 보호방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13778240

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13778240

Country of ref document: EP

Kind code of ref document: A1