WO2013155941A1 - 动态频谱共享方法和装置 - Google Patents

动态频谱共享方法和装置 Download PDF

Info

Publication number
WO2013155941A1
WO2013155941A1 PCT/CN2013/073916 CN2013073916W WO2013155941A1 WO 2013155941 A1 WO2013155941 A1 WO 2013155941A1 CN 2013073916 W CN2013073916 W CN 2013073916W WO 2013155941 A1 WO2013155941 A1 WO 2013155941A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
bandwidth
coverage cell
information
spectrum utilization
Prior art date
Application number
PCT/CN2013/073916
Other languages
English (en)
French (fr)
Inventor
肖登坤
韩静
李安俭
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP13778810.5A priority Critical patent/EP2779728A4/en
Priority to JP2014549351A priority patent/JP2015506612A/ja
Publication of WO2013155941A1 publication Critical patent/WO2013155941A1/zh
Priority to US14/310,756 priority patent/US20140308968A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/06Hybrid resource partitioning, e.g. channel borrowing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/27Control channels or signalling for resource management between access points

Definitions

  • the embodiments of the present invention relate to communication technologies, and in particular, to a dynamic frequency sharing method and apparatus. Background technique
  • the wireless spectrum is a resource of economic and social value.
  • spectrum resources are becoming more and more precious and scarce. How to use spectrum resources efficiently is a hot topic in current research.
  • the spectrum utilization technology can be used to improve the spectrum utilization rate.
  • RATs radio access technologies
  • spectrum sharing technology can also be used to improve spectrum utilization.
  • the base station mainly passes the following message "RESOURCE STATUS REQUEST"
  • Radio Resource Status request indicates the usage of the PRBs in Downlink and Uplink
  • SI TNL Load Indicator IE indicates the SI transport network The status of the SI Transport Network Load experienced by the cell
  • Hardware Load Indicator IE indicating the status of the SI Transport Network Load experienced by the cell
  • Composite Available The Capacity Group IE indicates the total available resource level in the cell in Downlink and Uplink.
  • the "LOAD INFORMATION" message indicates the load status in the local network through the following IE: 01 (overload indication ) by The interfering cell sends, indicating the interference level of the interfered cell, and the eNB of the receiving party considers the information in its own scheduling policy; High (High Interference Information), the eNB that receives the interference level of the transmitting eNB, Should try to avoid interference in the neighbors An edge user is scheduled on the PRB of the area; RNTP (relative Narrowband Tx Power) is used to indicate whether the downlink transmission power is lower than a threshold. The received eNB should take this information into account when setting the scheduling policy.
  • IE 01 (overload indication ) by The interfering cell sends, indicating the interference level of the interfered cell, and the eNB of the receiving party considers the information in its own scheduling policy; High (High Interference Information), the eNB that receives the interference level of the transmitting eNB, Should try to avoid interference in the neighbors An edge user is scheduled on the PRB of
  • the message sent by the base station to the neighboring base station or the core network only partially reflects the load status of the local end, and is not enough for the neighboring base station or the core network to perform a reasonable and effective spectrum resource sharing decision, and there may be some base station spectrum resources being tight. Some base stations have a phenomenon of free bandwidth, resulting in low spectrum utilization. Summary of the invention
  • the embodiments of the present invention provide a dynamic frequency sharing method and device, which are used to solve the defect that the spectrum utilization rate is low in the prior art.
  • an embodiment of the present invention provides a dynamic frequency sharing method, including:
  • the base station determines first spectrum utilization information of the coverage cell, where the first spectrum utilization information includes one or any combination of the following information: an access failure rate of the coverage cell, a call strength of the coverage cell, a desired bandwidth of the coverage cell, and coverage.
  • the bandwidth configuration information of the coverage cell includes the bandwidth and carrier of the coverage cell, and the edge user equipment information of the coverage cell includes the a downlink transmission power of the base station and a physical resource block used by the edge user equipment of the coverage cell;
  • the base station When the dynamic frequency sharing is performed in the same homogeneous system of the network standard, the base station sends the first spectrum utilization information to the neighboring base station; or, when dynamic spectrum sharing is performed in a heterogeneous system with different network standards, The base station transmits the first spectrum utilization information to the core network.
  • an embodiment of the present invention provides a dynamic frequency sharing device, including:
  • a determining module configured to determine first spectrum utilization information of the coverage cell, where the first frequency usage information includes one or any combination of the following information: an access failure rate of the coverage cell, a call strength of the coverage cell, and a coverage area
  • the bandwidth configuration information of the coverage cell includes the bandwidth and carrier of the coverage cell, and the edge user of the coverage cell
  • the device information includes a downlink transmission power of the base station and a physical resource block used by an edge user equipment of the coverage cell;
  • a sending module configured to send the first spectrum utilization information to a neighboring base station when dynamic frequency sharing is performed in a homogeneous system with the same network standard; or, move in a heterogeneous system with different network standards
  • the first spectrum utilization information is sent to the core network; or the first spectrum utilization information is sent to the radio resource management server.
  • the first spectrum utilization information sent by the base station to the neighboring base station or the core network or the RRM Server includes one or any combination of the following information: the access failure of the coverage cell
  • the rate, the call strength of the coverage cell, the expected bandwidth of the coverage cell, the idle bandwidth of the coverage cell, the bandwidth configuration information of the coverage cell, and the edge user equipment information of the coverage cell constitute the first spectrum utilization information, the neighbor base station or the core network or the radio resource management
  • the server may determine, according to the first spectrum utilization information, whether the base station is in a tight spectrum resource state or whether there is a free spectrum resource, so that the idle bandwidth of the local end or other base station may be allocated to the base station or the idle bandwidth of the base station may be allocated to other base stations.
  • the purpose of sharing spectrum resources is achieved, and the utilization of spectrum resources is improved.
  • FIG. 1 is a flowchart of a dynamic spectrum sharing method without a newly added spectrum sharing processing network element according to an embodiment of the present invention
  • FIG. 2 is a flowchart of a method for sharing a dynamic spectrum in an intra-LTE scenario without a new frequency-sharing processing network element according to an embodiment of the present invention
  • FIG. 3 is a flowchart of a dynamic frequency sharing method in an inter-RAT scenario without a newly added spectrum sharing processing network element according to an embodiment of the present invention
  • FIG. 4 is a flowchart of another dynamic frequency sharing method in an inter-RAT scenario without a newly added spectrum sharing processing network element according to an embodiment of the present invention
  • 5A is a flowchart of a dynamic spectrum sharing method in an intra-LTE scenario of a newly added spectrum sharing processing network element according to an embodiment of the present disclosure
  • FIG. 5B is an application scenario diagram of FIG. 5A; FIG.
  • 6A is a flowchart of a frequency sharing method in an inter-RAT scenario of a newly added spectrum sharing processing network element according to an embodiment of the present invention
  • FIG. 6B is an application scenario diagram of FIG. 6A;
  • FIG. 7A is a schematic structural diagram of a dynamic frequency sharing device according to an embodiment of the present invention
  • FIG. 7B is a schematic structural diagram of another dynamic frequency sharing device according to an embodiment of the present invention
  • FIG. 1 is a flowchart of a dynamic frequency sharing method without a new frequency sharing processing network element according to an embodiment of the present invention.
  • the base station may be an eNB in a Long Term Evaluation (LTE) network, or a Base Transceiver Station (BTS) in a 2G network, or an NB in a 3G network, or may be a higher level.
  • Access network elements in the 4G network As shown in FIG. 1, this embodiment includes:
  • Step 11 The base station determines first spectrum utilization information of the coverage cell, where the first spectrum utilization information includes one or any combination of the following information: an access failure rate of the coverage cell, a call strength of the coverage cell, and a coverage of the coverage cell.
  • the base station may periodically determine the first frequency usage information of the coverage cell.
  • the base station may only determine the first spectrum utilization including the access failure rate of the coverage cell, the call strength of the coverage cell, the expected bandwidth of the coverage cell, the idle bandwidth of the coverage cell, the bandwidth configuration information of the coverage cell, or the edge user equipment information of the coverage cell.
  • Information the base station may also determine first spectrum utilization information including any combination of the above plurality of information.
  • the access failure rate of the cell is the ratio of the number of access failures to the total number of accesses, and the total number of accesses is the sum of the number of access failures and the number of successful accesses; the call strength of the user equipment of the cell is received every second. The number of calls to arrive. The higher the access failure rate of the cell, the heavier the spectrum load of the cell. The greater the call intensity of the user equipment of the cell, the more terminals are connected to the cell, and the frequency of the cell is heavier.
  • the predicted bandwidth of the cell may be the width of the desired bandwidth or the desired bandwidth range.
  • the Vacating bandwidth of a cell can be an idle bandwidth range.
  • the edge user equipment information of the coverage cell includes the downlink transmission power of the base station and a physical resource block used by the edge user equipment of the coverage cell.
  • the interference of the neighboring base station can be determined by the downlink transmission power of the base station,
  • Step 12 When dynamic frequency sharing is performed in a homogeneous system with the same network standard, the base station sends the first spectrum utilization information to a neighboring base station; or when dynamic spectrum sharing is performed in a heterogeneous system with different network standards. Transmitting, by the base station, the first spectrum utilization information to a core network, or The base station transmits the first spectrum utilization information to the radio resource management server.
  • the base station may periodically transmit the first spectrum utilization information, or may send the first spectrum utilization information when one or any of the first spectrum utilization information changes.
  • the base station When dynamic frequency sharing is performed in a homogeneous system with the same network standard, for example, within the LTE network, within the 2G network, or within the 3G network, the base station transmits the first spectrum utilization information to the neighbor base station. If the access failure rate of the base station coverage cell is high, the call strength of the user equipment is high, the expected bandwidth or no idle bandwidth, the base station resources may be determined to be tight or heavy.
  • the neighboring base station determines, according to the first spectrum utilization information, that when the spectrum resource of the base station that transmits the first spectrum utilization information is tight, if the local end has idle spectrum resources at this time, the idle bandwidth of the local end is allocated to the base station that transmits the first spectrum utilization information.
  • the base station that sends the first spectrum utilization information receives the available bandwidth that is sent by the neighboring base station and is allocated to the base station; if the neighboring base station does not have idle spectrum resources at this time, the base station that sends the first spectrum utilization information may receive the neighbor. A notification message sent by the base station without free bandwidth.
  • a heterogeneous system with different network standards may be a heterogeneous system in which an LTE network and a 3G network coexist, a heterogeneous system in which an LTE network and a 2G network coexist, or a heterogeneous system in which a 2G network and a 3G network coexist, and also It can be a heterogeneous system where a more advanced 4G network coexists with other networks.
  • a base station in a 2G network passes a network side device, such as a base station controller (BSC).
  • BSC base station controller
  • the base station in the 3G network sends the first frequency usage information to the core network through a network side device, such as a radio network controller (RNC), and performs a frequency sharing function by the core network; or, the core network will be the first
  • the spectrum utilization information is sent to the peer network, and the frequency network sharing function is performed by the peer network.
  • the core network or the peer network determines, according to the first spectrum utilization information, that when the base station resources that transmit the first spectrum utilization information are tight or heavy, the base station that has the idle bandwidth is determined according to the collected first spectrum utilization information of other base stations.
  • the core network or the peer network allocates the idle bandwidth of other base stations to the resource-intensive base station.
  • the resource-intensive base station receives the idle bandwidth coordinated by the core network from the base station having the idle bandwidth. For another example, if the core network or the peer network determines that the edge user equipment of one base station uses more physical resource blocks (PRBs), the edge user equipment can be coordinated to other base stations that use less PRB, and the PRB uses fewer base stations. The idle bandwidth coordination is used by the PRB to use more base stations. For another example, the macro cell has a high access failure rate, and the core network or the peer network determines that the Macro cell is heavily loaded, and the edge user equipment can be coordinated to other base stations that use less PRB, and the PRB uses fewer base stations. Free bandwidth coordination is used for this Macro cell.
  • PRBs physical resource blocks
  • the spectrum sharing processing network element is a radio resource management server (RRM Server). Whether it is dynamic frequency sharing in the same homogeneous system of network standard or dynamic frequency sharing in heterogeneous systems with different network standards, the base station can adopt the xn interface (xn interface) between the new and RRM Server. It is a newly defined interface due to the introduction of RRMS, and the interface name is variable.
  • the first spectrum utilization information is periodically sent to the RRM Server.
  • the first spectrum utilization information may also be transmitted to the RRM Server when one or any of the first spectrum utilization information changes.
  • the base station may send, to the RRM Server, an access failure rate including only the coverage cell, a call strength of the coverage cell, a desired bandwidth of the coverage cell, an idle bandwidth of the coverage cell, bandwidth configuration information of the coverage cell, and an edge user equipment information of the coverage cell.
  • a spectrum utilization information may also transmit, to the RRM Server, first spectrum utilization information including any combination of the above plurality of information.
  • the eNB sends an eNB configuration message message to the RRM Server through the newly added Xn interface, including the configured bandwidth and carrier of the eNB.
  • the eNB sends an Edge user distribution message to the RRM Server through the newly added Xn interface, including the downlink transmission power of the eNB and the physical resource block used by the edge user equipment of the eNB coverage cell. For example, the eNB sends an access failure rate and a call strength of the coverage cell to the RRM Server through the Load information message on the newly added Xn interface.
  • the RRM Server integrates the first spectrum utilization information of each base station, integrates the resources and load conditions of each base station, and determines whether frequency sharing is required, thereby performing resource coordination between the base stations. For example, when the RRM Server determines that the base station resources that transmit the first spectrum utilization information are tight or heavy, the base station that has the idle bandwidth is determined according to the collected first spectrum utilization information of each base station, and the RRM Server idles the base station with the idle bandwidth. Bandwidth is allocated to base stations with tight resources.
  • the resource-intensive base station receives the available bandwidth allocated by the RRM Server and allocated to the local base station. For another example, if the RRM Server determines that the edge user equipment of one base station uses more physical resource blocks (PRBs), the edge user equipment can be coordinated to other base stations that use less PRB, and the PRB uses less idle space coordination of the base stations. Use more base stations for PRBs. For another example, the macro cell has a high access failure rate, and the RRM Server determines that the Macro cell is heavily loaded. The edge user equipment can be coordinated to other base stations that use less PRB, and the idle bandwidth of the PRB using less base stations is coordinated. Macro cell use.
  • PRBs physical resource blocks
  • the first spectrum utilization information sent by the base station to the neighboring base station or the core network or the RRM server includes one or any combination of the following information: access failure rate and coverage of the coverage cell
  • the call strength of the cell, the expected bandwidth of the coverage cell, the idle bandwidth of the coverage cell, the bandwidth configuration information of the coverage cell, and the edge user equipment information of the coverage cell constitute the first spectrum utilization information
  • the neighboring base station or the core network or the RRM Server according to the first spectrum The information can be used to determine whether the base station is in a tight spectrum resource state or whether there is a free spectrum resource, so that the idle bandwidth of the local end or other base station can be allocated to the base station or the idle bandwidth of the base station can be allocated to other base stations, thereby achieving spectrum resource sharing.
  • the purpose is to improve the utilization of spectrum resources.
  • FIG. 2 is a flowchart of a method for sharing a dynamic frequency in an intra-LTE scenario without a new frequency-sharing processing network element according to an embodiment of the present invention.
  • This embodiment mainly describes a frequency sharing method in an intra-LTE scenario, that is, within an LTE network. As shown in FIG. 2, this embodiment includes:
  • Step 21 The eNB determines second spectrum utilization information of the coverage cell, where the second spectrum utilization information includes one or any combination of the following information: an access failure rate of the coverage cell, a call strength of the user equipment of the coverage cell, and an coverage cell. The expected bandwidth and the idle bandwidth of the coverage cell.
  • Step 22 The eNB passes the ENB CONFIGURATION UPDATE message or LOAD
  • the INFORMATION message sends the second spectrum utilization information to the neighbor eNB.
  • the eNB may send an ENB CONFIGURATION UPDATE message to the neighboring eNB through the x2 interface when the access failure rate of the coverage cell, the call strength of the user equipment, the desired bandwidth, and the idle bandwidth change, and add a new force in the ENB CONFIGURATION UPDATE message.
  • the eNB sends a LOAD INFORMATION message to the neighboring eNB through the x2 interface, and four new IEs are added to the LOAD INFORMATION message: Admission failure rate, Call intensity, Needed bandwidth, and Vacating bandwidth.
  • the eNB coverage cell has a high access failure rate, the user equipment has a high call strength, a desired bandwidth, or no idle bandwidth, it may be determined that the eNB resource is tight or the load is heavy.
  • the neighboring eNB determines that the eNB's spectrum resource is tight according to the first spectrum utilization information, if the neighboring eNB has an idle spectrum resource at this time, the idle bandwidth of the local end is allocated to the eNB that sends the first spectrum utilization information, and the first spectrum is transmitted.
  • the eNB that uses the information receives the available bandwidth that is sent by the neighboring eNB to the eNB.
  • FIG. 3 is a flowchart of a dynamic frequency sharing method in an inter-RAT scenario without a newly added spectrum sharing processing network element according to an embodiment of the present invention.
  • the inter-RAT scenario may be a heterogeneous system in which an LTE network and a 3 G network coexist, a heterogeneous system in which an LTE network and a 2G network exist, or a heterogeneous wireless network in which a 2G network and a 3G network coexist.
  • the inter-RAT scenario in this embodiment specifically refers to a heterogeneous wireless network in which an LTE network and a 2G (or 3G) network coexist.
  • this embodiment includes: Step 31: The eNB determines a desired bandwidth of the coverage cell.
  • Step 32 When the bandwidth is limited, the eNB sends the expected bandwidth of the coverage cell to the core network by using a base station configuration update (ENB CONFIGURATION UPDATE) message.
  • ENB CONFIGURATION UPDATE base station configuration update
  • Needed bandwidth is used to indicate the expected bandwidth.
  • the core network in the heterogeneous wireless network where the LTE network coexists with the 2G (or 3G) network may be a Mobility Management Entity ( ⁇ ).
  • Step 33 The eNB receives a message of a base station configuration update acknowledgement (ENB CONFIGURATION UPDATE ACKNOWLEDGE) replied by the core network, where the message includes idle bandwidth coordinated from other eNBs.
  • ENB CONFIGURATION UPDATE ACKNOWLEDGE a base station configuration update acknowledgement
  • the core network determines, according to the first spectrum utilization information, when the base station resources that transmit the first spectrum utilization information are tight or heavy, and according to the collected first spectrum utilization information of other base stations, when determining other base stations having idle bandwidth, the core network will The idle bandwidth of other base stations is allocated to base stations with tight resources.
  • a resource-stable base station receives an ENB CONFIGURATION UPDATE ACKNOWLEDGE message sent by the core network including free bandwidth.
  • a new IE is added to the ENB CONFIGURATION UPDATE ACKNOWLEDGE message: vacate bandwidth, used to indicate the idle bandwidth coordinated from other eNBs.
  • the eNB may send a bandwidth request message to the core network, or send a bandwidth request message to the BSC or the RNC in the peer network through the core network.
  • the bandwidth request message includes a Need adding bandwidth IE for indicating the expected bandwidth of the request.
  • the eNB receives a bandwidth request response (Bandwidth Request ack) message replied by the core network, including idle bandwidth coordinated from other eNBs.
  • the Bandwidth request ack message includes a Vacate Bandwidth IE for indicating the idle bandwidth coordinated from other eNBs.
  • sending to the core network through the BSC or RNC includes expectations
  • the base station of the bandwidth configures an update message to request coverage of the desired bandwidth of the cell.
  • the core network may perform the spectrum sharing operation, or may forward the data to the peer network, and perform the spectrum sharing operation by the peer network.
  • FIG. 4 is a flowchart of another dynamic frequency sharing method in an inter-RAT scenario without a newly added spectrum sharing processing network element according to an embodiment of the present invention.
  • the inter-RAT scenario of this embodiment refers specifically to a heterogeneous wireless network in which an LTE network and a 2G (or 3G) network coexist. As shown in FIG. 4, this embodiment includes:
  • Step 41 The eNB determines an idle bandwidth of the coverage cell.
  • Step 42 When the eNB has idle bandwidth, send an idle bandwidth of the coverage cell to the core network by using a base station configuration update (ENB CONFIGURATION UPDATE) message.
  • ENB CONFIGURATION UPDATE base station configuration update
  • the BTS sends a base station configuration update message to the core network through the BSC; in the 3G network,
  • the NB sends a base station configuration update message to the core network through the RNC.
  • the following embodiment adds a new network element RRM Server and adds new interfaces and new messages between the eNB/NB/BTS and the RRM Server.
  • the spectrum utilization information of each base station is collected by the RRM Server, and the spectrum sharing function is performed.
  • the RRM Server can be between the base stations.
  • the RRM Server can be in an eNB and an RNC; in a heterogeneous system in which an LTE network and a 2G network coexist, the RRM Server can be between the eNB and the BSC; on the 3G network and the 2G network.
  • the RRMServer can be between the BSC and the RNC.
  • FIG. 5 is a flowchart of a dynamic spectrum sharing method in an intra-LTE scenario of a newly added spectrum sharing processing network element according to an embodiment of the present invention.
  • FIG. 5B is an application scenario diagram of FIG. 5A. As shown in FIG. 5A, this embodiment includes:
  • Step 51 The eNB determines an access failure rate and a call strength of the coverage cell.
  • Step 52 The eNB sends an access failure rate and a call strength of the coverage area to the RRM Server by using a Load information message.
  • the eNB may be a macro base station or a Pico base station, and the macro base station and the Pico base station send a load information message to the RRM Server through the newly added Xn interface.
  • Step 53 The eNB receives the newly allocated bandwidth sent by the RRM Server through the eNB reconfigured command message.
  • FIG. 6 is a flowchart of a spectrum sharing method in an inter-RAT scenario of an added frequency sharing processing network element according to an embodiment of the present invention.
  • FIG. 6B is an application scenario diagram of FIG. 6A.
  • the scenario shown in FIG. 6B is a heterogeneous wireless network in which an LTE network coexists with a 3G (or 2G) network.
  • the network element RRM Server directly connected to the BTS0.
  • the base station may be an eNB in an LTE network, or an NB in a 3G network (or a BTS in a 2G network).
  • this embodiment includes:
  • Step 61 The base station determines a desired bandwidth of the coverage cell.
  • Step 62 When the bandwidth is limited, the base station sends a bandwidth request message to the RRM Server, including the expected bandwidth requested to the RRM Server.
  • Step 63 The base station receives a bandwidth request response (Bandwidth request ack) message replied by the RRM Server, where the RRM Server coordinates the idle bandwidth coordinated by the other base stations.
  • Bandwidth request ack bandwidth request response
  • FIG. 7A is a schematic structural diagram of a dynamic frequency sharing device according to an embodiment of the present invention.
  • the apparatus provided in this embodiment includes: a determining module 71 and a sending module 72.
  • the determining module 71 is configured to determine first spectrum utilization information of the coverage cell, where the first spectrum utilization information includes one or any combination of the following information: an access failure rate of the coverage cell, a call strength of the coverage cell, and a coverage area.
  • the device information includes a downlink transmission power of the base station and a physical resource block used by an edge user equipment of the coverage cell.
  • a sending module 72 configured to send the first spectrum utilization information to a neighboring base station when performing dynamic spectrum sharing in a homogeneous system with the same network standard; or, when performing dynamic spectrum sharing in a heterogeneous system with different network standards, Transmitting the first spectrum utilization information to the core network; or transmitting the first spectrum utilization information to the radio resource management server.
  • the sending module 72 includes: a first transmitting unit 721 and a second transmitting unit 722 and a third transmitting unit 723.
  • the first sending unit 721 is configured to send the first spectrum utilization information to the neighboring base station by configuring an update message or a load message when performing dynamic spectrum sharing in a homogeneous system with the same network standard.
  • the second sending unit 722 is configured to send the first spectrum utilization information to the core network by configuring an update message when dynamic spectrum sharing is performed in a heterogeneous system with different network standards.
  • the third sending unit 723 is configured to send the first spectrum utilization information to the radio resource management server. Further, the first sending unit 721 is specifically configured to: when the dynamic spectrum sharing is performed in the same homogeneous system of the network standard, if the local bandwidth is limited, the desired bandwidth is configured to the neighboring base station by configuring an update message or a load message; or When the terminal has idle bandwidth, the idle bandwidth is sent to the neighboring base station by configuring an update message or a load message;
  • the second sending unit 722 is specifically configured to: when the dynamic spectrum sharing is performed in a heterogeneous system with different network standards, if the local bandwidth is limited, the expected bandwidth is configured to the core network by configuring an update message; or, if the local end has The idle bandwidth sends the free bandwidth to the core network through a configuration update message.
  • the third sending unit 723 is specifically configured to send the expected bandwidth to the radio resource management server if the local bandwidth is limited, or send the radio resource management server to the radio resource management server if the local end has an idle bandwidth. The idle bandwidth.
  • the apparatus provided in this embodiment may further include: a receiving module 73.
  • the receiving module 73 is configured to: after the transmitting module 72 sends the first spectrum utilization information, receive the idle bandwidth of the neighboring base station sent by the neighboring base station, or receive the idle bandwidth coordinated by the core network from the base station with the idle bandwidth. Or receiving an idle bandwidth coordinated by the radio resource management server from a base station having an idle bandwidth.
  • the first spectrum utilization information sent by the dynamic spectrum resource sharing apparatus to the neighboring base station or the core network or the radio resource management server includes one or any combination of the following information: an access failure rate and coverage of the coverage cell.
  • the call strength of the cell, the expected bandwidth of the coverage cell, the idle bandwidth of the coverage cell, the bandwidth configuration information of the coverage cell, and the edge user equipment information of the coverage cell constitute the first spectrum utilization information, and the neighbor base station or the core network or the radio resource management server according to the A spectrum utilization information may determine whether the shared device is in a tight spectrum resource state or has free spectrum resources, so that the idle bandwidth of the local end or other base station may be allocated to the shared device or the idle bandwidth of the shared device may be allocated to other base stations.
  • the purpose of sharing spectrum resources has been achieved, and the utilization of spectrum resources has been improved.
  • the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the foregoing steps include the steps of the foregoing method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供一种动态频谱共享方法和装置。该方法包括:基站确定覆盖小区的第一频谱利用信息,所述第一频谱利用信息包括以下信息中一个或任意多个组合:覆盖小区的接入失败率、覆盖小区的呼叫强度、覆盖小区的期望带宽、覆盖小区的空闲带宽、覆盖小区的带宽配置信息和覆盖小区的边缘用户设备信息;在网络制式相同的同构系统中进行动态频谱共享时,基站向邻基站发送第一频谱利用信息;或者,在网络制式不同的异构系统中进行动态频谱共享时,基站向核心网发送第一频谱利用信息;或者,基站向无线资源管理服务器发送第一频谱利用信息。本发明达到了频谱资源共享的目的,提高了频谱资源利用率。

Description

动态频谱共享方法和装置
本申请要求于 2012年 4月 20日提交中国专利局、 申请号为 201210118160.7、 发明名称为"动态频语共享方法和装置"的中国专利申请的优先权,其全部内容 通过引用结合在本申请中。 技术领域
本发明实施例涉及通信技术, 尤其涉及一种动态频语共享方法和装置。 背景技术
无线频谱是具有经济和社会价值的资源,在宽带无线通信系统中, 频谱资 源越来越珍贵和稀少。如何高效的利用频谱资源是目前研究的热门课题。 当网 络中各个 eNB之间的业务负荷不平衡时, 可以通过频语共享技术来提高频谱利 用率。 当网络中各个无线接入技术( Radio Access Technology, RAT )之间的 业务负荷不平衡时, 也可以通过频谱共享技术来提高频谱利用率。
在现有技术中,基站主要通过以下消息 "RESOURCE STATUS REQUEST
(资源状态请求 ) " 、 "RESOURCE STATUS UPDATE (资源状态更新 ) " 和 "LOAD INFORMATION (负载信息) "等指示本端网络中的负载状态。 其 中, "RESOURCE STATUS REQUEST" 和 "RESOURCE STATUS UPDATE" 消息通过以下 IE通知本端网络中的负载状态: the Radio Resource Status IE, 指 示上下行 PRB的利用情况( indicates the usage of the PRBs in Downlink and Uplink); ; the SI TNL Load Indicator IE,指示 SI传输网络的 load情况( indicates the status of the SI Transport Network Load experienced by the cell ) ; the Hardware Load Indicator IE,指示硬件资源的负荷情况( indicates the status of the SI Transport Network Load experienced by the cell ) ; the Composite Available Capacity Group IE, 指示上下行总的资源水平 ( indicates the overall available resource level in the cell in Downlink and Uplink ) 。 其中 , " LOAD INFORMATION"消息通过以下 IE指示本端网络中的负载状态: 01 ( overload indication ) , 由被干扰小区发送, 指示被干扰小区的干扰水平, 接收方的 eNB 会在自己的调度策略中考虑到该信息; ΗΠ ( High Interference Information, 上 行高干扰指示) , 接收到发送 eNB的干扰水平的 eNB , 应该尽量避免在干扰邻 区的 PRB上调度边缘用户; RNTP ( Relative Narrowband Tx Power, 相对窄带 发射功率), 用于指示下行发送功率是否低于一个阔值。 接收到的 eNB在设置 调度策略时应该考虑到该信息。
然而, 基站向邻基站或核心网发送的消息中只部分反映了本端的负载状 态,还不足以使邻基站或核心网进行合理有效的频谱资源共享判决,有可能会 出现部分基站频谱资源紧张而部分基站存在空闲带宽的现象,从而频谱利用率 较低。 发明内容
本发明实施例提供一种动态频语共享方法和装置,用以解决现有技术中频 谱利用率较低的缺陷。
一方面, 本发明实施例提供一种动态频语共享方法, 包括:
基站确定覆盖小区的第一频谱利用信息,所述第一频谱利用信息包括以下 信息中一个或任意多个组合: 覆盖小区的接入失败率、 覆盖小区的呼叫强度、 覆盖小区的期望带宽、覆盖小区的空闲带宽、覆盖小区的带宽配置信息和覆盖 小区的边缘用户设备信息;所述覆盖小区的带宽配置信息包括所述覆盖小区的 带宽和载波、所述覆盖小区的边缘用户设备信息包括所述基站的下行发送功率 和所述覆盖小区的边缘用户设备使用的物理资源块;
在网络制式相同的同构系统中进行动态频语共享时,所述基站向邻基站发 送所述第一频谱利用信息; 或者, 在网络制式不同的异构系统中进行动态频谱 共享时, 所述基站向核心网发送所述第一频谱利用信息。
另一方面, 本发明实施例提供一种动态频语共享装置, 包括:
确定模块, 用于确定覆盖小区的第一频谱利用信息, 所述第一频语利用信 息包括以下信息中一个或任意多个组合: 覆盖小区的接入失败率、覆盖小区的 呼叫强度、 覆盖小区的期望带宽、 覆盖小区的空闲带宽、 覆盖小区的带宽配置 信息和覆盖小区的边缘用户设备信息;所述覆盖小区的带宽配置信息包括所述 覆盖小区的带宽和载波、所述覆盖小区的边缘用户设备信息包括所述基站的下 行发送功率和所述覆盖小区的边缘用户设备使用的物理资源块;
发送模块, 用于在网络制式相同的同构系统中进行动态频语共享时, 向邻 基站发送所述第一频谱利用信息; 或者,在网络制式不同的异构系统中进行动 态频语共享时, 向核心网发送所述第一频谱利用信息; 或者, 向无线资源管理 服务器发送第一频谱利用信息。
本发明实施例提供的动态频谱资源共享方法和装置,基站向邻基站或核心 网或 RRM Server发送的第一频谱利用信息中包括以下信息中的一个或任意多 个组合:覆盖小区的接入失败率、覆盖小区的呼叫强度、覆盖小区的期望带宽、 覆盖小区的空闲带宽、覆盖小区的带宽配置信息和覆盖小区的边缘用户设备信 息组成第一频谱利用信息,邻基站或核心网或无线资源管理服务器根据第一频 谱利用信息可确定基站是否处于频谱资源紧张状态或者是否有空闲频谱资源, 从而可将本端或其它基站的空闲带宽分配给该基站或将该基站的空闲带宽分 配给其它基站, 达到了频谱资源共享的目的, 提高了频谱资源利用率。 附图说明
图 1 为本发明实施例提供的没有新增频谱共享处理网元的一种动态频谱 共享方法流程图;
图 2为本发明实施例提供的没有新增频语共享处理网元的 intra-LTE场景 下的一种动频谱共享方法流程图;
图 3为本发明实施例提供的没有新增频谱共享处理网元的 inter-RAT场景 下的一种动态频语共享方法流程图;
图 4为本发明实施例提供的没有新增频谱共享处理网元的 inter-RAT场景 下的另一种动态频语共享方法流程图;
图 5A为本发明实施例提供的新增频谱共享处理网元的 intra-LTE场景下 的一种动态频谱共享方法流程图;
图 5B为图 5A的应用场景图;
图 6A为本发明实施例提供的新增频谱共享处理网元的 inter-RAT场景下 的一种频语共享方法流程图;
图 6B为图 6A的一种应用场景图;
图 7A为本发明实施例提供的一种动态频语共享装置结构示意图; 图 7B为本发明实施例提供的另一种动态频语共享装置结构示意图; 图 7C为本发明实施例提供的又一种动态频语共享装置结构示意图。 具体实施方式
图 1为本发明实施例提供的没有新增频语共享处理网元的一种动态频语共 享方法流程图。 本实施例中基站可为长期演进网络 ( Long Term Evaluation, LTE ) 网络中 eNB, 也可为 2G网络中基站( Base Transceiver Station, BTS ) , 也可为 3G网络中 NB , 也可以是更高级的 4G网络中接入网元。 如图 1所示, 本 实施例包括:
步骤 11 : 基站确定覆盖小区的第一频谱利用信息, 所述第一频谱利用信息 包括以下信息中一个或任意多个组合: 覆盖小区的接入失败率、覆盖小区的呼 叫强度、 覆盖小区的期望带宽、 覆盖小区的空闲带宽、 覆盖小区的带宽配置信 息和覆盖小区的边缘用户设备信息;所述覆盖小区的带宽配置信息包括所述覆 盖小区的带宽和载波、所述覆盖小区的边缘用户设备信息包括所述基站的下行 发送功率和所述覆盖小区的边缘用户设备使用的物理资源块。
基站可以周期性确定覆盖小区的第一频语利用信息。基站可以只确定包括 覆盖小区的接入失败率、 覆盖小区的呼叫强度、 覆盖小区的期望带宽、 覆盖小 区的空闲带宽、覆盖小区的带宽配置信息或覆盖小区的边缘用户设备信息的第 一频谱利用信息;基站也可以确定包括以上多个信息任意组合的第一频谱利用 信息。
其中, 小区的接入失败率为接入失败次数与总接入次数的比值, 总接入次 数为接入失败次数与接入成功次数的总和;小区的用户设备的呼叫强度为每秒 钟接收到的呼叫次数。 小区的接入失败率(Admission failure rate )越高, 表明 小区的频谱负荷越重。 小区的用户设备的呼叫强度(Call intensity )越大, 表 明接入小区的终端越多, 小区的频谙负荷越重。 小区的期望带宽 (Needed bandwidth )可以是期望的带宽的宽度, 也可以是期望的带宽范围。 小区的空 闲带宽 ( Vacating bandwidth ) 可以是空闲的带宽范围。
其中,覆盖小区的边缘用户设备信息包括所述基站的下行发送功率和所述 覆盖小区的边缘用户设备使用的物理资源块。通过基站的下行发送功率可确定 对邻基站的干扰情况,
步骤 12: 在网络制式相同的同构系统中进行动态频语共享时, 所述基站向 邻基站发送所述第一频谱利用信息; 或者,在网络制式不同的异构系统中进行 动态频谱共享时, 所述基站向核心网发送所述第一频谱利用信息, 或者, 所述 基站向无线资源管理服务器发送第一频谱利用信息。
基站可以周期性发送第一频谱利用信息,也可以在第一频谱利用信息中一 个或任意多个变化时, 发送第一频谱利用信息。
网络制式相同的同构系统中进行动态频语共享时,例如,在 LTE网络内部、 2G网络内部或 3G网络内部, 基站向邻基站发送第一频谱利用信息。 如果基站 覆盖小区的接入失败率高、 用户设备的呼叫强度高、 期望带宽或无空闲带宽, 可确定基站资源紧张或负荷较重。邻基站根据第一频谱利用信息,确定发送第 一频谱利用信息的基站频谱资源紧张时,如果本端此时有空闲的频谱资源,将 本端空闲的带宽支配给发送第一频谱利用信息的基站使用,发送第一频谱利用 信息的基站会接收到邻基站发送的支配给该基站的可用带宽;如果邻基站此时 没有空闲的频谱资源 ,发送第一频谱利用信息的基站有可能会接收到邻基站发 送的没有空闲带宽的通知消息。
网络制式不同的异构系统,可以是 LTE网络与 3G网络共存的异构系统,也 可以是 LTE网络与 2G网络共存的异构系统, 也可以是 2G网络与 3G网络共存的 异构系统, 也可以是更高级的 4G网络与其它网络共存的异构系统。 在网络制 式不同的异构系统中进行动态频语共享时, 例如 2G网络与 3 G网络共存的异构 系统中, 2G网络中基站通过网络侧设备, 例如基站控制器 (Base Station Controller, BSC ) , 3G网络中基站通过网络侧设备,例如无线网络控制器( Radio Network Controller, RNC ) , 向核心网发送第一频语利用信息, 由核心网执行 频语共享功能; 或者, 核心网将第一频谱利用信息发送到对端网络中, 由对端 网络执行频语共享功能。 例如, 核心网或对端网络根据第一频谱利用信息, 确 定发送第一频谱利用信息的基站资源紧张或负荷较重时,根据收集到的其它基 站的第一频谱利用信息确定存在空闲带宽的基站,核心网或对端网络将其它基 站的空闲带宽分配给资源紧张的基站。资源紧张的基站会接收到核心网发送的 从具有空闲带宽的基站中协调的空闲带宽。 又例如, 如果核心网或对端网络确 定一个基站的边缘用户设备使用的物理资源块(PRB )较多, 可以将边缘用户 设备协调到 PRB使用较少的其它基站, 将 PRB使用较少的基站的空闲带宽协调 给 PRB使用较多的基站使用。 又例如, Macro小区的接入失败率高,, 核心网或 对端网络确定该 Macro小区负荷较重, 可以将边缘用户设备协调到 PRB使用较 少的其它基站, 将 PRB使用较少的基站的空闲带宽协调给该 Macro小区使用。 新增频谱共享处理网元一无线资源管理服务器 ( Radio Resource Management Server, RRM Server ) 时。 无论是在网络制式相同的同构系统进 行动态频语共享,还是在网络制式不同的异构系统中进行动态频语共享,基站 都可以通过新增的与 RRM Server之间的 xn接口( xn接口是因为 RRMS的引入而 新定义的一个接口,接口名称可变)周期性向 RRM Server发送第一频谱利用信 息。也可以在第一频谱利用信息中一个或任意多个变化时, 向 RRM Server发送 第一频谱利用信息。
基站可以向 RRM Server发送只包括覆盖小区的接入失败率、覆盖小区的呼 叫强度、 覆盖小区的期望带宽、 覆盖小区的空闲带宽、 覆盖小区的带宽配置信 息和覆盖小区的边缘用户设备信息的第一频谱利用信息。 基站也可以向 RRM Server发送包括以上多个信息任意组合的第一频谱利用信息。 例如, eNB通过 新增的 Xn接口上, 向 RRM Server发送 eNB configuration message消息, 其中包 括 eNB配置的带宽 (Configured bandwidth )和载波( carrier ) 。 例如, eNB通 过新增的 Xn接口, 向 RRM Server发送 Edge user distribution message消息, 其中 包括 eNB的下行发送功率和 eNB覆盖小区的边缘用户设备使用的物理资源块。 例如, eNB在新增的 Xn接口上, 通过 Load information message消息向 RRM Server发送覆盖小区的接入失败率和呼叫强度。
如果基站覆盖小区的接入失败率高、用户设备的呼叫强度高、期望带宽或 无空闲带宽,可确定基站资源紧张或负荷较重。 RRM Server通过收集到的各个 基站的第一频谱利用信息, 综合各基站的资源和负载情况, 判断是否需要进行 频语共享, 从而在各个基站之间进行资源协调。 例如, RRM Server确定发送第 一频谱利用信息的基站资源紧张或负荷较重时,根据收集到的各基站的第一频 谱利用信息确定存在空闲带宽的基站, RRM Server将存在空闲带宽的基站的空 闲带宽分配给资源紧张的基站。资源紧张的基站会接收到 RRM Server发送的分 配给本端基站的可用带宽。又例如,如果 RRM Server确定一个基站的边缘用户 设备使用的物理资源块( PRB )较多, 可以将边缘用户设备协调到 PRB使用较 少的其它基站, 将 PRB使用较少的基站的空闲带宽协调给 PRB使用较多的基站 使用。 又例如, Macro小区的接入失败率高, RRM Server确定该 Macro小区负荷 较重, 可以将边缘用户设备协调到 PRB使用较少的其它基站, 将 PRB使用较少 的基站的空闲带宽协调给该 Macro小区使用。 本实施例提供的动态频谱资源共享方法, 基站向邻基站或核心网或 RRM Server发送的第一频谱利用信息中包括以下信息中的一个或任意多个组合: 覆 盖小区的接入失败率、 覆盖小区的呼叫强度、 覆盖小区的期望带宽、 覆盖小区 的空闲带宽、覆盖小区的带宽配置信息和覆盖小区的边缘用户设备信息组成第 一频谱利用信息,邻基站或核心网或 RRM Server根据第一频谱利用信息可确定 基站是否处于频谱资源紧张状态或者是否有空闲频谱资源,从而可将本端或其 它基站的空闲带宽分配给该基站或将该基站的空闲带宽分配给其它基站,达到 了频谱资源共享的目的, 提高了频谱资源利用率。
图 2为本发明实施例提供的没有新增频语共享处理网元的 intra-LTE场景下 的一种动频语共享方法流程图。本实施例主要说明在 intra-LTE场景即在 LTE网 络内部的频语共享方法。 如图 2所示, 本实施例包括:
步骤 21 : eNB确定覆盖小区的第二频谱利用信息, 第二频谱利用信息包括 以下信息中的一个或任意多个组合: 覆盖小区的接入失败率、覆盖小区的用户 设备的呼叫强度、 覆盖小区的期望带宽和覆盖小区的空闲带宽。
步骤 22: eNB通过 ENB CONFIGURATION UPDATE消息或 LOAD
INFORMATION消息向邻 eNB发送第二频谱利用信息。
eNB可以在覆盖小区的接入失败率、 用户设备的呼叫强度、 期望带宽和空 闲带宽中任意一个发生变化时, 通过 x2接口 向邻 eNB发送 ENB CONFIGURATION UPDATE消息,在 ENB CONFIGURATION UPDATE消息中 新增力口了四个 IE: Admission failure rate. Call intensity、 Needed bandwidth和 Vacating bandwidth。 或者, eNB通过 x2接 口 向邻 eNB发送 LOAD INFORMATION消息, LOAD INFORMATION消息中新增加了四个 IE: Admission failure rate、 Call intensity、 Needed bandwidth和 Vacating bandwidth。
如果 eNB覆盖小区的接入失败率高、 用户设备的呼叫强度高、 期望带宽或 无空闲带宽, 可确定 eNB资源紧张或负荷较重。 邻 eNB根据第一频谱利用信息 确定该 eNB频谱资源紧张时, 如果邻 eNB此时有空闲的频谱资源, 将本端空闲 的带宽支配给发送上述第一频谱利用信息的 eNB使用,发送第一频谱利用信息 的 eNB会接收到邻 eNB发送的支配给该 eNB的可用带宽; 如果邻 eNB此时没有 空闲的频谱资源, 发送第一频语利用信息的 eNB有可能会接收到邻 eNB发送的 没有空闲带宽的通知消息。 图 3为本发明实施例提供的没有新增频谱共享处理网元的 inter-RAT场景 下的一种动态频语共享方法流程图。 inter-RAT场景可以是 LTE网络与 3 G网络 共存的异构系统, 也可以是 LTE网络与 2G网络其存的异构系统, 也可以是 2G网络和 3G网络共存的异构无线网络。 本实施例的 inter-RAT场景特指 LTE 网络与 2G (或 3G ) 网络共存的异构无线网络, 如图 3所示, 本实施例包括: 步骤 31 : eNB确定覆盖小区的期望带宽。
步骤 32: eNB在带宽受限时,通过基站配置更新( ENB CONFIGURATION UPDATE ) 消息向核心网发送覆盖小区的期望带宽。
在 ENB CONFIGURATION UPDATE消息中增加了新 IE: Needed bandwidth, Needed bandwidth用于指示期望带宽。 inter-RAT场景下, 各个基站 之间没有 X2口, 不能直接进行交互。 其中, LTE网络与 2G (或 3G ) 网络共存 的异构无线网络中核心网可以是移动管理实体 ( Mobility Management Entity , ΜΜΕ ) 。
步骤 33: eNB接收核心网 回复的基站配置更新确认 ( ENB CONFIGURATION UPDATE ACKNOWLEDGE ) 消息, 该消息中包括从其它 eNB协调的空闲带宽。
核心网根据第一频谱利用信息,确定发送第一频谱利用信息的基站资源紧 张或负荷较重时,根据收集到的其它基站的第一频谱利用信息确定存在空闲带 宽的其它基站时,核心网将其它基站的空闲带宽分配给资源紧张的基站。 资源 紧张的基站会接收到核心网发送的包括有空闲带宽的 ENB CONFIGURATION UPDATE ACKNOWLEDGE消息。 在 ENB CONFIGURATION UPDATE ACKNOWLEDGE消息中增加新 IE: vacate bandwidth, 用于指示从其它 eNB协 调的空闲带宽。
另夕卜, eNB在带宽受限时, 可向核心网发送带宽请求( bandwidth request ) 消息, 或通过核心网向对端网络中的 BSC或 RNC 发送带宽请求 (bandwidth request ) 消息。 带宽请求消息中包括 Need adding bandwidth IE , 用于表示请求 的期望带宽指宽。 eNB接收核心网回复的带宽请求响应( Bandwidth request ack ) 消息, 其中包括从其它 eNB协调的空闲带宽。 Bandwidth request ack消息中包括 Vacate Bandwidth IE, 用于指示从其它 eNB协调的空闲带宽。
对于 BTS或 NB, 在带宽受限时, 通过 BSC或 RNC向核心网发送包括期望 带宽的基站配置更新消息, 以请求覆盖小区的期望带宽。核心网接收到基站配 置更新消息后, 可执行频谱共享操作, 也可转发给对端网络, 由对端网络执行 频谱共享操作。
图 4为本发明实施例提供的没有新增频谱共享处理网元的 inter-RAT场景 下的另一种动态频语共享方法流程图。本实施例的 inter-RAT场景特指 LTE网络 与 2G (或 3G ) 网络共存的异构无线网络。 如图 4所示, 本实施例包括:
步骤 41 : eNB确定覆盖小区的空闲带宽。
步骤 42: eNB存在空闲带宽时, 通过基站配置更新 ( ENB CONFIGURATION UPDATE ) 消息向核心网发送覆盖小区的空闲带宽。
在 2G网络中, BTS通过 BSC向核心网发送基站配置更新消息; 3G网络中,
NB通过 RNC向核心网发送基站配置更新消息。
以下实施例增加了新的网元 RRM Server, 并在 eNB/NB/BTS和 RRM Server 之间增加了新的接口和新消息。 由 RRM Server收集各基站的频谱利用信息,并 执行频谱共享功能。 在 LTE网络、 2G网络或 3G网络等同一网络制式的系统内 部, RRM Server可以在各个基站之间。 在 LTE网络和 3G网络共存的异构系统 中 , RRM Server可以在 eNB和 RNC; 在 LTE网络和 2G网络共存的异构系统中 , RRM Server可以在 eNB和 BSC之间; 在 3G网络和 2G网络共存的异构系统中, RRMServer可以在 BSC和 RNC之间。
图 5 A为本发明实施例提供的新增频谱共享处理网元的 intra-LTE场景下 的一种动态频谱共享方法流程图。 图 5B为图 5A的应用场景图。 如图 5A所示, 本实施例包括:
步骤 51 : eNB确定覆盖小区的接入失败率和呼叫强度。
步骤 52: eNB通过 Load information message消息向 RRM Server发送覆盖小 区的接入失败率和呼叫强度。
如图 5B所示, eNB可以是 macro基站,也可以是 Pico基站, macro基站和 Pico 基站通过新增的 Xn接口上, 向 RRM Server发送 Load information message消息。
步骤 53: eNB通过 eNB reconfigured command消息接收 RRM Server发送的 新分配的带宽 (Added bandwidth)。
另夕卜, eNB也可以通过 eNB reconfigured command消息接收 RRM Server发 送的本端可减少的带宽 ( reducing bandwidth ) 。 图 6 A为本发明实施例提供的新增频语共享处理网元的 inter-RAT场景 下的一种频谱共享方法流程图。 图 6B为图 6A的一种应用场景图。 图 6B所示 的场景为 LTE网络与 3G (或 2G ) 网络共存的异构无线网络。 如图 6A所示, BTS0直连的网元 RRM Server。 在本实施例中基站可为 LTE网络中 eNB, 也可 为 3G网络中 NB (或 2G网络中 BTS ) 。 如图 6A所示, 本实施例包括:
步骤 61 : 基站确定覆盖小区的期望带宽。
步骤 62: 在带宽受限时, 基站向 RRM Server发送带宽请求 (bandwidth request ) 消息, 其中包括向 RRM Server请求的期望带宽。
步骤 63 : 基站接收 RRM Server回复的带宽请求响应 (Bandwidth request ack ) 消息, 其中包括 RRM Server从其它基站协调的空闲带宽。
图 7A为本发明实施例提供的一种动态频语共享装置结构示意图。 如图 7A 所示, 本实施例提供的装置包括: 确定模块 71和发送模块 72。
确定模块 71 , 用于确定覆盖小区的第一频谱利用信息, 所述第一频谱利用 信息包括以下信息中一个或任意多个组合: 覆盖小区的接入失败率、覆盖小区 的呼叫强度、 覆盖小区的期望带宽、 覆盖小区的空闲带宽、 覆盖小区的带宽配 置信息和覆盖小区的边缘用户设备信息;所述覆盖小区的带宽配置信息包括所 述覆盖小区的带宽和载波、所述覆盖小区的边缘用户设备信息包括所述基站的 下行发送功率和所述覆盖小区的边缘用户设备使用的物理资源块。
发送模块 72, 用于在网络制式相同的同构系统中进行动态频谱共享时, 向 邻基站发送所述第一频谱利用信息; 或者,在网络制式不同的异构系统中进行 动态频谱共享时, 向核心网发送所述第一频谱利用信息; 或者, 向无线资源管 理服务器发送第一频谱利用信息。
如图 7B所示, 发送模块 72包括: 第一发送单元 721和第二发送单元 722以 及第三发送单元 723。
第一发送单元 721 , 用于在网络制式相同的同构系统中进行动态频谱共享 时, 通过配置更新消息或负载消息向所述邻基站发送所述第一频谱利用信息。
第二发送单元 722 , 用于在网络制式不同的异构系统中进行动态频谱共享 时, 通过配置更新消息向所述核心网发送所述第一频谱利用信息。
第三发送单元 723 , 用于向无线资源管理服务器发送第一频谱利用信息。 进一步, 第一发送单元 721 , 具体用于在网络制式相同的同构系统中进行 动态频谱共享时,若本端带宽受限通过配置更新消息或负载消息向邻基站所述 期望带宽; 或者, 本端有空闲带宽时通过配置更新消息或负载消息向邻基站发 送所述空闲带宽;
进一步, 第二发送单元 722 , 具体用于在网络制式不同的异构系统中进行 动态频谱共享时, 若本端带宽受限通过配置更新消息向核心网所述期望带宽; 或者, 若本端有空闲带宽通过配置更新消息向核心网发送所述空闲带宽。
进一步, 第三发送单元 723 , 具体用于若本端带宽受限时, 向所述无线资 源管理服务器发送所述期望带宽, 或, 若本端有空闲带宽时, 向所述无线资源 管理服务器发送所述空闲带宽。
如图 7C所示, 本实施例提供的装置还可包括: 接收模块 73。
接收模块 73 , 用于在发送模块 72发送第一频谱利用信息之后,接收所述邻 基站发送的所述邻基站的空闲带宽,或接收核心网发送的从具有空闲带宽的基 站中协调的空闲带宽,或接收所述无线资源管理服务器发送的从具有空闲带宽 的基站中协调的空闲带宽。
上述各模块的功能可参见图 1、 图 2、 图 3、 图 4、 图 5A、 图 6A、 对应实施 例中描述, 在此不再赘述。
本实施例提供的动态频谱资源共享装置向邻基站或核心网或无线资源管 理服务器发送的第一频谱利用信息中包括以下信息中的一个或任意多个组合: 覆盖小区的接入失败率、 覆盖小区的呼叫强度、 覆盖小区的期望带宽、 覆盖小 区的空闲带宽、覆盖小区的带宽配置信息和覆盖小区的边缘用户设备信息组成 第一频谱利用信息,邻基站或核心网或无线资源管理服务器根据第一频谱利用 信息可确定该共享装置是否处于频谱资源紧张状态或者是否有空闲频谱资源, 从而可将本端或其它基站的空闲带宽分配给该共享装置或将该共享装置的空 闲带宽分配给其它基站,达到了频谱资源共享的目的,提高了频谱资源利用率。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可 以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存 储介质中, 该程序在执行时, 执行包括上述方法实施例的步骤; 而前述的存储 介质包括: ROM、 RAM, 磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对其限 制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通技术人员 应当理解: 其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其 中部分技术特征进行等同替换; 而这些修改或者替换, 并不使相应技术方案的 本质脱离本发明各实施例技术方案的范围。

Claims

权 利 要 求
1、 一种动态频谱共享方法, 其特征在于, 包括:
基站确定覆盖小区的第一频谱利用信息,所述第一频谱利用信息包括以下 信息中一个或任意多个组合: 覆盖小区的接入失败率、 覆盖小区的呼叫强度、 覆盖小区的期望带宽、覆盖小区的空闲带宽、覆盖小区的带宽配置信息和覆盖 小区的边缘用户设备信息;所述覆盖小区的带宽配置信息包括所述覆盖小区的 带宽和载波、所述覆盖小区的边缘用户设备信息包括所述基站的下行发送功率 和所述覆盖小区的边缘用户设备使用的物理资源块;
在网络制式相同的同构系统中进行动态频语共享时,所述基站向邻基站发 送所述第一频谱利用信息; 或者, 在网络制式不同的异构系统中进行动态频谱 共享时, 所述基站向核心网发送所述第一频谱利用信息; 或者, 所述基站向无 线资源管理服务器发送所述第一频谱利用信息。
2、 根据权利要求 1所述方法, 其特征在于, 所述基站向邻基站发送所述第 一频谱利用信息具体为:所述基站通过配置更新消息或负载消息向所述邻基站 发送所述第一频谱利用信息, 或者, 所述基站向核心网发送所述第一频谱利用 信息具体为:所述基站通过配置更新消息向所述核心网发送所述第一频谱利用 信息。
3、 根据权利要求 1所述方法, 其特征在于, 所述基站向邻基站发送所述第 一频谱利用信息包括:
所述基站的带宽受限时, 所述基站向邻基站所述期望带宽;
或者, 所述基站有空闲带宽时, 所述基站向邻基站发送所述空闲带宽。
4、 根据权利要求 1所述方法, 其特征在于, 所述基站向核心网发送所述第 一频谱利用信息包括:
所述基站的带宽受限时, 所述基站向核心网所述期望带宽;
或者, 所述基站有空闲带宽时, 所述基站向核心网发送所述空闲带宽。
5、 根据权利要求 1所述方法, 其特征在于, 所述基站向无线资源管理服务 器发送所述第一频谱利用信息包括:
所述基站的带宽受限时,所述基站向所述无线资源管理服务器发送所述期 望带宽, 或, 所述基站有空闲带宽时, 所述基站向所述无线资源管理服务器发 送所述空闲带宽。
6、 根据权利要求 1至 5任一项所述方法, 其特征在于, 还包括:
所述基站接收邻基站发送的所述邻基站的空闲带宽, 或, 所述基站接收核 心网发送的从具有空闲带宽的基站中协调的空闲带宽, 或, 所述基站接收所述 无线资源管理服务器发送的从具有空闲带宽的基站中协调的空闲带宽。
7、 一种动态频谱共享装置, 其特征在于, 包括:
确定模块, 用于确定覆盖小区的第一频谱利用信息, 所述第一频语利用信 息包括以下信息中一个或任意多个组合: 覆盖小区的接入失败率、覆盖小区的 呼叫强度、 覆盖小区的期望带宽、 覆盖小区的空闲带宽、 覆盖小区的带宽配置 信息和覆盖小区的边缘用户设备信息;所述覆盖小区的带宽配置信息包括所述 覆盖小区的带宽和载波、所述覆盖小区的边缘用户设备信息包括所述基站的下 行发送功率和所述覆盖小区的边缘用户设备使用的物理资源块;
发送模块, 用于在网络制式相同的同构系统中进行动态频语共享时, 向邻 基站发送所述第一频谱利用信息; 或者,在网络制式不同的异构系统中进行动 态频语共享时, 向核心网发送所述第一频谱利用信息; 或者, 向无线资源管理 服务器发送第一频谱利用信息。
8、 根据权利要求 7所述装置, 其特征在于, 所述发送模块包括: 第一发送单元, 用于在网络制式相同的同构系统中进行动态频语共享时, 通过配置更新消息或负载消息向所述邻基站发送所述第一频谱利用信息; 或, 第二发送单元, 用于在网络制式不同的异构系统中进行动态频语共享时, 通过配置更新消息向所述核心网发送所述第一频谱利用信息; 或,
第三发送单元, 用于向无线资源管理服务器发送第一频谱利用信息。
9、 根据权利要求 8所述装置, 其特征在于:
第一发送单元,具体用于在网络制式相同的同构系统中进行动态频谱共享 时, 若本端带宽受限通过配置更新消息或负载消息向邻基站所述期望带宽; 或 者,本端有空闲带宽时通过配置更新消息或负载消息向邻基站发送所述空闲带 宽;
第二发送单元,具体用于在网络制式不同的异构系统中进行动态频谱共享 时, 若本端带宽受限通过配置更新消息向核心网所述期望带宽; 或者, 若本端 有空闲带宽通过配置更新消息向核心网发送所述空闲带宽; 第三发送单元, 具体用于若本端带宽受限时, 向所述无线资源管理服务器 发送所述期望带宽, 或, 若本端有空闲带宽时, 向所述无线资源管理服务器发 送所述空闲带宽。
10、 根据权利要求 7至 9任一项所述装置, 其特征在于, 还包括: 接收模块, 用于在发送第一频谱利用信息之后,接收所述邻基站发送的所 述邻基站的空闲带宽,或接收核心网发送的从具有空闲带宽的基站中协调的空 闲带宽,或接收所述无线资源管理服务器发送的从具有空闲带宽的基站中协调 的空闲带宽。
PCT/CN2013/073916 2012-04-20 2013-04-09 动态频谱共享方法和装置 WO2013155941A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP13778810.5A EP2779728A4 (en) 2012-04-20 2013-04-09 METHOD AND DEVICE FOR DYNAMIC SPECTRA SHARING
JP2014549351A JP2015506612A (ja) 2012-04-20 2013-04-09 動的スペクトル共用方法および装置
US14/310,756 US20140308968A1 (en) 2012-04-20 2014-06-20 Dynamic spectrum sharing method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2012101181607A CN103379498A (zh) 2012-04-20 2012-04-20 动态频谱共享方法和装置
CN201210118160.7 2012-04-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/310,756 Continuation US20140308968A1 (en) 2012-04-20 2014-06-20 Dynamic spectrum sharing method and device

Publications (1)

Publication Number Publication Date
WO2013155941A1 true WO2013155941A1 (zh) 2013-10-24

Family

ID=49382909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/073916 WO2013155941A1 (zh) 2012-04-20 2013-04-09 动态频谱共享方法和装置

Country Status (5)

Country Link
US (1) US20140308968A1 (zh)
EP (1) EP2779728A4 (zh)
JP (1) JP2015506612A (zh)
CN (1) CN103379498A (zh)
WO (1) WO2013155941A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111279742A (zh) * 2017-11-06 2020-06-12 T移动美国公司 电信网络流量的频谱共享系统
US20220078626A1 (en) * 2020-09-08 2022-03-10 Qualcomm Incorporated Spectrum sharing with deep reinforcement learning (rl)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8995255B2 (en) 2012-08-03 2015-03-31 Intel Corporation Coverage adjustment in E-UTRA networks
US11653215B2 (en) * 2012-09-25 2023-05-16 Parallel Wireless, Inc. Heterogeneous mesh network and a multi-RAT node used therein
WO2015180029A1 (zh) * 2014-05-27 2015-12-03 华为技术有限公司 一种提高频谱利用率的方法及装置
US10182352B2 (en) 2014-08-22 2019-01-15 British Telecommunications Public Limited Company Small cell resource allocation
CN105636059B (zh) * 2014-10-29 2018-12-11 电信科学技术研究院 一种分配频谱的方法和设备
CN105554767B (zh) * 2014-10-31 2019-04-19 电信科学技术研究院 一种分配频谱的方法和设备
CN105611539B (zh) * 2014-11-10 2020-03-31 中兴通讯股份有限公司 动态频谱配置方法、装置和系统
WO2016154892A1 (zh) 2015-03-31 2016-10-06 华为技术有限公司 一种频谱共享的方法及装置
CN107889117B (zh) 2016-09-30 2022-05-10 英国电讯有限公司 小小区簇的资源分配装置、资源分配方法以及通信系统
CN107889116B (zh) 2016-09-30 2022-05-10 英国电讯有限公司 多级小区或小区簇的配置方法、装置以及通信系统
CN107889127B (zh) 2016-09-30 2022-08-16 英国电讯有限公司 小区簇的资源管理方法、装置及通信系统
CN108271163B (zh) * 2017-01-03 2021-04-16 中兴通讯股份有限公司 一种频谱资源的共享方法和装置
WO2018209468A1 (zh) * 2017-05-15 2018-11-22 深圳市卓希科技有限公司 一种频带分配方法和系统
RU2749092C1 (ru) * 2018-01-22 2021-06-04 Телефонактиеболагет Лм Эрикссон (Пабл) Управление распределением ресурсов и управление уведомлением по интерфейсам ran
CN111050329B (zh) * 2018-10-12 2023-05-09 中国移动通信有限公司研究院 一种资源共享方法及网络侧设备
US11895507B2 (en) * 2018-11-26 2024-02-06 T-Mobile Usa, Inc. Spectrum sharing optimization within a base station node
CN111491374B (zh) * 2019-01-25 2022-06-17 成都鼎桥通信技术有限公司 频带资源共享方法、装置、电子设备以及存储介质
CN112312551A (zh) * 2019-07-31 2021-02-02 中国移动通信有限公司研究院 信息处理方法及设备
US20220330274A1 (en) * 2019-09-04 2022-10-13 Telefonaktiebolaget Lm Ericsson (Publ) Methods and Devices for Wireless Communication
CN112584384A (zh) * 2019-09-30 2021-03-30 大唐移动通信设备有限公司 频谱共享方法及装置
US11979892B2 (en) 2021-04-30 2024-05-07 T-Mobile Usa, Inc. Systems and methods for optimizing cellular spectrum utilization
US20230047458A1 (en) * 2021-08-13 2023-02-16 Qualcomm Incorporated Reacting to cell timing source outage notifications
CN118476252A (zh) * 2021-12-31 2024-08-09 华为技术有限公司 用于主网络和辅网络之间的共享频谱接入的系统、装置和方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101083825A (zh) * 2006-05-30 2007-12-05 株式会社Ntt都科摩 在共存的多种无线网络中进行动态频谱分配的方法及装置
CN101321385A (zh) * 2007-12-29 2008-12-10 北京邮电大学 异构无线网络中的协同资源管理方法及其系统
US20120088455A1 (en) * 2010-10-08 2012-04-12 Motorola Mobility, Inc. Inter-modulation distortion reduction in multi-mode wireless communication device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101152460B1 (ko) * 2005-11-04 2012-07-03 인하대학교 산학협력단 무선 통신 시스템의 자원 관리 방법 및 시스템
JPWO2008004561A1 (ja) * 2006-07-05 2009-12-03 日本電気株式会社 無線基地局、負荷分散装置、集中制御装置、無線通信システム、負荷分散方法及び負荷分散プログラム
GB0801532D0 (en) * 2008-01-28 2008-03-05 Fujitsu Lab Of Europ Ltd Communications systems
GB2457432A (en) * 2008-01-28 2009-08-19 Fujitsu Lab Of Europ Ltd Mitigating interference in wireless communication systems
US8761792B2 (en) * 2008-03-27 2014-06-24 At&T Mobility Ii Llc Management of preemptable communications resources
US20110249642A1 (en) * 2010-04-13 2011-10-13 Qualcomm Incorporated Adaptive resource negotiation between base stations for enhanced interference coordination
US8620383B2 (en) * 2011-10-05 2013-12-31 Alcatel Lucent Dynamic resource sharing among cellular networks

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101083825A (zh) * 2006-05-30 2007-12-05 株式会社Ntt都科摩 在共存的多种无线网络中进行动态频谱分配的方法及装置
CN101321385A (zh) * 2007-12-29 2008-12-10 北京邮电大学 异构无线网络中的协同资源管理方法及其系统
US20120088455A1 (en) * 2010-10-08 2012-04-12 Motorola Mobility, Inc. Inter-modulation distortion reduction in multi-mode wireless communication device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2779728A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111279742A (zh) * 2017-11-06 2020-06-12 T移动美国公司 电信网络流量的频谱共享系统
CN111279742B (zh) * 2017-11-06 2023-10-24 T移动美国公司 电信网络流量的频谱共享系统
US20220078626A1 (en) * 2020-09-08 2022-03-10 Qualcomm Incorporated Spectrum sharing with deep reinforcement learning (rl)
US11968541B2 (en) * 2020-09-08 2024-04-23 Qualcomm Incorporated Spectrum sharing with deep reinforcement learning (RL)

Also Published As

Publication number Publication date
EP2779728A4 (en) 2015-05-27
JP2015506612A (ja) 2015-03-02
EP2779728A1 (en) 2014-09-17
US20140308968A1 (en) 2014-10-16
CN103379498A (zh) 2013-10-30

Similar Documents

Publication Publication Date Title
WO2013155941A1 (zh) 动态频谱共享方法和装置
US20220240154A1 (en) Content-Aware Inter-RAT RAB Steering
EP3852434B1 (en) Load balancing method and device
KR101617978B1 (ko) 기저대역 신호 처리 클러스터
Panwar et al. A survey on 5G: The next generation of mobile communication
EP3051876B1 (en) Small cell switching method, enb and computer storage medium
US8498653B2 (en) Load sharing method, device, and system
JP6926208B2 (ja) 情報送信方法および無線アクセスネットワークデバイス
EP2584836B1 (en) Signalling of resource status information between base stations for load balancing
JP6268290B2 (ja) 情報インタラクション、オフロード処理方法、装置、基地局、rnc及び端末
KR20230035038A (ko) 근접 기반 서비스 원격 및 중계 엔티티 서비스 품질 관리
RU2715056C1 (ru) Система и способ тарификации, и сетевое устройство
US10512083B2 (en) Control method and management apparatus
WO2013107418A1 (zh) 一种负载均衡方法以及相关装置
US20150222546A1 (en) Load Balancing in Communication Systems
EP2911443A1 (en) Method and device for controlling data transmission via signaling by user equipment
WO2012058966A1 (zh) 接纳控制方法、目标网络侧、源网络侧及切换处理系统
WO2013013638A1 (zh) 移动负载均衡处理方法、中继节点、宿主基站、和通讯系统
KR20120071227A (ko) 분산 부하제어를 수행하는 이동통신 시스템 및 이동통신 시스템의 분산 부하제어 방법
CN103517323A (zh) 无线异构网络的数据传输方法、分流设备、基站设备
WO2013139161A1 (zh) 用于无线网络中的无线资源调度的方法和装置
KR20140117963A (ko) 차세대 이동통신 시스템에서 트래픽 제어 방법 및 그 장치
CN104703241A (zh) 一种小区切换方法及装置
CN106797614B (zh) 无线基站、移动站、无线通信系统、无线基站的控制方法以及记录介质
KR20200048209A (ko) 비면허 대역의 이동통신 시스템에서 셀 재선택 절차를 수행하는 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13778810

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013778810

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014549351

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE