WO2013153895A1 - Engine control device - Google Patents

Engine control device Download PDF

Info

Publication number
WO2013153895A1
WO2013153895A1 PCT/JP2013/056896 JP2013056896W WO2013153895A1 WO 2013153895 A1 WO2013153895 A1 WO 2013153895A1 JP 2013056896 W JP2013056896 W JP 2013056896W WO 2013153895 A1 WO2013153895 A1 WO 2013153895A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
lean
engine
air
control device
Prior art date
Application number
PCT/JP2013/056896
Other languages
French (fr)
Japanese (ja)
Inventor
中川 慎二
沼田 明人
福地 栄作
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2013153895A1 publication Critical patent/WO2013153895A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0085Balancing of cylinder outputs, e.g. speed, torque or air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • F02D41/1498With detection of the mechanical response of the engine measuring engine roughness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/221Safety or indicating devices for abnormal conditions relating to the failure of actuators or electrically driven elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • F02D41/28Interface circuits
    • F02D2041/286Interface circuits comprising means for signal processing
    • F02D2041/288Interface circuits comprising means for signal processing for performing a transformation into the frequency domain, e.g. Fourier transformation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1012Engine speed gradient
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M45/00Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship
    • F02M45/02Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship with each cyclic delivery being separated into two or more parts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a control device of an engine.
  • the actual fuel injection amount is likely to vary in a region where the fuel injection amount is small due to the structure, and the degree of variation is further increased as the temporal change progresses.
  • the air-fuel ratio of the cylinder becomes lean, so the generated torque decreases and a torque step occurs with other cylinders, resulting in deterioration of drivability.
  • Lean cylinder detection which detects the operating condition of the engine and detects a cylinder leaner than a predetermined value among the plurality of cylinders as a lean generation cylinder based on the detection result
  • an injection number control means for reducing the number of fuel injections to the lean generation cylinder detected by the lean cylinder detection means.
  • the air-fuel ratio of at least one cylinder is leaner than the air-fuel ratio of other cylinders due to deterioration with time of the fuel injection valve etc., and the number of fuel injections of the cylinder being lean is Reduce.
  • the number of fuel injections of the cylinder being lean is Reduce.
  • a block diagram for explaining an outline of functions of an engine control apparatus according to an embodiment of the present invention A block diagram for explaining an outline of functions of an engine control apparatus according to an embodiment of the present invention
  • a block diagram for explaining an outline of functions of an engine control apparatus according to a first embodiment A block diagram for explaining an outline of functions of an engine control apparatus according to a first embodiment
  • a block diagram for explaining an outline of functions of an engine control apparatus according to a first embodiment A block diagram for explaining an outline of functions of an engine control apparatus according to a first embodiment
  • a block diagram for explaining an outline of functions of an engine control apparatus according to a first embodiment A block diagram for explaining an outline of functions of an engine control apparatus according to a first embodiment
  • the schematic block diagram which shows the whole system of the engine control system by embodiment of this invention Block diagram for explaining the configuration of the control unit of the embodiment Block diagram for explaining the function by the CPU in the control unit according to the first embodiment
  • Diagram schematically illustrating the function of the basic fuel injection amount calculation unit according to the first to fourth embodiments Diagram schematically illustrating the function
  • a diagram schematically illustrating the function of the injection number calculation unit according to the first to fourth embodiments Diagram schematically illustrating the function of the fuel injection amount calculation unit according to the first to fourth embodiments
  • Diagram schematically illustrating the function of a fuel injection timing calculation unit according to the first to fourth embodiments Diagram schematically illustrating the function of the abnormality determination unit according to the first to fourth embodiments
  • Block diagram schematically illustrating the function of the engine control system according to the second embodiment Block diagram schematically illustrating the function of the engine control system according to the second embodiment Block diagram for explaining the function by the CPU in the control unit according to the second embodiment
  • a diagram schematically illustrating the function of the second injection number correction cylinder calculation unit according to the second to fourth embodiments Block diagram schematically illustrating functions of an engine control apparatus according to a third embodiment Block diagram for explaining the function by the CPU in the control unit according to the third embodiment
  • Diagram schematically illustrating the function of the lean determination method switching unit according to the third embodiment A block diagram for explaining an outline of functions of an engine control apparatus according to a first embodiment
  • Block diagram for explaining the function of the CPU in the control unit according to the fourth embodiment A diagram schematically illustrating the function of the third injection number correction cylinder calculation unit according to the fourth embodiment
  • a diagram schematically illustrating the function of the first corrected cylinder number calculation unit according to the fourth embodiment A diagram schematically illustrating the function of the second corrected cylinder number calculation unit according to the fourth embodiment
  • the present invention relates to a control device for an engine adopting a split fuel injection method, and when a cylinder in lean combustion is detected, the number of fuel injections for that cylinder is reduced to reduce torque fluctuation of the engine.
  • the engine control device performs split fuel injection for injecting fuel a plurality of times in one cycle for each of a plurality of cylinders.
  • the air-fuel ratio or the operating condition of the engine is detected.
  • the engine control device detects a cylinder that is leaner than a predetermined value among the plurality of cylinders based on the detection result as a lean generation cylinder, and detects the lean generation cylinder.
  • the engine control device reduces the number of fuel injections to the lean generation cylinder before and after the reduction.
  • the fuel injection amount per split fuel injection is controlled to prevent a change in the fuel injection amount.
  • FIG. 3 the engine control apparatus according to the first embodiment extracts a frequency component corresponding to two rotation cycles of the engine based on the signal indicating the air-fuel ratio output from the air-fuel ratio sensor or the O2 sensor. Do. Then, the engine control device detects the lean occurring cylinder based on the frequency component corresponding to the extracted two rotation cycle. That is, as shown in FIG.
  • the engine control apparatus of the present embodiment extracts a phase spectrum and a power spectrum corresponding to two rotation cycles of the engine based on the signal indicating the air-fuel ratio, and based on the phase spectrum. Detect lean cylinders. Then, the engine control device according to the present embodiment determines whether the detected power spectrum of the lean generation cylinder is equal to or more than a predetermined value, and determines that the power spectrum of the lean generation cylinder is equal to or more than the predetermined value.
  • the cylinder whose air fuel ratio is leaner than the air fuel ratio of the other cylinders is again set to a predetermined value. If not detected, the number of fuel injections to the lean generation cylinder is maintained. Further, as shown in FIG. 6, in the engine control device of the present embodiment, after the number of fuel injections to the lean generation cylinder is reduced, the air fuel ratio is made leaner than the predetermined value compared to the air fuel ratio of the other cylinders. If a cylinder that has been detected is detected again, the number of fuel injections for the lean generation cylinder is further reduced. Then, as shown in FIG.
  • the engine control device of the present embodiment has an air fuel ratio compared with the air fuel ratio of other cylinders. If a cylinder that is leaner than that is detected again, this is to notify that it is abnormal.
  • the first embodiment will be specifically described below.
  • FIG. 8 is a schematic block diagram of the entire system of the engine control device 100.
  • the engine control device 100 includes an air cleaner 1, an air flow sensor 2, an electronic throttle 3, an intake manifold 4, a collector 5, an accelerator 6, a fuel injection valve 7, a spark plug 8, an engine 9, a manifold 10, a three-way catalyst 11, and an upstream catalyst.
  • a fuel ratio sensor 12, an accelerator opening sensor 13, a water temperature sensor 14, a crank angle sensor 15, a control unit 16, a throttle opening sensor 17, an exhaust gas recirculation pipe 18, a valve 19, a downstream catalyst O2 sensor 20 and an intake air temperature sensor 29 are provided.
  • the engine 9 is configured of multiple cylinders (for example, four cylinders). Air from the outside passes through the air cleaner 1 and flows into the cylinder through the intake manifold 4 and the collector 5.
  • the air flow sensor 2 detects an amount of air flowing through the air cleaner 1 (hereinafter referred to as an intake air amount), and controls a signal (hereinafter referred to as an intake air amount signal) indicative of the intake air amount. Output to unit 16.
  • the electronic throttle 3 is controlled by the control unit 16 to adjust the amount of intake air that has passed through the air cleaner 1.
  • the throttle opening degree sensor 17 is attached to the electronic throttle 3 and outputs a signal indicating the opening degree of the electronic throttle 3 (hereinafter referred to as an opening degree signal) to the control unit 16.
  • the intake temperature sensor 29 is provided upstream of the air cleaner 1 and detects the temperature of air from the outside (hereinafter referred to as intake temperature), and a signal indicative of the intake temperature (hereinafter referred to as intake temperature signal) is a control unit. Output to 16
  • the crank angle sensor 15 outputs a signal at every 10 degrees of rotation angle of the crankshaft in the engine 9 to the control unit 16 for each fuel cycle as a signal indicating the rotation speed of the crankshaft (hereinafter, rotation speed signal).
  • the water temperature sensor 14 detects the temperature of the cooling water for cooling the engine 9, and outputs a signal indicating the detected temperature of the cooling water (hereinafter referred to as a water temperature signal) to the control unit 16.
  • the accelerator opening sensor 13 detects the depression amount of the accelerator 6 by the driver, and outputs a signal indicating the detected depression amount (hereinafter referred to as a depression amount signal) to the control unit 16.
  • the control unit 16 is an arithmetic circuit that has a CPU, a ROM, a RAM, and the like, which will be described later, and controls each component of the engine control device 100 and executes various data processing.
  • the control unit 16 controls the intake air amount from the air flow sensor 2, the opening degree signal from the accelerator opening degree sensor 13, the water temperature signal from the water temperature sensor 14, the rotational speed signal from the crank angle sensor 15, and the throttle opening degree sensor
  • An operating state of the engine 9 is detected by inputting an opening degree signal from the engine 17 and an intake air temperature signal from the intake air temperature sensor 29. Then, the control unit 16 calculates the target air amount, the fuel injection amount, the ignition timing and the main operation amount of the engine 9 at the ignition timing based on the detected operating state of the engine 9.
  • the control unit 16 calculates a target throttle opening degree of the electronic throttle 3 based on the calculated target air amount, converts it into an electronic throttle drive signal, and outputs it to the electronic throttle 3.
  • the control unit 16 converts the calculated fuel injection amount into a valve opening pulse signal and outputs it to the fuel injection valve (injector) 7.
  • the control unit 16 outputs to the spark plug 8 a drive signal for igniting the spark plug 8 at the calculated ignition timing.
  • the control unit 16 detects a cylinder in which lean combustion is occurring, and performs processing (injection number / injection amount control processing) for controlling the number of fuel injections and the fuel injection amount in one cycle of the detected cylinders. The details of the process by the control unit 16 will be described later.
  • the fuel injected from the fuel injection valve 7 according to the control by the control unit 16 is mixed with the air flowing in through the intake manifold 4 and flows into the cylinder of the engine 9 to form an air-fuel mixture.
  • the mixture is detonated by the spark generated from the spark plug 8 at each ignition timing calculated by the control unit 16.
  • the combustion pressure resulting from the explosion of the mixture depresses the piston to generate power of the engine 9.
  • a part of the exhaust after explosion of the mixture is sent to the three-way catalyst 11 through the exhaust manifold 10, and the other part is recirculated to the intake side (upstream of the collector 5) through the exhaust reflux pipe 18.
  • the amount of exhaust gas recirculated through the exhaust gas recirculation pipe 18 is controlled by a valve 19.
  • the catalyst upstream air-fuel ratio sensor 12 is provided in a flow path connecting the engine 9 to the three-way catalyst 11 and outputs a signal indicating the detected oxygen concentration, that is, an air-fuel ratio (hereinafter, air-fuel ratio signal) to the control unit 16 .
  • the catalyst downstream O2 sensor 20 is provided in the flow passage downstream of the three-way catalyst 11, and outputs a signal indicating whether the amount of residual oxygen in the exhaust gas is thick or thin to the control unit 16.
  • FIG. 9 is a block diagram showing the configuration of the control unit 16.
  • the control unit 16 includes a CPU 21, a ROM 22, a RAM 23, an input circuit 24, an input / output port 25, an ignition signal output circuit 26, a fuel injection valve drive circuit 27 and an electronic throttle drive circuit 28.
  • the input circuit 24 includes an intake air amount signal from the air flow sensor 2, an air-fuel ratio signal from the catalyst upstream air-fuel ratio sensor 12, an opening degree signal from the accelerator opening degree sensor 13, a water temperature signal from the water temperature sensor 14, and a crank angle sensor 15. Signal processing such as noise removal of various signals by inputting the rotational speed signal from the engine, the opening degree signal from the throttle opening degree sensor 17, the signal from the catalyst downstream O2 sensor 20 and the intake temperature signal from the intake temperature sensor 29 Do.
  • the various signals described above are output to the input port of the input / output port 25 and stored in the RAM 23 when signal processing such as noise removal is performed by the input circuit 24.
  • the CPU 21 performs various arithmetic processing to be described later using various signals stored in the RAM 23.
  • a control program in which the contents of various arithmetic processing executed by the CPU 21 are described is written in the ROM 22 in advance.
  • the calculation result obtained by the arithmetic processing by the CPU 21, that is, the value indicating the operation amount of each actuator is temporarily stored in the RAM 23, and then transmitted to the output port of the input / output port 25.
  • Values set in the output port include, for example, an operation signal of the spark plug 8, a drive signal of the fuel injection valve 7, a drive signal for realizing the target opening degree of the electronic throttle 3, and the like.
  • the operation signal of the spark plug 8 is an ON / OFF signal that is ON when the primary coil in the ignition signal output circuit 26 flows, and OFF when it does not flow.
  • the ignition timing of the spark plug 8 is when the actuation signal of the spark plug 8 turns from ON to OFF.
  • the drive signal of the fuel injection valve 7 is an ON / OFF signal that is ON when the valve is open and OFF when the valve is closed.
  • the drive signal of the fuel injection valve 7 is amplified to energy sufficient for opening the fuel injection valve 7 by the fuel injection valve drive circuit 27 and is sent to the fuel injection valve 7.
  • a drive signal for realizing the target opening degree of the electronic throttle 3 is sent to the electronic throttle 3 through the electronic throttle drive circuit 28.
  • the lean cylinder detection processing and the number of injections / injection amount control processing executed by the CPU 21 of the control unit 16 will be described below using the block diagram shown in FIG.
  • the lean cylinder detection process and the injection amount control process are performed by the CPU 21 executing a control program written in the ROM 22.
  • the CPU 21 includes a basic fuel injection amount calculation unit 210, an air-fuel ratio feedback correction value calculation unit 211, a two-rotation component calculation unit 212, a first injection number correction cylinder calculation unit 213, an injection number calculation unit 214, and fuel injection.
  • a quantity calculation unit 215, a fuel injection timing calculation unit 216, and an abnormality determination unit 217 are functionally provided.
  • the basic fuel injection amount calculation unit 210 is based on the intake air amount Qa corresponding to the intake air amount signal input from the air flow sensor 2 and the rotational speed Ne of the crankshaft corresponding to the rotational speed signal input from the crank angle sensor 15 Then, the injection pulse width Tp0 corresponding to the basic fuel injection amount is calculated. Based on the air-fuel ratio signal Rabf from the catalyst upstream air-fuel ratio sensor 12, the air-fuel ratio feedback correction value calculation unit 211 calculates a correction value Alpha for correcting the fuel injection amount so as to achieve the target air-fuel ratio.
  • the two-rotation component calculation unit 212 uses the air-fuel ratio signal Rabf from the catalyst upstream air-fuel ratio sensor 12 to calculate components of a two-rotation cycle of the engine 9, that is, a power spectrum Power and a phase spectrum Phase.
  • the first injection number correction cylinder calculation unit 213 is a cylinder in which lean combustion is occurring based on the component of the two rotation cycle of the engine 9 calculated by the two rotation component calculation unit 212 (hereinafter referred to as a lean generation cylinder) To detect Then, the first injection number correction cylinder calculation unit 213 specifies a cylinder whose injection number is to be corrected among the detected lean occurring cylinders, that is, a correction target cylinder.
  • the injection number calculation unit 214 calculates the injection number Kai_n of each cylinder.
  • n represents a cylinder number.
  • the injection number calculation unit 214 reduces the number of injections of the correction target cylinder set by the first injection number correction cylinder calculation unit 213 in order to eliminate lean combustion, as described later.
  • the fuel injection amount calculation unit 215 has an injection pulse width equivalent to the fuel injection amount of each cylinder with respect to the basic injection fuel amount Tp0.
  • TI_n_k shows a cylinder number and k shows the injection number (injection order) of the same cylinder in 1 cycle.
  • the fuel injection timing calculation unit 216 calculates the injection timing IT_n_k of each cylinder from the number of times of injection Kai_n of each cylinder.
  • n shows a cylinder number and k shows the injection number (order) of the same cylinder in 1 cycle.
  • the abnormality determination unit 217 determines whether the cylinder is abnormal based on the number of times of injection Kai_n of each cylinder. If it is determined that an abnormality is present, the abnormality determination unit 217 sets the abnormality flag f_MIL to one.
  • FIG. 11 is a view schematically showing the function of the basic fuel injection amount calculation unit 210.
  • the basic fuel injection amount calculation unit 210 calculates a basic fuel injection amount Tp0 using the following equation (1).
  • Cyl represents the number of cylinders
  • K0 is a coefficient determined based on the specifications of the injector (the relationship between the fuel injection pulse width and the fuel injection amount).
  • Tp0 K0 ⁇ Qa / (Ne ⁇ Cyl) (1)
  • FIG. 12 is a diagram schematically showing the function of the air-fuel ratio feedback correction value calculation unit 211.
  • the air-fuel ratio feedback correction value calculation unit 211 calculates the air-fuel ratio feedback correction value Alpha by PI control based on the difference between the air-fuel ratio signal Rabf from the catalyst upstream air-fuel ratio sensor 12 and the target air-fuel ratio TgRabf.
  • the air-fuel ratio feedback correction value calculation unit 211 calculates the air-fuel ratio feedback correction value Alpha using the signal output from the O2 sensor.
  • FIG. 13 is a diagram schematically showing the function of the two-rotation component calculation unit 212.
  • the two-rotation component calculation unit 212 uses, for example, a fast Fourier transform (FFT) to generate a power spectrum Power of two-rotation component from the air-fuel ratio signal Rabf from the upstream air-fuel ratio sensor 12 and a phase spectrum of the two-rotation component. Calculate the basic value Phase0.
  • the two-rotation component computing unit 212 may use discrete Fourier transform (DFT) instead of using fast Fourier transform (FFT). In this case, since only two rotation components can be calculated by appropriately selecting the coefficient, the calculation load is reduced as compared with the fast Fourier transform FFT that calculates the power spectrum and the phase spectrum of all frequencies.
  • DFT discrete Fourier transform
  • FFT fast Fourier transform
  • the phase spectrum Phase of the two-rotation component is calculated from Phase 0, Phase 0-90, Phase 0-180, Phase 0-270, Phase 0, Phase 0-90,... Is the value obtained by cyclic operation.
  • the above cyclic operation is performed for the purpose of fixing the reference point for calculating the phase.
  • the two-rotation component calculation unit 212 sets the combustion period (180 deg) as the calculation period, and the two-rotation component sets a period in which the engine makes two rotations as one period (360 deg). Therefore, the phase reference point is fixed so that the period during which the engine rotates twice, that is, one cycle, when the two-rotation component calculation unit 212 calculates four times per combustion cycle.
  • FIG. 14 is a diagram schematically showing the function of the first injection number correction cylinder calculation unit 213.
  • the first injection number correction cylinder calculation unit 213 detects a lean occurrence cylinder according to the following conditions (a1) to (d1) based on the phase spectrum Phase calculated by the two-rotation component calculation unit 212, and detects the detected lean
  • the cylinder number of the generated cylinder (hereinafter referred to as a lean generated cylinder number) N_lean_cyl is set.
  • K1a_Phase, K1b_Phase, K2a_Phase, K2b_Phase, K3a_Phase, K3b_Phase, K4a_Phase, K4b_Phase, and N1 are values determined empirically according to the characteristics of the engine 9. (A1) If K1a_Phase ⁇ Phase ⁇ K1b_Phase is satisfied N1 times consecutively, the first injection number correction cylinder calculating unit 213 sets the lean occurring cylinder number N_lean_cyl to one.
  • the first injection number correction cylinder calculating unit 213 sets the lean occurring cylinder number N_lean_cyl to 2. (C1) If K3a_Phase ⁇ Phase ⁇ K3b_Phase is satisfied N1 times consecutively, the first injection number correction cylinder calculating unit 213 sets the lean occurring cylinder number N_lean_cyl to 3. (D1) If K4a_Phase ⁇ Phase ⁇ K4b_Phase is satisfied N1 times consecutively, the first injection number correction cylinder operation unit 213 sets the lean occurring cylinder number N_lean_cyl to four.
  • the first injection number correction cylinder calculation unit 213 resets the number of times N1 to zero.
  • the first injection number correction cylinder calculating unit 213 sets the following condition (e1) based on the power spectrum Power calculated by the two-rotation component calculating unit 212.
  • the cylinder to be corrected is specified from among the lean occurring cylinders according to (h1), and the cylinder number of the cylinder to be corrected (hereinafter referred to as the cylinder number to be corrected) N_hos_cyl is set.
  • K1_Power, K2_Power, K3_Power, and K4_Power are values determined empirically according to the characteristics of the engine 9.
  • the first injection number correction cylinder calculating unit 213 sets the cylinder number N_hos_cyl to be corrected to 1.
  • FIG. 15 is a view schematically showing the function of the injection number calculation unit 214.
  • the injection number calculation unit 214 calculates the number of times of injection Kai_n (n indicates a cylinder number) of the cylinder to be corrected according to the following conditions (i1) to (l1). That is, the injection number calculation unit 214 reduces the number of injections of the cylinder to be corrected according to the following conditions (i1) to (11).
  • the initial values of Kai_1, Kai_2, Kai_3, and Kai_4 are all set to 6. That is, the number of injections implemented by the same cylinder per cycle is set to six as an initial value. Further, the lower limit value of the number of times of injection Kai_n is set to one.
  • FIG. 17 schematically shows the function of the fuel injection timing calculation unit 216.
  • the fuel injection timing calculation unit 216 uses the following equations (3) to (8) according to the value of the number of times of injection Kai_n calculated by the injection number calculation unit 214 to determine the kth injection timing of the nth cylinder Calculate IT_n_k.
  • Each parameter is a value determined empirically according to the characteristics of the engine 9.
  • IT_n_1 K_IT_n_1a
  • IT_n_2 K_IT_n_2a
  • IT_n_3 K_IT_n_3a
  • IT_n_4 K_IT_n_4a
  • IT_n_5 K_IT_n_5a
  • IT_n_6 K_IT_n_6a
  • Kai_n 5
  • IT_n_1 K_IT_n_1b
  • IT_n_2 K_IT_n_2b
  • IT_n_3 K_IT_n_3b
  • IT_n_4 K_IT_n_4b
  • IT_n_5 K_IT_n_5b
  • Kai_n 3
  • FIG. 18 schematically shows the function of the abnormality determination unit 217.
  • the abnormality determination unit 217 determines whether the cylinder is abnormal or not by using the following equation (9), and when it is determined that the cylinder is abnormal, the abnormality notification flag f_MIL is set to 1, and when it is determined that it is normal The notification flag f_MIL is set to 0.
  • the abnormality notification flag f_MIL is set to 1, for example, an abnormality notification lamp (not shown) is turned on.
  • NG_Kai be determined to be the number of injections that is the discharge amount of exhaust (especially soot) that is determined to be abnormal.
  • F_MIL 0 when Kai_n> NG_Kai
  • F_MIL 1 when Kai_n ⁇ NG_Kai (9)
  • the engine control device 100 performing split fuel injection for injecting fuel several times in one cycle for each of the plurality of cylinders provided in the multi-cylinder engine 9 performs the first injection number correction cylinder calculation And an injection number calculation unit 214.
  • the first injection number correction cylinder calculation unit 213 detects, among the plurality of cylinders, a cylinder that is leaner than a predetermined value compared to the air-fuel ratio of the other cylinders as the lean generation cylinder.
  • the injection number calculation unit 214 reduces the number of fuel injections to the lean occurring cylinder detected by the first injection number correction cylinder calculation unit 213.
  • the amount of fuel injection per injection that is, the valve opening time increases. For this reason, it is possible to relatively reduce the variation of the actual combustion injection amount with respect to the injection signal caused by the change with time, and to prevent the deterioration of the driving performance. Further details will be described.
  • the variation of the injection amount is large in the region where the time width of the applied injection pulse is short, that is, the region where the valve opening time is short. Therefore, it is designed to be used in the valve opening time or more in which the dispersion of the injection quantity can be allowed.
  • the valve opening time per injection is lengthened by reducing the number of times of fuel injection so that the variation in the injection amount does not increase. Thereby, the occurrence of the torque step can be suppressed.
  • the fuel injection amount calculation unit 215 prevents the change of the total fuel injection amount in one cycle by the lean generation cylinder. The amount of fuel injection per split fuel injection was controlled. Thereby, necessary torque can be obtained.
  • the combustion state for example, when the cylinder whose air-fuel ratio is leaner than a predetermined value compared to the air-fuel ratio of other cylinders is not detected again
  • the fuel injection number calculation unit 214 maintains the number of fuel injections to the lean generation cylinder. Therefore, when the lean generation cylinder is not detected, the number of fuel injections of the same cylinder in one cycle can be maintained.
  • the fuel injection number calculation unit 214 further reduces the number of fuel injections of the lean generation cylinder.
  • the fuel injection amount per split fuel injection is increased by further reducing the number of fuel injections, so that the actual fuel injection amount relative to the injection signal is Variations can be reduced.
  • the combustion state for example, the cylinder in which the air-fuel ratio leans more than a predetermined value compared with the air-fuel ratio of the other cylinders is detected again
  • the abnormality determination unit 217 notifies that it is abnormal.
  • the number of fuel injections for the same cylinder in one cycle is reduced, the amount of soot emissions generally increases. Therefore, when the number of fuel injections is reduced to a predetermined number (NG_Kai), it can be reported that the exhaust gas has deteriorated.
  • the two-rotation component calculation unit 212 extracts a frequency component corresponding to the two-rotation cycle of the multi-cylinder engine 9 based on the air-fuel ratio signal. Then, the first injection number correction cylinder calculating unit 213 detects the lean occurring cylinder based on the frequency component corresponding to the 2-rotation cycle extracted by the 2-rotation component calculating unit 212.
  • the waveform of the air-fuel ratio signal output from the catalyst upstream air-fuel ratio sensor 12 oscillates in one cycle cycle, that is, two engine rotation cycles.
  • the first injection number correction cylinder calculation unit 213 can detect a lean occurring cylinder based on the above phenomenon.
  • the two-rotation component calculation unit 212 extracts the phase spectrum and the power spectrum corresponding to the two-rotation cycle of the multi-cylinder engine 9 based on the signal indicating the air-fuel ratio.
  • the first injection number correction cylinder calculating unit 213 detects a lean occurring cylinder based on the phase spectrum extracted by the two-rotation component calculating unit 212, and determines whether the detected power spectrum of the lean occurring cylinder is equal to or more than a predetermined value. Do. Then, the fuel injection number calculation unit 214 reduces the number of fuel injections when the first injection number correction cylinder calculation unit 213 determines that the power spectrum of the lean generation cylinder is equal to or more than the predetermined value.
  • the waveform of the air-fuel ratio signal when the air-fuel ratio of at least one cylinder is in lean combustion is a phenomenon that oscillates in one cycle period, that is, in two engine rotation cycles, a specific reference point (for example, The phase from the top dead center of the cylinder intake process changes. For this reason, it is possible to detect the lean occurring cylinder from the value of the phase spectrum among the components of the two rotation cycles of the engine 9 obtained by subjecting the air-fuel ratio signal to Fourier transform.
  • the amplitude of the above-described vibration phenomenon of the waveform changes depending on the degree of leanness of the cylinder in lean combustion. That is, the greater the degree of leanness, the greater the amplitude of the waveform.
  • the lean degree of the lean generation cylinder is obtained from the value of the power spectrum having a correlation with the amplitude among the components of the two rotation cycles of the engine 9 obtained by Fourier transforming the air fuel ratio signal. Therefore, the lean generation cylinder is detected based on the phase spectrum corresponding to the two rotation cycles of the engine 9, and among the detected lean generation cylinders, the correction target cylinder is determined to be large when the power spectrum is large to a certain extent. It can be identified.
  • FIGS. 19-23 An engine control system according to a second embodiment will be described with reference to FIGS. 19-23.
  • the same components as in the first embodiment will be assigned the same reference numerals and differences will be mainly described.
  • the points that are not particularly described are the same as in the first embodiment.
  • the present embodiment differs from the first embodiment in that a lean occurring cylinder is detected using angular acceleration and angular jerk based on a rotational speed signal output from a crank angle sensor.
  • the engine control device calculates the angular acceleration or angular jerk of the crank based on the signal output from the crank angle sensor, and calculates the calculated angular acceleration or angle.
  • a lean occurring cylinder is detected based on the acceleration.
  • the engine control device calculates the average angular acceleration or average angular jerk of each cylinder when each cylinder of the engine is in a predetermined cycle, and the calculated average angular acceleration is predetermined.
  • FIG. 21 shows functions of the CPU 21 of the control unit 16 in the second embodiment.
  • the CPU 21 according to the second embodiment includes an angular acceleration / angular acceleration calculation unit 218, instead of the 2-rotation component calculation unit 212 and the first injection number correction cylinder calculation unit 213 of the CPU 21 according to the first embodiment.
  • a second injection number correction cylinder calculation unit 219 is functionally provided.
  • the angular acceleration and angular jerk calculation unit 218 calculates the angular acceleration dNe_n and the angular jerk ddNe_n from the rotational speed Ne of the crankshaft corresponding to the signal output from the crank angle sensor 15.
  • n shows a cylinder number.
  • the second injection number correction cylinder calculation unit 219 sets the correction target cylinder number N_hos_cyl of the correction target cylinder using the angular acceleration dNe_n and the angular jerk ddNe_n calculated by the angular acceleration and angular jerk calculation unit 218. Do.
  • FIG. 22 is a view schematically showing the function of the angular acceleration and angular jerk computing unit 218.
  • the angular acceleration and angular jerk calculation unit 218 uses the rotational speed Ne of the crankshaft corresponding to the rotational speed signal from the crank angle sensor 15 to calculate an average rotational speed between 90 degrees and 270 degrees after compression top dead center of the nth cylinder. Calculate Avg_Ne_n.
  • n changes in the order of ignition.
  • the angular acceleration and angular jerk calculation unit 218 calculates the difference between the current average rotation speed Avg_Ne_n and the average rotation speed Avg_Ne_n one time before (previous) the ignition order as the angular acceleration dNe_n of the n-th cylinder. For example, in the case where the firing order is No. 1 ⁇ No. 3 ⁇ No. 4 ⁇ No. 2 cylinder, the angular acceleration / angular acceleration calculation unit 218 calculates the firing order with the average rotation speed Avg_Ne_1 of No. 1 cylinder at this time.
  • the difference from the previous average rotation speed Avg_Ne_2 of the second cylinder is set as the angular acceleration dNe_1 of the first cylinder. Further, the angular acceleration and angular jerk calculation unit 218 calculates the difference between the current angular acceleration dNe_n and the previous angular acceleration dNe_n as the angular acceleration ddNe_n of the n-th cylinder.
  • FIG. 23 schematically shows the function of the second injection number correction cylinder calculating unit 219.
  • the second injection number correction cylinder operation unit 219 corrects the cylinder according to the following conditions (a2) to (d2) based on the angular acceleration dNe_n or the angular acceleration ddNe_n calculated by the angular acceleration / angular acceleration calculation unit 218.
  • K1_dNe, K1_ddNe, K2_ddNe and N2 are values determined empirically according to the characteristics of the engine 9.
  • the correction target cylinder number N_hos_cyl is set to 1.
  • the correction target cylinder number N_hos_cyl is set to 3.
  • the correction target cylinder number N_hos_cyl is set to 4.
  • the angular acceleration and angular jerk calculation unit 218 calculates the angular acceleration or angular jerk of the crank based on the signal output from the crank angle sensor. Then, the second injection number correction cylinder calculating unit 219 detects the lean occurring cylinder based on the angular acceleration or the angular jerk calculated by the angular acceleration and angular jerk calculating unit 218.
  • the torque generated by the combustion of the lean generation cylinder is smaller than the torque generated by the combustion of the other cylinders, that is, the cylinders not lean-burning.
  • the generated torque of the engine 9 and the rotational angular acceleration or rotational angular acceleration of the engine 9. That is, when the generated torque becomes smaller, the rotational angular acceleration and the rotational angular jerk become smaller.
  • the rotational angular acceleration also recovers to the original value (i.e., the normal value), and the rotational angular acceleration accelerates once and then returns to the original value.
  • the second injection number correction cylinder calculating unit 219 can detect a lean occurring cylinder based on the above phenomenon.
  • the angular acceleration / angular acceleration calculation unit 218 calculates the average angular acceleration or average angular acceleration of each cylinder when each cylinder of the multi-cylinder engine 9 is in a predetermined cycle, and the calculated average angle It is determined whether the acceleration is equal to or less than a predetermined value, or the calculated average angular jerk is outside a predetermined range.
  • the second The injection number correction cylinder calculating unit 219 detects the cylinder as a lean generation cylinder.
  • the torque generated by the combustion of the lean generating cylinder becomes smaller than the generated torque of the other cylinders not being lean-burned, and the rotational angular acceleration and rotational angular acceleration of the engine 9 also change accordingly.
  • the angular acceleration and angular jerk computing unit 218 is provided for each cylinder of the engine 9 for a predetermined number of cycles (for example, an expansion stroke) in order to make the torque generated by combustion of each cylinder correspond clearly to angular acceleration and angular jerk. Calculate the average angular acceleration or average angular jerk of the cylinder. When the average angular acceleration or the average angular jerk changes, the second injection number correction cylinder calculation unit 219 determines from the section calculated by the angular acceleration and angular jerk calculation unit 218 the cylinder in which the generated torque has changed, that is, the lean generation The cylinder can be detected.
  • the second injection number correction cylinder calculating unit 219 determines that the average angular acceleration is less than or equal to a predetermined value. In accordance with that, it is possible to detect lean occurring cylinders. Further, since the angular jerk becomes small and then increases once and returns to the normal value, the second injection number correction cylinder calculating unit 219 makes the lean in response to the average angular jerk falling outside the predetermined range. Can detect the generated cylinder.
  • FIGS. 24 to 26 An engine control system according to a third embodiment will be described with reference to FIGS. 24 to 26.
  • the same components as those in the first and second embodiments will be assigned the same reference numerals and differences will be mainly described. Points that are not particularly described are the same as in the first and second embodiments.
  • one of the angular acceleration and the angular jerk based on the air-fuel ratio signal from the catalyst upstream air-fuel ratio sensor and the rotational speed signal output from the crank angle sensor is used according to the operating range of the engine.
  • This embodiment differs from the first and second embodiments in that cylinders are set.
  • the engine control apparatus extracts a frequency component corresponding to two rotation cycles of the engine based on the signal indicating the air-fuel ratio output from the air-fuel ratio sensor or the O2 sensor, and outputs the frequency component from the crank angle sensor The angular acceleration or angular acceleration of the crank is calculated based on the received signal. Then, based on the result of detection of a cylinder that is leaner than a predetermined value based on the frequency component corresponding to the rotation period and the angular acceleration or angular jerk, a cylinder that is leaner than a predetermined value is detected. According to at least the rotational speed or the load (i.e., the operating range) of the engine, one of the above results is output as a lean generation cylinder.
  • the third embodiment will be specifically described below.
  • FIG. 25 shows functions of the CPU 21 of the control unit 16 in the third embodiment.
  • the CPU 21 has a basic fuel injection amount calculation unit 210 having the same function as that of the first embodiment, an air-fuel ratio feedback correction value calculation unit 211, a two-rotation component calculation unit 212, a first injection number correction cylinder calculation unit 213, and injection
  • the angular acceleration and angular acceleration calculation unit 218 having the same function as that of the second embodiment and the second operation calculation unit 214, the fuel injection amount calculation unit 215, the fuel injection timing calculation unit 216, and the abnormality determination unit 217
  • the lean determination method switching unit 220 and the switch 221 are functionally provided. Therefore, in the following description, the function of the lean determination method switching unit 220 will be mainly described.
  • FIG. 26 is a diagram schematically showing the function of the lean determination method switching unit 220.
  • the lean determination method switching unit 220 sets the lean determination method switching flag f_ch_lean using the following equation (10). If the lean determination method switching flag f_ch_lean is set to 1, the correction set by the second injection number correction cylinder calculation unit 219 using the rotation speed Ne of the crankshaft corresponding to the rotation speed signal from the crank angle sensor 15 The number of injections of the target cylinder N_hos_cyl is corrected.
  • K1_Tp is determined according to the detection accuracy of the two-rotation component of the air-fuel ratio signal from the catalyst upstream air-fuel ratio sensor 12, and K1_Ne is calculated from the rotation speed signal from the crank angle sensor 15.
  • it is determined according to the detection accuracy of angular acceleration and angular jerk.
  • the above equation (10) represents that when the engine 9 is operating at a relatively low load and a low rotation speed, the angular acceleration and the angular jerk are used to detect a lean occurring cylinder.
  • equation (10) represents that the air-fuel ratio signal is used to detect a lean occurring cylinder when the engine 9 is operating at a relatively high load and a high revolution. That is, when the engine 9 is operated at high load and high rotation, the degree of diffusion of exhaust gas discharged from the exhaust valve decreases in a period until it reaches the catalyst upstream air-fuel ratio sensor 12, so the air-fuel ratio signal It is used that the detection accuracy of the lean generation cylinder becomes high by using.
  • the switch 221 When the lean determination method switching flag f_ch_lean is set to 1 by the lean determination method switching unit 220, the switch 221 is switched, and the correction target cylinder number N_hos_cyl set by the second injection number correction cylinder calculating unit 219 is the injection number. It is output to the calculation unit 214. Further, when the lean determination method switching flag f_ch_lean is set to 0 by the lean determination method switching unit 220, the switch 221 is switched, and the correction target cylinder number N_hos_cyl set by the first injection number correction cylinder calculation unit 213 is It is output to the injection number calculation unit 214.
  • the lean determination method switching unit 220 switches the switch 221 according to at least the rotational speed or load of the multi-cylinder engine 9 to detect the result of the first injection number correction cylinder calculation unit 213 and the second injection number correction cylinder
  • the detection result of one of the results detected by the calculation unit 219 is output as a lean generation cylinder.
  • the detection accuracy of the lean occurring cylinder is improved by using the angular acceleration and angular jerk, and the engine 9 has high load and high rotation.
  • the detection accuracy of the lean occurring cylinder can be improved by using the air-fuel ratio signal. That is, since the detection method of the lean generation cylinder is different according to the operation state of the engine 9, the lean generation cylinder can be detected reliably.
  • the same components as those in the first and second embodiments will be assigned the same reference numerals and differences will be mainly described. Points that are not particularly described are the same as in the first and second embodiments.
  • the first in that the cylinder to be corrected is identified using both the angular acceleration and the angular jerk based on the air-fuel ratio signal from the catalyst upstream air-fuel ratio sensor and the rotational speed signal from the crank angle sensor. It differs from the second embodiment.
  • the engine control apparatus extracts a frequency component corresponding to two rotation cycles of the engine based on the signal indicating the air-fuel ratio output from the air-fuel ratio sensor or the O2 sensor, and outputs the frequency component from the crank angle sensor
  • the angular acceleration or angular acceleration of the crank is calculated based on the received signal.
  • a cylinder that is leaner than a predetermined value based on a frequency component corresponding to two rotation cycles and a cylinder that is leaner than a predetermined value based on angular acceleration or angular jerk.
  • a lean occurrence cylinder is detected using both of the detection result.
  • the fourth embodiment will be specifically described below.
  • FIG. 28 shows functions of the CPU 21 of the control unit 16 in the fourth embodiment.
  • the CPU 21 has a basic fuel injection amount calculation unit 210 having the same function as that of the first embodiment, an air-fuel ratio feedback correction value calculation unit 211, a two-rotation component calculation unit 212, an injection number calculation unit 214, and a fuel injection amount calculation unit
  • a third injection number correction cylinder calculation unit And 222 are functionally provided. Therefore, in the following description, the function of the third injection number correction cylinder calculation unit 222 will be mainly described.
  • FIG. 29 schematically shows the function of the third injection number correction cylinder calculating unit 222.
  • the third injection number correction cylinder calculation unit 222 is configured to include a first correction cylinder number calculation unit 223 and a second correction cylinder number calculation unit 224.
  • the third injection number correction cylinder calculating unit 222 generates the first correction cylinder number N_hos_cyl_a detected by the first correction cylinder number calculating unit 223 and the second correction cylinder number N_hos_cyl_b detected by the second correction cylinder number calculating unit 224.
  • N4 is a value determined empirically according to the characteristics of the engine 9.
  • the description of the first correction cylinder number calculation unit 223 and the second correction cylinder number calculation unit 224 will be described later.
  • FIG. 30 is a view schematically showing the function of the first correction cylinder number calculation unit 223.
  • the first correction cylinder number calculation unit 223 detects a lean generation cylinder according to the following conditions (e3) to (h3) based on the phase spectrum Phase calculated by the two-rotation component calculation unit 212, and the lean generation cylinder number N_lean_cyl Set K1a_Phase, K1b_Phase, K2a_Phase, K2b_Phase, K3a_Phase, K3b_Phase, K4a_Phase, K4b_Phase, and N1 are values determined empirically according to the characteristics of the engine 9.
  • the first corrected cylinder number computing unit 223 sets the lean occurring cylinder number N_lean_cyl to 4.
  • the first injection number correction cylinder calculation unit 213 Reset N1 times to 0.
  • the first correction cylinder operation unit 223 sets the following conditions (i3) to (i) based on the power spectrum Power calculated by the two-rotation component operation unit 212.
  • the correction target cylinder is specified according to l3), and the first correction cylinder number N_hos_cyl_a is set.
  • K1_Power, K2_Power, K3_Power, and K4_Power are values determined empirically according to the characteristics of the engine 9.
  • the first correction cylinder number calculation unit 223 sets the first correction cylinder number N_hos_cyl_a to 1.
  • the first correction cylinder number calculation unit 223 sets the first correction cylinder number N_hos_cyl_a to 2.
  • FIG. 31 is a view schematically showing the function of the second correction cylinder number calculation unit 224.
  • the second correction cylinder number calculation unit 224 uses the rotational speed signal from the crank angle sensor 15 to calculate the following condition (m3) based on the angular acceleration and the angular acceleration calculated by the angular acceleration and angular jerk calculation unit 218:
  • the second corrected cylinder number N_hos_cly_b is set in accordance with) to (p3).
  • K1_dNe, K1_ddNe, K2_ddNe and N2 are values determined empirically according to the characteristics of the engine 9.
  • the second correction cylinder number calculation unit 224 2 Set the corrected cylinder number N_hos_cyl_b to 2.
  • the first correction cylinder number calculation unit 223 detects a cylinder that is burning leaner than a predetermined value based on the frequency component corresponding to the 2-rotation cycle extracted by the 2-rotation component calculation unit 212, and the second correction cylinder number
  • the calculation unit 224 detects a cylinder that is leaner than a predetermined value, based on the angular acceleration or the angular jerk calculated by the angular acceleration / angular jerk calculation unit 218.
  • the third injection number correction cylinder calculation unit 222 detects a lean occurring cylinder using both the detection result by the first correction cylinder number calculation unit 223 and the detection result by the second correction cylinder number calculation unit 224. did.
  • both the method similar to the first injection number correction cylinder calculating unit 213 of the first embodiment and the method similar to the second injection number correction cylinder calculating unit 219 of the second embodiment The detection accuracy can be improved because the lean generated cylinders can be detected using In particular, when the engine 9 is operated at medium load and medium rotation, the detection accuracy of the lean generation cylinder based on the air-fuel ratio signal and the detection accuracy of the lean generation cylinder based on the angular acceleration and the angular jerk are improved. For this reason, when the engine 9 is operated at medium load and medium rotation, the detection accuracy of the lean occurring cylinder by the third injection number correction cylinder calculating unit 222 can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

In the present invention, in split fuel injection for injecting fuel multiple times into the same cylinder during one cycle, deterioration of driving performance caused by leaning of the air-fuel ratio occurring due to time degradation of a fuel injection valve, etc., is suppressed. An engine control device is provided with the following: a lean cylinder detection means for detecting, as a cylinder in which leaning occurs, a cylinder from among a plurality of cylinders that is leaner than a prescribed value as compared to the air-fuel ratio of other cylinders; and a fuel injection frequency control means for reducing the frequency of fuel injection in the cylinder in which leaning occurs that was detected by the lean cylinder detection means.

Description

エンジンの制御装置Engine control device
 本発明はエンジンの制御装置に関する。 The present invention relates to a control device of an engine.
 地球環境問題を背景として自動車には低排気化が要求されている。特に近年、エンジンから排出されるすすの排出量の低減の要求が強まっている。すすの排出量を低減するためには、1サイクル中に同一気筒に対して複数回の燃料噴射を実施させる分割燃料噴射が有効である。従来から、空燃比センサの検出値の出力に基づいて各気筒の空燃比を気筒別に推定し、低負荷運転時の各気筒の燃料噴射弁の噴射量ばらつきを算出し補正する燃料噴射装置が知られている(たとえば特許文献1)。 Due to global environmental problems, vehicles are required to reduce their emissions. In particular, in recent years, there has been an increasing demand for reducing the amount of soot emitted from engines. In order to reduce the amount of soot emissions, split fuel injection is effective in which multiple fuel injections are performed on the same cylinder in one cycle. Conventionally, a fuel injection system is known that estimates the air-fuel ratio of each cylinder based on the output of the detected value of the air-fuel ratio sensor for each cylinder and calculates and corrects the injection amount variation of the fuel injection valve of each cylinder at low load operation. (For example, Patent Document 1).
特開2009-214411号公報JP, 2009-214411, A
 しかしながら、燃料噴射弁は、構造上燃料噴射量が少ない領域では実際の燃料噴射量がばらつきやすく、経時変化が進むとばらつき度は一層大きくなる。特に、実際の燃料噴射量が減少する方向にばらつく場合、その気筒の空燃比はリーンになるので、発生するトルクが減少し、他の気筒との間にトルク段差が発生して運転性が悪化するという問題がある。 However, in the fuel injection valve, the actual fuel injection amount is likely to vary in a region where the fuel injection amount is small due to the structure, and the degree of variation is further increased as the temporal change progresses. In particular, when the actual fuel injection amount fluctuates in a decreasing direction, the air-fuel ratio of the cylinder becomes lean, so the generated torque decreases and a torque step occurs with other cylinders, resulting in deterioration of drivability. Have the problem of
 請求項1に記載の発明は、多気筒エンジンに設けられた複数の気筒のそれぞれに対して、1サイクル中に複数回の燃料を噴射する分割燃料噴射を行うエンジンの制御装置において、 空燃比またはエンジンの運転状況を検出し、その検出結果に基づいて、複数の気筒のうち、他の気筒の空燃比と比べて所定値よりもリーンになっている気筒をリーン発生気筒として検出するリーン気筒検出手段と、リーン気筒検出手段によって検出されたリーン発生気筒に対する燃料噴射の回数を減少させる噴射回数制御手段とを備えることを特徴とする。 According to a first aspect of the present invention, in a control device of an engine performing split fuel injection in which fuel is injected a plurality of times in one cycle to each of a plurality of cylinders provided in a multi-cylinder engine, Lean cylinder detection which detects the operating condition of the engine and detects a cylinder leaner than a predetermined value among the plurality of cylinders as a lean generation cylinder based on the detection result And an injection number control means for reducing the number of fuel injections to the lean generation cylinder detected by the lean cylinder detection means.
 本発明によれば、少なくとも1つの気筒の空燃比が燃料噴射弁の経時劣化等により他の気筒の空燃比よりリーンになっていることを検出し、リーンになっている気筒の燃料噴射回数を減少させる。この結果、分割燃料噴射時における予期せぬリーン気筒の発生を抑制し、運転性の悪化を防止できる。 According to the present invention, it is detected that the air-fuel ratio of at least one cylinder is leaner than the air-fuel ratio of other cylinders due to deterioration with time of the fuel injection valve etc., and the number of fuel injections of the cylinder being lean is Reduce. As a result, it is possible to suppress the occurrence of an unexpected lean cylinder at the time of split fuel injection and to prevent the deterioration of the drivability.
本発明の実施の形態によるエンジン制御装置の機能の概略を説明するブロック図A block diagram for explaining an outline of functions of an engine control apparatus according to an embodiment of the present invention 本発明の実施の形態によるエンジン制御装置の機能の概略を説明するブロック図A block diagram for explaining an outline of functions of an engine control apparatus according to an embodiment of the present invention 第1の実施の形態によるエンジン制御装置の機能の概略を説明するブロック図A block diagram for explaining an outline of functions of an engine control apparatus according to a first embodiment 第1の実施の形態によるエンジン制御装置の機能の概略を説明するブロック図A block diagram for explaining an outline of functions of an engine control apparatus according to a first embodiment 第1の実施の形態によるエンジン制御装置の機能の概略を説明するブロック図A block diagram for explaining an outline of functions of an engine control apparatus according to a first embodiment 第1の実施の形態によるエンジン制御装置の機能の概略を説明するブロック図A block diagram for explaining an outline of functions of an engine control apparatus according to a first embodiment 第1の実施の形態によるエンジン制御装置の機能の概略を説明するブロック図A block diagram for explaining an outline of functions of an engine control apparatus according to a first embodiment 本発明の実施の形態によるエンジン制御装置のシステム全体を示す概略構成図The schematic block diagram which shows the whole system of the engine control system by embodiment of this invention 実施の形態のコントロールユニットの構成を説明するブロック図Block diagram for explaining the configuration of the control unit of the embodiment 第1の実施の形態によるコントロールユニット内のCPUによる機能を説明するブロック図Block diagram for explaining the function by the CPU in the control unit according to the first embodiment 第1~第4の実施の形態による基本燃料噴射量演算部の機能を模式的に説明する図Diagram schematically illustrating the function of the basic fuel injection amount calculation unit according to the first to fourth embodiments 第1~第4の実施の形態による空燃比フィードバック補正値演算部の機能を模式的に説明する図Diagram schematically illustrating the function of the air-fuel ratio feedback correction value calculation unit according to the first to fourth embodiments 第1~第4の実施の形態による2回転成分演算部の機能を模式的に説明する図Diagram schematically illustrating the function of the two-rotation component computing unit according to the first to fourth embodiments 第1~第4の実施の形態による第1噴射回数補正気筒演算部の機能を模式的に説明する図A diagram schematically illustrating the function of a first injection number correction cylinder calculation unit according to the first to fourth embodiments. 第1~第4の実施の形態による噴射回数演算部の機能を模式的に説明する図A diagram schematically illustrating the function of the injection number calculation unit according to the first to fourth embodiments 第1~第4の実施の形態による燃料噴射量演算部の機能を模式的に説明する図Diagram schematically illustrating the function of the fuel injection amount calculation unit according to the first to fourth embodiments 第1~第4の実施の形態による燃料噴射時期演算部の機能を模式的に説明する図Diagram schematically illustrating the function of a fuel injection timing calculation unit according to the first to fourth embodiments 第1~第4の実施の形態による異常判定部の機能を模式的に説明する図Diagram schematically illustrating the function of the abnormality determination unit according to the first to fourth embodiments 第2の実施の形態によるエンジン制御装置の機能の概略を説明するブロック図Block diagram schematically illustrating the function of the engine control system according to the second embodiment 第2の実施の形態によるエンジン制御装置の機能の概略を説明するブロック図Block diagram schematically illustrating the function of the engine control system according to the second embodiment 第2の実施の形態によるコントロールユニット内のCPUによる機能を説明するブロック図Block diagram for explaining the function by the CPU in the control unit according to the second embodiment 第2~第4の実施の形態による角加速度・角加加速度演算部の機能を模式的に説明する図A diagram schematically illustrating functions of an angular acceleration and angular jerk computing unit according to the second to fourth embodiments. 第2~第4の実施の形態による第2噴射回数補正気筒演算部の機能を模式的に説明する図A diagram schematically illustrating the function of the second injection number correction cylinder calculation unit according to the second to fourth embodiments. 第3の実施の形態によるエンジン制御装置の機能の概略を説明するブロック図Block diagram schematically illustrating functions of an engine control apparatus according to a third embodiment 第3の実施の形態によるコントロールユニット内のCPUによる機能を説明するブロック図Block diagram for explaining the function by the CPU in the control unit according to the third embodiment 第3の実施の形態によるリーン判定方式切換部の機能を模式的に説明する図Diagram schematically illustrating the function of the lean determination method switching unit according to the third embodiment 第1の実施の形態によるエンジン制御装置の機能の概略を説明するブロック図A block diagram for explaining an outline of functions of an engine control apparatus according to a first embodiment 第4の実施の形態によるコントロールユニット内のCPUによる機能を説明するブロック図Block diagram for explaining the function of the CPU in the control unit according to the fourth embodiment 第4の実施の形態による第3噴射回数補正気筒演算部の機能を模式的に説明する図A diagram schematically illustrating the function of the third injection number correction cylinder calculation unit according to the fourth embodiment 第4の実施の形態による第1補正気筒番号演算部の機能を模式的に説明する図A diagram schematically illustrating the function of the first corrected cylinder number calculation unit according to the fourth embodiment 第4の実施の形態による第2補正気筒番号演算部の機能を模式的に説明する図A diagram schematically illustrating the function of the second corrected cylinder number calculation unit according to the fourth embodiment
 本発明は、分割燃料噴射方式を採用したエンジンの制御装置に関するものであり、リーン燃焼している気筒が検出されると、その気筒の燃料噴射回数を低減してエンジンのトルク変動を低減するようにしたものである。すなわち、図1の実施の形態のエンジン制御装置の機能ブロック図に示すように、エンジン制御装置は、複数の気筒のそれぞれに対して、1サイクル中に複数回の燃料を噴射する分割燃料噴射を実施中に、空燃比またはエンジンの運転状況を検出する。エンジン制御装置は、その検出結果に基づいて、複数の気筒のうち、他の気筒の空燃比と比べて所定値よりもリーンになっている気筒をリーン発生気筒として検出し、検出したリーン発生気筒に対する燃料噴射の回数を減少させるものである。そして、図2の実施の形態のエンジン制御装置の機能ブロック図に示すように、エンジン制御装置は、リーン発生気筒に対する燃料噴射の回数を減少させる前後で、リーン発生気筒による1サイクル中での総燃料噴射量の変化を防ぐように、分割燃料噴射の1回当たりの燃料噴射量を制御するものである。以下、詳細に説明する。 The present invention relates to a control device for an engine adopting a split fuel injection method, and when a cylinder in lean combustion is detected, the number of fuel injections for that cylinder is reduced to reduce torque fluctuation of the engine. The That is, as shown in the functional block diagram of the engine control device according to the embodiment of FIG. 1, the engine control device performs split fuel injection for injecting fuel a plurality of times in one cycle for each of a plurality of cylinders. During operation, the air-fuel ratio or the operating condition of the engine is detected. The engine control device detects a cylinder that is leaner than a predetermined value among the plurality of cylinders based on the detection result as a lean generation cylinder, and detects the lean generation cylinder. To reduce the number of fuel injections. Then, as shown in the functional block diagram of the engine control device according to the embodiment of FIG. 2, the engine control device reduces the number of fuel injections to the lean generation cylinder before and after the reduction. The fuel injection amount per split fuel injection is controlled to prevent a change in the fuel injection amount. The details will be described below.
-第1の実施の形態-
 図面を参照して、本発明の第1の実施の形態によるエンジン制御装置について説明する。まず、図3~7に示す概略機能ブロック図を用いて、第1の実施の形態のエンジン制御装置の概要を説明する。図3に示すように、第1の実施の形態のエンジン制御装置は、空燃比センサまたはO2センサから出力された空燃比を示す信号に基づいて、エンジンの2回転周期に相当する周波数成分を抽出する。そして、エンジン制御装置は、抽出された2回転周期に相当する周波数成分に基づいて、リーン発生気筒を検出する。すなわち、図4に示すように、本実施形態のエンジン制御装置は、空燃比を示す信号に基づいて、エンジンの2回転周期に相当する位相スペクトルとパワースペクトルとを抽出し、位相スペクトルに基づいてリーン発生気筒を検出する。そして、本実施形態のエンジン制御装置は、検出したリーン発生気筒のパワースペクトルが所定値以上か否かを判定し、リーン発生気筒のパワースペクトルが所定値以上と判定した場合に、燃料噴射の回数を減少させるものである。
-First embodiment-
An engine control apparatus according to a first embodiment of the present invention will be described with reference to the drawings. First, an outline of the engine control system according to the first embodiment will be described using schematic functional block diagrams shown in FIGS. As shown in FIG. 3, the engine control apparatus according to the first embodiment extracts a frequency component corresponding to two rotation cycles of the engine based on the signal indicating the air-fuel ratio output from the air-fuel ratio sensor or the O2 sensor. Do. Then, the engine control device detects the lean occurring cylinder based on the frequency component corresponding to the extracted two rotation cycle. That is, as shown in FIG. 4, the engine control apparatus of the present embodiment extracts a phase spectrum and a power spectrum corresponding to two rotation cycles of the engine based on the signal indicating the air-fuel ratio, and based on the phase spectrum. Detect lean cylinders. Then, the engine control device according to the present embodiment determines whether the detected power spectrum of the lean generation cylinder is equal to or more than a predetermined value, and determines that the power spectrum of the lean generation cylinder is equal to or more than the predetermined value. To reduce
 図5に示すように、エンジン制御装置は、リーン発生気筒に対する燃料噴射の回数が減少された後、空燃比が他の気筒の空燃比と比べて所定値よりもリーンとなっている気筒が再度検出されない場合には、リーン発生気筒に対する燃料噴射の回数を維持する。また、図6に示すように、本実施形態のエンジン制御装置は、リーン発生気筒に対する燃料噴射の回数が減少された後、空燃比が他の気筒の空燃比と比べて所定値よりもリーンとなっている気筒が再度検出された場合には、リーン発生気筒の燃料噴射の回数をさらに減少する。そして、図7に示すように、本実施形態のエンジン制御装置は、リーン発生気筒に対する燃料噴射の回数が所定回数まで減少されたときに、空燃比が他の気筒の空燃比と比べて所定値よりもリーンとなっている気筒が再度検出された場合には、異常であることを報知するものである。以下、第1の実施の形態について、具体的に説明する。 As shown in FIG. 5, in the engine control apparatus, after the number of fuel injections to the lean generation cylinder is reduced, the cylinder whose air fuel ratio is leaner than the air fuel ratio of the other cylinders is again set to a predetermined value. If not detected, the number of fuel injections to the lean generation cylinder is maintained. Further, as shown in FIG. 6, in the engine control device of the present embodiment, after the number of fuel injections to the lean generation cylinder is reduced, the air fuel ratio is made leaner than the predetermined value compared to the air fuel ratio of the other cylinders. If a cylinder that has been detected is detected again, the number of fuel injections for the lean generation cylinder is further reduced. Then, as shown in FIG. 7, when the number of times of fuel injection to the lean generation cylinder is reduced to a predetermined number, the engine control device of the present embodiment has an air fuel ratio compared with the air fuel ratio of other cylinders. If a cylinder that is leaner than that is detected again, this is to notify that it is abnormal. The first embodiment will be specifically described below.
 図8はエンジン制御装置100のシステム全体の概略構成図である。エンジン制御装置100は、エアクリーナ1、エアフローセンサ2、電子スロットル3、吸気マニホールド4、コレクタ5、アクセル6、燃料噴射弁7、点火プラグ8、エンジン9、マニホールド10、三元触媒11、触媒上流空燃比センサ12、アクセル開度センサ13、水温センサ14、クランク角センサ15、コントロールユニット16、スロットル開度センサ17、排気還流管18、バルブ19、触媒下流O2センサ20および吸気温センサ29を備える。 FIG. 8 is a schematic block diagram of the entire system of the engine control device 100. As shown in FIG. The engine control device 100 includes an air cleaner 1, an air flow sensor 2, an electronic throttle 3, an intake manifold 4, a collector 5, an accelerator 6, a fuel injection valve 7, a spark plug 8, an engine 9, a manifold 10, a three-way catalyst 11, and an upstream catalyst. A fuel ratio sensor 12, an accelerator opening sensor 13, a water temperature sensor 14, a crank angle sensor 15, a control unit 16, a throttle opening sensor 17, an exhaust gas recirculation pipe 18, a valve 19, a downstream catalyst O2 sensor 20 and an intake air temperature sensor 29 are provided.
 本実施の形態によるエンジン9は、多気筒(たとえば4気筒)にて構成される。外部からの空気はエアクリーナ1を通過して、吸気マニホールド4、コレクタ5を経てシリンダー内に流入する。エアフローセンサ2は、エアクリーナ1を通過して流入した空気の量(以下、吸入空気量と呼ぶ)を検出して、吸入空気量を示す信号(以下、吸入空気量信号と呼ぶ)を後述するコントロールユニット16へ出力する。 The engine 9 according to the present embodiment is configured of multiple cylinders (for example, four cylinders). Air from the outside passes through the air cleaner 1 and flows into the cylinder through the intake manifold 4 and the collector 5. The air flow sensor 2 detects an amount of air flowing through the air cleaner 1 (hereinafter referred to as an intake air amount), and controls a signal (hereinafter referred to as an intake air amount signal) indicative of the intake air amount. Output to unit 16.
 電子スロットル3は、コントロールユニット16により制御されて、エアクリーナ1を通過した吸入空気量を調整する。スロットル開度センサ17は電子スロットル3に取り付けられ、電子スロットル3の開度を示す信号(以下、開度信号と呼ぶ)をコントロールユニット16へ出力する。吸気温センサ29は、エアクリーナ1の上流に設けられ、外部からの空気の温度(以下、吸気温と呼ぶ)を検出して、吸気温を示す信号(以下、吸気温信号と呼ぶ)をコントロールユニット16へ出力する。 The electronic throttle 3 is controlled by the control unit 16 to adjust the amount of intake air that has passed through the air cleaner 1. The throttle opening degree sensor 17 is attached to the electronic throttle 3 and outputs a signal indicating the opening degree of the electronic throttle 3 (hereinafter referred to as an opening degree signal) to the control unit 16. The intake temperature sensor 29 is provided upstream of the air cleaner 1 and detects the temperature of air from the outside (hereinafter referred to as intake temperature), and a signal indicative of the intake temperature (hereinafter referred to as intake temperature signal) is a control unit. Output to 16
 クランク角センサ15は、エンジン9内のクランク軸の回転角が10度ごとの信号をクランク軸の回転速度を示す信号(以後、回転速度信号)としてコントロールユニット16へ燃料周期ごとに出力する。水温センサ14は、エンジン9を冷却するための冷却水の温度を検出し、検出した冷却水の温度を示す信号(以下、水温信号と呼ぶ)をコントロールユニット16へ出力する。アクセル開度センサ13は、運転者によるアクセル6の踏込量を検出して、検出した踏込量を示す信号(以下、踏込量信号と呼ぶ)をコントロールユニット16へ出力する。 The crank angle sensor 15 outputs a signal at every 10 degrees of rotation angle of the crankshaft in the engine 9 to the control unit 16 for each fuel cycle as a signal indicating the rotation speed of the crankshaft (hereinafter, rotation speed signal). The water temperature sensor 14 detects the temperature of the cooling water for cooling the engine 9, and outputs a signal indicating the detected temperature of the cooling water (hereinafter referred to as a water temperature signal) to the control unit 16. The accelerator opening sensor 13 detects the depression amount of the accelerator 6 by the driver, and outputs a signal indicating the detected depression amount (hereinafter referred to as a depression amount signal) to the control unit 16.
 コントロールユニット16は、後述するCPU、ROM、RAM等を有し、エンジン制御装置100の各構成要素を制御したり、各種のデータ処理を実行したりする演算回路である。コントロールユニット16は、上述したエアフローセンサ2からの吸入空気量信号、アクセル開度センサ13からの開度信号、水温センサ14からの水温信号、クランク角センサ15からの回転速度信号、スロットル開度センサ17からの開度信号、吸気温センサ29からの吸気温信号を入力して、エンジン9の運転状態を検出する。そして、コントロールユニット16は、検出したエンジン9の運転状態に基づいて、目標空気量、燃料噴射量、点火時期および点火時期でのエンジン9の主要な操作量を算出する。 The control unit 16 is an arithmetic circuit that has a CPU, a ROM, a RAM, and the like, which will be described later, and controls each component of the engine control device 100 and executes various data processing. The control unit 16 controls the intake air amount from the air flow sensor 2, the opening degree signal from the accelerator opening degree sensor 13, the water temperature signal from the water temperature sensor 14, the rotational speed signal from the crank angle sensor 15, and the throttle opening degree sensor An operating state of the engine 9 is detected by inputting an opening degree signal from the engine 17 and an intake air temperature signal from the intake air temperature sensor 29. Then, the control unit 16 calculates the target air amount, the fuel injection amount, the ignition timing and the main operation amount of the engine 9 at the ignition timing based on the detected operating state of the engine 9.
 コントロールユニット16は、算出した目標空気量に基づいて、電子スロットル3の目標スロットル開度を算出し、電子スロットル駆動信号に変換して電子スロットル3へ出力する。コントロールユニット16は、算出した燃料噴射量を開弁パルス信号に変換して燃料噴射弁(インジェクタ)7へ出力する。コントロールユニット16は、算出した点火時期で点火プラグ8を点火するための駆動信号を点火プラグ8へ出力する。さらに、コントロールユニット16は、リーン燃焼している気筒を検出し、検出した気筒の1サイクルにおける燃料噴射回数と燃料噴射量を制御するための処理(噴射回数/噴射量制御処理)を行う。コントロールユニット16による処理の詳細については、説明を後述する。 The control unit 16 calculates a target throttle opening degree of the electronic throttle 3 based on the calculated target air amount, converts it into an electronic throttle drive signal, and outputs it to the electronic throttle 3. The control unit 16 converts the calculated fuel injection amount into a valve opening pulse signal and outputs it to the fuel injection valve (injector) 7. The control unit 16 outputs to the spark plug 8 a drive signal for igniting the spark plug 8 at the calculated ignition timing. Furthermore, the control unit 16 detects a cylinder in which lean combustion is occurring, and performs processing (injection number / injection amount control processing) for controlling the number of fuel injections and the fuel injection amount in one cycle of the detected cylinders. The details of the process by the control unit 16 will be described later.
 コントロールユニット16による制御に応じて燃料噴射弁7から噴射された燃料は、吸気マニホールド4を経て流入した空気と混合されて、エンジン9のシリンダー内に流入して、混合気を形成する。混合気は、コントロールユニット16により算出された点火時期ごとに点火プラグ8から発生される火花によって爆発する。混合気の爆発による燃焼圧によりピストンが押し下げられてエンジン9の動力が発生する。混合気の爆発後の排気の一部は、排気マニホールド10を経て三元触媒11へ送られ、他の一部は排気還流管18を通って吸気側(コレクタ5の上流)に還流される。排気還流管18を通って還流される排気の量はバルブ19によって制御される。 The fuel injected from the fuel injection valve 7 according to the control by the control unit 16 is mixed with the air flowing in through the intake manifold 4 and flows into the cylinder of the engine 9 to form an air-fuel mixture. The mixture is detonated by the spark generated from the spark plug 8 at each ignition timing calculated by the control unit 16. The combustion pressure resulting from the explosion of the mixture depresses the piston to generate power of the engine 9. A part of the exhaust after explosion of the mixture is sent to the three-way catalyst 11 through the exhaust manifold 10, and the other part is recirculated to the intake side (upstream of the collector 5) through the exhaust reflux pipe 18. The amount of exhaust gas recirculated through the exhaust gas recirculation pipe 18 is controlled by a valve 19.
 触媒上流空燃比センサ12は、エンジン9から三元触媒11までを連通する流路に設けられ、検出された酸素濃度すなわち空燃比を示す信号(以下、空燃比信号)をコントロールユニット16へ出力する。触媒下流O2センサ20は、三元触媒11の下流の流路に設けられ、排ガス中の残存酸素量が濃いか薄いかを示す信号をコントロールユニット16へ出力する。 The catalyst upstream air-fuel ratio sensor 12 is provided in a flow path connecting the engine 9 to the three-way catalyst 11 and outputs a signal indicating the detected oxygen concentration, that is, an air-fuel ratio (hereinafter, air-fuel ratio signal) to the control unit 16 . The catalyst downstream O2 sensor 20 is provided in the flow passage downstream of the three-way catalyst 11, and outputs a signal indicating whether the amount of residual oxygen in the exhaust gas is thick or thin to the control unit 16.
 以下、第1の実施の形態によるコントロールユニット16の詳細について説明する。
 図9は、コントロールユニット16の構成を示すブロック図である。コントロールユニット16は、CPU21、ROM22、RAM23、入力回路24、入出力ポート25、点火信号出力回路26、燃料噴射弁駆動回路27および電子スロットル駆動回路28を備える。入力回路24は、エアフローセンサ2からの吸入空気量信号、触媒上流空燃比センサ12からの空燃比信号、アクセル開度センサ13からの開度信号、水温センサ14からの水温信号、クランク角センサ15からの回転速度信号、スロットル開度センサ17からの開度信号、触媒下流O2センサ20からの信号および吸気温センサ29からの吸気温信号を入力して、各種信号のノイズ除去等の信号処理を行う。
Hereinafter, details of the control unit 16 according to the first embodiment will be described.
FIG. 9 is a block diagram showing the configuration of the control unit 16. The control unit 16 includes a CPU 21, a ROM 22, a RAM 23, an input circuit 24, an input / output port 25, an ignition signal output circuit 26, a fuel injection valve drive circuit 27 and an electronic throttle drive circuit 28. The input circuit 24 includes an intake air amount signal from the air flow sensor 2, an air-fuel ratio signal from the catalyst upstream air-fuel ratio sensor 12, an opening degree signal from the accelerator opening degree sensor 13, a water temperature signal from the water temperature sensor 14, and a crank angle sensor 15. Signal processing such as noise removal of various signals by inputting the rotational speed signal from the engine, the opening degree signal from the throttle opening degree sensor 17, the signal from the catalyst downstream O2 sensor 20 and the intake temperature signal from the intake temperature sensor 29 Do.
 上記の各種信号は、入力回路24によってノイズ除去等の信号処理が行われると、入出力ポート25の入力ポートへ出力され、RAM23内に格納される。CPU21は、RAM23内に格納された各種信号を用いて後述する各種演算処理を行う。ROM22には、CPU21が実行する各種演算処理の内容が記述された制御プログラムが予め書き込まれている。CPU21による演算処理で得られた演算結果、すなわち各アクチュエータ作動量を示す値は、RAM23に一時的に格納された後、入出力ポート25の出力ポートへ送信される。 The various signals described above are output to the input port of the input / output port 25 and stored in the RAM 23 when signal processing such as noise removal is performed by the input circuit 24. The CPU 21 performs various arithmetic processing to be described later using various signals stored in the RAM 23. A control program in which the contents of various arithmetic processing executed by the CPU 21 are described is written in the ROM 22 in advance. The calculation result obtained by the arithmetic processing by the CPU 21, that is, the value indicating the operation amount of each actuator is temporarily stored in the RAM 23, and then transmitted to the output port of the input / output port 25.
 出力ポートにセットされる値には、たとえば点火プラグ8の作動信号や、燃料噴射弁7の駆動信号や、電子スロットル3の目標開度を実現するための駆動信号等がある。点火プラグ8の作動信号は、点火信号出力回路26内の一次側コイルの通流時はON、非通流時にはOFFとなるON/OFF信号である。点火プラグ8の点火時期は、点火プラグ8の作動信号がONからOFFになるときである。燃料噴射弁7の駆動信号は、開弁時にON、閉弁時にOFFとなるON/OFF信号である。燃料噴射弁7の駆動信号は、燃料噴射弁駆動回路27で燃料噴射弁7を開弁するために十分なエネルギーに増幅されて燃料噴射弁7へ送られる。電子スロットル3の目標開度を実現する駆動信号は、電子スロットル駆動回路28を経て電子スロットル3へ送られる。 Values set in the output port include, for example, an operation signal of the spark plug 8, a drive signal of the fuel injection valve 7, a drive signal for realizing the target opening degree of the electronic throttle 3, and the like. The operation signal of the spark plug 8 is an ON / OFF signal that is ON when the primary coil in the ignition signal output circuit 26 flows, and OFF when it does not flow. The ignition timing of the spark plug 8 is when the actuation signal of the spark plug 8 turns from ON to OFF. The drive signal of the fuel injection valve 7 is an ON / OFF signal that is ON when the valve is open and OFF when the valve is closed. The drive signal of the fuel injection valve 7 is amplified to energy sufficient for opening the fuel injection valve 7 by the fuel injection valve drive circuit 27 and is sent to the fuel injection valve 7. A drive signal for realizing the target opening degree of the electronic throttle 3 is sent to the electronic throttle 3 through the electronic throttle drive circuit 28.
 以下、図10に示すブロック図を用いて、コントロールユニット16のCPU21により実行されるリーン気筒検出処理および噴射回数/噴射量制御処理について説明する。リーン気筒検出処理および噴射量制御処理は、CPU21がROM22に書き込まれた制御プログラムを実行することにより行われる。CPU21は、基本燃料噴射量演算部210と、空燃比フィードバック補正値演算部211と、2回転成分演算部212と、第1噴射回数補正気筒演算部213と、噴射回数演算部214と、燃料噴射量演算部215と、燃料噴射時期演算部216と、異常判定部217とを機能的に備える。 The lean cylinder detection processing and the number of injections / injection amount control processing executed by the CPU 21 of the control unit 16 will be described below using the block diagram shown in FIG. The lean cylinder detection process and the injection amount control process are performed by the CPU 21 executing a control program written in the ROM 22. The CPU 21 includes a basic fuel injection amount calculation unit 210, an air-fuel ratio feedback correction value calculation unit 211, a two-rotation component calculation unit 212, a first injection number correction cylinder calculation unit 213, an injection number calculation unit 214, and fuel injection. A quantity calculation unit 215, a fuel injection timing calculation unit 216, and an abnormality determination unit 217 are functionally provided.
 基本燃料噴射量演算部210は、エアフローセンサ2から入力した吸入空気量信号に対応する吸入空気量Qaと、クランク角センサ15から入力した回転速度信号に対応するクランク軸の回転速度Neとに基づいて、基本燃料噴射量に相当する噴射パルス幅Tp0を算出する。空燃比フィードバック補正値演算部211は、触媒上流空燃比センサ12からの空燃比信号Rabfに基づいて、目標空燃比となるように燃料噴射量を補正するための補正値Alphaを算出する。 The basic fuel injection amount calculation unit 210 is based on the intake air amount Qa corresponding to the intake air amount signal input from the air flow sensor 2 and the rotational speed Ne of the crankshaft corresponding to the rotational speed signal input from the crank angle sensor 15 Then, the injection pulse width Tp0 corresponding to the basic fuel injection amount is calculated. Based on the air-fuel ratio signal Rabf from the catalyst upstream air-fuel ratio sensor 12, the air-fuel ratio feedback correction value calculation unit 211 calculates a correction value Alpha for correcting the fuel injection amount so as to achieve the target air-fuel ratio.
 2回転成分演算部212は、触媒上流空燃比センサ12からの空燃比信号Rabfを用いて、エンジン9の2回転周期の成分、すなわちパワースペクトルPowerおよび位相スペクトルPhaseを算出する。第1噴射回数補正気筒演算部213は、2回転成分演算部212で算出されたエンジン9の2回転周期の成分に基づいて、リーン燃焼が発生している気筒(以後、リーン発生気筒と呼ぶ)を検出する。そして、第1噴射回数補正気筒演算部213は、検出したリーン発生気筒のうち噴射回数を補正する気筒、すなわち補正対象気筒を特定する。噴射回数演算部214は各気筒の噴射回数Kai_nを算出する。なお、nは気筒番号を表す。噴射回数演算部214は、後述するように、第1噴射回数補正気筒演算部213によって設定された補正対象気筒の噴射回数を、リーン燃焼を解消するために減少させる。 The two-rotation component calculation unit 212 uses the air-fuel ratio signal Rabf from the catalyst upstream air-fuel ratio sensor 12 to calculate components of a two-rotation cycle of the engine 9, that is, a power spectrum Power and a phase spectrum Phase. The first injection number correction cylinder calculation unit 213 is a cylinder in which lean combustion is occurring based on the component of the two rotation cycle of the engine 9 calculated by the two rotation component calculation unit 212 (hereinafter referred to as a lean generation cylinder) To detect Then, the first injection number correction cylinder calculation unit 213 specifies a cylinder whose injection number is to be corrected among the detected lean occurring cylinders, that is, a correction target cylinder. The injection number calculation unit 214 calculates the injection number Kai_n of each cylinder. Here, n represents a cylinder number. The injection number calculation unit 214 reduces the number of injections of the correction target cylinder set by the first injection number correction cylinder calculation unit 213 in order to eliminate lean combustion, as described later.
 燃料噴射量演算部215は、算出された空燃比フィードバック補正値Alphaと算出された各気筒の噴射回数Kai_nとに基づいて、基本噴射燃料量Tp0に対する各気筒の燃料噴射量に相当する噴射パルス幅TI_n_kを算出する。なお、nは気筒番号を示し、kは1サイクル中における同一気筒の噴射番号(噴射順序)を示す。燃料噴射時期演算部216は、各気筒の噴射回数Kai_nから、各気筒の噴射時期IT_n_kを算出する。なお、nは気筒番号を示し、kは1サイクル中における同一気筒の噴射番号(順序)を示す。異常判定部217は、各気筒の噴射回数Kai_nに基づいて、気筒が異常か否かを判定する。異常と判定した場合には、異常判定部217は、異常フラグf_MILを1に設定する。 Based on the calculated air-fuel ratio feedback correction value Alpha and the calculated number of times of injection Kai_n of each cylinder, the fuel injection amount calculation unit 215 has an injection pulse width equivalent to the fuel injection amount of each cylinder with respect to the basic injection fuel amount Tp0. Calculate TI_n_k. In addition, n shows a cylinder number and k shows the injection number (injection order) of the same cylinder in 1 cycle. The fuel injection timing calculation unit 216 calculates the injection timing IT_n_k of each cylinder from the number of times of injection Kai_n of each cylinder. In addition, n shows a cylinder number and k shows the injection number (order) of the same cylinder in 1 cycle. The abnormality determination unit 217 determines whether the cylinder is abnormal based on the number of times of injection Kai_n of each cylinder. If it is determined that an abnormality is present, the abnormality determination unit 217 sets the abnormality flag f_MIL to one.
 図11~図18を用いて、上述した基本燃料噴射量演算部210、空燃比フィードバック補正値演算部211、2回転成分演算部212、第1噴射回数補正気筒演算部213、噴射回数演算部214、燃料噴射量演算部215、燃料噴射時期演算部216および異常判定部217の詳細について説明する。
 図11は基本燃料噴射量演算部210の機能を模式的に示す図である。基本燃料噴射量演算部210は、以下の式(1)を用いて、基本燃料噴射量Tp0を算出する。なお、式(1)において、Cylは気筒数を表し、K0はインジェクタの仕様(燃料噴射パルス幅と燃料噴射量との関係)に基づいて決定される係数である。
 Tp0=K0×Qa/(Ne×Cyl) …(1)
The basic fuel injection amount calculation unit 210, the air fuel ratio feedback correction value calculation unit 211, the two-rotation component calculation unit 212, the first injection number correction cylinder calculation unit 213, and the injection number calculation unit 214 described above with reference to FIGS. The details of the fuel injection amount calculation unit 215, the fuel injection timing calculation unit 216, and the abnormality determination unit 217 will be described.
FIG. 11 is a view schematically showing the function of the basic fuel injection amount calculation unit 210. As shown in FIG. The basic fuel injection amount calculation unit 210 calculates a basic fuel injection amount Tp0 using the following equation (1). In equation (1), Cyl represents the number of cylinders, and K0 is a coefficient determined based on the specifications of the injector (the relationship between the fuel injection pulse width and the fuel injection amount).
Tp0 = K0 × Qa / (Ne × Cyl) (1)
 図12は空燃比フィードバック補正値演算部211の機能を模式的に示す図である。空燃比フィードバック補正値演算部211は、触媒上流空燃比センサ12からの空燃比信号Rabfと目標空燃比TgRabfとの差に基づいて、PI制御により空燃比フィードバック補正値Alphaを算出する。なお、触媒上流空燃比センサ12に代えてO2センサを備える場合には、空燃比フィードバック補正値演算部211は、O2センサから出力された信号を用いて空燃比フィードバック補正値Alphaを算出する。 FIG. 12 is a diagram schematically showing the function of the air-fuel ratio feedback correction value calculation unit 211. As shown in FIG. The air-fuel ratio feedback correction value calculation unit 211 calculates the air-fuel ratio feedback correction value Alpha by PI control based on the difference between the air-fuel ratio signal Rabf from the catalyst upstream air-fuel ratio sensor 12 and the target air-fuel ratio TgRabf. When the O2 sensor is provided instead of the catalyst upstream air-fuel ratio sensor 12, the air-fuel ratio feedback correction value calculation unit 211 calculates the air-fuel ratio feedback correction value Alpha using the signal output from the O2 sensor.
 図13は2回転成分演算部212の機能を模式的に示す図である。2回転成分演算部212は、たとえば高速フーリエ変換FFT(Fast Fourier Transform)を用いて、触媒上流空燃比センサ12からの空燃比信号Rabfから2回転成分のパワースペクトルPowerと、2回転成分の位相スペクトル基本値Phase0とを算出する。なお、2回転成分演算部212は、高速フーリエ変換FFTを用いるものに代えて、離散フーリエ変換DFT(Discrete Fourier Transform)を用いてもよい。この場合、係数を適切に選択することによって2回転成分のみを演算できるので、全周波数のパワースペクトルと位相スペクトルを演算する高速フーリエ変換FFTに比べて演算負荷が小さくなる。 FIG. 13 is a diagram schematically showing the function of the two-rotation component calculation unit 212. As shown in FIG. The two-rotation component calculation unit 212 uses, for example, a fast Fourier transform (FFT) to generate a power spectrum Power of two-rotation component from the air-fuel ratio signal Rabf from the upstream air-fuel ratio sensor 12 and a phase spectrum of the two-rotation component. Calculate the basic value Phase0. The two-rotation component computing unit 212 may use discrete Fourier transform (DFT) instead of using fast Fourier transform (FFT). In this case, since only two rotation components can be calculated by appropriately selecting the coefficient, the calculation load is reduced as compared with the fast Fourier transform FFT that calculates the power spectrum and the phase spectrum of all frequencies.
 なお、2回転成分の位相スペクトルPhaseは、2回転成分の位相スペクトル基本値Phase0から、演算ごとに、Phase0→Phase0-90→Phase0-180→Phase0-270→Phase0→Phase0-90→・・・のように巡回演算して得られた値である。上記の巡回演算は位相を演算する基準点を固定することを目的として行われる。2回転成分演算部212は燃焼周期(180deg)を演算周期とし、2回転成分はエンジンが2回転する期間を一周期(360deg)としている。したがって、2回転成分演算部212が燃焼周期ごとに4回演算したときにエンジンが2回転する期間、すなわち一周期となるように位相の基準点が固定される。 The phase spectrum Phase of the two-rotation component is calculated from Phase 0, Phase 0-90, Phase 0-180, Phase 0-270, Phase 0, Phase 0-90,... Is the value obtained by cyclic operation. The above cyclic operation is performed for the purpose of fixing the reference point for calculating the phase. The two-rotation component calculation unit 212 sets the combustion period (180 deg) as the calculation period, and the two-rotation component sets a period in which the engine makes two rotations as one period (360 deg). Therefore, the phase reference point is fixed so that the period during which the engine rotates twice, that is, one cycle, when the two-rotation component calculation unit 212 calculates four times per combustion cycle.
 図14は第1噴射回数補正気筒演算部213の機能を模式的に示す図である。第1噴射回数補正気筒演算部213は、2回転成分演算部212により算出された位相スペクトルPhaseに基づいて、以下の条件(a1)~(d1)に従って、リーン発生気筒を検出し、検出したリーン発生気筒の気筒番号(以後、リーン発生気筒番号と呼ぶ)N_lean_cylを設定する。なお、K1a_Phase、K1b_Phase、K2a_Phase、K2b_Phase、K3a_Phase、K3b_Phase、K4a_Phase、K4b_Phase、およびN1はエンジン9の特性に応じて経験的に決まる値である。
(a1)K1a_Phase≦Phase≦K1b_PhaseがN1回連続して成立した場合、第1噴射回数補正気筒演算部213はリーン発生気筒番号N_lean_cylを1に設定する。
(b1)K2a_Phase≦Phase≦K2b_PhaseがN1回連続して成立した場合、第1噴射回数補正気筒演算部213はリーン発生気筒番号N_lean_cylを2に設定する。
(c1)K3a_Phase≦Phase≦K3b_PhaseがN1回連続して成立した場合、第1噴射回数補正気筒演算部213はリーン発生気筒番号N_lean_cylを3に設定する。
(d1)K4a_Phase≦Phase≦K4b_PhaseがN1回連続して成立した場合、第1噴射回数補正気筒演算部213はリーン発生気筒番号N_lean_cylを4に設定する。
 なお、後述する噴射回数演算部214により算出されたn番気筒の噴射回数Kai_nが、前回の算出周期で算出された噴射回数Kai_nの値から変化した場合には、第1噴射回数補正気筒演算部213はN1の回数を0にリセットする。
FIG. 14 is a diagram schematically showing the function of the first injection number correction cylinder calculation unit 213. As shown in FIG. The first injection number correction cylinder calculation unit 213 detects a lean occurrence cylinder according to the following conditions (a1) to (d1) based on the phase spectrum Phase calculated by the two-rotation component calculation unit 212, and detects the detected lean The cylinder number of the generated cylinder (hereinafter referred to as a lean generated cylinder number) N_lean_cyl is set. K1a_Phase, K1b_Phase, K2a_Phase, K2b_Phase, K3a_Phase, K3b_Phase, K4a_Phase, K4b_Phase, and N1 are values determined empirically according to the characteristics of the engine 9.
(A1) If K1a_Phase ≦ Phase ≦ K1b_Phase is satisfied N1 times consecutively, the first injection number correction cylinder calculating unit 213 sets the lean occurring cylinder number N_lean_cyl to one.
(B1) If K2a_Phase ≦ Phase ≦ K2b_Phase is satisfied N1 times consecutively, the first injection number correction cylinder calculating unit 213 sets the lean occurring cylinder number N_lean_cyl to 2.
(C1) If K3a_Phase ≦ Phase ≦ K3b_Phase is satisfied N1 times consecutively, the first injection number correction cylinder calculating unit 213 sets the lean occurring cylinder number N_lean_cyl to 3.
(D1) If K4a_Phase ≦ Phase ≦ K4b_Phase is satisfied N1 times consecutively, the first injection number correction cylinder operation unit 213 sets the lean occurring cylinder number N_lean_cyl to four.
When the number of times of injection Kai_n of the n-th cylinder calculated by the number-of-injections calculation unit 214 described later changes from the value of the number of injections Kai_n calculated in the previous calculation cycle, the first injection number correction cylinder calculation unit 213 resets the number of times N1 to zero.
 上記のようにしてリーン発生気筒番号N_lean_cylが設定されると、第1噴射回数補正気筒演算部213は、2回転成分演算部212により算出されたパワースペクトルPowerに基づいて、以下の条件(e1)~(h1)に従ってリーン発生気筒の中から補正対象気筒を特定し、検出した補正対象気筒の気筒番号(以後、補正対象気筒番号と呼ぶ)N_hos_cylを設定する。なお、K1_Power、K2_Power、K3_PowerおよびK4_Powerは、エンジン9の特性に応じて経験的に決まる値である。
(e1)リーン発生気筒番号N_lean_cyl=1かつK1_Power≦Powerの場合、第1噴射回数補正気筒演算部213は補正対象気筒番号N_hos_cylを1に設定する。
(f1)リーン発生気筒番号N_lean_cyl=2かつK2_Power≦Powerの場合、第1噴射回数補正気筒演算部213は補正対象気筒番号N_hos_cylを2に設定する。
(g1)リーン発生気筒番号N_lean_cyl=3かつK3_Power≦Powerの場合、第1噴射回数補正気筒演算部213は補正対象気筒番号N_hos_cylを3に設定する。
(h1)リーン発生気筒番号N_lean_cyl=4かつK4_Power≦Powerの場合、第1噴射回数補正気筒演算部213は補正対象気筒番号N_hos_cylを4に設定する。
When the lean occurring cylinder number N_lean_cyl is set as described above, the first injection number correction cylinder calculating unit 213 sets the following condition (e1) based on the power spectrum Power calculated by the two-rotation component calculating unit 212. The cylinder to be corrected is specified from among the lean occurring cylinders according to (h1), and the cylinder number of the cylinder to be corrected (hereinafter referred to as the cylinder number to be corrected) N_hos_cyl is set. K1_Power, K2_Power, K3_Power, and K4_Power are values determined empirically according to the characteristics of the engine 9.
(E1) When the lean occurring cylinder number N_lean_cyl = 1 and K1_Power ≦ Power, the first injection number correction cylinder calculating unit 213 sets the cylinder number N_hos_cyl to be corrected to 1.
(F1) When the lean occurring cylinder number N_lean_cyl = 2 and K2_Power ≦ Power, the first injection number correction cylinder calculating unit 213 sets the cylinder number N_hos_cyl to be corrected to 2.
(G1) When the lean occurring cylinder number N_lean_cyl = 3 and K3_Power ≦ Power, the first injection number correction cylinder calculating unit 213 sets the cylinder number N_hos_cyl to be corrected to 3.
(H1) When the lean occurring cylinder number N_lean_cyl = 4 and K4_Power ≦ Power, the first injection number correction cylinder calculating unit 213 sets the cylinder number N_hos_cyl to be corrected to 4.
 図15は噴射回数演算部214の機能を模式的に示す図である。噴射回数演算部214は、以下に示す条件(i1)~(l1)に従って、補正対象気筒の噴射回数Kai_n(nは気筒番号を示す)を算出する。すなわち、噴射回数演算部214は、以下の条件(i1)~(l1)に応じて、補正対象気筒の噴射回数を減少させる。なお、本実施の形態においては、Kai_1,Kai_2,Kai_3,Kai_4の初期値を、いずれも6とする。すなわち、1サイクルあたり同一気筒が実施する噴射回数は6回を初期値とする。また、噴射回数Kai_nの下限値は、いずれも1とする。
(i1)補正対象気筒番号N_hos_cyl=1のとき、噴射回数演算部214は1番気筒の噴射回数Kai_1の値を1減らす。
(j1)補正対象気筒番号N_hos_cyl=2のとき、噴射回数演算部214は2番気筒の噴射回数Kai_2の値を1減らす。
(k1)補正対象気筒番号N_hos_cyl=3のとき、噴射回数演算部214は3番気筒の噴射回数Kai_3の値を1減らす。
(l1)補正対象気筒番号N_hos_cyl=4のとき、噴射回数演算部214は4番気筒の噴射回数Kai_4の値を1減らす。
FIG. 15 is a view schematically showing the function of the injection number calculation unit 214. As shown in FIG. The injection number calculation unit 214 calculates the number of times of injection Kai_n (n indicates a cylinder number) of the cylinder to be corrected according to the following conditions (i1) to (l1). That is, the injection number calculation unit 214 reduces the number of injections of the cylinder to be corrected according to the following conditions (i1) to (11). In the present embodiment, the initial values of Kai_1, Kai_2, Kai_3, and Kai_4 are all set to 6. That is, the number of injections implemented by the same cylinder per cycle is set to six as an initial value. Further, the lower limit value of the number of times of injection Kai_n is set to one.
(I1) When the correction target cylinder number N_hos_cyl = 1, the injection number calculation unit 214 decreases the value of the number of times of injection Kai_1 of the first cylinder by one.
(J1) When the correction target cylinder number N_hos_cyl = 2, the injection number calculation unit 214 reduces the value of the number of times of injection Kai_2 of the second cylinder by one.
(K1) When the correction target cylinder number N_hos_cyl = 3, the injection number calculation unit 214 decreases the value of the number of times of injection Kai_3 of the third cylinder by one.
(L1) When the correction target cylinder number N_hos_cyl = 4, the injection number calculation unit 214 reduces the value of the number of times of injection Kai_4 of the fourth cylinder by one.
 図16は燃料噴射量演算部215の機能を模式的に示す図である。燃料噴射量演算部215は、以下の式(2)を用いて、n番気筒のk回目の噴射量TI_n_kを算出する。
 TI_n_k=(Tp0×Alpha)/Kai_n …(2)
FIG. 16 is a diagram schematically showing the function of the fuel injection amount calculation unit 215. As shown in FIG. The fuel injection amount calculation unit 215 calculates the kth injection amount TI_n_k of the nth cylinder using the following equation (2).
TI_n_k = (Tp0 × Alpha) / Kai_n (2)
 たとえば、噴射回数Kai_1=5の場合、1番気筒の1サイクルでの噴射回数は5回である。この場合、燃料噴射量演算部215は、TI_1_1=TI_1_2=TI_1_3=TI_1_4=TI_1_5となるように、燃料噴射量を5等分にして燃料噴射を行わせる。 For example, when the number of injections Kai_1 = 5, the number of injections in one cycle of the first cylinder is five. In this case, the fuel injection amount calculation unit 215 makes the fuel injection amount equal to five and performs the fuel injection so that TI_1_1 = TI_1_2 = TI_1_3 = TI_1_4 = TI_1_5.
 図17は燃料噴射時期演算部216の機能を模式的に示す図である。燃料噴射時期演算部216は、噴射回数演算部214で算出された噴射回数Kai_nの値に応じて、以下の式(3)~(8)を用いて、n番目の気筒のk回目の噴射時期IT_n_kを算出する。
なお、各パラメータはエンジン9の特性に応じて経験的に決まる値である。
 Kai_n=6のとき、
 IT_n_1=K_IT_n_1a、 IT_n_2=K_IT_n_2a、
 IT_n_3=K_IT_n_3a、 IT_n_4=K_IT_n_4a、
 IT_n_5=K_IT_n_5a、 IT_n_6=K_IT_n_6a …(3)
 Kai_n=5のとき、
 IT_n_1=K_IT_n_1b、 IT_n_2=K_IT_n_2b、
 IT_n_3=K_IT_n_3b、 IT_n_4=K_IT_n_4b、
 IT_n_5=K_IT_n_5b …(4)
 Kai_n=4のとき、
 IT_n_1=K_IT_n_1c、 IT_n_2=K_IT_n_2c、
 IT_n_3=K_IT_n_3c、 IT_n_4=K_IT_n_4c …(5)
 Kai_n=3のとき、
 IT_n_1=K_IT_n_1d、 IT_n_2=K_IT_n_2d、
 IT_n_3=K_IT_n_3d …(6)
 Kai_n=2のとき、
 IT_n_1=K_IT_n_1e、 IT_n_2=K_IT_n_2e …(7)
 Kai_n=1のとき、
 IT_n_1=K_IT_n_1f …(8)
FIG. 17 schematically shows the function of the fuel injection timing calculation unit 216. As shown in FIG. The fuel injection timing calculation unit 216 uses the following equations (3) to (8) according to the value of the number of times of injection Kai_n calculated by the injection number calculation unit 214 to determine the kth injection timing of the nth cylinder Calculate IT_n_k.
Each parameter is a value determined empirically according to the characteristics of the engine 9.
When Kai_n = 6,
IT_n_1 = K_IT_n_1a, IT_n_2 = K_IT_n_2a,
IT_n_3 = K_IT_n_3a, IT_n_4 = K_IT_n_4a,
IT_n_5 = K_IT_n_5a, IT_n_6 = K_IT_n_6a (3)
When Kai_n = 5,
IT_n_1 = K_IT_n_1b, IT_n_2 = K_IT_n_2b,
IT_n_3 = K_IT_n_3b, IT_n_4 = K_IT_n_4b,
IT_n_5 = K_IT_n_5b (4)
When Kai_n = 4,
IT_n_1 = K_IT_n_1c, IT_n_2 = K_IT_n_2c,
IT_n_3 = K_IT_n_3 c, IT_n_4 = K_IT_n_4 c (5)
When Kai_n = 3,
IT_n_1 = K_IT_n_1d, IT_n_2 = K_IT_n_2d,
IT_n_3 = K_IT_n_3d (6)
When Kai_n = 2,
IT_n_1 = K_IT_n_1e, IT_n_2 = K_IT_n_2e (7)
When Kai_n = 1,
IT_n_1 = K_IT_n_1f (8)
 図18は異常判定部217の機能を模式的に示す図である。異常判定部217は以下の式(9)を用いて、気筒が異常か否かを判定し、異常と判定した場合には異常報知フラグf_MILを1に設定し、正常と判定した場合には異常報知フラグf_MILを0に設定する。異常報知フラグf_MILが1に設定された場合、たとえば不図示の異常報知ランプ等が点灯される。なお、式(9)において、NG_Kaiは異常と判定する排気(特にすす)の排出量となる噴射回数となるように決定されているのが好ましい。
 Kai_n>NG_Kaiのとき、f_MIL=0
 Kai_n≦NG_Kaiのとき、f_MIL=1 …(9)
FIG. 18 schematically shows the function of the abnormality determination unit 217. As shown in FIG. The abnormality determination unit 217 determines whether the cylinder is abnormal or not by using the following equation (9), and when it is determined that the cylinder is abnormal, the abnormality notification flag f_MIL is set to 1, and when it is determined that it is normal The notification flag f_MIL is set to 0. When the abnormality notification flag f_MIL is set to 1, for example, an abnormality notification lamp (not shown) is turned on. In Equation (9), it is preferable that NG_Kai be determined to be the number of injections that is the discharge amount of exhaust (especially soot) that is determined to be abnormal.
F_MIL = 0 when Kai_n> NG_Kai
F_MIL = 1 when Kai_n ≦ NG_Kai (9)
 以上で説明した第1の実施の形態によれば、以下の作用効果が得られる。
(1)多気筒のエンジン9に設けられた複数の気筒のそれぞれに対して、1サイクル中に複数回の燃料を噴射する分割燃料噴射を行うエンジン制御装置100は、第1噴射回数補正気筒演算部213と、噴射回数演算部214とを備える。第1噴射回数補正気筒演算部213は、複数の気筒のうち、他の気筒の空燃比と比べて所定値よりもリーン燃焼になっている気筒をリーン発生気筒として検出する。噴射回数演算部214は、第1噴射回数補正気筒演算部213によって検出されたリーン発生気筒に対する燃料噴射の回数を減少させる。リーン発生気筒に対する燃料噴射回数を減らすことにより、1回当たりの燃料噴射量、すなわち開弁時間が増加する。このため、経時変化によける噴射信号に対する実際の燃焼噴射量のばらつきを比較的小さくすることができ、運転性能の劣化を防止できる。
 さらに詳細に説明する。一般に火花点火式燃料噴射弁は、印加される噴射パルスの時間幅が短い領域では、すなわち開弁時間が短い領域では、噴射量のばらつきが大きい。そのため、噴射量のばらつきが許容できる開弁時間以上で使用するよう設計されている。新品の燃料噴射弁では燃料噴射量のばらつきが許容値以下の開弁時間であっても、経年変化により噴射量のばらつきが許容できないほどに大きくなることがある。そのため、経年変化により噴射量が減少する噴射弁が装着された気筒ではリーン燃焼が発生し、トルク段差が大きくなる。そこで、本発明では、リーン燃焼する気筒については、燃料噴射回数を低減することにより噴射1回当たりの開弁時間を長くして噴射量のばらつきが大きくならないようにする。これにより、トルク段差の発生を抑制することができる。
According to the first embodiment described above, the following effects can be obtained.
(1) The engine control device 100 performing split fuel injection for injecting fuel several times in one cycle for each of the plurality of cylinders provided in the multi-cylinder engine 9 performs the first injection number correction cylinder calculation And an injection number calculation unit 214. The first injection number correction cylinder calculation unit 213 detects, among the plurality of cylinders, a cylinder that is leaner than a predetermined value compared to the air-fuel ratio of the other cylinders as the lean generation cylinder. The injection number calculation unit 214 reduces the number of fuel injections to the lean occurring cylinder detected by the first injection number correction cylinder calculation unit 213. By reducing the number of fuel injections to the lean generation cylinder, the amount of fuel injection per injection, that is, the valve opening time increases. For this reason, it is possible to relatively reduce the variation of the actual combustion injection amount with respect to the injection signal caused by the change with time, and to prevent the deterioration of the driving performance.
Further details will be described. Generally, in the spark ignition type fuel injection valve, the variation of the injection amount is large in the region where the time width of the applied injection pulse is short, that is, the region where the valve opening time is short. Therefore, it is designed to be used in the valve opening time or more in which the dispersion of the injection quantity can be allowed. With a new fuel injection valve, even if the variation of the fuel injection amount is less than the allowable value for the valve opening time, the variation of the injection amount may become unacceptably large due to the secular change. Therefore, lean combustion occurs in a cylinder equipped with an injection valve whose injection amount decreases with age, and the torque step becomes large. Therefore, in the present invention, for the cylinder in which the lean combustion is performed, the valve opening time per injection is lengthened by reducing the number of times of fuel injection so that the variation in the injection amount does not increase. Thereby, the occurrence of the torque step can be suppressed.
(2)噴射回数演算部214によってリーン発生気筒に対する燃料噴射の回数を減少させる前後で、リーン発生気筒による1サイクル中での総燃料噴射量の変化を防ぐように、燃料噴射量演算部215は、分割燃料噴射の1回当たりの燃料噴射量を制御するようにした。これにより、必要なトルクを得ることができる。 (2) Before and after the number of times of fuel injection to the lean generation cylinder is reduced by the injection number calculation unit 214, the fuel injection amount calculation unit 215 prevents the change of the total fuel injection amount in one cycle by the lean generation cylinder. The amount of fuel injection per split fuel injection was controlled. Thereby, necessary torque can be obtained.
(3)リーン発生気筒に対する燃料噴射の回数が減少された後、燃焼状態、たとえば空燃比が他の気筒の空燃比と比べて所定値よりもリーン燃焼している気筒が再度検出されない場合には、燃料噴射回数演算部214は、リーン発生気筒に対する燃料噴射の回数を維持するようにした。したがって、リーン発生気筒が検出されなくなった場合には、1サイクル中での同一気筒の燃料噴射回数を維持することができる。 (3) After the number of fuel injections to the lean generation cylinder is reduced, the combustion state, for example, when the cylinder whose air-fuel ratio is leaner than a predetermined value compared to the air-fuel ratio of other cylinders is not detected again The fuel injection number calculation unit 214 maintains the number of fuel injections to the lean generation cylinder. Therefore, when the lean generation cylinder is not detected, the number of fuel injections of the same cylinder in one cycle can be maintained.
(4)リーン発生気筒に対する燃料噴射の回数が減少された後、燃焼状態、たとえば空燃比が他の気筒の空燃比と比べて所定値よりもリーン燃焼している気筒が再度検出された場合には、燃料噴射回数演算部214は、リーン発生気筒の燃料噴射の回数をさらに減少するようにした。リーン発生気筒がリーン燃焼を維持している場合には、さらに燃料噴射回数を減少させることによって、分割燃料噴射の1回当たりの燃料噴射量を増加させるので、噴射信号に対する実際の燃料噴射量のばらつきを小さくさせることができる。 (4) After the number of fuel injections to the lean generation cylinder is reduced, a combustion state, for example, when a cylinder whose air-fuel ratio is leaner than a predetermined value compared with the air-fuel ratio of other cylinders is detected again The fuel injection number calculation unit 214 further reduces the number of fuel injections of the lean generation cylinder. When the lean generation cylinder maintains lean combustion, the fuel injection amount per split fuel injection is increased by further reducing the number of fuel injections, so that the actual fuel injection amount relative to the injection signal is Variations can be reduced.
(5)リーン発生気筒に対する燃料噴射の回数が所定回数まで減少されたときに、燃焼状態、たとえば空燃比が他の気筒の空燃比と比べて所定値よりもリーン燃焼している気筒が再度検出された場合には、異常判定部217は異常であることを報知するようにした。1サイクル中の同一気筒の燃料噴射回数を減らした場合、一般的にすすの排出量が増加する。したがって、燃料噴射回数を所定回数(NG_Kai)まで減少させたときは、排気が悪化したとして報知することができる。 (5) When the number of fuel injections to the lean cylinder is reduced to a predetermined number, the combustion state, for example, the cylinder in which the air-fuel ratio leans more than a predetermined value compared with the air-fuel ratio of the other cylinders is detected again When it is determined, the abnormality determination unit 217 notifies that it is abnormal. When the number of fuel injections for the same cylinder in one cycle is reduced, the amount of soot emissions generally increases. Therefore, when the number of fuel injections is reduced to a predetermined number (NG_Kai), it can be reported that the exhaust gas has deteriorated.
(6)2回転成分演算部212は、空燃比信号に基づいて、多気筒のエンジン9の2回転周期に相当する周波数成分を抽出する。そして、第1噴射回数補正気筒演算部213は、2回転成分演算部212により抽出された2回転周期に相当する周波数成分に基づいて、リーン発生気筒を検出するようにした。少なくとも1つの気筒の空燃比がリーン燃焼しているとき、触媒上流空燃比センサ12から出力される空燃比信号の波形は、1サイクル周期、すなわちエンジン2回転周期で振動する。第1噴射回数補正気筒演算部213は、上記の現象に基づいて、リーン発生気筒を検出することができる。 (6) The two-rotation component calculation unit 212 extracts a frequency component corresponding to the two-rotation cycle of the multi-cylinder engine 9 based on the air-fuel ratio signal. Then, the first injection number correction cylinder calculating unit 213 detects the lean occurring cylinder based on the frequency component corresponding to the 2-rotation cycle extracted by the 2-rotation component calculating unit 212. When the air-fuel ratio of at least one cylinder is lean-burning, the waveform of the air-fuel ratio signal output from the catalyst upstream air-fuel ratio sensor 12 oscillates in one cycle cycle, that is, two engine rotation cycles. The first injection number correction cylinder calculation unit 213 can detect a lean occurring cylinder based on the above phenomenon.
(7)2回転成分演算部212は、空燃比を示す信号に基づいて、多気筒のエンジン9の2回転周期に相当する位相スペクトルとパワースペクトルとを抽出する。第1噴射回数補正気筒演算部213は、2回転成分演算部212によって抽出された位相スペクトルに基づいてリーン発生気筒を検出し、検出したリーン発生気筒のパワースペクトルが所定値以上か否かを判定する。そして、燃料噴射回数演算部214は、第1噴射回数補正気筒演算部213によってリーン発生気筒のパワースペクトルが所定値以上と判定された場合に、燃料噴射の回数を減少させるようにした。少なくとも1つの気筒の空燃比がリーン燃焼しているときの空燃比信号の波形は、1サイクル周期、すなわちエンジン2回転周期で振動する現象では、リーン燃焼する気筒によって特定の基準点(たとえば特定の気筒の吸気工程上死点など)からの位相が変化する。このため、空燃比信号をフーリエ変換することによって得られるエンジン9の2回転周期の成分のうち、位相スペクトルの値からリーン発生気筒を検出することが可能となる。また、上記の波形の振動現象の振幅は、リーン燃焼している気筒のリーン度合によって変化する。すなわち、リーン度合が大きいほど、波形の振幅大きくなる。このため、空燃比信号をフーリエ変換することによって得られるエンジン9の2回転周期の成分のうち、振幅と相関関係のあるパワースペクトルの値からリーン発生気筒のリーン度合を得ることが可能となる。したがって、エンジン9の2回転周期に相当する位相スペクトルに基づいてリーン発生気筒を検出し、検出したリーン発生気筒のうち、更にパワースペクトルがある程度大きい場合に、リーン度合が大きいとして、補正対象気筒を特定することができる。 (7) The two-rotation component calculation unit 212 extracts the phase spectrum and the power spectrum corresponding to the two-rotation cycle of the multi-cylinder engine 9 based on the signal indicating the air-fuel ratio. The first injection number correction cylinder calculating unit 213 detects a lean occurring cylinder based on the phase spectrum extracted by the two-rotation component calculating unit 212, and determines whether the detected power spectrum of the lean occurring cylinder is equal to or more than a predetermined value. Do. Then, the fuel injection number calculation unit 214 reduces the number of fuel injections when the first injection number correction cylinder calculation unit 213 determines that the power spectrum of the lean generation cylinder is equal to or more than the predetermined value. The waveform of the air-fuel ratio signal when the air-fuel ratio of at least one cylinder is in lean combustion is a phenomenon that oscillates in one cycle period, that is, in two engine rotation cycles, a specific reference point (for example, The phase from the top dead center of the cylinder intake process changes. For this reason, it is possible to detect the lean occurring cylinder from the value of the phase spectrum among the components of the two rotation cycles of the engine 9 obtained by subjecting the air-fuel ratio signal to Fourier transform. In addition, the amplitude of the above-described vibration phenomenon of the waveform changes depending on the degree of leanness of the cylinder in lean combustion. That is, the greater the degree of leanness, the greater the amplitude of the waveform. Therefore, it is possible to obtain the lean degree of the lean generation cylinder from the value of the power spectrum having a correlation with the amplitude among the components of the two rotation cycles of the engine 9 obtained by Fourier transforming the air fuel ratio signal. Therefore, the lean generation cylinder is detected based on the phase spectrum corresponding to the two rotation cycles of the engine 9, and among the detected lean generation cylinders, the correction target cylinder is determined to be large when the power spectrum is large to a certain extent. It can be identified.
-第2の実施の形態-
 図19~23を参照して、第2の実施の形態によるエンジン制御装置について説明する。以下の説明では、第1の実施の形態と同じ構成要素には同じ符号を付して相違点を主に説明する。特に説明しない点については、第1の実施の形態と同じである。本実施の形態では、クランク角センサから出力される回転速度信号に基づく角加速度および角加加速度を用いてリーン発生気筒を検出する点で、第1の実施の形態と異なる。
-Second embodiment-
An engine control system according to a second embodiment will be described with reference to FIGS. 19-23. In the following description, the same components as in the first embodiment will be assigned the same reference numerals and differences will be mainly described. The points that are not particularly described are the same as in the first embodiment. The present embodiment differs from the first embodiment in that a lean occurring cylinder is detected using angular acceleration and angular jerk based on a rotational speed signal output from a crank angle sensor.
 まず、図19、20に示す概略機能ブロック図を用いて、第2の実施の形態のエンジン制御装置の概要を説明する。図19に示すように、第2の実施の形態のエンジン制御装置は、クランク角センサから出力された信号に基づいて、クランクの角加速度または角加加速度を算出し、算出された角加速度または角加加速度に基づいて、リーン発生気筒を検出する。この場合、図20に示すように、エンジン制御装置は、エンジンの各気筒が所定サイクルにあるときのそれぞれの気筒の平均角加速度または平均角加加速度を算出し、算出された平均角加速度が所定値以下、または算出された前記平均角加加速度が所定範囲外であるか否かを判定し、平均角加速度が所定値以下、または算出された平均角加加速度が所定範囲外と判定された場合、当該気筒をリーン発生気筒として検出する。以下、第2の実施の形態について、具体的に説明する。 First, the outline of the engine control system according to the second embodiment will be described using schematic functional block diagrams shown in FIGS. As shown in FIG. 19, the engine control device according to the second embodiment calculates the angular acceleration or angular jerk of the crank based on the signal output from the crank angle sensor, and calculates the calculated angular acceleration or angle. A lean occurring cylinder is detected based on the acceleration. In this case, as shown in FIG. 20, the engine control device calculates the average angular acceleration or average angular jerk of each cylinder when each cylinder of the engine is in a predetermined cycle, and the calculated average angular acceleration is predetermined. When it is determined whether the average angular acceleration below the value or the calculated average angular acceleration is outside the predetermined range, and the average angular acceleration is below the predetermined value or the calculated average angular acceleration is outside the predetermined range The cylinder is detected as a lean cylinder. The second embodiment will be specifically described below.
 図21に第2の実施の形態におけるコントロールユニット16のCPU21が有する機能を示す。第2の実施の形態によるCPU21は、第1の実施の形態によるCPU21が有する2回転成分演算部212、第1噴射回数補正気筒演算部213に代えて、角加速度・角加加速度演算部218、第2噴射回数補正気筒演算部219を機能的に備える。角加速度・角加加速度演算部218は、クランク角センサ15から出力された信号に対応するクランク軸の回転速度Neから角加速度dNe_nおよび角加加速度ddNe_nを算出する。なお、nは気筒番号を示す。さらに、第2噴射回数補正気筒演算部219は、角加速度・角加加速度演算部218によって算出された角加速度dNe_nと角加加速度ddNe_nとを用いて、補正対象気筒の補正対象気筒番号N_hos_cylを設定する。 FIG. 21 shows functions of the CPU 21 of the control unit 16 in the second embodiment. The CPU 21 according to the second embodiment includes an angular acceleration / angular acceleration calculation unit 218, instead of the 2-rotation component calculation unit 212 and the first injection number correction cylinder calculation unit 213 of the CPU 21 according to the first embodiment. A second injection number correction cylinder calculation unit 219 is functionally provided. The angular acceleration and angular jerk calculation unit 218 calculates the angular acceleration dNe_n and the angular jerk ddNe_n from the rotational speed Ne of the crankshaft corresponding to the signal output from the crank angle sensor 15. In addition, n shows a cylinder number. Further, the second injection number correction cylinder calculation unit 219 sets the correction target cylinder number N_hos_cyl of the correction target cylinder using the angular acceleration dNe_n and the angular jerk ddNe_n calculated by the angular acceleration and angular jerk calculation unit 218. Do.
 図22は角加速度・角加加速度演算部218の機能を模式的に示す図である。角加速度・角加加速度演算部218は、クランク角センサ15からの回転速度信号に対応するクランク軸の回転速度Neを用いて、n番気筒の圧縮上死点後90deg~270deg間の平均回転速度Avg_Ne_nを算出する。なお、nは点火順序で変化する。角加速度・角加加速度演算部218は、今回の平均回転速度Avg_Ne_nと、点火順序が一回前(前回)の平均回転速度Avg_Ne_nとの差分を、n番気筒の角加速度dNe_nとして算出する。たとえば、点火順序が1番気筒→3番気筒→4番気筒→2番気筒の場合には、角加速度・角加加速度演算部218は、今回の1番気筒の平均回転速度Avg_Ne_1と点火順序が前回の2番気筒の平均回転速度Avg_Ne_2との差分を1番気筒の角加速度dNe_1とする。さらに、角加速度・角加加速度演算部218は、今回の角加速度dNe_nと前回の角加速度dNe_nとの差分を、n番気筒の角加加速度ddNe_nとして算出する。 FIG. 22 is a view schematically showing the function of the angular acceleration and angular jerk computing unit 218. As shown in FIG. The angular acceleration and angular jerk calculation unit 218 uses the rotational speed Ne of the crankshaft corresponding to the rotational speed signal from the crank angle sensor 15 to calculate an average rotational speed between 90 degrees and 270 degrees after compression top dead center of the nth cylinder. Calculate Avg_Ne_n. Here, n changes in the order of ignition. The angular acceleration and angular jerk calculation unit 218 calculates the difference between the current average rotation speed Avg_Ne_n and the average rotation speed Avg_Ne_n one time before (previous) the ignition order as the angular acceleration dNe_n of the n-th cylinder. For example, in the case where the firing order is No. 1 → No. 3 → No. 4 → No. 2 cylinder, the angular acceleration / angular acceleration calculation unit 218 calculates the firing order with the average rotation speed Avg_Ne_1 of No. 1 cylinder at this time. The difference from the previous average rotation speed Avg_Ne_2 of the second cylinder is set as the angular acceleration dNe_1 of the first cylinder. Further, the angular acceleration and angular jerk calculation unit 218 calculates the difference between the current angular acceleration dNe_n and the previous angular acceleration dNe_n as the angular acceleration ddNe_n of the n-th cylinder.
 図23は、第2噴射回数補正気筒演算部219の機能を模式的に示す図である。第2噴射回数補正気筒演算部219は、角加速度・角加加速度演算部218により算出された角加速度dNe_nまたは角加加速度ddNe_nに基づいて、以下の条件(a2)~(d2)に従って補正対象気筒番号N_hos_cylを設定する。なお、K1_dNe、K1_ddNe、K2_ddNeおよびN2はエンジン9の特性に応じて経験的に決まる値である。
(a2)dNe_1≦K1_dNeがN2回連続して成立、もしくはddNe_1≦K1_ddNeがN2回連続して成立、もしくはddNe_1≧K2_ddNeがN2回連続して成立した場合、第2噴射回数補正気筒演算部219は補正対象気筒番号N_hos_cylを1に設定する。
(b2)dNe_2≦K1_dNeがN2回連続して成立、もしくはddNe_2≦K1_ddNeがN2回連続して成立、もしくはddNe_2≧K2_ddNeがN2回連続して成立した場合、第2噴射回数補正気筒演算部219は補正対象気筒番号N_hos_cylを2に設定する。
(c2)dNe_3≦K1_dNeがN2回連続して成立、もしくはddNe_3≦K1_ddNeがN2回連続して成立、もしくはddNe_3≧K2_ddNeがN2回連続して成立した場合、第2噴射回数補正気筒演算部219は補正対象気筒番号N_hos_cylを3に設定する。
(d2)dNe_4≦K1_dNeがN2回連続して成立、もしくはddNe_4≦K1_ddNeがN2回連続して成立、もしくはddNe_4≧K2_ddNeがN2回連続して成立した場合、第2噴射回数補正気筒演算部219は補正対象気筒番号N_hos_cylを4に設定する。
FIG. 23 schematically shows the function of the second injection number correction cylinder calculating unit 219. As shown in FIG. The second injection number correction cylinder operation unit 219 corrects the cylinder according to the following conditions (a2) to (d2) based on the angular acceleration dNe_n or the angular acceleration ddNe_n calculated by the angular acceleration / angular acceleration calculation unit 218. Set the number N_hos_cyl. K1_dNe, K1_ddNe, K2_ddNe and N2 are values determined empirically according to the characteristics of the engine 9.
(A2) dNe_1 ≦ K1_dNe holds N2 times consecutively, or ddNe_1 ≦ K1_ddNe holds N2 times continuously, or ddNe_1 ≧ K2_ddNe holds N2 times continuously, the second injection number correction cylinder calculating unit 219 The correction target cylinder number N_hos_cyl is set to 1.
(B2) In the case where dNe_2 ≦ K1_dNe holds N2 times consecutively, or ddNe_2 ≦ K1_ddNe holds N2 times continuously, or ddNe_2 ≧ K2_ddNe holds N2 times continuously, the second injection number correction cylinder calculating unit 219 The correction target cylinder number N_hos_cyl is set to 2.
(C2) dNe_3 ≦ K1_dNe holds N2 times consecutively, or ddNe_3 ≦ K1_ddNe holds N2 times continuously, or ddNe_3 ≧ K2_ddNe holds N2 times continuously, the second injection number correction cylinder calculation unit 219 The correction target cylinder number N_hos_cyl is set to 3.
(D2) dNe_4 ≦ K1_dNe holds N2 times consecutively, or ddNe_4 ≦ K1_ddNe holds N2 times continuously, or ddNe_4 ≧ K2_ddNe holds N2 times continuously, the second injection number correction cylinder calculation unit 219 The correction target cylinder number N_hos_cyl is set to 4.
 以上で説明した第2の実施の形態によれば、第1の実施の形態により得られる(1)~(5)の作用効果に加えて、以下の作用効果が得られる。
(1)角加速度・角加加速度演算部218はクランク角センサから出力された信号に基づいて、クランクの角加速度または角加加速度を算出する。そして、第2噴射回数補正気筒演算部219は、角加速度・角加加速度演算部218によって算出された角加速度または角加加速度に基づいて、リーン発生気筒を検出するようにした。少なくとも1つの気筒の空燃比がリーン燃焼している場合、リーン発生気筒の燃焼による発生トルクは、その他の気筒、すなわちリーン燃焼していない気筒の燃焼による発生トルクよりも小さくなる。そして、エンジン9の発生トルクとエンジン9の回転角加速度または回転角加加速度との間には相関関係がある。すなわち、発生トルクが小さくなる場合、回転角加速度および回転角加加速度は小さくなる。発生トルクが復帰した場合、回転角加速度も元の値(すなわち正常の値)に復帰し、回転角加加速度はいったん大きくなった後、元の値に復帰する。第2噴射回数補正気筒演算部219は、上記の現象に基づいて、リーン発生気筒を検出することができる。
According to the second embodiment described above, in addition to the effects of (1) to (5) obtained by the first embodiment, the following effects can be obtained.
(1) The angular acceleration and angular jerk calculation unit 218 calculates the angular acceleration or angular jerk of the crank based on the signal output from the crank angle sensor. Then, the second injection number correction cylinder calculating unit 219 detects the lean occurring cylinder based on the angular acceleration or the angular jerk calculated by the angular acceleration and angular jerk calculating unit 218. When the air-fuel ratio of at least one cylinder is lean-burning, the torque generated by the combustion of the lean generation cylinder is smaller than the torque generated by the combustion of the other cylinders, that is, the cylinders not lean-burning. There is a correlation between the generated torque of the engine 9 and the rotational angular acceleration or rotational angular acceleration of the engine 9. That is, when the generated torque becomes smaller, the rotational angular acceleration and the rotational angular jerk become smaller. When the generated torque recovers, the rotational angular acceleration also recovers to the original value (i.e., the normal value), and the rotational angular acceleration accelerates once and then returns to the original value. The second injection number correction cylinder calculating unit 219 can detect a lean occurring cylinder based on the above phenomenon.
(2)角加速度・角加加速度演算部218は、多気筒のエンジン9の各気筒が所定サイクルにあるときのそれぞれの気筒の平均角加速度または平均角加加速度を算出し、算出された平均角加速度が所定値以下、または算出された平均角加加速度が所定範囲外であるか否かを判定する。そして、角加速度・角加加速度演算部218により平均角加速度が所定値以下、または角加速度・角加加速度演算部218により算出された平均角加加速度が所定範囲外と判定された場合、第2噴射回数補正気筒演算部219は、当該気筒をリーン発生気筒として検出するようにした。リーン発生気筒の燃焼による発生トルクは他のリーン燃焼していない気筒の発生トルクよりも小さくなり、それに応じてエンジン9の回転角加速度と回転角加加速度も変化する。各気筒の燃焼による発生トルクと角加速度、角加加速度とを明確に対応させるために、角加速度・角加加速度演算部218は、エンジン9の各気筒が所定サイクル間(たとえば膨張行程)の各気筒の平均角加速度もしくは平均角加加速度を算出する。平均角加速度もしくは平均角加加速度が変化したとき、第2噴射回数補正気筒演算部219は、角加速度・角加加速度演算部218によって演算された区間から、発生トルクが変化した気筒、すなわちリーン発生気筒を検出することができる。具体的には、ある気筒がリーン燃焼となったとき、その気筒の燃焼による発生トルクに対応する角加速度は小さくなるので、第2噴射回数補正気筒演算部219は、平均角加速度が所定値以下となったことに応じてリーン発生気筒を検出できる。また、角加加速度は、小さくなった後いったん大きくなり正常の値に復帰するので、第2噴射回数補正気筒演算部219は、平均角加加速度が所定範囲外となったことに応じて、リーン発生気筒を検出できる。 (2) The angular acceleration / angular acceleration calculation unit 218 calculates the average angular acceleration or average angular acceleration of each cylinder when each cylinder of the multi-cylinder engine 9 is in a predetermined cycle, and the calculated average angle It is determined whether the acceleration is equal to or less than a predetermined value, or the calculated average angular jerk is outside a predetermined range. Then, when it is determined that the average angular acceleration is equal to or less than a predetermined value by the angular acceleration and angular jerk calculation unit 218 or the average angular jerk calculated by the angular acceleration and angular jerk calculation unit 218 is outside the predetermined range, the second The injection number correction cylinder calculating unit 219 detects the cylinder as a lean generation cylinder. The torque generated by the combustion of the lean generating cylinder becomes smaller than the generated torque of the other cylinders not being lean-burned, and the rotational angular acceleration and rotational angular acceleration of the engine 9 also change accordingly. The angular acceleration and angular jerk computing unit 218 is provided for each cylinder of the engine 9 for a predetermined number of cycles (for example, an expansion stroke) in order to make the torque generated by combustion of each cylinder correspond clearly to angular acceleration and angular jerk. Calculate the average angular acceleration or average angular jerk of the cylinder. When the average angular acceleration or the average angular jerk changes, the second injection number correction cylinder calculation unit 219 determines from the section calculated by the angular acceleration and angular jerk calculation unit 218 the cylinder in which the generated torque has changed, that is, the lean generation The cylinder can be detected. Specifically, when a cylinder becomes lean combustion, the angular acceleration corresponding to the torque generated by the combustion of the cylinder decreases, so the second injection number correction cylinder calculating unit 219 determines that the average angular acceleration is less than or equal to a predetermined value. In accordance with that, it is possible to detect lean occurring cylinders. Further, since the angular jerk becomes small and then increases once and returns to the normal value, the second injection number correction cylinder calculating unit 219 makes the lean in response to the average angular jerk falling outside the predetermined range. Can detect the generated cylinder.
-第3の実施の形態-
 図24~26を参照して、第3の実施の形態によるエンジン制御装置について説明する。以下の説明では、第1、第2の実施の形態と同じ構成要素には同じ符号を付して相違点を主に説明する。特に説明しない点については、第1、第2の実施の形態と同じである。本実施の形態では、エンジンの運転領域に応じて、触媒上流空燃比センサからの空燃比信号およびクランク角センサから出力される回転速度信号に基づく角加速度および角加加速度の一方を用いて補正対象気筒を設定する点で、第1、第2の実施の形態と異なる。
-Third embodiment-
An engine control system according to a third embodiment will be described with reference to FIGS. 24 to 26. In the following description, the same components as those in the first and second embodiments will be assigned the same reference numerals and differences will be mainly described. Points that are not particularly described are the same as in the first and second embodiments. In the present embodiment, one of the angular acceleration and the angular jerk based on the air-fuel ratio signal from the catalyst upstream air-fuel ratio sensor and the rotational speed signal output from the crank angle sensor is used according to the operating range of the engine. This embodiment differs from the first and second embodiments in that cylinders are set.
 まず、図24に示す概略機能ブロック図を用いて、第3の実施の形態のエンジン制御装置の概要を説明する。第3の実施の形態のエンジン制御装置は、空燃比センサまたはO2センサから出力された空燃比を示す信号に基づいて、エンジンの2回転周期に相当する周波数成分を抽出し、クランク角センサから出力された信号に基づいて、クランクの角加速度または角加加速度を算出する。そして、回転周期に相当する周波数成分に基づいて所定値よりもリーンになっている気筒を検出した結果と、角加速度または角加加速度に基づいて、所定値よりもリーンになっている気筒を検出した結果との一方を、少なくともエンジンの回転速度または負荷(すなわち運転領域)に応じて、リーン発生気筒として出力させるものである。以下、第3の実施の形態について、具体的に説明する。 First, an outline of the engine control system according to the third embodiment will be described using a schematic functional block diagram shown in FIG. The engine control apparatus according to the third embodiment extracts a frequency component corresponding to two rotation cycles of the engine based on the signal indicating the air-fuel ratio output from the air-fuel ratio sensor or the O2 sensor, and outputs the frequency component from the crank angle sensor The angular acceleration or angular acceleration of the crank is calculated based on the received signal. Then, based on the result of detection of a cylinder that is leaner than a predetermined value based on the frequency component corresponding to the rotation period and the angular acceleration or angular jerk, a cylinder that is leaner than a predetermined value is detected. According to at least the rotational speed or the load (i.e., the operating range) of the engine, one of the above results is output as a lean generation cylinder. The third embodiment will be specifically described below.
 図25に第3の実施の形態におけるコントロールユニット16のCPU21が有する機能を示す。CPU21は、第1の実施の形態と同様の機能を有する基本燃料噴射量演算部210、空燃比フィードバック補正値演算部211、2回転成分演算部212、第1噴射回数補正気筒演算部213、噴射回数演算部214、燃料噴射量演算部215、燃料噴射時期演算部216、および異常判定部217と、第2の実施の形態と同様の機能を有する角加速度・角加加速度演算部218および第2噴射回数補正気筒演算部219とに加えて、リーン判定方式切換部220とスイッチ221とを機能的に備える。したがって、以下の説明では、リーン判定方式切換部220の機能を中心に行う。 FIG. 25 shows functions of the CPU 21 of the control unit 16 in the third embodiment. The CPU 21 has a basic fuel injection amount calculation unit 210 having the same function as that of the first embodiment, an air-fuel ratio feedback correction value calculation unit 211, a two-rotation component calculation unit 212, a first injection number correction cylinder calculation unit 213, and injection The angular acceleration and angular acceleration calculation unit 218 having the same function as that of the second embodiment and the second operation calculation unit 214, the fuel injection amount calculation unit 215, the fuel injection timing calculation unit 216, and the abnormality determination unit 217 In addition to the injection number correction cylinder calculation unit 219, the lean determination method switching unit 220 and the switch 221 are functionally provided. Therefore, in the following description, the function of the lean determination method switching unit 220 will be mainly described.
 図26はリーン判定方式切換部220の機能を模式的に示す図である。リーン判定方式切換部220は、以下の式(10)を用いて、リーン判定方式切換フラグf_ch_leanを設定する。リーン判定方式切換フラグf_ch_leanが1に設定された場合は、クランク角センサ15からの回転速度信号に対応するクランク軸の回転速度Neを用いて第2噴射回数補正気筒演算部219により設定された補正対象気筒N_hos_cylの噴射回数が補正される。リーン判定方式切換フラグf_ch_leanが0に設定された場合は、触媒上流空燃比センサ12からの空燃比信号を用いて第1噴射回数補正気筒演算部213により特定された補正対象気筒の噴射回数が補正される。
 Tp≦K1_Tp かつ Ne≦K1_Neのとき、f_ch_lean=1
 上記以外のとき、f_ch_lean=0 …(10)
FIG. 26 is a diagram schematically showing the function of the lean determination method switching unit 220. As shown in FIG. The lean determination method switching unit 220 sets the lean determination method switching flag f_ch_lean using the following equation (10). If the lean determination method switching flag f_ch_lean is set to 1, the correction set by the second injection number correction cylinder calculation unit 219 using the rotation speed Ne of the crankshaft corresponding to the rotation speed signal from the crank angle sensor 15 The number of injections of the target cylinder N_hos_cyl is corrected. When the lean determination method switching flag f_ch_lean is set to 0, the number of injections of the correction target cylinder specified by the first injection number correction cylinder calculation unit 213 is corrected using the air-fuel ratio signal from the catalyst upstream air-fuel ratio sensor 12 Be done.
F_ch_lean = 1 when Tp ≦ K1_Tp and Ne ≦ K1_Ne
F_ch_lean = 0 (10) in cases other than the above
 上記の式(10)において、K1_Tpは、触媒上流空燃比センサ12からの空燃比信号の2回転成分の検出精度に応じて決定され、K1_Neは、クランク角センサ15からの回転速度信号から算出される角加速度、角加加速度の検出精度に応じて決定されるのが好ましい。上記の式(10)は、エンジン9が比較的、低負荷、低回転で運転している場合に、角加速度、角加加速度を用いてリーン発生気筒を検出することを表している。すなわち、エンジン9が低回転で運転しているほど慣性力が強くなるので、燃焼トルクと角加速度との相関が高くなり、角加速度、角加加速度を用いることによるリーン発生気筒の検出精度が高くなることを利用している。さらに、式(10)は、エンジン9が比較的、高負荷、高回転で運転している場合に、空燃比信号を用いてリーン発生気筒を検出することを表している。すなわちエンジン9が高負荷、高回転で運転している場合には、排気弁から排出された排ガスが触媒上流空燃比センサ12に到達するまでの期間に拡散する度合が小さくなるため、空燃比信号を用いることによるリーン発生気筒の検出精度が高くなることを利用している。 In the above equation (10), K1_Tp is determined according to the detection accuracy of the two-rotation component of the air-fuel ratio signal from the catalyst upstream air-fuel ratio sensor 12, and K1_Ne is calculated from the rotation speed signal from the crank angle sensor 15. Preferably, it is determined according to the detection accuracy of angular acceleration and angular jerk. The above equation (10) represents that when the engine 9 is operating at a relatively low load and a low rotation speed, the angular acceleration and the angular jerk are used to detect a lean occurring cylinder. That is, since the inertia force is stronger as the engine 9 is operated at lower rotation speed, the correlation between the combustion torque and the angular acceleration becomes higher, and the detection accuracy of the lean generation cylinder by using the angular acceleration and the angular jerk is high. It is used to become. Further, equation (10) represents that the air-fuel ratio signal is used to detect a lean occurring cylinder when the engine 9 is operating at a relatively high load and a high revolution. That is, when the engine 9 is operated at high load and high rotation, the degree of diffusion of exhaust gas discharged from the exhaust valve decreases in a period until it reaches the catalyst upstream air-fuel ratio sensor 12, so the air-fuel ratio signal It is used that the detection accuracy of the lean generation cylinder becomes high by using.
 リーン判定方式切換部220によりリーン判定方式切換フラグf_ch_leanが1に設定されると、スイッチ221が切り換って、第2噴射回数補正気筒演算部219によって設定された補正対象気筒番号N_hos_cylが噴射回数演算部214へ出力される。また、リーン判定方式切換部220によりリーン判定方式切換フラグf_ch_leanが0に設定されると、スイッチ221が切り換って、第1噴射回数補正気筒演算部213によって設定された補正対象気筒番号N_hos_cylが噴射回数演算部214へ出力される。 When the lean determination method switching flag f_ch_lean is set to 1 by the lean determination method switching unit 220, the switch 221 is switched, and the correction target cylinder number N_hos_cyl set by the second injection number correction cylinder calculating unit 219 is the injection number. It is output to the calculation unit 214. Further, when the lean determination method switching flag f_ch_lean is set to 0 by the lean determination method switching unit 220, the switch 221 is switched, and the correction target cylinder number N_hos_cyl set by the first injection number correction cylinder calculation unit 213 is It is output to the injection number calculation unit 214.
 以上で説明した第3の実施の形態によれば、第1および第2の実施の形態によって得られた作用効果に加えて、以下の作用効果が得られる。
 リーン判定方式切換部220は、少なくとも多気筒のエンジン9の回転速度または負荷に応じてスイッチ221を切り換えることにより、第1噴射回数補正気筒演算部213により検出された結果および第2噴射回数補正気筒演算部219により検出された結果のうちの一方の検出結果を、リーン発生気筒として出力させるようにした。上述したように、エンジン9が低負荷、低回転で運転している場合には、角加速度、角加加速度を用いることによりリーン発生気筒の検出精度を向上させ、エンジン9が高負荷、高回転で運転している場合には、空燃比信号を用いることによりリーン発生気筒の検出精度を向上させることができる。すなわちエンジン9の運転状態に応じて、リーン発生気筒の検出方式を異ならせるので、確実にリーン発生気筒を検出できる。
According to the third embodiment described above, in addition to the effects obtained by the first and second embodiments, the following effects can be obtained.
The lean determination method switching unit 220 switches the switch 221 according to at least the rotational speed or load of the multi-cylinder engine 9 to detect the result of the first injection number correction cylinder calculation unit 213 and the second injection number correction cylinder The detection result of one of the results detected by the calculation unit 219 is output as a lean generation cylinder. As described above, when the engine 9 is operated at low load and low rotation, the detection accuracy of the lean occurring cylinder is improved by using the angular acceleration and angular jerk, and the engine 9 has high load and high rotation. When the engine is being operated, the detection accuracy of the lean occurring cylinder can be improved by using the air-fuel ratio signal. That is, since the detection method of the lean generation cylinder is different according to the operation state of the engine 9, the lean generation cylinder can be detected reliably.
-第4の実施の形態-
 図27~31を参照して、第4の実施の形態によるエンジン制御装置について説明する。以下の説明では、第1、第2の実施の形態と同じ構成要素には同じ符号を付して相違点を主に説明する。特に説明しない点については、第1、第2の実施の形態と同じである。本実施の形態では、触媒上流空燃比センサからの空燃比信号およびクランク角センサからの回転速度信号に基づく角加速度および角加加速度の両方を用いて補正対象気筒を特定する点で、第1、第2の実施の形態と異なる。
-Fourth embodiment-
An engine control system according to the fourth embodiment will be described with reference to FIGS. In the following description, the same components as those in the first and second embodiments will be assigned the same reference numerals and differences will be mainly described. Points that are not particularly described are the same as in the first and second embodiments. In the present embodiment, the first, in that the cylinder to be corrected is identified using both the angular acceleration and the angular jerk based on the air-fuel ratio signal from the catalyst upstream air-fuel ratio sensor and the rotational speed signal from the crank angle sensor. It differs from the second embodiment.
 まず、図27に示す概略機能ブロック図を用いて、第4の実施の形態のエンジン制御装置の概要を説明する。第4の実施の形態のエンジン制御装置は、空燃比センサまたはO2センサから出力された空燃比を示す信号に基づいて、エンジンの2回転周期に相当する周波数成分を抽出し、クランク角センサから出力された信号に基づいて、クランクの角加速度または角加加速度を算出する。そして、2回転周期に相当する周波数成分に基づいて所定値よりもリーンになっている気筒を検出した結果と、角加速度または角加加速度に基づいて、所定値よりもリーンになっている気筒を検出した結果との両方を用いて、リーン発生気筒を検出するものである。以下、第4の実施の形態について、具体的に説明する。 First, an outline of the engine control system according to the fourth embodiment will be described with reference to a schematic functional block diagram shown in FIG. The engine control apparatus according to the fourth embodiment extracts a frequency component corresponding to two rotation cycles of the engine based on the signal indicating the air-fuel ratio output from the air-fuel ratio sensor or the O2 sensor, and outputs the frequency component from the crank angle sensor The angular acceleration or angular acceleration of the crank is calculated based on the received signal. Then, based on the result of detection of a cylinder that is leaner than a predetermined value based on a frequency component corresponding to two rotation cycles, and a cylinder that is leaner than a predetermined value based on angular acceleration or angular jerk. A lean occurrence cylinder is detected using both of the detection result. The fourth embodiment will be specifically described below.
 図28に第4の実施の形態におけるコントロールユニット16のCPU21が有する機能を示す。CPU21は、第1の実施の形態と同様の機能を有する基本燃料噴射量演算部210、空燃比フィードバック補正値演算部211、2回転成分演算部212、噴射回数演算部214、燃料噴射量演算部215、燃料噴射時期演算部216、および異常判定部217と、第2の実施の形態と同様の機能を有する角加速度・角加加速度演算部218とに加えて、第3噴射回数補正気筒演算部222を機能的に備える。したがって、以下の説明では、第3噴射回数補正気筒演算部222の機能を中心に行う。 FIG. 28 shows functions of the CPU 21 of the control unit 16 in the fourth embodiment. The CPU 21 has a basic fuel injection amount calculation unit 210 having the same function as that of the first embodiment, an air-fuel ratio feedback correction value calculation unit 211, a two-rotation component calculation unit 212, an injection number calculation unit 214, and a fuel injection amount calculation unit In addition to the fuel injection timing calculation unit 216, the abnormality determination unit 217, and the angular acceleration / angular acceleration calculation unit 218 having the same function as that of the second embodiment, a third injection number correction cylinder calculation unit And 222 are functionally provided. Therefore, in the following description, the function of the third injection number correction cylinder calculation unit 222 will be mainly described.
 図29は第3噴射回数補正気筒演算部222の機能を模式的に示す図である。図29に示すように、第3噴射回数補正気筒演算部222は、第1補正気筒番号演算部223および第2補正気筒番号演算部224を含んで構成される。第3噴射回数補正気筒演算部222は、第1補正気筒番号演算部223により検出された第1補正気筒番号N_hos_cyl_aと第2補正気筒番号演算部224により検出された第2補正気筒番号N_hos_cyl_bとに基づいて、以下の条件(a3)~(d3)に従って補正対象気筒番号N_hos_cylを設定する。なお、N4はエンジン9の特性に応じて経験的に決まる値である。また、第1補正気筒番号演算部223および第2補正気筒番号演算部224については、説明を後述する。
(a3)第1補正気筒番号N_hos_cyl_a=1かつ第2補正気筒番号N_hos_cyl_b=1がN4回連続して成立した場合、第3噴射回数補正気筒演算部222は補正対象気筒番号N_hos_cylを1に設定する。
(b3)第1補正気筒番号N_hos_cyl_a=2かつ第2補正気筒番号N_hos_cyl_b=2がN4回連続して成立した場合、第3噴射回数補正気筒演算部222は補正対象気筒番号N_hos_cylを2に設定する。
(c3)第1補正気筒番号N_hos_cyl_a=3かつ第2補正気筒番号N_hos_cyl_b=3がN4回連続して成立した場合、第3噴射回数補正気筒演算部222は補正対象気筒番号N_hos_cylを3に設定する。
(d3)第1補正気筒番号N_hos_cyl_a=4かつ第2補正気筒番号N_hos_cyl_b=4がN4回連続して成立した場合、第3噴射回数補正気筒演算部222は補正対象気筒番号N_hos_cylを4に設定する。
FIG. 29 schematically shows the function of the third injection number correction cylinder calculating unit 222. As shown in FIG. As shown in FIG. 29, the third injection number correction cylinder calculation unit 222 is configured to include a first correction cylinder number calculation unit 223 and a second correction cylinder number calculation unit 224. The third injection number correction cylinder calculating unit 222 generates the first correction cylinder number N_hos_cyl_a detected by the first correction cylinder number calculating unit 223 and the second correction cylinder number N_hos_cyl_b detected by the second correction cylinder number calculating unit 224. Based on the correction target cylinder number N_hos_cyl is set according to the following conditions (a3) to (d3). N4 is a value determined empirically according to the characteristics of the engine 9. Further, the description of the first correction cylinder number calculation unit 223 and the second correction cylinder number calculation unit 224 will be described later.
(A3) If the first correction cylinder number N_hos_cyl_a = 1 and the second correction cylinder number N_hos_cyl_b = 1 hold N4 times consecutively, the third injection number correction cylinder calculation unit 222 sets the correction target cylinder number N_hos_cyl to 1 .
(B3) If the first correction cylinder number N_hos_cyl_a = 2 and the second correction cylinder number N_hos_cyl_b = 2 are successively satisfied N4 times, the third injection number correction cylinder calculation unit 222 sets the correction target cylinder number N_hos_cyl to 2 .
(C3) If the first correction cylinder number N_hos_cyl_a = 3 and the second correction cylinder number N_hos_cyl_b = 3 hold N4 times consecutively, the third injection number correction cylinder calculation unit 222 sets the correction target cylinder number N_hos_cyl to 3. .
(D3) If the first correction cylinder number N_hos_cyl_a = 4 and the second correction cylinder number N_hos_cyl_b = 4 are successively satisfied N4 times, the third injection number correction cylinder calculation unit 222 sets the correction target cylinder number N_hos_cyl to 4 .
 図30は第1補正気筒番号演算部223の機能を模式的に示す図である。第1補正気筒番号演算部223は、2回転成分演算部212により算出された位相スペクトルPhaseに基づいて、以下の条件(e3)~(h3)に従ってリーン発生気筒を検出し、リーン発生気筒番号N_lean_cylを設定する。なお、K1a_Phase、K1b_Phase、K2a_Phase、K2b_Phase、K3a_Phase、K3b_Phase、K4a_Phase、K4b_Phase、およびN1はエンジン9の特性に応じて経験的に決まる値である。
(e3)K1a_Phase≦Phase≦K1b_PhaseがN1回連続して成立した場合、第1補正気筒番号演算部223はリーン発生気筒番号N_lean_cylを1に設定する。
(f3)K2a_Phase≦Phase≦K2b_PhaseがN1回連続して成立した場合、第1補正気筒番号演算部223はリーン発生気筒番号N_lean_cylを2に設定する。
(g3)K3a_Phase≦Phase≦K3b_PhaseがN1回連続して成立した場合、第1補正気筒番号演算部223はリーン発生気筒番号N_lean_cylを3に設定する。
(h3)K4a_Phase≦Phase≦K4b_PhaseがN1回連続して成立した場合、第1補正気筒番号演算部223はリーン発生気筒番号N_lean_cylを4に設定する。
 なお、噴射回数演算部214により算出されたn番気筒の噴射回数Kai_nが、前回の算出周期で算出された噴射回数Kai_nの値から変化した場合には、第1噴射回数補正気筒演算部213はN1の回数を0にリセットする。
FIG. 30 is a view schematically showing the function of the first correction cylinder number calculation unit 223. As shown in FIG. The first correction cylinder number calculation unit 223 detects a lean generation cylinder according to the following conditions (e3) to (h3) based on the phase spectrum Phase calculated by the two-rotation component calculation unit 212, and the lean generation cylinder number N_lean_cyl Set K1a_Phase, K1b_Phase, K2a_Phase, K2b_Phase, K3a_Phase, K3b_Phase, K4a_Phase, K4b_Phase, and N1 are values determined empirically according to the characteristics of the engine 9.
(E3) If K1a_Phase ≦ Phase ≦ K1b_Phase is satisfied N1 times consecutively, the first correction cylinder number calculation unit 223 sets the lean occurring cylinder number N_lean_cyl to 1.
(F3) If K2a_Phase ≦ Phase ≦ K2b_Phase is satisfied N1 times consecutively, the first corrected cylinder number computing unit 223 sets the lean occurring cylinder number N_lean_cyl to 2.
(G3) If K3a_Phase ≦ Phase ≦ K3b_Phase is satisfied N1 times consecutively, the first correction cylinder number calculation unit 223 sets the lean occurring cylinder number N_lean_cyl to 3.
(H3) If K4a_Phase ≦ Phase ≦ K4b_Phase is satisfied N1 times consecutively, the first corrected cylinder number computing unit 223 sets the lean occurring cylinder number N_lean_cyl to 4.
When the number of times of injection Kai_n of the n-th cylinder calculated by the number-of-injections calculation unit 214 changes from the value of the number of injections Kai_n calculated in the previous calculation cycle, the first injection number correction cylinder calculation unit 213 Reset N1 times to 0.
 上記のようにしてリーン発生気筒番号N_lean_cylが設定されると、第1補正気筒演算部223は、2回転成分演算部212により算出されたパワースペクトルPowerに基づいて、以下の条件(i3)~(l3)に応じて補正対象気筒を特定し、第1補正気筒番号N_hos_cyl_aを設定する。なお、K1_Power、K2_Power、K3_PowerおよびK4_Powerは、エンジン9の特性に応じて経験的に決まる値である。
(i3)リーン発生気筒番号N_lean_cyl=1かつK1_Power≦Powerの場合、第1補正気筒番号演算部223は第1補正気筒番号N_hos_cyl_aを1に設定する。
(j3)リーン発生気筒番号N_lean_cyl=2かつK2_Power≦Powerの場合、第1補正気筒番号演算部223は第1補正気筒番号N_hos_cyl_aを2に設定する。
(k3)リーン発生気筒番号N_lean_cyl=3かつK3_Power≦Powerの場合、第1補正気筒番号演算部223は第1補正気筒番号N_hos_cyl_aを3に設定する。
(l3)リーン発生気筒番号N_lean_cyl=4かつK4_Power≦Powerの場合、第1補正気筒番号演算部223は第1補正気筒番号N_hos_cyl_aを4に設定する。
When the lean occurring cylinder number N_lean_cyl is set as described above, the first correction cylinder operation unit 223 sets the following conditions (i3) to (i) based on the power spectrum Power calculated by the two-rotation component operation unit 212. The correction target cylinder is specified according to l3), and the first correction cylinder number N_hos_cyl_a is set. K1_Power, K2_Power, K3_Power, and K4_Power are values determined empirically according to the characteristics of the engine 9.
(I3) When the lean occurring cylinder number N_lean_cyl = 1 and K1_Power ≦ Power, the first correction cylinder number calculation unit 223 sets the first correction cylinder number N_hos_cyl_a to 1.
(J3) When the lean occurring cylinder number N_lean_cyl = 2 and K2_Power ≦ Power, the first correction cylinder number calculation unit 223 sets the first correction cylinder number N_hos_cyl_a to 2.
(K3) When the lean occurring cylinder number N_lean_cyl = 3 and K3_Power ≦ Power, the first correction cylinder number calculation unit 223 sets the first correction cylinder number N_hos_cyl_a to 3.
(L3) When the lean occurring cylinder number N_lean_cyl = 4 and K4_Power ≦ Power, the first correction cylinder number calculation unit 223 sets the first correction cylinder number N_hos_cyl_a to 4.
 図31は第2補正気筒番号演算部224の機能を模式的に示す図である。第2補正気筒番号演算部224は、クランク角センサ15からの回転速度信号を用いて角加速度・角加加速度演算部218によって算出された角加速度、角加加速度に基づいて、以下の条件(m3)~(p3)に従って第2補正気筒番号N_hos_cly_bを設定する。なお、K1_dNe、K1_ddNe、K2_ddNeおよびN2はエンジン9の特性に応じて経験的に決まる値である。
(m3)dNe_1≦K1_dNeがN2回連続して成立、もしくはddNe_1≦K1_ddNeがN2回連続して成立、もしくはddNe_1≧K2_ddNeがN2回連続して成立した場合、第2補正気筒番号演算部224は第2補正気筒番号N_hos_cyl_bを1に設定する。
(n3)dNe_2≦K1_dNeがN2回連続して成立、もしくはddNe_2≦K1_ddNeがN2回連続して成立、もしくはddNe_2≧K2_ddNeがN2回連続して成立した場合、第2補正気筒番号演算部224は第2補正気筒番号N_hos_cyl_bを2に設定する。
(o3)dNe_3≦K1_dNeがN2回連続して成立、もしくはddNe_3≦K1_ddNeがN2回連続して成立、もしくはddNe_3≧K2_ddNeがN2回連続して成立した場合、第2補正気筒番号演算部224は第2補正気筒番号N_hos_cyl_bを3に設定する。
(p3)dNe_4≦K1_dNeがN2回連続して成立、もしくはddNe_4≦K1_ddNeがN2回連続して成立、もしくはddNe_4≧K2_ddNeがN2回連続して成立した場合、第2補正気筒番号演算部224は第2補正気筒番号N_hos_cyl_bを4に設定する。
FIG. 31 is a view schematically showing the function of the second correction cylinder number calculation unit 224. As shown in FIG. The second correction cylinder number calculation unit 224 uses the rotational speed signal from the crank angle sensor 15 to calculate the following condition (m3) based on the angular acceleration and the angular acceleration calculated by the angular acceleration and angular jerk calculation unit 218: The second corrected cylinder number N_hos_cly_b is set in accordance with) to (p3). K1_dNe, K1_ddNe, K2_ddNe and N2 are values determined empirically according to the characteristics of the engine 9.
(M3) dNe_1 ≦ K1_dNe holds N2 times consecutively, or ddNe_1 ≦ K1_ddNe holds N2 times continuously, or ddNe_1 ≧ K2_ddNe holds N2 times continuously, the second correction cylinder number calculation unit 224 2 Set the corrected cylinder number N_hos_cyl_b to 1.
(N3) dNe_2 ≦ K1_dNe holds N2 times consecutively, or ddNe_2 ≦ K1_ddNe holds N2 times continuously, or ddNe_2 ≧ K2_ddNe holds N2 times continuously, the second correction cylinder number calculation unit 224 2 Set the corrected cylinder number N_hos_cyl_b to 2.
(O3) dNe_3 ≦ K1_dNe holds N2 times consecutively, or ddNe_3 ≦ K1_ddNe holds N2 times continuously, or ddNe_3 ≧ K2_ddNe holds N2 times continuously, the second corrected cylinder number calculation unit 224 2 Set the corrected cylinder number N_hos_cyl_b to 3.
(P3) dNe_4 ≦ K1_dNe holds N2 times consecutively, or ddNe_4 ≦ K1_ddNe holds N2 times continuously, or ddNe_4 ≧ K2_ddNe holds N2 times continuously, the second correction cylinder number calculation unit 224 2 Set the corrected cylinder number N_hos_cyl_b to 4.
 以上で説明した第4の実施の形態によれば、第1および第2の実施の形態により得られる作用効果に加えて、以下の作用効果が得られる。
 第1補正気筒番号演算部223は、2回転成分演算部212によって抽出された2回転周期に相当する周波数成分に基づいて所定値よりもリーン燃焼している気筒を検出し、第2補正気筒番号演算部224は、角加速度・角加加速度演算部218によって算出された角加速度または角加加速度に基づいて、所定値よりもリーン燃焼している気筒を検出する。そして、第3噴射回数補正気筒演算部222は、第1補正気筒番号演算部223による検出結果および第2補正気筒番号演算部224による検出結果の両方を用いて、リーン発生気筒を検出するようにした。換言すると、第1の実施の形態の第1噴射回数補正気筒演算部213と同様の方式と、第2の実施の形態の第2噴射回数補正気筒演算部219と同様の方式との両方の方式を用いてリーン発生気筒を検出できるので、検出精度を向上させることができる。特に、エンジン9が中負荷、中回転で運転している場合に、空燃比信号に基づくリーン発生気筒の検出精度と、角加速度、角加加速度に基づくリーン発生気筒の検出精度とが向上する。このため、エンジン9が中負荷、中回転で運転している場合に、第3噴射回数補正気筒演算部222によるリーン発生気筒の検出精度が向上させることができる。
According to the fourth embodiment described above, in addition to the effects obtained by the first and second embodiments, the following effects can be obtained.
The first correction cylinder number calculation unit 223 detects a cylinder that is burning leaner than a predetermined value based on the frequency component corresponding to the 2-rotation cycle extracted by the 2-rotation component calculation unit 212, and the second correction cylinder number The calculation unit 224 detects a cylinder that is leaner than a predetermined value, based on the angular acceleration or the angular jerk calculated by the angular acceleration / angular jerk calculation unit 218. Then, the third injection number correction cylinder calculation unit 222 detects a lean occurring cylinder using both the detection result by the first correction cylinder number calculation unit 223 and the detection result by the second correction cylinder number calculation unit 224. did. In other words, both the method similar to the first injection number correction cylinder calculating unit 213 of the first embodiment and the method similar to the second injection number correction cylinder calculating unit 219 of the second embodiment The detection accuracy can be improved because the lean generated cylinders can be detected using In particular, when the engine 9 is operated at medium load and medium rotation, the detection accuracy of the lean generation cylinder based on the air-fuel ratio signal and the detection accuracy of the lean generation cylinder based on the angular acceleration and the angular jerk are improved. For this reason, when the engine 9 is operated at medium load and medium rotation, the detection accuracy of the lean occurring cylinder by the third injection number correction cylinder calculating unit 222 can be improved.
 また、本発明の特徴を損なわない限り、本発明は上記実施の形態に限定されるものではなく、本発明の技術的思想の範囲内で考えられるその他の形態についても、本発明の範囲内に含まれる。説明に用いた実施の形態および変形例は、それぞれを適宜組み合わせて構成しても構わない。 Furthermore, the present invention is not limited to the above embodiment as long as the features of the present invention are not impaired, and other embodiments considered within the scope of the technical idea of the present invention are also within the scope of the present invention. included. The embodiments and modifications used in the description may be combined appropriately.
1 エアクリーナ、 2 エアフローセンサ、
3 電子スロットル、 4 吸気管、
5 コレクタ、 6 アクセル、
7 燃料噴射弁、 8 点火プラグ、
9 エンジン、 10 排気管、
11 三元触媒、 12 触媒上流空燃比センサ、
13 アクセル開度センサ、 14 水温センサ、
15 クランク角センサ、 16 コントロールユニット、
17 スロットル開度センサ、 18 排気還流管、
19 排気還流量調節バルブ、 20 触媒下流O2センサ、
21 CPU、 22 ROM、
23 RAM、 24 入力回路、
25 入出力ポート、 26 点火出力回路、
27 燃料噴射弁駆動回路、 28 電子スロットル駆動回路、
29 吸気温センサ、 210 基本燃焼噴射量演算部、
211 空燃比フィードバック補正値演算部、 212 2回転成分演算部、
213 第1噴射回数補正気筒演算部、 214 噴射回数演算部、
215 燃料噴射量演算部、 216 燃料噴射時期演算部、
217 異常判定部、 218 角加速度・角加加速度演算部、
219 第2噴射回数補正気筒演算部、 220 リーン判定方式切換部、
221 スイッチ、 222 第3噴射回数補正気筒演算部、
223 第1補正気筒番号演算部、 224 第2補正気筒番号演算部
1 air cleaner, 2 air flow sensor,
3 electronic throttles, 4 intake pipes,
5 collectors, 6 accelerators,
7 fuel injection valves, 8 spark plugs,
9 engines, 10 exhaust pipes,
11 three-way catalyst, 12 catalyst upstream air-fuel ratio sensor,
13 accelerator opening sensor, 14 water temperature sensor,
15 crank angle sensors, 16 control units,
17 throttle opening sensor, 18 exhaust recirculation pipe,
19 Exhaust Reflow Adjustment Valve, 20 Catalyst Downstream O2 Sensor,
21 CPU, 22 ROM,
23 RAM, 24 input circuits,
25 input / output ports, 26 ignition output circuits,
27 fuel injection valve drive circuit, 28 electronic throttle drive circuit,
29 intake temperature sensor, 210 basic combustion injection amount calculation unit,
211 air-fuel ratio feedback correction value calculation unit, 212 two-rotation component calculation unit,
213 first injection number correction cylinder calculation unit, 214 injection number calculation unit,
215 fuel injection amount calculation unit, 216 fuel injection timing calculation unit,
217 abnormality judgment unit, 218 angular acceleration / angular acceleration calculation unit,
219 second injection number correction cylinder operation unit, 220 lean determination method switching unit,
221 switch, 222 third injection number correction cylinder operation unit,
223 first corrected cylinder number calculator, 224 second corrected cylinder number calculator

Claims (11)

  1.  多気筒エンジンに設けられた複数の気筒のそれぞれに対して、1サイクル中に複数回の燃料を噴射する分割燃料噴射を行うエンジンの制御装置において、
     空燃比またはエンジンの運転状況を検出し、その検出結果に基づいて、前記複数の気筒のうち、他の気筒の空燃比と比べて所定値よりもリーンになっている気筒をリーン発生気筒として検出するリーン気筒検出手段と、
     前記リーン気筒検出手段によって検出された前記リーン発生気筒に対する燃料噴射の回数を減少させる噴射回数制御手段とを備えることを特徴とするエンジンの制御装置。
    In a control device of an engine that performs split fuel injection that injects fuel multiple times in one cycle to each of a plurality of cylinders provided in a multi-cylinder engine,
    The air-fuel ratio or the operating condition of the engine is detected, and based on the detection result, among the plurality of cylinders, a cylinder that is leaner than a predetermined value compared to the air-fuel ratio of other cylinders is detected as a lean occurring cylinder Lean cylinder detection means to
    And an injection number control means for reducing the number of fuel injections to the lean generation cylinder detected by the lean cylinder detection means.
  2.  請求項1に記載のエンジンの制御装置において、
     前記噴射回数制御手段によって前記リーン発生気筒に対する燃料噴射の回数を減少させる前後で、前記リーン発生気筒による1サイクル中での総燃料噴射量の変化を防ぐように、前記分割燃料噴射の1回当たりの燃料噴射量を制御する燃料噴射量制御手段をさらに備えることを特徴とするエンジンの制御装置。
    In the engine control device according to claim 1,
    Before and after the number of times of fuel injection to the lean generation cylinder is reduced by the injection number control means, the divided fuel injection may be performed once to prevent a change in the total fuel injection amount in one cycle by the lean generation cylinder. An engine control device further comprising: fuel injection amount control means for controlling a fuel injection amount of the engine.
  3.  請求項1に記載のエンジンの制御装置において、
     空燃比センサまたはO2センサから出力された空燃比を示す信号に基づいて、前記多気筒エンジンの2回転周期に相当する周波数成分を抽出する抽出手段とをさらに備え、
     前記リーン気筒検出手段は、前記抽出手段により抽出された前記2回転周期に相当する周波数成分に基づいて、前記リーン発生気筒を検出することを特徴とするエンジンの制御装置。
    In the engine control device according to claim 1,
    And an extraction unit that extracts a frequency component corresponding to a two-rotation cycle of the multi-cylinder engine based on a signal indicating an air-fuel ratio output from an air-fuel ratio sensor or an O2 sensor.
    A control device of an engine, wherein the lean cylinder detection means detects the lean occurrence cylinder based on a frequency component corresponding to the two rotation cycle extracted by the extraction means.
  4.  請求項3に記載のエンジンの制御装置において、
     前記抽出手段は、前記空燃比を示す信号に基づいて、前記多気筒エンジンの2回転周期に相当する位相スペクトルとパワースペクトルとを抽出し、
     前記リーン気筒検出手段は、前記位相スペクトルに基づいて前記リーン発生気筒を検出し、検出された前記リーン発生気筒の前記パワースペクトルが所定値以上か否かを判定し、
     前記噴射回数制御手段は、前記リーン気筒検出手段によって前記リーン発生気筒の前記パワースペクトルが所定値以上と判定された場合に、燃料噴射の回数を減少させることを特徴とするエンジンの制御装置。
    In the engine control device according to claim 3,
    The extraction means extracts a phase spectrum and a power spectrum corresponding to a 2-rotation cycle of the multi-cylinder engine based on the signal indicating the air-fuel ratio.
    The lean cylinder detection means detects the lean generation cylinder based on the phase spectrum, and determines whether the detected power spectrum of the lean generation cylinder is equal to or greater than a predetermined value.
    The engine control device according to claim 1, wherein the number-of-injections control means decreases the number of fuel injections when the lean cylinder detection means determines that the power spectrum of the lean generation cylinders is equal to or greater than a predetermined value.
  5.  請求項1に記載のエンジンの制御装置において、
     クランク角センサから出力された信号に基づいて、クランクの角加速度または角加加速度を算出する算出手段をさらに備え、
     前記リーン気筒検出手段は、前記算出手段によって算出された前記角加速度または角加加速度に基づいて、前記リーン発生気筒を検出することを特徴とするエンジンの制御装置。
    In the engine control device according to claim 1,
    It further comprises calculation means for calculating the angular acceleration or angular jerk of the crank based on the signal output from the crank angle sensor,
    A control device of an engine, wherein the lean cylinder detection means detects the lean generation cylinder based on the angular acceleration or angular jerk calculated by the calculation means.
  6.  請求項5に記載のエンジンの制御装置において、
     前記算出手段は、前記多気筒エンジンの各気筒が所定サイクルにあるときのそれぞれの気筒の平均角加速度または平均角加加速度を算出し、算出された前記平均角加速度が所定値以下、または前記算出手段により算出された前記平均角加加速度が所定範囲外であるか否かを判定し、
     前記算出手段により前記平均角加速度が所定値以下、または前記算出手段により算出された前記平均角加加速度が所定範囲外と判定された場合、前記リーン気筒検出部は、当該気筒を前記リーン発生気筒として検出することを特徴とするエンジンの制御装置。
    In the engine control device according to claim 5,
    The calculation means calculates an average angular acceleration or average angular jerk of each cylinder when each cylinder of the multi-cylinder engine is in a predetermined cycle, and the calculated average angular acceleration is equal to or less than a predetermined value, or the calculation Determining whether the average angular jerk calculated by the means is outside a predetermined range;
    When it is determined that the average angular acceleration is equal to or less than a predetermined value by the calculation means, or the average angular jerk calculated by the calculation means is out of a predetermined range, the lean cylinder detection unit determines the cylinder as the lean generation cylinder A control device of an engine characterized by detecting as.
  7.  請求項1に記載のエンジンの制御装置において、
     空燃比センサまたはO2センサから出力された空燃比を示す信号に基づいて、前記多気筒エンジンの2回転周期に相当する周波数成分を抽出する抽出手段と、
     クランク角センサから出力された信号に基づいて、クランクの角加速度または角加加速度を算出する算出手段とをさらに備え、
     前記リーン気筒検出手段は、前記抽出手段によって抽出された前記2回転周期に相当する周波数成分に基づいて前記所定値よりもリーンになっている気筒を検出する第1検出手段と、前記算出手段によって算出された前記角加速度または角加加速度に基づいて、前記所定値よりもリーンになっている気筒を検出する第2検出手段とを含み、
     少なくとも前記多気筒エンジンの回転速度または負荷に応じて、前記第1検出手段による検出結果および前記第2検出手段による検出結果のうちの一方の検出結果を、前記リーン発生気筒として出力させる切換手段をさらに備えることを特徴とするエンジンの制御装置。
    In the engine control device according to claim 1,
    Extracting means for extracting a frequency component corresponding to two rotation cycles of the multi-cylinder engine based on a signal indicating an air-fuel ratio output from an air-fuel ratio sensor or an O 2 sensor;
    And calculating means for calculating an angular acceleration or an angular jerk of the crank based on a signal output from the crank angle sensor.
    The lean cylinder detection means is a first detection means for detecting a cylinder that is leaner than the predetermined value based on a frequency component corresponding to the two-rotation cycle extracted by the extraction means; and the calculation means And second detecting means for detecting a cylinder leaner than the predetermined value based on the calculated angular acceleration or angular jerk.
    Switching means for outputting the detection result of one of the detection result by the first detection means and the detection result by the second detection means as the lean generation cylinder according to at least the rotational speed or load of the multi-cylinder engine A control device for an engine, further comprising:
  8.  請求項1に記載のエンジンの制御装置において、
     空燃比センサまたはO2センサから出力された空燃比を示す信号に基づいて、前記多気筒エンジンの2回転周期に相当する周波数成分を抽出する抽出手段と、
     クランク角センサから出力された信号に基づいて、クランクの角加速度または角加加速度を算出する算出手段とをさらに備え、
     前記リーン気筒検出手段は、前記抽出手段によって抽出された前記2回転周期に相当する周波数成分に基づいて前記所定値よりもリーンになっている気筒を検出する第1検出手段と、前記算出手段によって算出された前記角加速度または角加加速度に基づいて、前記所定値よりもリーンになっている気筒を検出する第2検出手段とを含み、
     前記リーン気筒検出手段は、前記第1検出手段による検出結果および前記第2検出手段による検出結果の両方を用いて、前記リーン発生気筒を検出することを特徴とするエンジンの制御装置。
    In the engine control device according to claim 1,
    Extracting means for extracting a frequency component corresponding to two rotation cycles of the multi-cylinder engine based on a signal indicating an air-fuel ratio output from an air-fuel ratio sensor or an O 2 sensor;
    And calculating means for calculating an angular acceleration or an angular jerk of the crank based on a signal output from the crank angle sensor.
    The lean cylinder detection means is a first detection means for detecting a cylinder that is leaner than the predetermined value based on a frequency component corresponding to the two-rotation cycle extracted by the extraction means; and the calculation means And second detecting means for detecting a cylinder leaner than the predetermined value based on the calculated angular acceleration or angular jerk.
    A control device of an engine, wherein the lean cylinder detection means detects the lean generated cylinder using both the detection result by the first detection means and the detection result by the second detection means.
  9.  請求項1に記載のエンジンの制御装置において、
     前記噴射回数制御手段によって前記リーン発生気筒に対する燃料噴射の回数が減少された後、前記リーン気筒検出手段によって空燃比が他の気筒の空燃比と比べて前記所定値よりもリーンとなっている気筒が再度検出されない場合には、前記噴射回数制御手段は、前記リーン発生気筒に対する燃料噴射の回数を維持することを特徴とするエンジンの制御装置。
    In the engine control device according to claim 1,
    A cylinder whose air-fuel ratio is leaner than the predetermined value compared to the air-fuel ratio of other cylinders by the lean cylinder detection means after the number of times of fuel injection to the lean generation cylinder is reduced by the injection number control means In the case where the number of injections is not detected again, the control device for controlling the number of injections maintains the number of fuel injections to the lean occurring cylinder.
  10.  請求項1に記載のエンジンの制御装置において、
     前記噴射回数制御手段によって前記リーン発生気筒に対する燃料噴射の回数が減少された後、前記リーン気筒検出手段によって空燃比が他の気筒の空燃比と比べて前記所定値よりもリーンとなっている気筒が再度検出された場合には、前記噴射回数制御手段は、前記リーン発生気筒の燃料噴射の回数をさらに減少することを特徴とするエンジンの制御装置。
    In the engine control device according to claim 1,
    A cylinder whose air-fuel ratio is leaner than the predetermined value compared to the air-fuel ratio of other cylinders by the lean cylinder detection means after the number of times of fuel injection to the lean generation cylinder is reduced by the injection number control means The engine control device according to claim 1, wherein the number-of-injections control means further reduces the number of fuel injections for the lean generated cylinders when the second detection is detected again.
  11.  請求項10に記載のエンジンの制御装置において、
     前記噴射回数制御手段によって前記リーン発生気筒に対する燃料噴射の回数が所定回数まで減少されたときに、前記リーン気筒検出手段によって空燃比が他の気筒の空燃比と比べて前記所定値よりもリーンとなっている気筒が再度検出された場合には、異常であることを報知する異常報知手段をさらに備えることを特徴とするエンジンの制御装置。
    In the engine control device according to claim 10,
    When the number of fuel injections to the lean occurring cylinder is reduced to a predetermined number by the injection number control means, the air / fuel ratio is leaner than the predetermined value by the lean cylinder detection means compared to the air / fuel ratio of the other cylinders. A control device for an engine, further comprising abnormality notification means for giving notification of abnormality when a cylinder being detected is detected again.
PCT/JP2013/056896 2012-04-09 2013-03-13 Engine control device WO2013153895A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012088778A JP6046370B2 (en) 2012-04-09 2012-04-09 Engine control device
JP2012-088778 2012-04-09

Publications (1)

Publication Number Publication Date
WO2013153895A1 true WO2013153895A1 (en) 2013-10-17

Family

ID=49327469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/056896 WO2013153895A1 (en) 2012-04-09 2013-03-13 Engine control device

Country Status (2)

Country Link
JP (1) JP6046370B2 (en)
WO (1) WO2013153895A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62253936A (en) * 1986-04-28 1987-11-05 Japan Electronic Control Syst Co Ltd Electronically controlled fuel injection equipment for internal combustion engine
JPH1122532A (en) * 1997-07-08 1999-01-26 Mitsubishi Electric Corp Fuel injection control device for internal combustion engine
JP2001041090A (en) * 1999-07-30 2001-02-13 Mazda Motor Corp Fuel injection control device for diesel engine
JP2001323834A (en) * 2000-05-17 2001-11-22 Mazda Motor Corp Control device for engine
JP2005113744A (en) * 2003-10-06 2005-04-28 Denso Corp Fuel injection device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3510132B2 (en) * 1999-01-27 2004-03-22 株式会社日立製作所 Engine control device
JP3873881B2 (en) * 2002-12-18 2007-01-31 トヨタ自動車株式会社 Control device for internal combustion engine
JP4205030B2 (en) * 2003-10-06 2009-01-07 本田技研工業株式会社 Air-fuel ratio control device for internal combustion engine
JP4129221B2 (en) * 2003-10-30 2008-08-06 株式会社日立製作所 Engine control device
JP2008185035A (en) * 2008-03-10 2008-08-14 Hitachi Ltd Engine control device
JP2011027059A (en) * 2009-07-28 2011-02-10 Hitachi Automotive Systems Ltd Engine cotrol apparatus
JP5317022B2 (en) * 2010-03-31 2013-10-16 株式会社デンソー Fuel injection control device for internal combustion engine
JP5331753B2 (en) * 2010-06-04 2013-10-30 日立オートモティブシステムズ株式会社 Engine control device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62253936A (en) * 1986-04-28 1987-11-05 Japan Electronic Control Syst Co Ltd Electronically controlled fuel injection equipment for internal combustion engine
JPH1122532A (en) * 1997-07-08 1999-01-26 Mitsubishi Electric Corp Fuel injection control device for internal combustion engine
JP2001041090A (en) * 1999-07-30 2001-02-13 Mazda Motor Corp Fuel injection control device for diesel engine
JP2001323834A (en) * 2000-05-17 2001-11-22 Mazda Motor Corp Control device for engine
JP2005113744A (en) * 2003-10-06 2005-04-28 Denso Corp Fuel injection device

Also Published As

Publication number Publication date
JP2013217295A (en) 2013-10-24
JP6046370B2 (en) 2016-12-14

Similar Documents

Publication Publication Date Title
US8573184B2 (en) Control apparatus for controlling intake air flow, fuel injection amount, and ignition timing at each cylinder of a multi-cylinder engine
JP5660215B2 (en) Control device for internal combustion engine
EP2284378A2 (en) Engine control apparatus
JP5235739B2 (en) Fuel injection control device for internal combustion engine
US20070235009A1 (en) Control apparatus for direct injection type spark ignition internal combustion engine
US10012160B2 (en) Control device and control method of engine
WO2015182107A1 (en) Air quantity calculation device for internal combustion engine
JP6462311B2 (en) Engine control device
JP5273310B2 (en) Control device for internal combustion engine
JP2008069660A (en) Control device of internal combustion engine
JP2014001666A (en) Control device of internal combustion engine
US20160369729A1 (en) Control apparatus and control method for internal combustion engine
WO2013153895A1 (en) Engine control device
JP2007040219A (en) Control device of internal combustion engine
JP6272003B2 (en) Engine control device
JP5488707B2 (en) Fuel injection control device for internal combustion engine
JP4438575B2 (en) Ignition timing control device for internal combustion engine
JP2013238111A (en) Air-fuel ratio control device of internal combustion engine
JP5120468B2 (en) Abnormality judgment device for multi-cylinder internal combustion engine
JP6077371B2 (en) Control device for internal combustion engine
JP5260770B2 (en) Engine control device
JP5610979B2 (en) Control device for internal combustion engine
JP4854796B2 (en) Abnormality detection device for internal combustion engine
JP6773545B2 (en) Internal combustion engine control device
JP2015117641A (en) Control device of engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13774983

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13774983

Country of ref document: EP

Kind code of ref document: A1