JP5610979B2 - Control device for internal combustion engine - Google Patents

Control device for internal combustion engine Download PDF

Info

Publication number
JP5610979B2
JP5610979B2 JP2010241172A JP2010241172A JP5610979B2 JP 5610979 B2 JP5610979 B2 JP 5610979B2 JP 2010241172 A JP2010241172 A JP 2010241172A JP 2010241172 A JP2010241172 A JP 2010241172A JP 5610979 B2 JP5610979 B2 JP 5610979B2
Authority
JP
Japan
Prior art keywords
ignition timing
engine speed
difference
value
correction amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010241172A
Other languages
Japanese (ja)
Other versions
JP2012092753A (en
Inventor
正田 勝博
勝博 正田
俊介 深谷
俊介 深谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2010241172A priority Critical patent/JP5610979B2/en
Publication of JP2012092753A publication Critical patent/JP2012092753A/en
Application granted granted Critical
Publication of JP5610979B2 publication Critical patent/JP5610979B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Electrical Control Of Ignition Timing (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、アイドル時にエンジン回転数を所定のアイドル目標回転数に収束させる内燃機関の制御装置に関する。   The present invention relates to a control device for an internal combustion engine that converges an engine speed to a predetermined target idle speed during idling.

車両等に搭載される内燃機関のアイドル時において、実測エンジン回転数がアイドル目標回転数を上回っている場合には点火時期を遅角補正し、逆に下回っている場合には点火時期を進角補正するアイドリング制御手法が公知である(例えば、下記特許文献を参照)。   When the internal combustion engine mounted on a vehicle or the like is idling, if the measured engine speed is higher than the target idling speed, the ignition timing is corrected, and if it is lower, the ignition timing is advanced. A known idling control method is known (see, for example, the following patent document).

エンジン回転数のハンチングが発生したときにこれを速やかに収束させるためには、点火時期の進角/遅角補正量(換言すれば、フィードバックゲイン)を大きく設定する方がよい。しかし、点火時期の進角/遅角補正量を大きくすることは、燃費面では不利を招くきらいがあった。   In order to quickly converge the engine speed hunting when it occurs, it is better to set the ignition timing advance / retard angle correction amount (in other words, feedback gain) large. However, increasing the advance / retard angle correction amount of the ignition timing may cause a disadvantage in terms of fuel consumption.

特開昭64−024165号公報JP-A 64-024165

本発明は、アイドル時のエンジン回転数のハンチングを抑制しつつ燃費の向上を図ることを所期の目的としている。   An object of the present invention is to improve fuel efficiency while suppressing hunting of the engine speed during idling.

本発明では、エンジン回転数の実測値とアイドル目標回転数との偏差、及び、エンジン回転数の実測値と当該実測値の移動平均値との差分を演算し、前記偏差及び前記差分と点火時期の補正量との関係を規定する第一の点火時期マップに基づいて点火時期を補正するとともに、エンジン回転数のハンチングの発生を予見させる所定の事象を検知した場合には、前記偏差及び前記差分と点火時期の補正量との関係を規定しかつ前記第一の点火時期マップに比べて補正量が大きく設定された第二の点火時期マップに基づいて点火時期を補正することを特徴とする内燃機関の制御装置を構成した。   In the present invention, the deviation between the measured value of the engine speed and the idle target speed and the difference between the measured value of the engine speed and the moving average value of the measured value are calculated, and the deviation, the difference, and the ignition timing are calculated. If the ignition timing is corrected based on the first ignition timing map that defines the relationship with the correction amount of the engine, and if a predetermined event that predicts the occurrence of hunting of the engine speed is detected, the deviation and the difference And an ignition timing correction amount based on a second ignition timing map in which the correction amount is set larger than that of the first ignition timing map. The engine control device was configured.

ここで、エンジン回転数のハンチングの発生を予見させる所定の事象としては、例えば、反復的に検出している回転速度の瞬時値が閾値以上に大きく増減した場合や、偏差の絶対値が所定以上となった場合、エアコンや照明等の電気負荷のON/OFFが切り替えられた場合、変速機がシフトチェンジした場合、暖機が完了した(即ち、暖機のための燃料噴射量の増量補正を打ち切る)場合等を挙げることができる。   Here, as a predetermined event for predicting the occurrence of hunting of the engine speed, for example, when the instantaneous value of the rotational speed that is repeatedly detected greatly increases or decreases more than a threshold value, or when the absolute value of the deviation exceeds a predetermined value In this case, when an electric load such as an air conditioner or lighting is switched ON / OFF, or when the transmission shifts, the warm-up is completed (that is, the fuel injection amount increase correction for warm-up is corrected). For example).

前記第一の点火時期マップ及び前記第二の点火時期マップはそれぞれ、エンジン回転数の実測値から当該実測値の移動平均値を減算した差分が正でその絶対値が大きいほど点火時期の進角補正量を増し、前記差分が負でその絶対値が大きいほど点火時期の遅角補正量を増すものとする。   In each of the first ignition timing map and the second ignition timing map, as the difference obtained by subtracting the moving average value of the actual measurement value from the actual measurement value of the engine speed is positive and the absolute value is larger, the advance angle of the ignition timing It is assumed that the correction amount is increased, and that the retardation correction amount of the ignition timing is increased as the difference is negative and the absolute value thereof is larger.

本発明によれば、アイドル時のエンジン回転数のハンチングを抑制しつつ燃費の向上を図り得る。   According to the present invention, it is possible to improve fuel efficiency while suppressing hunting of the engine speed during idling.

本発明の一実施形態における内燃機関の構成を示す図。The figure which shows the structure of the internal combustion engine in one Embodiment of this invention. アイドル中のエンジン回転数、その移動平均、エンジン回転数と目標との偏差、エンジン回転数と移動平均との差分の時系列を例示する図。The figure which illustrates the time series of the engine speed during idle, its moving average, the deviation of an engine speed and a target, and the difference of an engine speed and a moving average. 同実施形態の制御装置が記憶保持している第一の点火時期マップを例示する図。The figure which illustrates the 1st ignition timing map which the control apparatus of the embodiment has memorize | stored. 同実施形態の制御装置が記憶保持している第一の点火時期マップを例示する図。The figure which illustrates the 1st ignition timing map which the control apparatus of the embodiment has memorize | stored. 同実施形態の制御装置がプログラムに従い実行する処理の手順を示すフロー図。The flowchart which shows the procedure of the process which the control apparatus of the embodiment performs according to a program.

本発明の一実施形態を、図面を参照して説明する。図1に一気筒の構成を概略的に示した火花点火式内燃機関0は、例えば自動車に搭載されるものである。内燃機関0の吸気系1には、アクセルペダルの踏込量に応じて開閉するスロットルバルブ11を設けており、スロットルバルブ11の下流にはサージタンク13を一体に有する吸気マニホルド12を取り付けている。サージタンク13には、吸気管内圧力(または、吸気負圧)を検出する圧力センサ71を配している。   An embodiment of the present invention will be described with reference to the drawings. A spark ignition internal combustion engine 0 schematically showing the configuration of one cylinder in FIG. 1 is mounted on, for example, an automobile. The intake system 1 of the internal combustion engine 0 is provided with a throttle valve 11 that opens and closes according to the amount of depression of the accelerator pedal, and an intake manifold 12 that integrally has a surge tank 13 is attached downstream of the throttle valve 11. The surge tank 13 is provided with a pressure sensor 71 for detecting the intake pipe pressure (or intake negative pressure).

排気系5には、排気マニホルド51を取り付け、排出ガス浄化用の三元触媒52を装着している。そして、触媒52の上流にフロントO2センサ53を、下流にリアO2センサ54を、それぞれ配している。O2センサ53、54は、排出ガスに接触して反応することにより、排出ガス中の酸素濃度に応じた電圧信号を出力する。 An exhaust manifold 51 is attached to the exhaust system 5 and a three-way catalyst 52 for exhaust gas purification is attached. A front O 2 sensor 53 is disposed upstream of the catalyst 52, and a rear O 2 sensor 54 is disposed downstream. The O 2 sensors 53 and 54 output a voltage signal corresponding to the oxygen concentration in the exhaust gas by reacting in contact with the exhaust gas.

吸気系1と排気系5との間には、EGR装置6を介設する。EGR装置6は、始端が排気マニホルド51に連通し終端がサージタンク13に連通する外部EGR通路61と、EGR通路61上に設けた外部EGRバルブ62とを要素としてなる。EGRバルブ62を開放すれば、排出ガスを排気系5から吸気系1へと還流して吸気に混合する外部EGRを実現できる。   An EGR device 6 is interposed between the intake system 1 and the exhaust system 5. The EGR device 6 includes an external EGR passage 61 having a start end communicating with the exhaust manifold 51 and a terminal end communicating with the surge tank 13, and an external EGR valve 62 provided on the EGR passage 61. If the EGR valve 62 is opened, an external EGR that recirculates the exhaust gas from the exhaust system 5 to the intake system 1 and mixes it with the intake air can be realized.

気筒2上部に形成される燃焼室の天井部(シリンダヘッド)には、吸気バルブ21、排気バルブ22、インジェクタ3及び点火プラグ23を設ける。   An intake valve 21, an exhaust valve 22, an injector 3, and a spark plug 23 are provided on the ceiling portion (cylinder head) of the combustion chamber formed in the upper part of the cylinder 2.

内燃機関0の運転制御を司る電子制御装置(Electronic Control Unit)4は、中央演算装置41、記憶装置42、入力インタフェース43、出力インタフェース44等を有するマイクロコンピュータシステムである。   An electronic control unit 4 that controls the operation of the internal combustion engine 0 is a microcomputer system having a central processing unit 41, a storage device 42, an input interface 43, an output interface 44, and the like.

入力インタフェース43には、吸気管内圧力を検出する圧力センサ71から出力される吸気圧信号a、エンジン回転数を検出する回転数センサ72から出力される回転数信号b、車速を検出する車速センサ73から出力される車速信号c、スロットルバルブ11の開度(または、アクセルペダルの踏込量)を検出するスロットルポジションセンサ74から出力されるスロットル開度信号d、シフトポジションスイッチ75から出力されるシフトポジション信号e、冷却水の温度を検出する水温センサ76から出力される水温信号f、吸気カムシャフト91の端部にあるタイミングセンサ93から出力されるクランク角度信号及び気筒判別用信号g、排気カムシャフト92の端部にあるタイミングセンサ94から240°CA(クランク角度)回転毎に出力される排気カム信号h、フロントO2センサ53から出力される上流側空燃比信号i、リアO2センサ54から出力される下流側空燃比信号j、エアコンや照明その他の電気負荷のON/OFFの切り替えを行うスイッチ77から出力されるON/OFF信号k等が出力される。エンジン回転数センサ72は、クランクシャフトとともに回転する円板の外周に10°CA毎に間欠的に形成した歯の通過を感知することでクランクシャフトの回転速度を知得するものである。 The input interface 43 includes an intake pressure signal a output from the pressure sensor 71 that detects the pressure in the intake pipe, a rotation speed signal b output from the rotation speed sensor 72 that detects the engine speed, and a vehicle speed sensor 73 that detects the vehicle speed. A vehicle speed signal c output from the throttle valve 11, a throttle position signal d output from the throttle position sensor 74 that detects the opening degree of the throttle valve 11 (or the accelerator pedal depression amount), and a shift position output from the shift position switch 75. Signal e, water temperature signal f output from the water temperature sensor 76 for detecting the temperature of the cooling water, crank angle signal output from the timing sensor 93 at the end of the intake camshaft 91, cylinder discrimination signal g, exhaust camshaft 240 ° CA (crank angle) from the timing sensor 94 at the end of 92 Exhaust cam signal h is outputted for each rotation, the front O 2 upstream air-fuel ratio signal i output from the sensor 53, the downstream-side air-fuel ratio signal j outputted from the rear O 2 sensor 54, air-conditioning, lighting and other electrical loads An ON / OFF signal k and the like output from the switch 77 that performs ON / OFF switching are output. The engine rotation speed sensor 72 detects the rotation speed of the crankshaft by sensing the passage of teeth formed intermittently every 10 ° CA on the outer periphery of the disk rotating together with the crankshaft.

出力インタフェース44からは、インジェクタ3に対して燃料噴射信号n、点火プラグ8に対して点火信号m、EGRバルブ62に対してEGRバルブ開度信号o等を出力する。   From the output interface 44, a fuel injection signal n is output to the injector 3, an ignition signal m is output to the spark plug 8, an EGR valve opening signal o is output to the EGR valve 62, and the like.

中央演算装置41は、記憶装置42に予め格納されているプログラムを解釈、実行して、内燃機関0の燃料噴射量や点火時期、気筒2に充填される吸気のEGR率(EGRガスの還流量)等の制御を遂行する。   The central processing unit 41 interprets and executes a program stored in the storage device 42 in advance, and performs fuel injection amount and ignition timing of the internal combustion engine 0, EGR rate of intake air charged in the cylinder 2 (EGR gas recirculation amount). ) Etc. are performed.

内燃機関0の運転制御において、ECU4は、内燃機関0の運転制御に必要な各種情報a、b、c、d、e、f、g、h、i、j、kを入力インタフェース43を介して取得し、さらに現状の吸気量及び当該吸気のEGR率を推定して、それらに基づいて制御入力である燃料噴射量、燃料噴射時期、点火時期、EGRバルブ62の開度(EGRステップ数)等を演算する。そして、演算した制御入力に対応した制御信号m、n、oを、出力インタフェース44を介して印加する。上記制御入力の算定手法は、既知の内燃機関0の運転制御と同様とすることができるので、ここでは説明を割愛する。   In the operation control of the internal combustion engine 0, the ECU 4 sends various information a, b, c, d, e, f, g, h, i, j, k necessary for the operation control of the internal combustion engine 0 via the input interface 43. Further, the current intake air amount and the EGR rate of the intake air are estimated, and the fuel injection amount, the fuel injection timing, the ignition timing, the opening degree of the EGR valve 62 (the number of EGR steps), etc., which are control inputs based on them Is calculated. Then, control signals m, n, and o corresponding to the calculated control input are applied via the output interface 44. Since the calculation method of the control input can be the same as the known operation control of the internal combustion engine 0, the description is omitted here.

しかして、本実施形態における制御装置たるECU4は、アイドル時、エンジン回転数を所定のアイドル目標回転数に収束させる制御を実施する。   Therefore, the ECU 4 as the control device in the present embodiment performs control to converge the engine speed to a predetermined idle target speed at the time of idling.

本実施形態では、アイドル回転の制御に際し、偏差dnenes及び差分dneneavの2つの指標を参照する。偏差dnenesは、回転数センサ72を介して検出したエンジン回転数の実測値neから、アイドル目標回転数nesetを減算したものである。差分dneneavは、エンジン回転数の実測値neから、当該エンジン回転数をなまし処理した値neavを減算したものである。neavは、例えば、過去複数回の演算機会のそれぞれにおいて検出した実測値ne(の時系列)の移動平均値とする。本実施形態では、過去32回分の実測値neを足し合わせて32で割ることによりneavを算出する。図2に、ne、neav、dnenes及びdneneavの時系列を例示している。   In the present embodiment, when the idle rotation is controlled, reference is made to two indices, the deviation dnes and the difference dnewav. The deviation dnes is a value obtained by subtracting the target idle speed neset from the actual value ne of the engine speed detected via the speed sensor 72. The difference dreneav is obtained by subtracting a value neav obtained by smoothing the engine speed from the actual value ne of the engine speed. “neav” is, for example, a moving average value of actually measured values “ne” (time series thereof) detected at each of a plurality of past calculation opportunities. In the present embodiment, neav is calculated by adding the actual measurement values ne for the past 32 times and dividing by 32. FIG. 2 exemplifies a time series of ne, neav, dynees, and dyneav.

ECU4の記憶装置42には予め、偏差dnenes及び差分dneneavと、点火時期の補正量との関係を規定した点火時期マップが記憶されている。図3及び図4に、点火時期マップを例示する。点火時期マップは、偏差dnenes及び差分dneneavの2つの指標をキーとして検索される二次元マップである。マップ中の数値は、点火時期の進角/遅角補正量(°CA)を表し、正値は進角補正、負値は遅角補正を意味する。傾向としては、偏差dnenesが正でその絶対値が大きいほど点火時期を遅角し、逆に偏差dnenesが負でその絶対値が大きいほど点火時期を進角する。さらに、差分dneneavが正でその絶対値が大きいほど点火時期を遅角し、逆に差分dneneavが負でその絶対値が大きいほど点火時期を進角する。   The storage device 42 of the ECU 4 stores in advance an ignition timing map that defines the relationship between the deviation dnes and the difference dneneav and the correction amount of the ignition timing. 3 and 4 illustrate ignition timing maps. The ignition timing map is a two-dimensional map that is searched by using two indexes of the deviation dnnes and the difference dneneav as keys. The numerical value in the map represents the advance / retard angle correction amount (° CA) of the ignition timing, and a positive value means advance angle correction and a negative value means delay angle correction. As a tendency, the ignition timing is retarded as the deviation dnes is positive and the absolute value is large, and conversely, the ignition timing is advanced as the deviation dnes is negative and the absolute value is large. Further, the ignition timing is retarded as the difference dneneav is positive and the absolute value thereof is large, and conversely, the ignition timing is advanced as the difference dneneav is negative and the absolute value thereof is large.

図3は、第一の点火時期マップである。これに対し、図4は第二の点火時期マップであり、同じ偏差dnenes、同じ差分dneneavに対する点火時期の進角/遅角補正量が第一の点火時期マップよりも大きい。換言すれば、偏差dnenes及び差分dneneavに対するゲインをより大きく設定してある。ECU4は、アイドル時、何れかの点火時期マップを選択的に参照して点火時期を補正、エンジン回転数neをアイドル目標回転数nesetに制御する。   FIG. 3 is a first ignition timing map. On the other hand, FIG. 4 is a second ignition timing map, in which the advance / retard angle correction amount of the ignition timing with respect to the same deviation dnenes and the same difference dnewav is larger than that of the first ignition timing map. In other words, the gain with respect to the deviation dnes and the difference dnewav is set larger. During idle, the ECU 4 selectively refers to any ignition timing map to correct the ignition timing, and controls the engine speed ne to the idle target speed neset.

図5に、アイドル回転の制御に際してECU4が実行する処理の手順を示す。ECU4は、偏差denenes(=ne−neset)及び差分dneneav(=ne−neav)を演算し(ステップS1、S2)、それらdenenes及びdneneavをキーとして第一の点火時期マップを検索することで点火時期の補正量を知得する(ステップS5)。そして、当該補正量を加味した点火時期で以て気筒2内の混合気に点火(ステップS6)、これを燃焼させる。   FIG. 5 shows a procedure of processing executed by the ECU 4 when controlling idle rotation. The ECU 4 calculates the deviation denenes (= ne-neset) and the difference deneav (= ne-neav) (steps S1 and S2), and searches the first ignition timing map using the denenes and dnenew as a key for ignition timing. Is obtained (step S5). Then, the air-fuel mixture in the cylinder 2 is ignited at the ignition timing with the correction amount taken into consideration (step S6) and burned.

但し、エンジン回転数のハンチングの発生を予見させる所定の事象を検知した暁には(ステップS3)、第一の点火時期マップではなく第二の点火時期マップを検索して点火時期の補正量を知得し(ステップS4)。当該補正量を加味した点火時期で以て気筒2内の混合気に点火する(ステップS6)。   However, when a predetermined event that predicts the occurrence of hunting of the engine speed is detected (step S3), the second ignition timing map is searched instead of the first ignition timing map, and the correction amount of the ignition timing is set. Know (step S4). The air-fuel mixture in the cylinder 2 is ignited at the ignition timing taking the correction amount into consideration (step S6).

ステップS3における所定の事象の典型は、回転数センサ72を介して反復的に検出している回転速度の瞬時値が閾値以上に大きく増減した場合である。より具体的には、クランクシャフトが所定クランク角度(例えば、30°CA)回転するのに要した時間を所定クランク角度(30°CA)毎に計測し、過去複数回(例えば、8回=240°CA)分の計測時間の合算値を所定クランク角度(30°CA)毎に算出した上、今回の合算値が前回(30°CA前)の合算値から閾値以上に増大または減少した場合に、第二の点火時期マップを用いた点火時期制御に移行する。   A typical example of the predetermined event in step S3 is a case where the instantaneous value of the rotational speed that is repeatedly detected via the rotational speed sensor 72 greatly increases or decreases beyond a threshold value. More specifically, the time required for the crankshaft to rotate at a predetermined crank angle (for example, 30 ° CA) is measured for each predetermined crank angle (30 ° CA), and the past multiple times (for example, 8 = 240). When the total value of the measurement time for (° CA) is calculated for each predetermined crank angle (30 ° CA), and the current total value increases or decreases from the previous total (before 30 ° CA) to a threshold value or more. Then, the process proceeds to ignition timing control using the second ignition timing map.

尤も、これ以外に、偏差dnenesの絶対値が所定以上となった場合、エアコンや照明等の電気負荷のON/OFFが切り替えられた場合、変速機がシフトチェンジした場合、冷却水温が所定以上となり暖機が完了した場合等に、第二の点火時期マップを用いた点火時期制御に移行することとしてもよい。   However, in addition to this, when the absolute value of the deviation dnes exceeds a predetermined value, when an electric load such as an air conditioner or lighting is switched ON / OFF, when the transmission shifts, the cooling water temperature exceeds a predetermined value. For example, when the warm-up is completed, it is possible to shift to ignition timing control using the second ignition timing map.

ECU4は、上記ステップS1ないしS6を反復的に実行する。   The ECU 4 repeatedly executes the above steps S1 to S6.

本実施形態では、エンジン回転数の実測値neとアイドル目標回転数nesetとの偏差dnenes、及び、エンジン回転数の実測値neと当該実測値の移動平均値neavとの差分dneneavを演算し、前記偏差dnenes及び前記差分dneneavと点火時期の補正量との関係を規定する第一の点火時期マップに基づいて点火時期を補正するとともに、エンジン回転数のハンチングの発生を予見させる所定の事象を検知した場合には、前記偏差dnenes及び前記差分dneneavと点火時期の補正量との関係を規定しかつ前記第一の点火時期マップに比べて補正量が大きく設定された第二の点火時期マップに基づいて点火時期を補正する制御装置4を構成した。   In the present embodiment, the deviation dnenes between the actual measured value ne of the engine speed and the idle target rotational speed neset, and the difference dnewav between the actual measured value ne of the engine speed and the moving average value neav of the actual measured value are calculated, The ignition timing is corrected on the basis of a first ignition timing map that defines the relationship between the deviation dnes and the difference dneneav and the correction amount of the ignition timing, and a predetermined event that predicts the occurrence of hunting of the engine speed is detected. In this case, based on a second ignition timing map that defines the relationship between the deviations dnes and the difference dneneav and the correction amount of the ignition timing, and the correction amount is set larger than that of the first ignition timing map. A control device 4 for correcting the ignition timing was configured.

本実施形態によれば、偏差dnenesのみならず差分dneneavをも参酌して点火時期の補正量を決定することから、アイドル中のエンジン回転数の変動を小さくすることができる。そして、エンジン回転数が比較的安定している間は燃費に有利な第一の点火時期マップを用いたアイドル制御を行い、エンジン回転数の急変時にはハンチングの抑圧に有利な第二の点火時期マップを用いるため、アイドル中のエンジン回転数のハンチングを抑制しながら燃費の向上を図ることが可能となる。   According to the present embodiment, since the correction amount of the ignition timing is determined in consideration of not only the deviation dnnes but also the difference dneneav, fluctuations in the engine speed during idling can be reduced. While the engine speed is relatively stable, idle control is performed using the first ignition timing map that is advantageous for fuel efficiency, and the second ignition timing map that is advantageous for suppressing hunting when the engine speed changes suddenly. Therefore, it is possible to improve fuel efficiency while suppressing hunting of the engine speed during idling.

なお、本発明は以上に詳述した実施形態に限られるものではない。各部の具体的構成や具体的な処理の手順は、本発明の趣旨を逸脱しない範囲で種々変形が可能である。   The present invention is not limited to the embodiment described in detail above. The specific configuration of each part and the specific processing procedure can be variously modified without departing from the spirit of the present invention.

本発明は、車両等に搭載される内燃機関の制御に適用することができる。   The present invention can be applied to control of an internal combustion engine mounted on a vehicle or the like.

0…内燃機関
4…制御装置(ECU)
0 ... Internal combustion engine 4 ... Control unit (ECU)

Claims (2)

アイドル時にエンジン回転数を所定のアイドル目標回転数に収束させる内燃機関の制御装置であって、
エンジン回転数の実測値とアイドル目標回転数との偏差、及び、エンジン回転数の実測値と当該実測値の移動平均値との差分を演算し、
前記偏差及び前記差分と点火時期の補正量との関係を規定する第一の点火時期マップに基づいて点火時期を補正するとともに、
エンジン回転数のハンチングの発生を予見させる所定の事象を検知した場合には、前記偏差及び前記差分と点火時期の補正量との関係を規定しかつ前記第一の点火時期マップに比べて補正量が大きく設定された第二の点火時期マップに基づいて点火時期を補正する
ことを特徴とする内燃機関の制御装置。
A control device for an internal combustion engine that converges the engine speed to a predetermined idle target speed during idling,
Calculate the deviation between the measured value of the engine speed and the idle target speed, and the difference between the measured value of the engine speed and the moving average value of the measured value,
While correcting the ignition timing based on the first ignition timing map that defines the deviation and the relationship between the difference and the correction amount of the ignition timing,
When a predetermined event that predicts the occurrence of hunting of the engine speed is detected, a relationship between the deviation and the difference and the correction amount of the ignition timing is defined, and the correction amount compared to the first ignition timing map A control device for an internal combustion engine, wherein the ignition timing is corrected based on a second ignition timing map in which is set to be large.
前記第一の点火時期マップ及び前記第二の点火時期マップはそれぞれ、エンジン回転数の実測値から当該実測値の移動平均値を減算した差分が正でその絶対値が大きいほど点火時期の進角補正量を増し、前記差分が負でその絶対値が大きいほど点火時期の遅角補正量を増すものである請求項1記載の内燃機関の制御装置。 In each of the first ignition timing map and the second ignition timing map, as the difference obtained by subtracting the moving average value of the actual measurement value from the actual measurement value of the engine speed is positive and the absolute value is larger, the advance angle of the ignition timing 2. The control apparatus for an internal combustion engine according to claim 1, wherein the correction amount is increased, and the ignition timing retardation correction amount is increased as the difference is negative and the absolute value thereof is larger.
JP2010241172A 2010-10-27 2010-10-27 Control device for internal combustion engine Expired - Fee Related JP5610979B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010241172A JP5610979B2 (en) 2010-10-27 2010-10-27 Control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010241172A JP5610979B2 (en) 2010-10-27 2010-10-27 Control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2012092753A JP2012092753A (en) 2012-05-17
JP5610979B2 true JP5610979B2 (en) 2014-10-22

Family

ID=46386358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010241172A Expired - Fee Related JP5610979B2 (en) 2010-10-27 2010-10-27 Control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP5610979B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160073583A (en) * 2014-12-17 2016-06-27 김성권 Stackable fire bowl

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58131362A (en) * 1982-01-29 1983-08-05 Nippon Denso Co Ltd Method for controlling engine speed
JPS6424165A (en) * 1987-07-16 1989-01-26 Toyota Motor Corp Idling control device for two-cycle internal combustion engine
JPH01151746A (en) * 1987-12-05 1989-06-14 Mazda Motor Corp Idle control device for engine
JPH01190945A (en) * 1988-01-23 1989-08-01 Mazda Motor Corp Idle revolution speed controller for engine
JP2956216B2 (en) * 1989-12-20 1999-10-04 三菱自動車工業株式会社 Idle rotation speed control device
JP3199399B2 (en) * 1991-06-28 2001-08-20 マツダ株式会社 Engine idle speed control device
JPH0719089A (en) * 1993-06-30 1995-01-20 Nissan Motor Co Ltd Stability controller of engine
JPH0754744A (en) * 1993-08-18 1995-02-28 Daihatsu Motor Co Ltd Correcting method for idle stabilizing ignition timing
JP3092454B2 (en) * 1994-07-29 2000-09-25 トヨタ自動車株式会社 Ignition timing control device for internal combustion engine
JP3478318B2 (en) * 1996-08-27 2003-12-15 三菱自動車工業株式会社 Control device for in-cylinder injection spark ignition internal combustion engine
JPH11343915A (en) * 1998-03-31 1999-12-14 Mazda Motor Corp Idling engine rotational speed controller of engine
JPH11324877A (en) * 1998-05-20 1999-11-26 Daihatsu Motor Co Ltd Idle stabilizing ignition timing correcting method for internal combustion engine
JP4201491B2 (en) * 2001-04-13 2008-12-24 三洋電機株式会社 ENGINE CONTROL DEVICE AND ENGINE-DRIVEN HEAT PUMP DEVICE USING THE SAME
JP4410454B2 (en) * 2002-04-03 2010-02-03 三菱自動車工業株式会社 Idle speed control device for internal combustion engine
JP3852421B2 (en) * 2003-03-28 2006-11-29 三菱自動車工業株式会社 Engine idle control device
JP2004300956A (en) * 2003-03-28 2004-10-28 Mitsubishi Motors Corp Idle control device for engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160073583A (en) * 2014-12-17 2016-06-27 김성권 Stackable fire bowl
KR101666283B1 (en) 2014-12-17 2016-10-13 김성권 Stackable fire bowl

Also Published As

Publication number Publication date
JP2012092753A (en) 2012-05-17

Similar Documents

Publication Publication Date Title
JP5103459B2 (en) Engine control device
WO2014002189A1 (en) Internal combustion engine control device
JP5451687B2 (en) Engine control device
JP7087609B2 (en) Engine control unit
JP2011027059A (en) Engine cotrol apparatus
JP5278466B2 (en) Cylinder air-fuel ratio variation abnormality detection device
JP2012013057A (en) Fuel injection system for vehicle internal combustion engine
US20150369152A1 (en) Control Device and Control Method of Engine
US9885307B2 (en) Control apparatus for internal combustion engine
WO2015133172A1 (en) Air-fuel ratio detection device for internal combustion engine
US9273624B2 (en) Control system having idle speed control learning and method having idle speed control learning for internal combustion engine
JP2007092711A (en) Learning device of electrically controlled throttle
JP5304581B2 (en) Internal combustion engine fuel injection control device
JP5610979B2 (en) Control device for internal combustion engine
JP4790787B2 (en) Control device for internal combustion engine
JP5295177B2 (en) Engine control device
WO2016190092A1 (en) Engine control device
JP2014005803A (en) Control device for internal combustion engine
JP2009180098A (en) Fuel controller of engine
JP2017020417A (en) Control device of internal combustion engine
JP6077371B2 (en) Control device for internal combustion engine
JP5260770B2 (en) Engine control device
JP5240208B2 (en) Control device for internal combustion engine
WO2014141598A1 (en) Cylinder injection type internal combustion engine and fuel injection controller
JP2015203407A (en) Engine control device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140902

R150 Certificate of patent or registration of utility model

Ref document number: 5610979

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees