WO2013153569A1 - 金属ガスケット - Google Patents

金属ガスケット Download PDF

Info

Publication number
WO2013153569A1
WO2013153569A1 PCT/JP2012/002474 JP2012002474W WO2013153569A1 WO 2013153569 A1 WO2013153569 A1 WO 2013153569A1 JP 2012002474 W JP2012002474 W JP 2012002474W WO 2013153569 A1 WO2013153569 A1 WO 2013153569A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustion chamber
chamber hole
bead
substrate
plate
Prior art date
Application number
PCT/JP2012/002474
Other languages
English (en)
French (fr)
Inventor
植田 耕作
Original Assignee
日本メタルガスケット株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本メタルガスケット株式会社 filed Critical 日本メタルガスケット株式会社
Priority to JP2014509899A priority Critical patent/JP5753315B2/ja
Priority to KR1020147029070A priority patent/KR20140133948A/ko
Priority to PCT/JP2012/002474 priority patent/WO2013153569A1/ja
Publication of WO2013153569A1 publication Critical patent/WO2013153569A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/02Sealings between relatively-stationary surfaces
    • F16J15/06Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
    • F16J15/08Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with exclusively metal packing
    • F16J15/0818Flat gaskets
    • F16J15/0825Flat gaskets laminated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/02Sealings between relatively-stationary surfaces
    • F16J15/06Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
    • F16J15/08Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with exclusively metal packing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F11/00Arrangements of sealings in combustion engines 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/02Sealings between relatively-stationary surfaces

Definitions

  • the present invention relates to a metal gasket that is used by being interposed between facing surfaces of a cylinder block and a cylinder head that constitute an engine, and the cylinder block and the cylinder head are interposed with a metal gasket.
  • the present invention relates to the metal gasket used in a bolted engine.
  • Patent Document 1 As a conventional metal gasket, there are metal gaskets described in Patent Document 1 and Patent Document 2, for example.
  • the metal gasket described in Patent Document 1 is configured by laminating a single substrate and a sub-plate that is thinner than the substrate.
  • a combustion chamber hole side bead made of a full bead is molded on the substrate so that the combustion chamber hole is open and surrounds the combustion chamber hole.
  • the sub-plate is disposed so as to face the entire surface of the substrate, and is folded back so as to sandwich the substrate at the end portion on the combustion chamber hole side to form a folded portion.
  • the end portion of the folded portion is set to the substrate flat portion on the inner peripheral side (combustion chamber hole side) than the combustion chamber bead.
  • the plate thickness of the metal gasket is divided into two types, that is, an inner peripheral side of the combustion chamber hole side bead and a region on the outer peripheral side (including the combustion chamber hole side bead).
  • the thickened portion arranged on the flat portion on the combustion chamber hole side from the combustion chamber hole side bead serves to increase the surface pressure around the combustion chamber hole.
  • the thickened portion serves as a stopper and serves to prevent the fatigue failure of the combustion chamber hole side bead by limiting the amplitude of vibration generated by combustion explosion during engine operation.
  • the folded portion is disposed on the convex side of the combustion chamber hole side bead (FIG. 4), it serves to prevent the combustion chamber hole side bead from being fully bent.
  • the metal gasket described in Patent Document 2 is also configured by laminating a single substrate and a sub-plate that is thinner than the substrate.
  • a combustion chamber hole side bead made of a full bead is molded on the substrate so that the combustion chamber hole is open and surrounds the combustion chamber hole.
  • the sub-plate is disposed opposite to the substrate on the concave side of the combustion chamber hole side bead.
  • An outer peripheral side end portion of the sub-plate is set so as to overlap a substrate flat portion located outside the combustion chamber hole side bead.
  • the sub-plate extends to the combustion chamber hole side and is folded back so as to sandwich the substrate at the end portion on the combustion chamber hole side to form a folded portion.
  • the end of the folded portion is set to the substrate flat portion on the inner peripheral side (combustion chamber hole side) rather than the convex portion side of the combustion chamber bead.
  • board thickness of a gasket is divided into three types toward an outer peripheral side from a combustion chamber hole. That is, the plate thickness from the gasket outer periphery to the outer peripheral position of the combustion chamber hole side bead is the thinnest only with the substrate, and the front and rear portions in the width direction including the combustion chamber hole side bead and sandwiching the combustion chamber hole side bead are The thickness of the substrate and one auxiliary plate is the second smallest, and the combustion chamber hole side is thicker than the combustion chamber hole side bead by the substrate and two auxiliary plates.
  • the thickness of the sub-plate is selected to completely seal the combustion gas pressure and to ensure the surface pressure of cooling water, oil holes, etc. Technology.
  • Engine technology continues to evolve rapidly, increasing heat load and introducing high-mechanical technology to reduce the size and weight of the engine, improve performance, and incorporate energy-saving mechanisms. For this reason, for example, the rigidity of the engine tends to decrease, and a single gas or liquid having different conditions such as cooling water for cooling high-temperature and high-pressure combustion gas and generated engine heat, oil for lubricating the engine rotation sliding portion, etc.
  • Various problems have occurred in the technology of sealing with a metal gasket.
  • the engine has evolved rapidly, and as the combustion chamber diameter increases as the size of the combustion chamber is increased by reducing the size and weight, the space between the combustion chamber holes becomes narrower.
  • the width of the flat part on the hole side (outer edge part of the combustion chamber hole) tends to become narrower.
  • the cooling water region (water jacket) arranged around the combustion chamber holes tends to be arranged closer to the heat source in order to increase the cooling effect according to the increase in the amount of heat generated. This necessitates that the seal surface width of the gasket that seals around the combustion chamber (the width of the joint surface between the combustion chamber and the cooling water region) be designed to be narrow.
  • the conventional configuration of the auxiliary plate provided on one side of the combustion chamber hole-side bead position and both sides of the substrate flat portion inside the combustion chamber may not meet the above requirement. That is, as described above, as the combustion chamber diameter increases and the cooling water region position approaches the combustion chamber, the width of the seal surface on the combustion chamber side becomes narrower than the cooling water region position. This leads to a reduction in the width of the seal surface provided around the combustion chamber hole. Within this narrow seal surface width, the combustion chamber hole side bead and the folding width of the auxiliary plate are provided at the flat portion inside the combustion chamber hole side bead.
  • bead width and bead height need to be above a certain level in order to follow the deformation of the engine, but if the bead width is not narrowed, the turning width cannot be secured. Further, in order to secure the surface pressure by narrowing the bead width, it is necessary to increase the bead height. However, the more the bead height is secured, the more the substrate becomes cracked.
  • the smaller the folding width of the secondary plate the higher the surface pressure applied to the folded portion of the secondary plate when operating with the engine mounted. It will exceed the yield strength.
  • the portion with the highest surface pressure is the place where the combustion chamber hole becomes the highest temperature, and the temperature may rise to a temperature at which the proof stress of aluminum is reduced. As the width becomes narrower, the joint surfaces of the cylinder head and the cylinder block are depressed.
  • an object of the present invention is to provide a metal gasket that can cope with a reduction in size and weight of an engine and an increase in displacement.
  • an aspect of the present invention is to provide a connection between a joint surface of a cylinder block including a combustion chamber and a cooling water region formed on an outer peripheral side thereof and through which cooling water passes, and a joint surface of a cylinder head.
  • a metal gasket interposed between In a metal gasket in which a combustion chamber hole that opens to a position corresponding to the combustion chamber and a combustion chamber hole side bead surrounding the combustion chamber hole are formed, The metal gasket has a first region from the combustion chamber hole end to the middle position in the width direction of the combustion chamber hole side bead from the combustion chamber hole side toward the gasket outer peripheral side, and a middle position in the width direction of the combustion chamber hole side bead.
  • the thickness of the metal gasket is divided into three areas. It is characterized by being configured such that it is the thickest, the second region is the next thickest, and the third region is the thinnest.
  • Another aspect of the present invention is a metal interposed between a joint surface of a cylinder block having a cooling water region formed on the outer peripheral side of the combustion chamber and through which the coolant passes and a joint surface of the cylinder head
  • a gasket, One or two or more substrates and a sub-plate are laminated,
  • the substrate has at least a combustion chamber hole that opens to a position corresponding to the combustion chamber, a combustion chamber hole outer edge continuous to the combustion chamber hole, and a combustion chamber hole surrounding the combustion chamber hole and the combustion chamber hole outer edge.
  • the sub-plate is configured such that the outer peripheral side end portion is arranged at a position overlapping the cooling water region, extends to the combustion chamber hole side, and is folded back at the combustion chamber hole side. Is disposed at a position overlapping the combustion chamber hole side bead.
  • the combustion chamber hole side bead is formed by bending a metal plate constituting the substrate so as to be convex toward one surface side of the substrate with respect to the outer edge of the combustion chamber hole. And bead corners extending along the combustion chamber holes at both ends of the bead width, Between the corners of the two beads arranged in the width direction, the end portion of the folded portion of the sub-plate is located, and the folded portion is disposed on the other surface side of the substrate. It is.
  • the combustion chamber hole side bead is formed by bending a metal plate constituting the substrate so as to be convex toward one surface side of the substrate, with the combustion chamber hole outer edge as a reference,
  • the corners of the beads extending along the outer periphery of the combustion chamber hole are formed at both ends of the bead width, Between the corners of the two beads arranged in the width direction, the end portion of the folded portion of the sub-plate is located, the folded portion is disposed on one surface side of the substrate, and one surface of the substrate
  • the portion of the sub-plate disposed on the side may have a shape along the shape of the surface of the opposing substrate.
  • the combustion chamber hole side bead is molded by bending a metal plate constituting the substrate so as to be convex toward one surface side of the substrate, with the combustion chamber hole outer edge as a reference,
  • the sub-plate has a facing portion facing the concave portion side of the combustion chamber hole-side bead on the other surface side of the substrate, and a bead protruding toward the substrate side is formed in the facing portion of the sub-plate. You may do it.
  • the folded portion of the sub-plate may be folded so as to sandwich the outer edge of the combustion chamber hole of the substrate.
  • the plate thickness of the gasket is divided into three types of plate thicknesses from the combustion chamber hole side to the outer periphery, and a part of the thickest first region is overlapped with a part of the combustion chamber hole side bead.
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG. It is sectional drawing which shows the other example which concerns on 1st Embodiment based on this invention.
  • FIG. 2 is a cross-sectional view taken along line AA when the substrate according to the first embodiment based on the present invention is composed of two sheets. It is sectional drawing explaining the metal gasket which concerns on 2nd Embodiment based on this invention. It is sectional drawing explaining another example of the metal gasket which concerns on 2nd Embodiment based on this invention. It is sectional drawing explaining another example of the metal gasket which concerns on 2nd Embodiment based on this invention. It is sectional drawing explaining another example of the metal gasket which concerns on 2nd Embodiment based on this invention.
  • FIG. 1 is a schematic plan view showing a state in which the metal gasket 20 according to the present embodiment is partially cut away.
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG.
  • the metal gasket 20 of the present embodiment is configured by laminating a substrate 1 made of an elastic metal plate capable of generating a spring force, such as a stainless steel material, and a sub plate 4. It is assumed that the thickness of the sub plate is thinner than the thickness of the substrate 1, for example. Further, when the sub plate does not need to generate a spring force, the sub plate does not need to be an elastic metal plate such as a stainless steel material, and may be formed of mild steel, aluminum, or other metal material.
  • a plurality of combustion chamber holes 7 provided corresponding to the combustion chamber 10 of the cylinder block 11 are opened in the substrate 1 in a predetermined direction.
  • the substrate 1 has a combustion chamber hole side so that both the combustion chamber hole 7 and the substrate flat portion (also referred to as the combustion chamber hole outer edge portion 8) located at the outer edge of the combustion chamber hole 7 are surrounded endlessly.
  • Bead 2 is molded. Note that the width of the flat portion of the substrate is preferably equal to or smaller than the width of the combustion chamber hole side bead 2.
  • the combustion chamber hole side bead 2 is a full bead formed by bending a metal plate constituting the substrate 1 so as to protrude upward.
  • the combustion chamber hole side bead 2 made of a full bead has corner portions 2a and 2b extending along the outer periphery of the combustion chamber hole 7 at both ends in the bead width direction, and a portion between the two corner portions 2a and 2b. 2c becomes the convex part of the cross-sectional arc shape which protruded upwards.
  • a plurality of cooling water holes are formed in a portion of the substrate 1 on the outer peripheral side of the combustion chamber hole side bead 2 at a position facing the cooling water region W / J (space through which cooling water passes) of the cylinder block 11 in the plate thickness direction. 13 is formed along the outer periphery of the combustion chamber hole side bead 2.
  • reference numeral 15 is a bolt hole
  • reference numeral 14 is an oil hole.
  • an outer peripheral bead 3 made of a half bead is formed along the outer periphery so as to surround the cooling water hole 13.
  • a bead 17 is formed so as to surround the bolt hole 15 and the oil hole 14.
  • the sub-plate 4 is opposed to the surface (lower surface) on the recess side of the combustion chamber hole side bead 2 of the substrate 1 and between the position overlapping the cooling water region W / J and the end portion on the combustion chamber hole 7 side. Only the size of the substrate 1 is opposite to the substrate 1. That is, the sub-plate 4 is disposed at a position where the outer peripheral end 16 overlaps the cooling water region W / J. Further, the sub-plate 4 extends from the position overlapping the cooling water region W / J to the end portion on the combustion chamber hole 7 side, and is further turned back at the end portion on the combustion chamber hole 7 side to form the turned-up portion 5. .
  • returning part 5 of the subplate 4 is set to the position which overlaps with the said combustion chamber hole side bead 2.
  • the end portion 6 of the folded portion 5 is disposed so as to be opposed to the concave portion of the combustion chamber hole side bead 2 between the two corner portions 2a and 2b.
  • the folded portion 5 is also disposed on the surface (lower surface) side of the concave portion of the combustion chamber hole side bead 2 of the substrate 1.
  • the metal gasket 20 has a width direction of the combustion chamber hole side bead 2 from the outer edge of the combustion chamber hole 7 toward the outer periphery of the gasket from the combustion chamber hole 7 side when viewed from the plate thickness of the gasket. More than the first region R1 up to the middle position, the second region R2 from the middle position in the width direction of the combustion chamber hole side bead 2 to the middle position of the position overlapping with the inside of the cooling water region W / J, and the second region R2.
  • the metal gasket 20 is divided into three regions, ie, the third region R3 on the outer peripheral side, and the thickness of the metal gasket 20 is the thickest, the first region R1 is two sheets of the substrate 1 and the sub plate 4, and the second region R2 is the substrate. 1 and one of the sub-plates 4 and the second thickest, and the third region R3 is the thinnest only by the substrate 1. That is, the plate thickness of the gasket is set so that the plate thickness gradually decreases in three steps from the combustion chamber hole 7 side to the gasket outer peripheral side.
  • the thickness of the sub-plate 4 is selected according to the rigidity of the engine, the seal surface width S, and the like, and the generated surface pressure is adjusted by the three-stage plate thickness difference increased by the sub-plate 4. That is, the metal gasket 20 is inserted between the joint surface of the cylinder block 11 and the joint surface of the cylinder head 12 constituting the engine, and is mounted by fastening the bolt.
  • the first region R1 is thickened most, the second region R2 is thickened next, and the position of the bolt hole 15 located on the outer peripheral side of the substrate 1 is the thinnest.
  • the engine cylinder head 12 is deformed by a plate thickness difference between the bolt holes 15 sandwiching the combustion chamber hole 7. Since the rigid engine is deformed, a large surface pressure is generated on the gasket in the thickened portion.
  • the sub-plate 4 is disposed only on the combustion chamber hole 7 side of the cooling water region W / J where the cooling water hole 13 is formed, and the thickness is increased. As a result, even if the rigidity of the engine is low, it is possible to generate a higher surface pressure on the combustion chamber hole 7 side than the cooling water region W / J when the bolt is fastened.
  • the load around the combustion chamber hole 7 is increased by folding back the sub-plate 4 at the outer edge 8 of the combustion chamber hole and further increasing the thickness of the gasket. That is, the thickened portion around the combustion chamber hole 7 (combustion chamber hole outer edge 8) has a high surface pressure to prevent gas leakage from the combustion chamber 10.
  • the tightening load is increased, and the distance between the combustion chamber 10 and the cooling water region W / J is also reduced. That is, the seal surface width S that is a joint surface portion between the combustion chamber 10 and the cooling water region W / J is narrowed.
  • the combustion chamber hole outer edge portion 8 (substrate flat portion) and the combustion chamber hole side bead 2 overlap the seal surface width S in the portion of the combustion chamber hole 7 than the cooling water hole 13.
  • the seal width for forming is reduced.
  • the width of the outer edge 8 of the combustion chamber hole tends to be narrow.
  • the turned-up width is narrow, so that the engine As the rigidity decreases, an excessive load is applied to the engine joint surface at the outer edge 8 of the combustion chamber hole having a high surface pressure, resulting in a depression. As a result, the surface pressure around the combustion chamber hole 7 may decrease.
  • the combustion chamber hole outer edge portion 8 even if the width of the combustion chamber hole outer edge portion 8 is narrowed by extending the end portion 6 of the folded portion 5 until it is located in the recess of the combustion chamber hole side bead 2, the combustion chamber hole outer edge portion 8 Therefore, it is possible to reliably generate a high surface pressure at the outer edge 8 of the combustion chamber hole.
  • the thickest first region R1 is positioned in the recess of the combustion chamber hole side bead 2 from the end of the combustion chamber hole 7. For this reason, the combustion chamber hole side bead 2 generates a spring force in a substantially fully bent state at the corner 2a (the corner 2a in the first region R1) on the combustion chamber hole 7 side by bolt tightening.
  • the plate thickness difference between the first region R1 and the second region R2 (the thickness of the sub-plate 4) floats. A spring force is generated in the state.
  • the combustion chamber hole-side bead 2 has a repulsive latent spring force on the corner 2b (the corner 2b in the second region R2) on the cooling water hole 13 side. Due to this repulsive latent spring force, the high temperature and high pressure gas generated by pulsation due to the explosion in the combustion chamber 10 improves the deformation followability with respect to expansion / contraction between the joint surfaces and further improves the sealing performance. Further details. A vibration amplitude is generated between the cylinder block 11 and the cylinder head 12 due to the explosion in the combustion chamber 10 during engine operation. At this time, the repulsive force of the gasket also cooperates, and although it is minute, the expansion and contraction are repeated, and the surface pressure decreases instantaneously at the time of expansion. The repulsive latent spring force follows the expansion deformation that is the cause of the decrease, and the decrease in surface pressure is minimized.
  • the stopper function which controls the compression deformation of the convex part of the combustion chamber hole side bead 2 is not small.
  • the compressive deformation of the convex portion is restricted, and the bead surface pressure is attenuated by the plate thickness of the sub plate 4, so the bead height is increased accordingly.
  • FIG. 2 illustrates the case where the combustion chamber hole bead 2 surrounding the combustion chamber hole 7 is single, but as shown in FIG. 3, the combustion chamber hole bead 2 is double. It may be the case.
  • FIG. 3 the case where the combustion chamber hole side bead 2 of an outer peripheral side is formed with a half bead is illustrated.
  • turning part 5 is arrange
  • FIG. 4 illustrates the case where two substrates 1 are stacked.
  • two substrates 1 are arranged with the concave side of the combustion chamber hole side bead 2 facing each other, and the sub-plate 4 having the above-described configuration is arranged between the two substrates 1.
  • the two substrates 1 may be arranged with the convex portion side of the combustion chamber hole side bead 2 facing each other.
  • the sub-plate 4 having the above configuration may be disposed on the concave side of one of the two substrates 1.
  • the basic configuration of the second embodiment is the same as that of the first embodiment, but is an example in which the sub plate 4 is arranged on the convex side of the combustion chamber hole side bead 2 as shown in FIG. . That is, the sub plate 4 faces the surface (upper surface) of the convex portion side of the combustion chamber hole side bead 2 of the substrate 1. And the sub-plate 4 is arranged at a position where the outer peripheral side end overlaps the cooling water region W / J, and extends from the position overlapping the cooling water region W / J to the end of the combustion chamber hole 7 side, Further, the folded portion 5 is formed by folding downward at the end portion on the combustion chamber hole 7 side so as to sandwich the combustion chamber hole outer edge portion 8 of the substrate 1. And the edge part 6 of the folding
  • the shape of the sub-plate 4 is set along the shape of the substrate 1 including the folded portion 5 so that the sub-plate 4 is in contact with the surface of the substrate 1 as much as possible.
  • the portion facing the convex portion of the combustion chamber hole side bead 2 has a convex shape upward like the convex portion of the combustion chamber hole side bead 2.
  • turning part 5 is also deform
  • Other configurations are the same as those in the first embodiment.
  • FIG. 1 The case where the combustion chamber hole side bead 2 is formed of a half bead is shown in FIG.
  • the combustion chamber hole side bead 2 made of this step-shaped half bead is bent and formed so as to protrude upward with the combustion chamber hole outer edge portion 8 as a reference, forming a convex on the upper side and forming a concave on the lower side.
  • the sub-plate 4 extends along the upper surface of the substrate 1, which is the convex side of the combustion chamber hole bead 2, and the combustion chamber hole outer edge of the substrate 1 at the end of the combustion chamber hole 7.
  • the folded portion 5 is formed by folding downward so as to sandwich 8. And the edge part 6 of the folding
  • FIG. The effect is the same as above.
  • FIGS. The case where two substrates 1 are provided is illustrated in FIGS.
  • two substrates 1 are arranged with the concave portion of the combustion chamber hole side bead 2 facing each other, and the sub-plate 4 having the above-described configuration is interposed with respect to one of the two substrates 1.
  • the two substrates 1 may be arranged with the convex portions of the combustion chamber hole side beads 2 facing each other.
  • the basic configuration of the third embodiment is the same as that of the first embodiment.
  • the sub-plate 4 is arranged so as to face the surface of the substrate 1 on the concave portion side.
  • the point which forms the bead which consists of a full bead which protrudes in the said recessed part in the part which opposes the recessed part of the combustion chamber hole side bead 2 in the subplate 4 differs from 1st Embodiment.
  • the subplate 4 is comprised from an elastic metal plate.
  • Other configurations are the same as those in the first embodiment.
  • the surface pressure on the convex surface side of the cross-section arc shape in the combustion chamber hole-side bead 2 is gained by the spring force of the bead of the sub-plate 4.
  • the sealing performance for the upper joint surface is increased.
  • the combustion chamber hole side bead 2 located in the first region R1 and the bead of the sub-plate 4 are deformed almost fully bent.
  • Both the side bead 2 and the bead molded on the sub-plate 4 hold repulsive energy. With this repulsive energy, it follows a minute gap that instantly opens due to repeated expansion and contraction during engine operation.
  • the convex side of the substrate 1 bead having a large grounding area on the sealing surface has a lower bonding surface pressure than the grounding on the concave side, but it is supplemented by the sub plate 4 bead.
  • FIG. 10 illustrates the case where there are two substrates 1.
  • two substrates 1 are arranged with the concave side of the combustion chamber hole side bead 2 facing each other, and the sub-plate 4 having the above-described configuration is arranged between the two substrates 1.
  • the two substrates 1 may be arranged with the convex portion side of the combustion chamber hole side bead 2 facing each other.
  • the sub-plate 4 having the above configuration may be disposed on the concave side of one of the two substrates 1.
  • the case where the end portion 6 of the folded portion 5 of the sub-plate 4 is set so as to be positioned in the recess of the combustion chamber hole side bead 2 is illustrated.
  • the end portion 6 of the folded portion 5 of the sub-plate 4 may be disposed so as to face the convex portion side of the combustion chamber hole side bead 2.
  • FIG. the sub-plate 4 is arranged on the concave portion side of the combustion chamber hole side bead 2 and folded upward so as to sandwich the substrate 1 at the end portion on the combustion chamber hole 7 side, and the end portion 6 of the folded portion 5 is replaced with the combustion chamber. It arrange
  • the portion of the sub-plate 4 located on the convex portion side of the combustion chamber hole side bead 2, that is, one surface side of the substrate 1, has a shape along the shape of the surface of the opposing substrate. Therefore, even if a deviation occurs due to a difference in thermal expansion between the engine and the gasket material, the deviation between the substrate 1 and the sub plate 4 can be reduced.
  • the portion of the sub-plate 4 located on the recess side of the combustion chamber hole side bead 2, that is, on the other surface side of the substrate 1 is also shaped along the shape of the surface of the opposing substrate. Thereby, even if a deviation occurs due to a difference in thermal expansion between the engine and the gasket material, the deviation between the substrate 1 and the sub plate 4 can be further reduced.
  • the position of the end portion 6 of the folded-back portion 5 is a position where the convex top 2d of the combustion chamber hole side bead 2 is removed.
  • the combustion chamber hole 7 side is more preferable than the convex top 2d of the combustion chamber hole side bead 2.
  • the height of the end portion 6 of the folded portion 5 is preferably as high as the convex portion top portion 2d of the combustion chamber hole side bead 2 or less.
  • the thickness of the gasket is set to change in three stages from the combustion chamber hole 7 to the outer periphery. It is not limited. Instead of forming the folded portion 5 of the sub-plate 4 in the portion corresponding to the first region R1, the above-described configuration may be achieved by stacking and fixing shim plates.
  • FIG. 12 shows an example in which the folded portion 5 is formed by another plate and fixed by welding or the like. Or you may make it achieve the said structure by adjusting the thickness of the board

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Gasket Seals (AREA)

Abstract

 エンジンの小型軽量化及び大排気量化に対応可能な金属ガスケットを提供する。燃焼室孔(7)側からガスケット外周側に向けて、燃焼室孔(7)の端部から燃焼室孔側ビード(2)の幅方向途中位置までの第1領域(R1)、その燃焼室孔側ビード(2)の幅方向途中位置から冷却水領域(W/J)内と重なる位置の途中位置までの第2領域(R2)、その第2領域(R2)よりも外周側の第3領域(R3)の3つの領域に区分する。その金属ガスケット(20)の板厚を、第1領域(R1)が一番厚く、第2領域(R2)がその次に厚く、第3領域(R3)が一番薄くなるように構成する。この板厚は、副板(4)によって構成する。

Description

金属ガスケット
 本発明は、エンジンを構成するシリンダブロックとシリンダヘッドとの対向する接合面間に介装されて使用される金属ガスケットであって、上記シリンダブロックとシリンダヘッドとが金属ガスケットを介装した状態でボルト締結されるエンジンで使用される当該金属ガスケットに関する。
 従来の金属ガスケットとしては、例えば特許文献1及び特許文献2に記載される金属ガスケットがある。
 特許文献1に記載される金属ガスケットは、1枚の基板と、その基板よりも薄肉の副板とを積層して構成される。基板には、燃焼室孔が開口していると共にその燃焼室孔を囲繞するようにしてフルビードからなる燃焼室孔側ビードを成型している。また副板は、基板全面と対向配置していると共に、燃焼室孔側端部で基板を挟み込むように折り返されて折返し部を形成している。その折返し部の端部は、上記燃焼室側ビードよりも内周側(燃焼室孔側)の基板平坦部に設定されている。
 上記構成によって、燃焼室孔周囲の総板厚(金属ガスケットの板厚)だけが増厚される。すなわち、金属ガスケットの板厚は、燃焼室孔側ビードよりも内周側と、その外周側(燃焼室孔側ビードを含む。)の領域との2種類に区分される。この結果、金属ガスケットをエンジンに装着しボルトで締結した際に、燃焼室孔側ビードより燃焼室孔側の平坦部に配置した増厚部分は、燃焼室孔周囲の面圧を増大する役目と、増厚部分がストッパとなりエンジン稼動時に燃焼爆発で発生する振動振幅を制限して燃焼室孔側ビードの疲労破壊を防止する役目とを奏する。また、折返し部が、燃焼室孔側ビードの凸部側に配置される場合(第4図)には、燃焼室孔側ビードが全屈するのを防止する役目を有する。
 また、特許文献2に記載される金属ガスケットも、1枚の基板と、その基板よりも薄肉の副板とを積層して構成される。基板には、燃焼室孔が開口していると共にその燃焼室孔を囲繞するようにしてフルビードからなる燃焼室孔側ビードを成型している。
 また副板は、燃焼室孔側ビードの凹部側で基板と対向配置している。その副板の外周側端部は、燃焼室孔側ビードの外側に位置する基板平坦部と重なるように設定されている。その副板は、燃焼室孔側に延在し、燃焼室孔側端部で基板を挟み込むように折り返されて折返し部を形成している。その折返し部の端部は、上記燃焼室側ビードの凸部側よりも内周側(燃焼室孔側)の基板平坦部に設定されている。
 これによって、ガスケットの板厚は、燃焼室孔から外周側に向けて3種類に区分される。つまり、ガスケット外周から燃焼室孔側ビードの外周部位置までの板厚は、基板だけで1番薄く、燃焼室孔側ビードを含み当該燃焼室孔側ビードを挟んだ幅方向の前後部分が、基板と副板1枚分の厚さとなって2番目に薄く、燃焼室孔側ビードよりも燃焼室孔側が、基板と副板2枚で1番厚くなる板厚構成となっている。
 これによって、エンジンの剛性や燃焼室径の大きさ、燃焼圧等の条件により、副板の板厚を選択して燃焼ガス圧を完全シールすると共に、冷却水、オイル孔等の面圧を確保する技術である。
特開昭62-155376号公報 特開平11-2325号公報
 エンジン技術は急速に進化を続けており、エンジンの小型軽量化、高性能化、省エネ機構の取入れ等のために、熱負荷の増大やハイメカ技術の導入等が行われている。このため、例えばエンジン剛性は低下する傾向にあり、高温高圧な燃焼ガスと発生するエンジン熱とを冷却する冷却水、エンジン回転摺動部を潤滑するオイル等条件の異なる気体や液体を1枚の金属ガスケットでシールする技術には、色々な課題が発生している。
 このようなエンジン剛性の低下に対する対応と、インターネットの普及で部品を世界市場から調達する傾向からコスト競争力も強いられる現在にあっては、金属ガスケットに対して、性能及びコスト双方の面からの要求がますます厳しくなっている。
 そして、特許文献1及び特許文献2では、燃焼室孔側ビードよりも燃焼室孔側の平坦部の厚さが一番厚くなるように増厚する構成を採用している。これによって、当該燃焼室孔側の平坦部位置でエンジンを増厚分変形させることで燃焼室孔周囲の面圧を増大させ、エンジン稼動で起こる爆発で、燃焼室孔側ビードが振動振幅で疲労破壊するのを防止する。
 しかし前述のように、エンジンは急速に進化し、小型軽量化で大排気量化を推進して燃焼室径が大きくなるに伴い燃焼室孔間が狭くなり、また燃焼室孔側ビードよりも燃焼室孔側の平坦部(燃焼室孔外縁部)の幅はますます狭くなる傾向にある。また、燃焼室孔間が狭くなると同時に、発熱量の増大に応じて冷却効果を上げるために、燃焼室孔周囲に配置する冷却水領域(ウォータジャケット)も熱源に近付ける配置となる傾向にあり、このことは、燃焼室回りをシールするガスケットのシール面幅(燃焼室から冷却水領域の間にある接合面の幅)も狭く設計する必要性が発生する。
 そして、従来のような、燃焼室孔側ビード位置の片面及び、その内側の基板平坦部の両面に併設する副板の構成では、上記要請に対応できないおそれがある。
 すなわち、上述のように燃焼室径の拡大と冷却水領域位置が燃焼室に近づくにつれて、冷却水領域位置よりも燃焼室側のシール面幅が狭くなる。これは燃焼室孔周りに設けるシール面幅が狭くなることに繋がる。この狭くなったシール面幅内に燃焼室孔側ビードと、燃焼室孔側ビードより内側の平坦部位置に副板の折返し幅を設けることになる。
 しかし、エンジンの振動に変形追随させるにはビード幅もビード高さも一定以上は必要であるが、ビード幅を狭くしなければ折返し幅が確保出来ない。また、ビード幅を狭くして面圧を確保するのにはビード高さを高くする必要があるが、ビード高さを確保するほど基板に亀裂が発生する原因となる。
 また、副板の折返し幅を狭くするほど、エンジンに装着して運転したときに、副板の折返し部に高い面圧が掛かり、エンジン軽量化に伴いエンジンをアルミ製とした場合にはアルミの耐力を超えることになる。更に、面圧の1番高い部分が燃焼室孔に1番近く高温になる場所であり、アルミニウムの耐力を低下させる温度まで上がることもあり、このようなことからも、折返し部を形成可能な幅が狭くなるほど、シリンダヘッドやシリンダブロックの接合面を陥没させることになる。
 以上のようにビードの亀裂やエンジンの陥没が発生すると、面圧の低下、トルクダウンの原因になり、燃焼ガスの噴き抜けに繋がるおそれもある。
 本発明は、上記のような点に着目してなされたもので、エンジンの小型軽量化及び大排気量化に対応可能な金属ガスケットを提供することを課題としている。
 上記課題を解決するために、本発明の一態様は、燃焼室及びその外周側に形成されて冷却水が通過する冷却水領域を備えるシリンダブロックの接合面と、シリンダヘッドの接合面との間に介装される金属ガスケットであって、
 燃焼室に対応した位置に開口する燃焼室孔と、その燃焼室孔を囲繞する燃焼室孔側ビードが形成される金属ガスケットにおいて、
 その金属ガスケットは、燃焼室孔側からガスケット外周側に向けて、燃焼室孔端部から燃焼室孔側ビードの幅方向途中位置までの第1領域、その燃焼室孔側ビードの幅方向途中位置から上記冷却水領域内と重なる位置の途中位置までの第2領域、その第2領域よりも外周側の第3領域の3つの領域に区分され、その金属ガスケットの板厚を、第1領域が一番厚く、第2領域がその次に厚く、第3領域が一番薄くなるように構成したことを特徴とするものである。
 本発明の別の一態様は、燃焼室及びその外周側に形成されて冷却水が通過する冷却水領域を備えるシリンダブロックの接合面と、シリンダヘッドの接合面との間に介装される金属ガスケットであって、
 1枚又は2枚以上の基板と、副板とを積層して構成し、
 上記基板には少なくとも、燃焼室に対応した位置に開口する燃焼室孔と、その燃焼室孔に連続する燃焼室孔外縁部と、上記燃焼室孔及び燃焼室孔外縁部を囲繞する燃焼室孔側ビードと、その燃焼室孔側ビードの外周側であって上記冷却水領域と対向可能な位置に開口した冷却水孔と、を設け、
 上記副板は、外周側端部を上記冷却水領域と重なる位置に配置して燃焼室孔側に延在し且つ燃焼室孔側で折り返されて構成され、その副板の折返し部の端部を、上記燃焼室孔側ビードと重なる位置に配置した、ことを特徴とするものである。
 本発明の別の一態様は、上記燃焼室孔側ビードは、燃焼室孔外縁部を基準として、基板を構成する金属板を基板の一方の面側に凸となるように屈曲加工して成型されて、ビード幅の両端にそれぞれ燃焼室孔に沿って延びるビードの角部が形成され、
 その幅方向で並ぶ2つのビードの角部の間に、上記副板の折返し部の端部が位置すると共に、その折返し部は、基板の他方の面側に配置されることを特徴とするものである。
 本発明の態様は、上記燃焼室孔側ビードは、燃焼室孔外縁部を基準として、基板を構成する金属板を基板の一方の面側に凸となるように屈曲加工して成型されて、ビード幅の両端にそれぞれ燃焼室孔の外周に沿って延びるビードの角部が形成され、
 その幅方向で並ぶ2つのビードの角部の間に、上記副板の折返し部の端部が位置すると共に、その折返し部は基板の一方の面側に配置され、且つ、基板の一方の面側に配置される副板の部分は、対向する基板の表面の形状に沿った形状となっていても良い。
 本発明の態様は、上記燃焼室孔側ビードは、燃焼室孔外縁部を基準として、基板を構成する金属板を基板の一方の面側に凸となるように屈曲加工して成型され、
 上記副板は、上記基板の他方の面側で上記燃焼室孔側ビードの凹部側と対向する対向部分を有し、その副板の対向部分に、上記基板側に向けて突出するビードを形成しても良い。
 本発明の態様は、上記副板の折返し部は、基板の燃焼室孔外縁部を挟み込むようにして折り返されていても良い。
 本発明の態様によれば、エンジンの小型軽量化及び大排気量化に対応可能な金属ガスケットを提供することが可能となる。
 すなわち、ガスケットの板厚を、燃焼室孔側から外周に向けて、3種類の板厚に区分し、一番厚い第1領域の一部を燃焼室孔側ビードの一部に重ねている。これによって、エンジンの剛性が低く、且つエンジンの燃焼室から冷却水領域までの間のシール面幅が狭くなっても、燃焼室孔側ビードのビード幅を確保しつつ燃焼室孔周りの面圧を高く設定することが可能となる。
本発明に基づく第1実施形態に係る金属ガスケットを示す一部破断した平面図である。 図1のA-A断面図である。 本発明に基づく第1実施形態に係る別例を示す断面図である。 本発明に基づく第1実施形態に係る基板を2枚で構成したときのA-A断面図である。 本発明に基づく第2実施形態に係る金属ガスケットを説明する断面図である。 本発明に基づく第2実施形態に係る金属ガスケットの別例を説明する断面図である。 本発明に基づく第2実施形態に係る金属ガスケットの別例を説明する断面図である。 本発明に基づく第2実施形態に係る金属ガスケットの別例を説明する断面図である。 本発明に基づく第3実施形態に係る金属ガスケットを説明する断面図である。 本発明に基づく第3実施形態に係る金属ガスケットの別例を説明する断面図である。 本発明に基づく実施形態に係る燃焼室孔側ビードの凸部側に折返し部を設けた場合を説明する図である。 折返し部を副板とは別の板で構成する場合の例を説明する断面図である。
(第1実施形態)
 次に、本発明の第1実施形態について図面を参照しつつ説明する。
 図1は、本実施形態に係る金属ガスケット20を一部切り欠いた状態で示す概要平面図である。図2は、図1のA-A断面図である。
(構成)
 まず構成について説明する。
 本実施形態の金属ガスケット20は、図1及び図2に示すように、ステンレス鋼材などバネ力を発生可能な弾性金属板からなる基板1と、副板4とが積層されて構成される。副板の板厚は、例えば基板1の板厚よりも薄いとする。また、副板は、バネ力を発生不要な構成の場合には、ステンレス鋼材などの弾性金属板である必要はなく、軟鋼、アルミニウムその他の金属材料で構成しても良い。
 基板1には、図1に示すように、シリンダブロック11の燃焼室10に対応して設けられた複数の燃焼室孔7が所定方向に並んで開口している。また基板1には、燃焼室孔7及びその燃焼室孔7の外縁に位置する基板平坦部(燃焼室孔外縁部8とも呼ぶ。)の両方を無端状に囲繞するように、燃焼室孔側ビード2が成型されている。なお、上記基板平坦部の幅は、燃焼室孔側ビード2の幅以下が好ましい。燃焼室孔側ビード2は、基板1を構成する金属板を上面側に凸となるように屈曲成型して形成されたフルビードである。フルビードからなる燃焼室孔側ビード2は、ビード幅方向両端部がそれぞれ、燃焼室孔7の外周に沿って延びる角部2a、2bが形成され、その2つの角部2a、2bの間の部分2cが、上方に突出した断面円弧状の凸部となる。
 その燃焼室孔側ビード2より外周側の基板1部分には、シリンダブロック11の冷却水領域W/J(冷却水が通過する空間)と板厚方向で対向する位置に、複数の冷却水孔13が上記燃焼室孔側ビード2の外周に沿って複数形成されている。
 なお、図1中、符号15はボルト孔であり、符号14は油孔である。
 また、基板1の外周側には、冷却水孔13を囲うようにその外周に沿ってハーフビードからなる外周側ビード3が形成されている。また、ボルト孔15や油孔14を囲むようにしてビード17が形成されている。
 上記副板4は、基板1の燃焼室孔側ビード2の凹部側の面(下面)と対向し、且つ、上記冷却水領域W/Jと重なる位置と燃焼室孔7側端部との間でだけ、基板1と対向配置する大きさになっている。すなわち、副板4は、外周側端部16を上記冷却水領域W/Jと重なる位置に配置する。また、副板4は、冷却水領域W/Jと重なる位置から燃焼室孔7側端部まで延在し、更に、燃焼室孔7側端部で折り返されて折返し部5が形成されている。そして、その副板4の折返し部5の端部6を、上記燃焼室孔側ビード2と重なる位置に設定している。本実施形態では、折返し部5の端部6を、2つの角部2a、2bの間にある、燃焼室孔側ビード2の凹部と対向するに配置する。この折返し部5も、基板1の燃焼室孔側ビード2の凹部側の面(下面)側に配置される。
 以上の構成によって、ガスケットの板厚で見ると、本実施形態の金属ガスケット20は、燃焼室孔7側からガスケット外周側に向けて、燃焼室孔7外縁から燃焼室孔側ビード2の幅方向途中位置までの第1領域R1、その燃焼室孔側ビード2の幅方向途中位置から上記冷却水領域W/J内と重なる位置の途中位置までの第2領域R2、その第2領域R2よりも外周側の第3領域R3の3つの領域に区分され、その金属ガスケット20の板厚を、第1領域R1が基板1と副板4の2枚分と一番厚く、第2領域R2が基板1と副板4の1枚分と2番目に厚く、第3領域R3が基板1だけで一番薄くなる。つまり、ガスケットの板厚は、燃焼室孔7側からガスケット外周側に向けて、3段階で、段階的に板厚が薄くなるように設定されている。
 そして、副板4の板厚はエンジンの剛性やシール面幅Sなどにより選択され、副板4で増厚された3段階の板厚差で発生面圧を調整する。
 すなわち、上記金属ガスケット20は、エンジンを構成するシリンダブロック11の接合面とシリンダヘッド12の接合面との間に介挿されて、ボルトを締結することで装着される。
 このとき、上記第1領域R1が一番増厚され、第2領域R2がその次に増厚され、また基板1外周側に位置するボルト孔15位置は一番薄いことから、ボルト締結によって、エンジンのシリンダヘッド12を、燃焼室孔7を挟んだボルト孔15間で、板厚差分変形させていることになる。剛性あるエンジンを変形させているので、増厚部分はガスケット上で大きな面圧が発生している。
(作用効果)
 (1)冷却水孔13が形成される冷却水領域W/Jよりも燃焼室孔7側にだけ副板4を配置して増厚する。この結果、エンジンの剛性が低くても、ボルト締結時に、当該冷却水領域W/Jよりも燃焼室孔7側に高い面圧を発生することが可能となる。
 (2)更に、燃焼室孔外縁部8で副板4を折り返して、ガスケットの板厚を更に増厚することで、燃焼室孔7周りの荷重が高くなる。つまり、燃焼室孔7周りの増厚部分(燃焼室孔外縁部8)が高面圧となって燃焼室10からのガスの漏れを防止する。
 ここで、エンジンの小型軽量化や高性能化等によって、エンジンは、剛性が低くなると共に締付け荷重が増加し、さらに燃焼室10と冷却水領域W/Jとの間の距離も小さくなる。つまり、この燃焼室10と冷却水領域W/Jとの間の接合面部分であるシール面幅Sが狭くなる。これに伴い、金属ガスケット20においても、冷却水孔13よりも燃焼室孔7の部分で、上記シール面幅Sに重なる、燃焼室孔外縁部8(基板平坦部)及び燃焼室孔側ビード2を形成するシール幅が狭くなる。このとき、燃焼室孔側ビード2の幅を余り狭くすることが困難なため、燃焼室孔外縁部8の幅が狭くなる傾向にある。
 上記燃焼室孔外縁部8が狭くなった場合、従来のように燃焼室孔外縁部8にだけ副板4の折返し部5の端部6を位置させると、折返し幅が狭いために、エンジンの剛性低下に伴い、面圧が高い燃焼室孔外縁部8でエンジン接合面に過大な荷重をかけて陥没変形してしまう。その結果として、燃焼室孔7周りの面圧が下がるおそれがある。
 これに対し、折返し部5の端部6を燃焼室孔側ビード2の凹部内に位置するまで延ばすことで、燃焼室孔外縁部8の幅が狭くなっても、燃焼室孔外縁部8での接合面の陥没変形を抑えて、確実に燃焼室孔外縁部8で高い面圧を発生することが可能となる。
 また、折返し部5の端部6を燃焼室孔側ビード2の凹部内に位置するまで延ばすことで、シール面幅Sが狭くなっても、所定の折返し幅が確保される。この結果、折り返しにくくなることを回避することも出来る。このことはまた、狭いシール面幅S下でもビード幅を自由に設計することを可能とする。
 (3)本実施形態では、一番増厚した第1領域R1を、燃焼室孔7端部から燃焼室孔側ビード2の凹部内に位置させている。このため、燃焼室孔側ビード2は、ボルト締付けによって、燃焼室孔7側の角部2a(第1領域R1内の角部2a)では、ほぼ全屈状態でバネ力を発生する。一方、冷却水孔13側の角部2b(第2領域R2内に角部2b)では、第1領域R1と第2領域R2との板厚差分(副板4の肉厚分)だけ浮いた状態でバネ力を発生する。
 このため、燃焼室孔側ビード2は、冷却水孔13側の角部2b(第2領域R2内に角部2b)側に反発潜在バネ力を持つことになる。この反発潜在バネ力によって、燃焼室10内爆発で脈動発生する高温高圧ガスに対し、接合面間の拡縮に対する変形追随性が向上して更にシール性が向上する。
 さらに詳説する。エンジン稼動時に燃焼室10内爆発によってシリンダブロック11とシリンダヘッド12間で振動振幅が発生する。このとき、ガスケットの反発力も協働して微小ではあるが拡縮を繰り返し、拡大時は瞬時ではあるが面圧は低下する。その低下の原因である拡大変形に上記反発潜在バネ力が追随して、面圧低下を最小に抑える。
 なお、上記構成の折返し部5は、燃焼室孔側ビード2の凸側に設けないので、燃焼室孔側ビード2の凸部の圧縮変形を規制するストッパ機能は無いか小さい。逆に、燃焼室孔側ビード2の凸側に折り返す場合、凸部の圧縮変形を規制することから副板4の板厚分ビード面圧が減衰されるためにその分だけビード高さを高くする必要があるが、本実施形態では、その規制分だけビード高さを高くする必要はない。
 (4)また、上記副板4の外周端部16を冷却水領域W/J内に配置しているので、対向する接合面間にガスケットを配置しても、当該副板4の外周端部に大きな荷重が掛かることが防止される。また、副板4の折返し部5の端部6を、燃焼室孔側ビード2の凹部内に配置することで、副板4の折返し部5の端部6に大きな荷重を掛かることを低減している。これによって、副板4の端部16,6の角で接合面ができるだけ疵付かないようにしている。
(変形例)
 (1)ここで、図2では、燃焼室孔7を囲繞する燃焼室孔側ビード2が1重の場合を例示しているが、図3のように、燃焼室孔側ビード2が2重になっている場合であっても良い。図3では、外周側の燃焼室孔側ビード2がハーフビードで形成される場合を例示している。そして、折返し部5の端部6を内周側のフルビードからなる燃焼室孔側ビード2の凹部内に配置する場合を例示している。
 (2)図4に、基板1を2枚積層する場合を例示する。この例では、燃焼室孔側ビード2の凹部側を対向させて2枚の基板1を配置し、その2枚の基板1の間に、上記構成の副板4を配置した例である。
 ここで、燃焼室孔側ビード2の凸部側を対向させて2枚の基板1を配置しても良い。この場合には、2枚の基板1のうち一方の基板1の凹部側に上記構成の副板4を配置すればよい。
 (第2実施形態)
 次に、本発明の第2実施形態について図面を参照しつつ説明する。なお、上記第1実施形態と同様な部品については、同一の符号を付して説明する。
(構成)
 本第2実施形態の基本構成は、上記第1実施形態と同様であるが、図5に示すように、副板4を、燃焼室孔側ビード2の凸側に配置する場合の例である。
 すなわち、副板4は、基板1の燃焼室孔側ビード2の凸部側の面(上面)と対向する。そして、副板4を、外周側端部を上記冷却水領域W/Jと重なる位置に配置して、その冷却水領域W/Jと重なる位置から燃焼室孔7側端部まで延在し、更に、燃焼室孔7側端部で、基板1の燃焼室孔外縁部8を挟み込むように下側に折り返されて折返し部5が形成されている。そして、その副板4の折返し部5の端部6を、上記燃焼室孔側ビード2の凹部内に位置するように配置している。
 ただし、図5の構成では、副板4の形状を、折返し部5も含めて、基板1の形状に沿って形状とし副板4をできるだけ基板1表面に接触するように設定している。すなわち、燃焼室孔側ビード2の凸部と対向する部分は、燃焼室孔側ビード2の凸部と同じように上方に凸形状となっている。また、折返し部5における燃焼室孔側ビード2の凹部と対向する部分も、その凹面に沿うように上方に変形している。
 その他の構成は上記第1実施形態と同様である。
(作用効果)
 (1)第1実施形態と同様の作用効果を発生することが出来る。
 (2)副板4に対して、燃焼室孔側ビード2の凸部及び凹部に沿った形状部分を持たせる。これによって、基板1に対する副板4のずれが低減する。
 なお、副板4は、特に弾性金属体である必要はない。副板4が弾性金属体である場合には、副板4のバネによって燃焼室孔側ビード2のバネ力をその分大きくできる。
(変形例)
 (1)燃焼室孔側ビード2をハーフビードで形成する場合を図6に示す。このステップ状のハーフビードからなる燃焼室孔側ビード2は、燃焼室孔外縁部8を基準として、上方に突出するように屈曲成型されて、上側に凸となって、下側に凹部を形成する。
 副板4は、上記のように、燃焼室孔側ビード2の凸部側である、基板1の上面に沿って延びると共に、燃焼室孔7側端部で、基板1の燃焼室孔外縁部8を挟み込むように下側に折り返されて折返し部5が形成されている。そして、その副板4の折返し部5の端部6を、上記燃焼室孔側ビード2の凹部内に位置するように配置している。
 効果は上記と同様である。
 (2)図7、図8に基板1を2枚設ける場合を例示する。この例では、燃焼室孔側ビード2の凹部を対向させて2枚の基板1を配置し、その2枚の基板1のうち一方の基板1に対して、上記構成の副板4を介装させた例である。効果は上記と同様である。
 なお、燃焼室孔側ビード2の凸部を対向させて2枚の基板1を配置しても構わない。
(第3実施形態)
 次に、本発明の第3実施形態について図面を参照しつつ説明する。なお、上記各実施形態と同様な部品については、同一の符号を付して説明する。
(構成)
 本第3実施形態の基本構成は、上記第1実施形態と同様であり、図9に示すように、基板1の凹部側の面に対向するようにして副板4を配置する。
 ただし、副板4における、燃焼室孔側ビード2の凹部と対向する部分に、当該凹部側に突出するフルビードからなるビードを形成している点が、第1実施形態と異なる。また、副板4を弾性金属板から構成する。
 その他の構成は、上記第1実施形態と同様である。
(作用効果)
 (1)第1実施形態と同様の作用効果を発生することが出来る。
 (2)基板1に成型したフルビードからなる燃焼室孔側ビード2を圧縮変形させた時、凹面側の立ち上がり部分(角部2a、2b)は下側の接合面に接触する面積が狭く高い面圧が発生する。一方、燃焼室孔側ビード2のおける断面円弧状の凸面側は、R部で上側の接合面に当たるため接触面積も広く、単位当たりの面圧は上記角部2a、2b側よりも弱い。
 この凸面側の下側に、副板4のビードが配置されていることで、当該副板4のビードのバネ力で燃焼室孔側ビード2のおける断面円弧状の凸面側の面圧を稼いで、上側の接合面に対するシール性を大きくする。
 すなわち、ガスケットをエンジンに装着して締付けボルトで締結したとき、第1領域R1に位置する燃焼室孔側ビード2、及び副板4のビードは略全屈に近く変形するが、その燃焼室孔側ビード2も、副板4に成型されたビードも反発エネルギーを保持している。この反発エネルギーで、エンジン稼動で拡縮が繰り返されて発生する瞬時に開く微小な隙間に、追随する。さらに、シール面に接地面積の広い基板1ビードの凸側は、凹面側の接地に比べ接合面圧が低いが、副板4ビードで補う。
(変形例)
 (1)図10に基板1は2枚の場合を例示する。この例では、燃焼室孔側ビード2の凹部側を対向させて2枚の基板1を配置し、その2枚の基板1の間に、上記構成の副板4を配置した例である。
 ここで、燃焼室孔側ビード2の凸部側を対向させて2枚の基板1を配置しても良い。この場合には、2枚の基板1のうち一方の基板1の凹部側に上記構成の副板4を配置すればよい。
 (2)ここで、全実施形態において、副板4の折返し部5の端部6が燃焼室孔側ビード2の凹部内に位置するように設定する場合を例示している。
 しかし、副板4の折返し部5の端部6を、燃焼室孔側ビード2の凸部側に対向するように配置しても良い。
 その例を図11に示す。この例では、副板4を燃焼室孔側ビード2の凹部側に配置し、燃焼室孔7側端部で基板1を挟み込むように上側に折返し、折返し部5の端部6を、燃焼室孔側ビード2の凸部の凸面の途中位置に配置する。
 また、この例では、燃焼室孔側ビード2の凸部側、つまり基板1の一方の面側に位置する副板4の部分を、対向する基板の表面の形状に沿った形状としている。これによって、エンジンとガスケット材質の熱膨張差でずれが発生しても、基板1と副板4との間のずれを低減することが可能となる。
 さらに、この例では、燃焼室孔側ビード2の凹部側、つまり基板1の他方の面側に位置する副板4の部分も、対向する基板の表面の形状に沿った形状としている。これによって、エンジンとガスケット材質の熱膨張差でずれが発生しても、更に基板1と副板4との間のずれを低減することが可能となる。
 なおこの場合には、折返し部5の端部6の角を丸めたり、先端に向けて肉厚を徐々に薄くしておくことが好ましい。
 また、折返し部5の端部6の位置は、燃焼室孔側ビード2の凸部頂部2dを外す位置に設定することが好ましい。特に、燃焼室孔側ビード2の凸部頂部2dよりも燃焼室孔7側が好ましい。特に、折返し部5の端部6の高さは燃焼室孔側ビード2の凸部頂部2d以下の高いことが好ましい。
 (3)全実施形態において、副板4に折返し部5を設けることで、燃焼室孔7から外周にむけて、ガスケットの板厚を3段階に変化するように設定しているが、これに限定されない。第1領域R1に対応する部分に、副板4の折返し部5を形成する代わりに、シム板を積層固定するなどして上記構成を達成するなどしても良い。図12に、別の板で折返し部5を形成して溶接その他で固着した例を示す。
 または、基板1や副板4自体の肉厚を調整して上記構成を達成するようにしても良い。
1    基板
2    燃焼室孔側ビード
2a、2b  角部
2c  凸部
4    副板
5  折返し部
6  折返し部の端部
7    燃焼室孔
8    燃焼室孔外縁部
9  副板のビード
10  燃焼室
11  シリンダブロック
12  シリンダヘッド
13  冷却水孔
15  ボルト孔
16  副板の外周端部
20  金属ガスケット
R1  第1領域
R2  第2領域
R3  第3領域
S    シール面幅
W/J      冷却水領域

Claims (6)

  1.  燃焼室及びその外周側に形成されて冷却水が通過する冷却水領域を備えるシリンダブロックの接合面と、シリンダヘッドの接合面との間に介装される金属ガスケットであって、
     燃焼室に対応した位置に開口する燃焼室孔と、その燃焼室孔を囲繞する燃焼室孔側ビードと、を備える金属ガスケットにおいて、
     上記金属ガスケットは、燃焼室孔側からガスケット外周側に向けて、燃焼室孔端部から燃焼室孔側ビードの幅方向途中位置までの第1領域、その燃焼室孔側ビードの幅方向途中位置から上記冷却水領域内と重なる位置の途中位置までの第2領域、その第2領域よりも外周側の第3領域の3つの領域に区分され、その金属ガスケットの板厚を、第1領域が一番厚く、第2領域がその次に厚く、第3領域が一番薄くなるように構成したことを特徴とする金属ガスケット。
  2.  燃焼室及びその外周側に形成されて冷却水が通過する冷却水領域を備えるシリンダブロックの接合面と、シリンダヘッドの接合面との間に介装される金属ガスケットであって、
     1枚又は2枚以上の基板と、副板とを積層して構成し、
     上記基板には少なくとも、燃焼室に対応した位置に開口する燃焼室孔と、その燃焼室孔に連続する燃焼室孔外縁部と、上記燃焼室孔及び燃焼室孔外縁部を囲繞する燃焼室孔側ビードと、その燃焼室孔側ビードの外周側であって上記冷却水領域と対向可能な位置に開口した冷却水孔と、を設け、
     上記副板は、外周側端部を上記冷却水領域と重なる位置に配置して燃焼室孔側に延在し且つ燃焼室孔側で折り返されて構成され、その副板の折返し部の端部を、上記燃焼室孔側ビードと重なる位置に配置した、ことを特徴とする金属ガスケット。
  3.  上記燃焼室孔側ビードは、燃焼室孔外縁部を基準として、基板を構成する金属板を基板の一方の面側に凸となるように屈曲加工して成型されて、ビード幅の両端にそれぞれ燃焼室孔の外周に沿って延びるビードの角部が形成され、
     その幅方向で並ぶ2つのビードの角部の間に、上記副板の折返し部の端部が位置すると共に、その折返し部は、基板の他方の面側に配置されることを特徴とする請求項2に記載した金属ガスケット。
  4.  上記燃焼室孔側ビードは、燃焼室孔外縁部を基準として、基板を構成する金属板を基板の一方の面側に凸となるように屈曲加工して成型されて、ビード幅の両端にそれぞれ燃焼室孔の外周に沿って延びるビードの角部が形成され、
     その幅方向で並ぶ2つのビードの角部の間に、上記副板の折返し部の端部が位置すると共に、その折返し部は基板の一方の面側に配置され、且つ、基板の一方の面側に配置される副板の部分は、対向する基板の表面の形状に沿った形状となっていることを特徴とする請求項2に記載した金属ガスケット。
  5.  上記燃焼室孔側ビードは、燃焼室孔外縁部を基準として、基板を構成する金属板を基板の一方の面側に凸となるように屈曲加工して成型され、
     上記副板は、上記基板の他方の面側で上記燃焼室孔側ビードの凹部側と対向する対向部分を有し、その副板の対向部分に、上記基板側に向けて突出するビードを形成したことを特徴とする請求項2~請求項4のいずれか1項に記載した金属ガスケット。
  6.  上記副板の折返し部は、基板の燃焼室孔外縁部を挟み込むようにして折り返されていることを特徴とする請求項3~請求項5のいずれか1項に記載した金属ガスケット。
PCT/JP2012/002474 2012-04-09 2012-04-09 金属ガスケット WO2013153569A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014509899A JP5753315B2 (ja) 2012-04-09 2012-04-09 金属ガスケット
KR1020147029070A KR20140133948A (ko) 2012-04-09 2012-04-09 금속 가스켓
PCT/JP2012/002474 WO2013153569A1 (ja) 2012-04-09 2012-04-09 金属ガスケット

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/002474 WO2013153569A1 (ja) 2012-04-09 2012-04-09 金属ガスケット

Publications (1)

Publication Number Publication Date
WO2013153569A1 true WO2013153569A1 (ja) 2013-10-17

Family

ID=49327185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/002474 WO2013153569A1 (ja) 2012-04-09 2012-04-09 金属ガスケット

Country Status (3)

Country Link
JP (1) JP5753315B2 (ja)
KR (1) KR20140133948A (ja)
WO (1) WO2013153569A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10359003B2 (en) 2014-06-23 2019-07-23 Tenneco Inc. Cylinder head gasket with compression limiter and full bead loading

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04129965U (ja) * 1991-05-21 1992-11-30 日本メタルガスケツト株式会社 金属ガスケツト
JPH0587367U (ja) * 1992-04-27 1993-11-26 国産部品工業株式会社 シリンダヘッドガスケット
JPH0650432A (ja) * 1992-06-09 1994-02-22 Japan Metal Gasket Co Ltd 金属ガスケット
JP2000028001A (ja) * 1998-07-14 2000-01-25 Japan Metal Gasket Co Ltd 金属ガスケット
JP2005214361A (ja) * 2004-01-30 2005-08-11 Japan Metal Gasket Co Ltd 金属ガスケット
JP2007170461A (ja) * 2005-12-20 2007-07-05 Nippon Gasket Co Ltd 金属ガスケット
JP2008223581A (ja) * 2007-03-12 2008-09-25 Japan Metal Gasket Co Ltd 金属ガスケット
JP2010038299A (ja) * 2008-08-06 2010-02-18 Japan Metal Gasket Co Ltd 金属ガスケット

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04129965U (ja) * 1991-05-21 1992-11-30 日本メタルガスケツト株式会社 金属ガスケツト
JPH0587367U (ja) * 1992-04-27 1993-11-26 国産部品工業株式会社 シリンダヘッドガスケット
JPH0650432A (ja) * 1992-06-09 1994-02-22 Japan Metal Gasket Co Ltd 金属ガスケット
JP2000028001A (ja) * 1998-07-14 2000-01-25 Japan Metal Gasket Co Ltd 金属ガスケット
JP2005214361A (ja) * 2004-01-30 2005-08-11 Japan Metal Gasket Co Ltd 金属ガスケット
JP2007170461A (ja) * 2005-12-20 2007-07-05 Nippon Gasket Co Ltd 金属ガスケット
JP2008223581A (ja) * 2007-03-12 2008-09-25 Japan Metal Gasket Co Ltd 金属ガスケット
JP2010038299A (ja) * 2008-08-06 2010-02-18 Japan Metal Gasket Co Ltd 金属ガスケット

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10359003B2 (en) 2014-06-23 2019-07-23 Tenneco Inc. Cylinder head gasket with compression limiter and full bead loading

Also Published As

Publication number Publication date
JP5753315B2 (ja) 2015-07-22
KR20140133948A (ko) 2014-11-20
JPWO2013153569A1 (ja) 2015-12-17

Similar Documents

Publication Publication Date Title
EP1777443B1 (en) Gasket
JP4909753B2 (ja) シリンダヘッドガスケット
JP4309409B2 (ja) メタルガスケット
JP4476940B2 (ja) シリンダヘッドガスケット
KR20040084806A (ko) 금속 개스킷
JPH10259873A (ja) 金属製ガスケット
KR20070111326A (ko) 실린더 헤드 개스킷
JP4127726B2 (ja) シリンダヘッドガスケット
JP3946223B2 (ja) 金属ガスケット
JP5753315B2 (ja) 金属ガスケット
JP4056503B2 (ja) 金属ガスケット
JP4541399B2 (ja) 金属製ガスケット
JP2008223972A (ja) 金属ガスケット
JP4541400B2 (ja) 金属製ガスケット
JP4011264B2 (ja) 金属ガスケット
JP2005133815A (ja) 金属積層形ガスケット
JP2008223581A (ja) 金属ガスケット
KR20180009959A (ko) 금속 가스켓
JP2010038299A (ja) 金属ガスケット
JP4485215B2 (ja) 金属ガスケット
WO2017212826A1 (ja) シリンダブロックとシリンダヘッドとの密封構造
JP2008215467A (ja) 金属ガスケット
JP4712165B2 (ja) 金属ガスケット
JP3086008B2 (ja) 金属製ガスケット
JP2008223582A (ja) 金属ガスケット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12874357

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2014509899

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147029070

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12874357

Country of ref document: EP

Kind code of ref document: A1