WO2013151261A1 - 일체형 광학 필름,확산층 제조방법 및 확산층 제조방법을 이용한 일체형 광학 필름 제조방법 - Google Patents

일체형 광학 필름,확산층 제조방법 및 확산층 제조방법을 이용한 일체형 광학 필름 제조방법 Download PDF

Info

Publication number
WO2013151261A1
WO2013151261A1 PCT/KR2013/002437 KR2013002437W WO2013151261A1 WO 2013151261 A1 WO2013151261 A1 WO 2013151261A1 KR 2013002437 W KR2013002437 W KR 2013002437W WO 2013151261 A1 WO2013151261 A1 WO 2013151261A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
diffusion
diffusion layer
concave
manufacturing
Prior art date
Application number
PCT/KR2013/002437
Other languages
English (en)
French (fr)
Inventor
이대환
서광석
김종은
황재선
심연승
Original Assignee
주식회사 앤앤드에프
인스콘테크(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 앤앤드에프, 인스콘테크(주) filed Critical 주식회사 앤앤드에프
Publication of WO2013151261A1 publication Critical patent/WO2013151261A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • G02B5/0247Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of voids or pores
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • G02B5/045Prism arrays

Definitions

  • the present application relates to an integrated optical film, a method of manufacturing a diffusion layer included in an integrated optical film, and a method of manufacturing an integrated optical film using the method of manufacturing the diffusion layer.
  • liquid crystal display In general, a liquid crystal display (LCD) is a representative display device widely used in various fields. Since the liquid crystal display is a non-light emitting device, a backlight unit for generating light is required.
  • Such a backlight unit is an important factor for determining the size and the light efficiency of the liquid crystal display, and is composed of an assembly of various optical sheets.
  • the backlight unit includes a light source, a light guide plate, a reflecting plate, a diffusion sheet, a prism sheet, and a protective sheet.
  • Light generated from the light source is directed to the diffusion sheet through the light guide plate, and light diffused by the diffusion sheet is directed to the liquid crystal display panel through the first and second prism sheets.
  • the diffusion sheet serves to provide uniform luminance over the entire area.
  • the prism sheet performs a function of improving luminance in a specific viewing angle range.
  • the luminance improvement at this particular viewing angle may be realized by condensing by the prism structure.
  • the diffusion sheet and the prism sheet are provided by simple contact, the diffusion sheet and the prism sheet may be displaced when the liquid crystal display device is used for a long time.
  • the light leakage phenomenon may occur, or the light may not be properly refracted to the liquid crystal display panel, resulting in a narrow viewing angle or a problem in that the screen cannot be viewed at a specific viewing angle.
  • the present application is to solve the problems of the prior art, an integrated optical film capable of efficiently diffusing and refracting light so as to secure a solidity and provide a slimmer, and at the same time greatly improve the brightness and light uniformity, It is an object of the present invention to provide a method for manufacturing an integrated optical film using the diffusion layer manufacturing method and the diffusion layer manufacturing method.
  • the integrated optical film according to the first aspect of the present application is a lower layer; An upper layer part stacked on an upper side of the lower layer part; And a base plate stacked below the lower layer, wherein each of the lower layer and the upper layer includes a diffusion plate having a plurality of curved diffusions formed at one or more of an upper side and a lower side to diffuse light. At least one diffusion plate is stacked on the lower layer and the upper layer.
  • the diffusion layer manufacturing method comprises the steps of (a) coating a resin on a mold having a pattern corresponding to the diffusion to be formed in the diffusion layer; (b) temporarily curing the resin coated on the mold to form a diffusion layer; And (c) separating the diffusion layer in the temporary hardening state from the mold.
  • the integrated optical film manufacturing method according to the first aspect of the present application comprises the steps of (a) preparing a diffusion layer in the temporary curing state by the diffusion layer manufacturing method according to the first aspect of the present application; (b) stacking the diffusion layer in a temporary curing state so as to be adjacent to the layer to be integrated with the diffusion layer; And (c) fully curing the laminated diffusion layer to integrate with the neighboring layer.
  • the integrated optical film manufacturing method comprises the steps of (a) preparing a first diffusion layer in a temporary curing state by the diffusion layer manufacturing method according to claim 11; (b) laminating the first diffusion layer on one of an upper surface and a lower surface of the substrate layer, and laminating one of a refractive layer and a light transmitting layer on the first diffusion layer; (c) fully curing the first diffusion layer to integrate with one of the refractive layer and the light transmitting layer and to the substrate layer; (d) manufacturing a second diffusion layer in a temporary curing state by the diffusion layer manufacturing method according to claim 11; (e) stacking the second diffusion layer on the other of the top and bottom surfaces of the base layer, and stacking the other one of the refractive layer and the light transmitting layer on the second diffusion layer; And (f) fully curing the second diffusion layer to integrate with the other of the refractive layer and the light transmitting layer and to integrate with the substrate layer.
  • the diffusion layer is formed to be tacky or adhesive, the diffusion layer and the refractive layer do not deviate from each other unless excessive external force is applied even if the use period is long, so that light leakage occurs Or the light viewing angle is narrowed or light divergence is not achieved at a specific viewing angle.
  • the second concave diffusion portion so as to have a depression depth smaller than the depression depth of the first concave diffusion portion, the first concave while preventing the path of light reaching the diffusion layer from being dispersed from the beginning
  • the organic linkage with the efficient light diffusing action through the diffuser can improve the brightness and at the same time prevent the occurrence of moiré phenomena that can occur due to the face-to-face bonding of the light transmitting layer and the diffusing layer.
  • the first concave diffusion portion and the second concave diffusion portion of the diffusion layer can be clearly formed with different recessed depths and shapes that can further improve brightness and light uniformity
  • the diffusion layer itself May act as an adhesive or an adhesive
  • the optical film to which the diffusion layer is applied may be provided with a slimmer thickness, but may not be easily separated from each other, and thus light leakage may be prevented.
  • FIG. 1 is a perspective view of an integrated optical film according to an embodiment of the present disclosure.
  • FIG. 2 is an exploded perspective view of an integrated optical film according to an embodiment of the present disclosure.
  • FIG. 3 is an enlarged conceptual view of a cross-sectional view taken along line III-III of FIG. 1 and a part of the cross-sectional view.
  • 5 is a bottom view of the diffusion layer viewed from below.
  • FIG. 6 is a conceptual diagram for explaining a concave curved shape formed by a combination of a plurality of radii of curvature.
  • FIG. 7 is a conceptual view showing a diffusion layer and a mold for manufacturing the same according to an embodiment of the present application.
  • FIG. 8 is a flowchart illustrating a diffusion layer manufacturing method according to an embodiment of the present application.
  • FIG. 9 is a flowchart illustrating a method of manufacturing an integrated optical film using a diffusion layer manufacturing method according to an embodiment of the present application.
  • the upward direction may be upward
  • the upward direction may be the upper surface
  • the downward direction may be downward
  • the downward direction may be the lower surface.
  • the upper surface may be disposed in various directions such as to face forward.
  • FIG. 1 is a perspective view of an integrated optical film according to an embodiment of the present disclosure
  • FIG. 2 is an exploded perspective view of an integrated optical film according to an embodiment of the present disclosure
  • FIG. 3 is a cross-sectional view taken along line III-III of FIG. 1.
  • an enlarged conceptual view of a part of the cross-sectional view. 4 is a plan view of the diffusion layer viewed from above
  • FIG. 5 is a bottom view of the diffusion layer viewed from below.
  • an integrated optical film (hereinafter referred to as the “integrated optical film”) 100 according to an embodiment of the present disclosure will be described with reference to FIGS. 1 to 3.
  • the integrated optical film according to the exemplary embodiment of the present disclosure may be applied to various fields such as a liquid crystal display (LCD) as well as all light receiving display devices such as an electrophoretic display device, a signboard, and an illumination.
  • LCD liquid crystal display
  • the integrated optical film 100 may include a light transmission layer 5.
  • the light transmitting layer 5 is a layer in which the diffusion layer 3 and the refraction layer 1 are stacked, and transmits light from the lower side to the diffusion layer 3.
  • a light guide plate may serve as the light transmitting layer 5.
  • the light transfer layer 5 may be a light guide plate.
  • the light guide plate is a component that converts light incident from a lamp (not shown) into uniform planar light, and is generally made of PMMA (polymethymethacrylate), which is an acrylic resin.
  • the light transmitting layer 5 is not necessarily limited to the light guide plate, and it is preferable that the light transmitting layer 5 is understood as a concept including all of the layers capable of transmitting light to the diffusion layer 3.
  • the integrated optical film 100 may be more slim.
  • a lamp for injecting light into the light guide plate may be provided on the side of the light transmission layer 5, which is an example of the light guide plate, but is not limited to this position, and may be a direct type according to the use of the integrated optical film.
  • tyep which may be disposed under the light transmitting layer 5, which is a light guide plate.
  • the type of lamp mounted to the light guide plate may include a Cold Cathode Fluorescent Lamp (CCFL), a Light Emitting Diode (LED), and an Electro Luminescent (EL).
  • CCFL Cold Cathode Fluorescent Lamp
  • LED Light Emitting Diode
  • EL Electro Luminescent
  • the integrated optical film 100 includes a structure of the diffusion layer 3 and the refractive layer 1 stacked on the diffusion layer 3 to be described later, but does not include the configuration of the light transmission layer 5 described above. It may be.
  • the present integrated optical film 100 without the light transmitting layer 5 is supplied to another company, the present integrated optical film 100 may be applied on the light transmitting layer 5 such as a light guide plate by another company. It can also be laminated and used. That is, the integrated optical film 100 may be commercialized in the form of an optical film including the configuration of the light transmission layer 5, or may be commercialized in the form of an optical film that does not include the configuration of the light transmission layer 5. .
  • the integrated optical film 100 includes a diffusion layer 3.
  • the diffusion layer 3 may be stacked on the light transmission layer 5 so that light transmitted through the light transmission layer 5 is diffused.
  • the diffusion layer 3 is formed of an adhesive or adhesive material having an upper surface and a lower surface thereof and is integrally provided with the refractive layer 1.
  • the diffusion layer 3 may be provided integrally with the light transmission layer 5.
  • the integrally provided means that the laminated layers are formed as a single body so that the laminated layers are not separated from each other when an external force is applied to the integrated optical film 100.
  • the diffusion layer 3 diffuses the light emitted from the light source and transmitted through the light transmission layer 5 and the like to the refractive layer 1, and adheres to the refractive layer 1 and the light transmission layer.
  • the adhesive material may be stacked to be in contact with each other so that the integrated optical film 100 may be integrally formed.
  • the integral optical film 100 is integrally formed, the diffusion layer 3 and the refraction layer 1 do not deviate from each other unless excessive external force is applied even if the use period becomes longer, so that light leakage occurs.
  • the problem that is generated or the light viewing angle is narrowed or the light divergence is not made to a specific viewing angle can be solved.
  • the diffusion layer 3 may itself be formed of a tacky material.
  • the diffusion layer 3 may be formed of a tacky resin.
  • the integrated optical film 100 may be integrated with only the diffusion layer 3 itself.
  • an additional adhesive layer or an adhesive layer may be added to the upper and lower surfaces of the diffusion layer 3. Since the integrated optical film 100 is provided with a slimmer structure, the configuration is simpler, so that the manufacturing is easier, and the configuration is simpler, so that the bonding between the components is more robust, and thus, the separation between the laminated layers is more reliably prevented. Can be.
  • the term "adhesive" means a property that the adhesive force is continuously maintained by sticking sticky.
  • the adhesive property is such that the sticking property of the diffusion layer 3 is continuously maintained even after the light-transmitting layer 5 or the refractive layer 1 is bonded to the diffusion layer 3 and then peeled off by applying a predetermined force or more.
  • the light-transmitting layer 5 or the refraction layer 1 removed from the diffusion layer 3 is bonded together again, it means that a property of being stuck together is integrated.
  • adhesiveness is a concept that is distinguished from adhesiveness, which is a property in which stickiness exists only at the time of initial bonding and stickiness is lost when it is detached and cannot be reattached.
  • the concept of adhesion is that the adhesive force is present only during the process of manufacturing the integrated optical film 100 for the first time, and when the production of the integrated optical film 100 is completed and unexpected external force is applied to each layer, the adhesive force is formed. It can be understood as a different concept from attachment and adhesion, which is lost and cannot be bonded back to each other.
  • the integral optical film 100 is provided through the diffusion layer 3 having the adhesive property, so that the external optical force of the size and direction exceeding the allowable value is applied to the integrated optical film 100 so that the respective layers are separated from each other.
  • the stickiness is continuously maintained on the surface of the diffusion layer 3, so that the separated layers can be easily integrated again, so that the present integrated optical film 100 can be more firmly maintained.
  • light leakage may occur, or the light viewing angle may be narrowed or light divergence may not be achieved at a specific viewing angle.
  • the resin applied as the material of the diffusion layer 3 may be a curable resin that maintains adhesiveness even in a hardened state. That is, the diffusion layer 3 may be a photocurable resin or a thermosetting resin.
  • the diffusion layer 3 may be a curable resin that is tacky, transparent, and cured by any one of ultraviolet (UV), infrared (IR), and heat. For reference, curing through heat may be performed through a dry dryer.
  • a plurality of first concave diffusion portions 311 are formed on the upper surface of the diffusion layer 3.
  • a plurality of second concave diffusion portions 331 are formed on the lower surface of the diffusion layer 3. 1 to 5
  • the first concave diffusion part 311 may be formed in a groove shape recessed downward from an upper surface of the diffusion layer 3
  • the second concave diffusion part 331 may be a diffusion layer 3. It may be formed in the form of a groove recessed upward from the bottom.
  • the groove shape may be set in various forms in consideration of efficient light diffusion and luminance improvement.
  • the diffusion layer 3 has a first diffusion layer 31 stacked on top of the base layer 35, and a second diffusion layer 33 stacked on the bottom thereof. Can be formed. Accordingly, the first concave diffusion part 311 may be formed in the first diffusion layer 31, and the second concave diffusion part 331 may be formed in the second diffusion layer 33.
  • the base layer 35 may have a material having light transmittance.
  • the base layer 35 may be formed of the same material as the first diffusion layer 31 and the second diffusion layer 33.
  • the diffusion layer 3 may be manufactured through molds 600 and 700 having patterns 610 and 710 corresponding to the concave diffusion portions 31 and 33.
  • the light passing through the light transfer layer 5 can be more uniformly diffused through the concave diffusion portions 31 and 33 formed in the diffusion layer 3 to be transmitted to the refractive layer 1.
  • the layers may be bonded and integrated through the adhesive force or the adhesive force of the portion of the upper and lower surfaces of the diffusion layer 3 in which the concave diffusion portions 31 and 33 are not formed.
  • the second concave diffusion portion 331 is recessed upward by a depth smaller than the depth where the first concave diffusion portion 311 is recessed downward.
  • the diffusion part 3 is provided so that () is smaller.
  • the second concave diffusion portion 331 When the second concave diffusion portion 331 is recessed to the same or similar depth as the recessed depth D1 of the first concave diffusion portion 311, the path of the light reaching the diffusion layer 3 through the light transmission layer 5. Is dispersed from the beginning, and there is a problem that the luminance of light irradiated upwardly through the refractive layer 1 is lowered. In addition, when the second concave diffusion portion 331 is not formed on the lower surface of the diffusion layer 3, the light transmission layer 5 and the lower surface of the diffusion layer 3 are in close contact with each other from the light transmission layer 5. There is a problem in that a moire phenomenon occurs in light transmission to the diffusion layer 3.
  • the integrated optical film 100 is formed on the bottom surface of the diffusion layer 3 in a shape that is simply symmetrical with the first concave diffusion portion 311 formed on the top surface of the diffusion layer 3.
  • the second concave diffusion portion 331 is provided so as to have a depression depth D2 smaller than the depression depth D1 of the first concave diffusion portion 311. It is possible to prevent the path of light reaching the diffusion layer 3 through the layer 5 from being dissipated from the beginning, and to improve the luminance through organic linkage with the efficient light diffusion effect through the first concave diffusion portion 311. At the same time, it creates an effect of preventing the generation of moiré phenomena that may occur due to the surface-to-face bonding of the light transmitting layer 5 (particularly when the light transmitting layer 5 is a light guide plate) and the diffusion layer 3. .
  • Each of the first concave diffusion portion 311 and the second concave diffusion portion 331 may be recessed into a concave curved shape formed by a combination of one preset curvature radius or a plurality of preset curvature radii.
  • the preset radius of curvature is preferably set to a radius of curvature in which light efficiency such as light uniformity and luminance may be improved.
  • FIG. 6 is a conceptual diagram for explaining a concave curved shape formed by a combination of a plurality of radii of curvature.
  • a concave curved shape formed by a combination of a plurality of radii of curvature may not only have arc-shaped cross sections having only one same radius of curvature, but also varying radii of curvature in any direction.
  • the curves may have cross sections that are connected to each other (see Fig. 6 (a)), or they may be arc sections having different radii of curvature when the cross sections are cut out in two or more directions (see Fig. 6 (b)). ).
  • the upper side and the lower side of the cross section are connected to each other with different radii of curvature r1 and r2, as shown in FIG. 6 (a), it is cut in the first direction as shown in FIG.
  • the curvature radius rx of the cross section and the curvature radius ry of the other cross section in the second direction different from the first direction may have different sizes. have.
  • the combination of the plurality of radii of curvature is also preferably set such that the light uniformity and luminance can be improved.
  • the first concave diffusion portion 311 and the second concave diffusion portion 331 may be recessed into various shapes according to the apparatus, conditions, etc. to which the integrated optical film 100 is applied, but as described above, It may be preferable in terms of uniform and wide range of light diffusion to be recessed in a curved shape.
  • the first concave diffusion 311 may be recessed into a concave curved shape having a cross section having a first radius of curvature R1.
  • the second concave diffusion portion 331 may be recessed into a concave curved shape having a cross section having a second radius of curvature R2.
  • the first concave diffusion part 311 may be provided such that the first curvature radius R1 is smaller than the second curvature radius R2 of the second concave diffusion part 331.
  • the first radius of curvature R1 of the concave curved surface of the first concave diffusion portion 311 is set smaller than the second radius of curvature R2 of the second concave diffusion portion 331, as shown in FIG. 3.
  • the first concave diffusion 311 allows the light transmitted to the refractive layer 1 to be diffused more uniformly and broadly through a curved surface having a radius of curvature R1 and a depression depth D1 forming a substantially hemispherical shape.
  • the second concave diffusion portion 331 may be formed as a curved surface having a depression depth D2 smaller than that of the first concave diffusion portion 311, thereby minimizing the loss of optical brightness through the shallowly concave curved surface shape. At the same time, it is possible to prevent the occurrence of moiré phenomenon.
  • the first concave diffusion 311 may be recessed into a hemispherical shape having a first radius of curvature R1
  • the second concave diffusion 331 may have a first curvature in cross section. It can be recessed into an arc-shaped curved surface having a second radius of curvature R2 that is much larger than the radius R1.
  • the width W2 of the cross section of the second concave diffusion part 331 may be greater than the width W1 of the cross section of the first concave diffusion part 311. Since the size of one second concave diffusion portion 331 is larger than the size of one first concave diffusion portion 311, the occurrence of moiré phenomenon may be more prevented.
  • the size of the depression depth D2 and the second radius of curvature R2 of the second concave diffusion portion 331 is such that the light transmitted from the light transmission layer 5 is diffused when passing through the diffusion layer 3.
  • the size of the recessed depth D2, the second radius of curvature R2, and the width W2 of the cross-section of the second concave diffusion portion 331 may be such that light transmitted from the light transmission layer 5 is diffused layer 3.
  • the first concave diffusion portion 311 organically considering the degree of diffusion when the light is passed through), the degree of light uniformity and luminance to be secured, the degree to which the moiré phenomenon is prevented, and the integrity of the integrated optical film are firmly secured. It is preferable to determine relatively according to the size of the depression depth D1, the first radius of curvature R2, and the width W1 of the cross section.
  • the plurality of first concave diffusion parts 311 may be arranged in a honeycomb structure in which one first concave diffusion part 311 is surrounded by six other first concave diffusion parts 311. have.
  • the honeycomb structure means that the diffusion layer 3 is provided such that the plurality of first concave diffusion portions 311 have a honeycomb array as shown in FIG. 4. It does not necessarily mean that the portion 311 has a hexagonal planar shape, only that the arrangement is in the honeycomb form. More specifically, such a honeycomb array may be referred to as a two-dimensional hexagonal dense structure, or may be described as a triangular type array of three points.
  • first concave diffusion portions 311 By arranging the plurality of first concave diffusion portions 311 in a honeycomb structure as described above, a much larger number of first concave diffusion portions 311 are arranged in a checkerboard (lattice) array or the like. 311), it is possible to achieve a wider and more uniform light diffusion, through which the brightness of the final light passed through the integrated optical film 100 can be greatly improved.
  • the plurality of second concave diffusion portions 331 may be arranged in a honeycomb structure in which one second concave diffusion portion 331 is surrounded by six other second concave diffusion portions 331. have.
  • the honeycomb structure is as described above, a detailed description thereof will be omitted.
  • a plurality of second concave diffusion portions 331 are arranged in a much larger number of second concave diffusion portions (lattice). 331 can be secured, and the area where the lower surface of the diffusion layer 3 is in contact with the light transmission layer 5 can be minimized within a range of securing a predetermined integrity, thereby preventing the occurrence of moiré phenomenon more easily. Can be done.
  • the integrated optical film 100 includes a refractive layer 1.
  • the refraction layer 1 is laminated on the diffusion layer 3 such that light transmitted through the diffusion layer 3 is refracted.
  • the refractive layer 1 may be made of a transparent or translucent synthetic resin having a predetermined light transmittance.
  • the synthetic resin include polyethylene terephthalate (PET), methacryl resin, acrylic resin, polycarbonate (PC) resin, polyester resin, vinyl chloride resin, and the like. It can be formed through one or more materials of carbonate.
  • the refraction layer 1 serves to refract the light so that the light transmitted from the diffusion layer 3 is transmitted to the display panel.
  • a plurality of refraction layers 1 are disposed on the refraction layer 1.
  • the prism portion 11 may be formed.
  • the prism portion 11 may be formed to have a triangular shape with the vertex upward.
  • the peak angle of the conventional prism portion 11 is approximately 90 degrees, and for more efficient light refraction, the prism portion 11 may preferably have a peak angle smaller than 90 degrees, more preferably. May have a peak angle of 80 ° or less.
  • the shape of the prism portion 11 need not be limited to a triangular shape, and may be formed in various shapes (angles and pitches) as necessary, such as a refractive direction.
  • the surface of the prism portion 11 may be formed with fine concavities and convexities that can more precisely control the direction of refraction, brightness, light transmittance, and the like.
  • Figure 7 is a conceptual diagram showing a diffusion layer and a mold for manufacturing the same according to an embodiment of the present application
  • Figure 8 is a flow chart showing a method for manufacturing a diffusion layer according to an embodiment of the present application
  • Figure 9 is an embodiment of the present application It is a flowchart which shows the integrated optical film manufacturing method using the diffusion layer manufacturing method which concerns.
  • 'the present diffusion layer manufacturing method' S10
  • 'the integrated body' Optical film manufacturing method ' S100
  • S10 a method of manufacturing a diffusion layer according to an embodiment of the present application
  • 'the integrated body' Optical film manufacturing method ' S100
  • this relates to a method related to manufacturing the integrated optical film 100 according to an embodiment of the present application described above, the same reference numerals are used for the same or similar components as the above salping configuration, and a redundant description will be briefly or omitted. Let's do it.
  • the present diffusion layer manufacturing method (S10) relating to the method of manufacturing the diffusion layer of the temporary hardening state formed in the diffusion parts 311 and 331 is demonstrated.
  • the method of manufacturing the diffusion layer S10 may coat a resin on molds 600 and 700 having patterns 610 and 710 corresponding to the diffusion parts 311 and 331. It includes a step (S11).
  • the pattern of the mold may be variously formed to match the shape of the diffusion of the diffusion layer.
  • the pattern 610 of the first mold 600 may be formed to correspond to the first concave diffusion portion 311 of the first diffusion layer 31.
  • the pattern 710 of the second mold 700 may be formed to correspond to the second concave diffusion portion 313 of the second diffusion layer 33.
  • the pattern of the mold may be formed to be concave to correspond thereto.
  • the present diffusion layer manufacturing method S10 may be performed by temporarily curing the resin coated on the molds 600 and 700 to form the diffusion layers 31 and 33 (S13) and the temporary curing state. Separating the diffusion layers 31 and 33 from the molds 600 and 700 (S15). Through this manufacturing process, the diffusion layers 31 and 33 in the temporary curing state are completed.
  • the present diffusion layer manufacturing method S10 does not manufacture the diffusion layers 31 and 33 by applying resin directly on the substrate layer 35, but temporarily hardens after coating the separate molds 600 and 700.
  • the diffusion parts 311 and 331 formed in the diffusion layers 31 and 33 may be formed in a desired shape.
  • the diffusion parts 311 and 331 having a desired shape may be formed in the diffusion layers 31 and 33. Becomes very difficult. For example, if the resin is applied onto the base layer 35 and then the shapes of the diffusions 31 and 33 are processed by pressing before the resin is cured, the shapes of the pressed diffusions 311 and 331 are maintained. It is difficult to do and can be swept sideways by compression. In addition, after the resin has been cured, the diffusion layers 31 and 33 are more likely to be damaged or deformed, and press working becomes more difficult. As described above, it is almost impossible to manufacture the diffusion layers 31 and 33 having the diffusion portions 311 and 331 in a definite shape by applying the resin directly onto the base layer 35.
  • the diffusion layer manufacturing method S10 is to manufacture the diffusion layers 311 and 331 through the molds 600 and 700, the diffusion portions 311 and 331 of the desired shape are clearly formed in the diffusion layers 31 and 33. Can be formed.
  • the diffusion layer manufacturing method (S10) is integrated in the diffusion layer (31, 33) is tangled with the mold (600, 700) in consideration of the aspect that the diffusion layer (31, 33) is produced through the adhesive or adhesive resin.
  • the diffusion layers 31 and 33 are manufactured in a detachable and hardened state.
  • the present diffusion layer manufacturing method S10 includes the material side (adhesive or adhesive resin) of the diffusion layers 31 and 33, the manufacturing means side (using a mold) of the diffusion layers 31 and 33, and the diffusion layer 31, 33) is an invention in which the aspects of the manufacturing process (separated from the mold to the temporary curing state) are organically linked.
  • the resin is coated on the mold (600, 700) and then cured to a predetermined or more to produce the diffusion layer (31, 33), the prepared diffusion layer (31, 33) is entangled in the mold (600, 700) it becomes difficult to separate the diffusion layer (31, 33) from the mold (600, 700), or even if the diffusion layer (31, 33) is separated, the surface, etc. Can be. That is, the temporary hardening is such that the diffusion layers 31 and 33 can be easily separated from the molds 600 and 700 and the diffusion portions 311 after the diffusion layers 31 and 33 are separated from the molds 600 and 700.
  • 331 means a curing made to such an extent that it can be maintained without deformation.
  • the diffusion portions 311 and 331 having a desired shape can be clearly formed in the diffusion layers 31 and 33, so that the brightness of the optical film to which the diffusion layers 31 and 33 are applied. Can be greatly improved.
  • the diffusion layers 31 and 33 itself may serve as an adhesive or an adhesive, so that the optical film to which the diffusion layers 31 and 33 are applied may be provided with a slimmer thickness, but are not easily separated from each other. Light leakage phenomenon can be prevented.
  • the first concave diffusion portion 311 and the second concave diffusion portion 331 are recessed to different depths, and the luminance and Light uniformity will vary greatly. Therefore, in the fabrication of the integrated optical film 100, the first concave diffusion portion 311 and the second concave diffusion portion 331 may be further improved in luminance and light uniformity by applying the present diffusion layer manufacturing method S10. It is desirable to be able to form clearly with the depression depth and the shape which can be.
  • the integrated optical film manufacturing method S100 may include manufacturing the diffusion layers 31 and 33 in a temporary curing state by using the diffusion layer manufacturing method (S10).
  • the first mold 600 having the first pattern 610 corresponding to the first concave diffusion part 311 may be formed by the diffusion layer manufacturing method S10. 1
  • the diffusion layer 31 can be manufactured.
  • the integrated optical film manufacturing method S100 includes disposing the diffusion layers 31 and 33 in a temporary curing state so as to be adjacent to a layer to be integrated with the diffusion layers 31 and 33 (S20). .
  • the first diffusion layer 31 is stacked on one of the upper and lower surfaces of the base layer 35, and the refractive layer 1 is disposed on the first diffusion layer 31. And laminating one of the light transmitting layers 5.
  • the first diffusion layer 31 is stacked on the upper surface of the base layer 35, and the refractive layer 1 is stacked on the first diffusion layer 31. It can be a step.
  • the integrated optical film manufacturing method (S100) includes a step (S30) of completely curing the laminated diffusion layer and the adjacent layer.
  • the integration step S30 may be a step of fully curing the first diffusion layer 31 to integrate with one of the refractive layer 1 and the light transmitting layer 5 and to integrate the substrate layer 35. Can be.
  • the integration step S30 may be a step of fully curing the first diffusion layer 31 to integrate the refractive layer 1 and the base layer 35.
  • the integrated optical film manufacturing method S100 may repeat the diffusion layer manufacturing step S10, the lamination step S20, and the integration step S30 in a temporary hardened state.
  • the first diffusion layer 31 is manufactured, laminated, and integrated with respect to the top surface of the base layer 35 to manufacture an integral optical film, and then the second diffusion layer with respect to the bottom surface of the base layer 35.
  • the manufacturing of the integrated optical film 100 can be completed by manufacturing, laminating, and integrating (33).
  • a portion of the first diffusion layer 31 is not necessarily manufactured first, and a portion of the second diffusion layer 33 may be manufactured first according to manufacturing conditions.
  • a second mold 700 having a second pattern 710 corresponding to the second concave diffusion part 331 may be formed by the diffusion layer manufacturing method S10. 2 diffusion layer 33 can be manufactured.
  • the second diffusion layer 33 is laminated on the other surface of the upper and lower surfaces of the base layer 35, and the refractive layer is formed on the second diffusion layer 33.
  • the other of (1) and the light transmission layer 5 can be laminated.
  • the second diffusion layer 33 is stacked on the lower surface of the base layer 35, and the light transfer layer 5 is disposed on the second diffusion layer 33. It may be a step of laminating.
  • the second diffusion layer 33 is completely cured to integrate with the other one of the refractive layer 1 and the light transmitting layer 5 and integrated with the base layer 35. can do.
  • the integration step S30 may be a step of fully curing the second diffusion layer 33 to integrate the light transfer layer 5 and the base layer 35.
  • the diffusion layer manufacturing step (S10), lamination step (S20), and integration step (S30) of the temporary hardening state twice by repeating the diffusion layer manufacturing step (S10), lamination step (S20), and integration step (S30) of the temporary hardening state twice, the diffusion parts 311 and 331 formed at different depression heights are formed on the upper and lower surfaces, respectively.
  • the present integrated optical film 100 including the diffusion layer 3 having can be produced.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

일체형 광학 필름이 개시되며, 상기 일체형 광학 필름은 하층부; 상기 하층부의 상측에 적층되는 상층부; 및 상기 하층부의 하측에 적층되는 베이스 플레이트를 포함하되, 상기 하층부 및 상기 상층부 각각은 빛을 확산시키기 위해 상측면 및 하측면 중 하나 이상의 면에 굴곡 형성되는 복수 개의 굴곡 확산부가 구비된 확산 플레이트를 포함하고, 상기 확산 플레이트는 상기 하층부 및 상기 상층부에 각각 하나 이상 적층된다.

Description

일체형 광학 필름 ,확산층 제조방법 및 확산층 제조방법을 이용한 일체형 광학 필름 제조방법
본원은 일체형 광학 필름, 일체형 광학 필름에 포함되는 확산층의 제조방법 및 이러한 확산층 제조방법을 이용한 일체형 광학 필름 제조방법에 관한 것이다.
일반적으로, 액정표시장치(LCD)는 다양한 분야에 널리 사용되는 대표적인 디스플레이 장치이다. 이러한 액정표시장치는 비발광형 장치이므로, 빛을 발생시키기 위한 백라이트 유닛이 요구된다.
따라서, 이러한 백라이트 유닛은 액정표시장치의 크기와 광효율을 결정하는 중요한 요소이며, 다양한 광학적 시트들의 어셈블리로 이루어진다.
일반적으로 백라이트 유닛은 광원, 도광판, 반사판, 확산시트, 프리즘시트 및 보호시트를 포함한다. 광원에서 발생된 광은 도광판을 통해 확산시트를 향하고, 확산시트에 의해 확산된 광은 제1 및 제 2 프리즘시트를 통해 액정표시패널로 향하게 된다.
확산시트는 전체 면적에서 균일한 휘도를 제공하는 역할을 한다. 또한, 프리즘 시트는 특정 시야각 범위에서 휘도를 향상시키는 기능을 수행한다. 이러한 특정 시야각에서의 휘도 향상은 프리즘 구조에 의한 집광에 의해 구현될 수 있다.
그런데, 종래의 액정표시장치에서 확산시트와 프리즘시트는 단순 접촉에 의해 구비되어 있기 때문에 액정표시장치가 사용되는 기간이 길어지는 경우 확산시트와 프리즘시트가 서로 어긋나게 될 수 있으며, 이에 따라 액정표시패널에 빛샘 현상이 발생되거나, 액정표시패널로의 빛의 굴절이 제대로 이루어지지 않아 시야각이 좁아지거나, 특정 시야각에서 화면을 볼 수 없는 문제점이 발생될 수 있었다.
본원은 전술한 종래 기술의 문제점을 해결하기 위한 것으로서, 견고하게 일체성을 확보하고 보다 슬림하게 구비됨에 동시에, 휘도 및 광 균일도가 크게 향상되도록 광을 효율적으로 확산 및 굴절시킬 수 있는 일체형 광학 필름, 확산층 제조방법 및 확산층 제조방법을 이용한 일체형 광학 필름 제조방법을 제공하는 것을 목적으로 한다.
상기한 기술적 과제를 달성하기 위한 기술적 수단으로서, 본원의 제1 측면에 따른 일체형 광학 필름은 하층부; 상기 하층부의 상측에 적층되는 상층부; 및 상기 하층부의 하측에 적층되는 베이스 플레이트를 포함하되, 상기 하층부 및 상기 상층부 각각은 빛을 확산시키기 위해 상측면 및 하측면 중 하나 이상의 면에 굴곡 형성되는 복수 개의 굴곡 확산부가 구비된 확산 플레이트를 포함하고, 상기 확산 플레이트는 상기 하층부 및 상기 상층부에 각각 하나 이상 적층된다.
또한, 본원의 제1 측면에 따른 확산층 제조방법은 (a) 확산층에 형성될 확산부에 대응되는 패턴을 갖는 몰드 상에 레진을 코팅하는 단계; (b) 상기 몰드 상에 코팅된 레진을 가경화하여 확산층을 형성하는 단계; 및 (c) 가경화 상태의 상기 확산층을 상기 몰드로부터 분리하는 단계를 포함한다.
또한, 본원의 제1 측면에 따른 일체형 광학 필름 제조방법은 (a) 본원의 제1 측면에 따른 확산층 제조방법에 의해 가경화 상태의 확산층을 제조하는 단계; (b) 상기 확산층과 일체화시킬 층에 이웃하도록 가경화 상태의 상기 확산층을 적층하는 단계; 및 (c) 적층된 상기 확산층을 완전 경화시켜 상기 이웃한 층과 일체화하는 단계를 포함한다.
또한, 본원의 제2 측면에 따른 일체형 광학 필름 제조방법은 (a) 제11항에 따른 확산층 제조방법에 의해 가경화 상태의 제1 확산층을 제조하는 단계; (b) 기재층의 상면 및 하면 중 한 면 상에 상기 제1 확산층을 적층하고, 상기 제1 확산층 상에 굴절층 및 광 전달층 중 하나를 적층하는 단계; (c) 상기 제1 확산층을 완전 경화시켜 상기 굴절층 및 광 전달층 중 하나와 일체화하고 상기 기재층과 일체화하는 단계; (d) 제11항에 따른 확산층 제조방법에 의해 가경화 상태의 제2 확산층을 제조하는 단계; (e) 상기 기재층의 상면 및 하면 중 다른 한 면 상에 상기 제2 확산층을 적층하고, 상기 제2 확산층 상에 상기 굴절층 및 광 전달층 중 다른 하나를 적층하는 단계; 및 (f) 상기 제2 확산층을 완전 경화시켜 상기 굴절층 및 광 전달층 중 다른 하나와 일체화하고 상기 기재층과 일체화하는 단계를 포함한다.
전술한 본원의 과제 해결 수단에 의하면, 확산층이 점착성 또는 접착성을 갖도록 형성됨으로써, 사용 기간이 길어지더라도 허용치 이상의 과도한 외력이 작용하지 않는 한 확산층과 굴절층이 서로 어긋나지 않게 되므로, 빛샘 현상이 발생되거나 광 시야각이 좁아지거나 특정 시야각으로 광 발산이 이루어지지 않는 문제점이 해결될 수 있다.
또한 전술한 본원의 과제 해결 수단에 의하면, 제1 오목 확산부의 함몰 깊이보다 작은 함몰 깊이를 갖도록 제2 오목 확산부를 구비함으로써, 확산층에 도달한 광의 경로가 초반부터 분산되는 것을 방지하면서, 제1 오목 확산부를 통한 효율적인 광 확산 작용과의 유기적인 연계를 통해 휘도의 높은 향상을 꾀할 수 있고, 이와 동시에 광 전달층과 확산층의 면 대 면 접합으로 인해 발생될 수 있는 모아레 현상의 발생을 방지할 수 있다.
또한 전술한 본원의 과제 해결 수단에 의하면, 확산층의 제1 오목 확산부와 제2 오목 확산부가 휘도 및 광 균일도가 보다 향상될 수 있는 서로 상이한 함몰 깊이 및 형상으로 명확하게 형성될 수 있으며, 확산층 자체가 점착제 또는 접착제의 역할을 할 수 있어, 이러한 확산층을 적용한 광학 필름이 보다 슬림한 두께로 구비될 수 있으면서도 서로 쉽게 분리되지 않게 되고, 이에 따라 빛샘 현상 등이 방지될 수 있다.
도 1은 본원의 일 실시예에 따른 일체형 광학 필름의 사시도이다.
도 2는 본원의 일 실시예에 따른 일체형 광학 필름의 분해 사시도이다.
도 3은 도 1의 III-III 선을 따라 절개한 단면도 및 단면도의 일부를 확대한 개념도이다.
도 4는 확산층을 위에서 바라본 평면도이다.
도 5는 확산층을 아래에서 바라본 저면도이다.
도 6은 복수의 곡률 반경의 조합에 의해 형성되는 오목한 곡면 형상을 설명하기 위한 개념도이다.
도 7은 본원의 일 실시예에 따른 확산층 및 이를 제작하는 몰드를 나타낸 개념도이다.
도 8은 본원의 일 실시예에 따른 확산층 제조방법을 나타낸 흐름도이다.
도 9는 본원의 일 실시예에 따른 확산층 제조방법을 이용한 일체형 광학 필름 제조방법을 나타낸 흐름도이다.
아래에서는 첨부한 도면을 참조하여 본원이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본원의 실시예를 상세히 설명한다. 그러나 본원은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본원을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
본원 명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 "전기적으로 연결"되어 있는 경우도 포함한다.
본원 명세서 전체에서, 어떤 부재가 다른 부재 “상에” 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.
본원 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다. 본원 명세서 전체에서 사용되는 정도의 용어 "약", "실질적으로" 등은 언급된 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본원의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다. 본원 명세서 전체에서 사용되는 정도의 용어 "~(하는) 단계" 또는 "~의 단계"는 "~ 를 위한 단계"를 의미하지 않는다.
참고로, 본원의 실시예에 관한 설명 중 방향이나 위치와 관련된 용어(상면, 하면, 상측, 상향, 하향 등)는 도 3을 기준으로 하여 설정한 것이다. 예를 들어 도 3에서 위쪽을 향한 방향이 상향, 위쪽을 향한 면이 상면, 아래쪽을 향한 방향이 하향, 아래쪽을 향한 면이 하면 등이 될 수 있다. 다만, 본원의 실시예의 다양한 실제적인 적용에 있어서는, 상면이 전방을 향하게 배치되는 등 다양한 방향으로 배치될 수 있을 것이다.
도 1은 본원의 일 실시예에 따른 일체형 광학 필름의 사시도이고, 도 2는 본원의 일 실시예에 따른 일체형 광학 필름의 분해 사시도이며, 도 3은 도 1의 III-III 선을 따라 절개한 단면도 및 단면도의 일부를 확대한 개념도이다. 또한, 도 4는 확산층을 위에서 바라본 평면도이고, 도 5는 확산층을 아래에서 바라본 저면도이다.
이하에서는 도 1 내지 도 3을 참조하여 본원의 일 실시예에 따른 일체형 광학 필름(이하 '본 일체형 광학 필름'이라 함)(100)에 대해 설명한다. 참고로, 본원의 일 실시예에 따른 일체형 광학 필름은 액정표시장치(LCD)뿐 아니라 전기영동 표시장치 등의 모든 수광형 표시장치, 간판, 조명 등 다양한 분야에 적용될 수 있다.
본 일체형 광학 필름(100)은 광 전달층(5)을 포함할 수 있다.
도 1 내지 도 3을 참조하면, 광 전달층(5)은 확산층(3) 및 굴절층(1)이 적층되는 층으로서, 하측으로부터 확산층(3)으로 광을 전달하는 층이다.
이를테면 도광판(LGP, Light Guide Plate)이 이러한 광 전달층(5)의 역할을 수행할 수 있다. 다시 말해, 광 전달층(5)은 도광판일 수 있다. 도광판은 램프(도면 미도시)로부터 입사된 광을 균일한 평면광으로 변환시켜주는 구성요소로서, 일반적으로 아크릴 수지인 PMMA(polymethymethacrylate)로 이루어진다. 다만, 광 전달층(5)은 반드시 도광판으로만 한정되는 것은 아니며, 확산층(3)으로 광을 전달할 수 있는 층을 모두 포함하는 개념으로 이해됨이 바람직하다.
이와 같이, 광 전달층(5)이 도광판으로 구비되면, 본 일체형 광학 필름(100)이 보다 슬림하게 구비될 수 있다.
참고로, 도광판에 광을 입사시키는 램프는 예시적으로 도광판인 광 전달층(5)의 측면에 구비될 수 있으나, 이러한 위치에만 한정되는 것은 아니며, 본 일체형 광학 필름의 쓰임새에 따라 직하 타입(Direct tyep)으로 도광판인 광 전달층(5)의 하측에 배치되는 등 다양하게 구비될 수 있다.
또한, 이렇게 도광판에 장착되는 램프의 종류로는 CCFL(Cold Cathode Fluorescent Lamp), LED(Light Emitting Diode), EL(Electro Luminescent) 등이 있다.
다만, 본 일체형 광학 필름(100)은 후술할 확산층(3)과 확산층(3) 상에 적층되는 굴절층(1)의 구성을 포함하되, 상술한 광 전달층(5)의 구성은 포함하지 않을 수도 있다. 예를 들어, 광 전달층(5)이 제외된 본 일체형 광학 필름(100)을 타업체에 공급하면, 타업체에서 도광판과 같은 광 전달층(5) 상에 이러한 본 일체형 광학 필름(100)을 적층하여 사용할 수도 있다. 즉, 본 일체형 광학 필름(100)은 광 전달층(5)의 구성을 포함하는 광학 필름 형태로 제품화될 수도 있고, 광 전달층(5)의 구성은 포함하지 않는 광학 필름 형태로 제품화될 수도 있다.
또한, 본 일체형 광학 필름(100)은 확산층(3)을 포함한다.
확산층(3)은 광 전달층(5)을 거쳐 전달되는 광이 확산되도록 광 전달층(5) 상에 적층될 수 있다.
그리고 확산층(3)은 상면 및 하면이 점착성 또는 접착성 있는 재질로 이루어져 굴절층(1)과 일체로 구비된다. 또한, 확산층(3)은 광 전달층(5)과도 일체로 구비될 수 있다. 여기서 일체로 구비된다는 것은, 본 일체형 광학 필름(100)에 외력이 가해졌을 때 적층된 각 층들이 서로 분리되지 않도록 하나의 몸체로 형성되는 것을 의미한다.
다시 말해, 확산층(3)은 광원으로부터 발산되어 광 전달층(5) 등을 통해 전달된 광을 확산시켜 굴절층(1)으로 전달하는 역할과 함께, 굴절층(1) 및 광 전달층에 점착성 또는 접착성 있는 재질이 맞닿도록 적층됨으로써 본 일체형 광학 필름(100)이 일체로 형성되게 하는 역할을 한다.
이와 같이, 본 일체형 광학 필름(100)이 일체로 형성됨으로써, 사용 기간이 길어지더라도 허용치 이상의 과도한 외력이 작용하지 않는 한 확산층(3)과 굴절층(1)이 서로 어긋나지 않게 되므로, 빛샘 현상이 발생되거나 광 시야각이 좁아지거나 특정 시야각으로 광 발산이 이루어지지 않는 문제점이 해결될 수 있다.
이러한 확산층(3)은 그 자체가 점착성 있는 재질으로 형성될 수 있다. 이를테면 확산층(3)은 점착성 있는 레진으로 형성될 수 있다. 이렇게 확산층(3) 자체가 점착성 있는 재질로 형성됨으로써, 확산층(3) 자체만으로 본 일체형 광학 필름(100)을 일체화될 수 있어, 확산층(3)의 상면 및 하면에 별도의 점착층 또는 접착층을 부가할 필요가 없어져, 본 일체형 광학 필름(100)이 보다 슬림하게 구비될 있으며, 구성이 간명하므로 제조가 용이해지고 구성이 간명한만큼 구성간 결합이 보다 견고해져 적층된 각 층들간의 분리가 보다 확실히 방지될 수 있다.
또한 여기서 점착성이라 함은 끈끈하게 달라붙어서 점착력이 계속적으로 유지되는 성질을 의미한다. 예를 들어 설명하면, 점착성은 확산층(3)에 광 전달층(5) 또는 굴절층(1)을 맞붙인 다음 소정 이상의 힘을 가해 떼어내어도 확산층(3)에 끈끈함이 계속적으로 유지되도록 하는 성질로서, 확산층(3)에 떼어낸 광 전달층(5) 또는 굴절층(1)을 다시 맞붙이면 또다시 서로 달라붙어 일체화되도록 하는 성질을 의미한다.
즉, 점착성은 처음 접합할 때에만 끈끈함이 존재하고 떼어내면 끈끈함이 상실되어 다시 붙일 수 없게 되는 성질인 접착성과는 구별되는 개념이다. 다시 말해, 점착이라는 개념은 본 일체형 광학 필름(100)을 처음 제조하는 공정 중에만 접착력이 존재하고 본 일체형 광학 필름(100)의 제조가 완료된 후에 예상치 못한 외력이 가해져 각 층들이 서로 벌어지는 경우에는 접착력이 상실되어 다시 서로 접합되지 못하게 되는 부착 및 접착과는 다른 개념으로 이해될 수 있다.
이와 같이, 점착성을 갖는 확산층(3)을 통해 본 일체형 광학 필름(100)이 구비되도록 함으로써, 일체형 광학 필름(100)에 허용치를 초과하는 크기 및 방향의 외력이 가해져 각 층들이 서로 분리되는 경우가 예상치 못하게 발생되더라도, 확산층(3)의 표면에는 계속적으로 끈끈함이 유지되고 있으므로, 분리된 층들이 다시 쉽게 일체화될 수 있어, 본 일체형 광학 필름(100)이 보다 견고하게 일체성을 유지할 수 있으며, 이에 따라 빛샘 현상이 발생되거나 광 시야각이 좁아지거나 특정 시야각으로 광 발산이 이루어지지 않는 문제점도 훨씬 효과적으로 해결할 수 있게 된다.
또한, 확산층(3)의 재질로 적용되는 이러한 레진은 경화된 상태에서도 점착성이 유지되는 경화성 레진일 수 있다. 즉, 확산층(3)은 광 경화성 레진 또는 열 결화성 레진일 수 있다. 예시적으로, 확산층(3)은 점착성을 갖고 투명하며 자외선(UV), 적외선(IR), 및 열 중 어느 하나에 의해 경화되는 경화성 레진일 수 있다. 참고로, 열을 통한 경화는 열건조기(Dryer)를 통해 이루어질 수 있다.
그리고 확산층(3)의 상면에는 복수의 제1 오목 확산부(311)가 형성된다. 아울러, 확산층(3)의 하면에는 복수의 제2 오목 확산부(331)가 형성된다. 도 1 내지 도 5를 참조하면, 제1 오목 확산부(311)는 확산층(3)의 상면에서 하향으로 움푹 패인 홈 형태로 형성될 수 있으며, 제2 오목 확산부(331)는 확산층(3)의 하면에서 상향으로 움푹 패인 홈 형태로 형성될 수 있다. 이러한 홈 형태는 효율적인 광 확산 및 휘도 향상을 고려하여 다양한 형태로 설정될 수 있다.
예시적으로 도 1 내지 도 3을 참조하면, 확산층(3)은 기재층(35)을 중심으로 그 상측에는 제1 확산층(31)이 적층되고, 그 하측에는 제2 확산층(33)이 적층되어 형성될 수 있다. 따라서, 제1 확산층(31)에는 제1 오목 확산부(311)가 형성되고, 제2 확산층(33)에는 제2 오목 확산부(331)가 형성될 수 있다. 기재층(35)은 광 투과성을 갖는 재질을 가질 수 있다. 이를테면 기재층(35)은 제1 확산층(31) 및 제2 확산층(33)과 동일한 재질로 형성될 수 있다.
그리고 도 7을 참조하여 후술하겠지만, 이러한 확산층(3)은 오목 확산부(31, 33)에 대응하는 패턴(610, 710)을 가진 몰드(600, 700) 등을 통해 제조될 수 있다.
광 전달층(5)을 통과한 광은 이러한 확산층(3)에 형성된 오목 확산부(31, 33)를 통해 보다 균일하게 확산되어 굴절층(1)으로 전달될 수 있게 된다. 참고로, 확산층(3)의 상면 및 하면 중 이러한 오목 확산부(31, 33)가 형성되지 않은 부분의 점착력 또는 접착력을 통하여 각 층들은 접합되어 일체화될 수 있다.
한편, 제2 오목 확산부(331)는 제1 오목 확산부(311)가 하향으로 함몰된 깊이보다 작은 깊이만큼 상향으로 함몰된다.
예시적으로 도 1 내지 도 3, 특히 도 3을 참조하면, 제1 오목 확산부(311)가 하향으로 함몰된 깊이(D1)보다 제2 오목 확산부(331)가 상향으로 함몰된 깊이(D2)가 더 작도록 확산부(3)가 구비된다.
제2 오목 확산부(331)가 제1 오목 확산부(311)의 함몰 깊이(D1)와 동일 또는 유사한 깊이로 함몰되는 경우, 광 전달층(5)을 통해 확산층(3)에 도달한 광의 경로가 초반부터 분산되어, 굴절층(1)을 거쳐 상향으로 조사되는 광의 휘도가 오히려 저하되는 문제점이 있다. 또한, 제2 오목 확산부(331)를 확산층(3)의 하면에 형성시키지 않는 경우, 광 전달층(5)과 확산층(3)의 하면이 면 대 면으로 밀착되면서 광 전달층(5)으로부터 확산층(3)으로의 광 전달에 있어서 모아레(Moire) 현상이 발생하게 되는 문제점이 있다.
본 일체형 광학 필름(100)은 상술한 바와 같은 두 가지 문제점을 해결하고자, 확산층(3)의 상면에 형성된 제1 오목 확산부(311)와 단순히 대칭이 되는 형상으로 확산층(3)의 하면에 제2 오목 확산부(331)를 형성시키는 것이 아니라, 제1 오목 확산부(311)의 함몰 깊이(D1)보다 작은 함몰 깊이(D2)를 갖도록 제2 오목 확산부(331)를 구비함으로써, 광 전달층(5)을 통해 확산층(3)에 도달한 광의 경로가 초반부터 분산되는 것을 방지하면서 제1 오목 확산부(311)를 통한 효율적인 광 확산 작용과의 유기적인 연계를 통해 휘도의 높은 향상을 꾀하고, 이와 동시에 광 전달층(5)(특히 광 전달층(5)이 도광판인 경우)과 확산층(3)의 면 대 면 접합으로 인해 발생될 수 있는 모아레 현상의 발생을 방지하는 효과를 창출한다.
이러한 제1 오목 확산부(311) 및 제2 오목 확산부(331) 각각은 미리 설정된 하나의 곡률 반경 또는 미리 설정된 복수의 곡률 반경의 조합에 의해 형성되는 오목한 곡면 형상으로 함몰될 수 있다. 여기서, 미리 설정된 곡률 반경은 광 균일도, 휘도 등의 광 효율이 향상될 수 있는 곡률 반경으로 미리 설정되는 것이 바람직하다.
도 6은 복수의 곡률 반경의 조합에 의해 형성되는 오목한 곡면 형상을 설명하기 위한 개념도이다.
도 6을 참조하면, 복수의 곡률 반경의 조합에 의해 형성되는 오목한 곡면 형상이라는 것은, 곡면 형상을 어느 방향에 대해 자르더라도 단 하나의 동일한 곡률 반경을 갖는 호형 단면만을 갖는 것이 아니라, 다양한 곡률 반경을 갖는 곡선들이 서로 연결되는 단면을 갖거나(도 6의 (a) 참조), 2 방향 이상에 대해 단면을 잘라 보았을 때 각기 다른 곡률 반경을 갖는 호형 단면이 될 수 있음(도 6의 (b) 참조)을 의미한다.
예를 들면, 도 6의 (a)에 나타난 바와 같이 단면의 상측과 하측이 다른 곡률 반경(r1, r2)을 가지고 서로 연결되는 경우, 도 6의 (b)에 나타난 바와 같이 제1 방향으로 자른 단면이 갖는 곡률 반경(rx)과 제1 방향과는 다른 제2 방향으로 다른 단면이 갖는 곡률 반경(ry)이 서로 다른 크기를 갖는 경우 등이 이렇게 복수의 곡률 반경이 조합되는 경우에 해당될 수 있다. 이러한 복수의 곡률 반경의 조합 또한 광 균일도 및 휘도가 향상될 수 있도록 설정됨이 바람직하다.
제1 오목 확산부(311) 및 제2 오목 확산부(331)는 본 일체형 광학 필름(100)이 적용되는 장치, 여건 등에 따라 다양한 형상으로 함몰될 수 있겠지만, 상술한 바와 같이, 곡률 반경을 갖는 곡면 형상으로 오목하게 함몰 형성되는 것이 균일하고 넓은 범위의 광 확산이라는 측면에서 바람직할 수 있다.
예시적으로 도 3을 참조하면, 제1 오목 확산부(311)는 그 단면이 제1 곡률 반경(R1)을 갖는 오목한 곡면 형상으로 함몰될 수 있다. 또한, 제2 오목 확산부(331)는 그 단면이 제2 곡률 반경(R2)을 갖는 오목한 곡면 형상으로 함몰될 수 있다.
이때 도 3에 나타난 바와 같이, 제1 오목 확산부(311)는 제1 곡률 반경(R1)이 제2 오목 확산부(331)의 제2 곡률 반경(R2)보다 작은 곡면이 되도록 구비될 수 있다. 이와 같이 제1 오목 확산부(311)의 오목한 곡면이 갖는 제1 곡률 반경(R1)이 제2 오목 확산부(331)의 제2 곡률 반경(R2)보다 작게 설정되면, 도 3에 나타난 바와 같이 제1 오목 확산부(311)는 대략 반구 형상을 형성하는 곡률 반경(R1) 및 함몰 깊이(D1)를 갖는 곡면을 통해 굴절층(1)으로 전달되는 광이 보다 균일하고 넓게 확산될 수 있도록 하고, 제2 오목 확산부(331)는 제1 오목 확산부(311)보다 작은 함몰 깊이(D2)를 갖는 곡면으로 형성될 수 있어, 이러한 얕게 함몰된 곡면 형상을 통해 광 휘도의 손실을 최소화함과 동시에 모아레 현상의 발생까지 방지할 수 있게 된다.
구체적인 예로 도 3에 나타난 바와 같이, 제1 오목 확산부(311)는 제1 곡률 반경(R1)을 갖는 반구 형상으로 함몰될 수 있고, 제2 오목 확산부(331)는 그 단면이 제1 곡률 반경(R1)보다 훨씬 큰 제2 곡률 반경(R2)를 갖는 호형인 곡면 형상으로 함몰될 수 있다.
또한 도 3 내지 도 5를 참조하면, 제2 오목 확산부(331)의 단면의 폭(W2)은 제1 오목 확산부(311)의 단면의 폭(W1)보다 클 수 있다. 제2 오목 확산부(331) 하나의 크기가 제1 오목 확산부(311) 하나의 크기보다 크게 형성됨으로써, 모아레 현상의 발생이 보다 방지될 수 있다.
참고로, 제2 오목 확산부(331)의 함몰 깊이(D2) 및 제2 곡률 반경(R2)의 크기는 광 전달층(5)으로부터 전달되는 광이 확산층(3)을 통과하였을 때 확산되는 정도, 확보되는 광 균일도 및 휘도, 모아레 현상이 방지되는 정도, 본 일체형 광학 필름의 일체성이 견고하게 확보되는지 여부 등을 종합적으로 고려하여 제1 오목 확산부(311)의 함몰 깊이(D1) 및 제1 곡률 반경(R1)의 크기에 따라 상대적으로 결정함이 바람직하다.
다만, 이러한 제2 오목 확산부(331)의 함몰 깊이(D2), 제2 곡률 반경(R2), 및 단면의 폭(W2)의 크기는 광 전달층(5)으로부터 전달되는 광이 확산층(3)을 통과하였을 때 확산되는 정도, 확보되는 광 균일도 및 휘도, 모아레 현상이 방지되는 정도, 본 일체형 광학 필름의 일체성이 견고하게 확보되는지 여부 등을 유기적으로 고려하여 제1 오목 확산부(311)의 함몰 깊이(D1), 제1 곡률 반경(R2), 및 단면의 폭(W1)의 크기에 따라 상대적으로 결정함이 바람직하다.
한편 도 4를 참조하면, 복수의 제1 오목 확산부(311)는 하나의 제1 오목 확산부(311)를 다른 6개의 제1 오목 확산부(311)가 둘러싸는 허니콤 구조로 배열될 수 있다.
여기서 허니콤 구조라 함은 도 4에 나타난 바와 같이 복수의 제1 오목 확산부(311)가 벌집 형태의 어레이를 갖도록 확산층(3)이 구비됨을 의미하는 것인데, 벌집 형태라고 해서 각각의 제1 오목 확산부(311)가 반드시 육각형 평면 형상을 갖는다는 것을 의미하는 것은 아니며 단지 배열이 벌집 형태임을 의미한다. 보다 부연 설명하면, 이러한 벌집 형태 어레이는 2차원 육방 밀집 구조라고도 할 수 있으며, 또는 3점 중심의 삼각형 타입 어레이라고 설명할 수도 있다.
이와 같이 복수의 제1 오목 확산부(311)를 허니콤 구조로 배열함으로써, 제1 오목 확산부(311)가 바둑판(격자) 어레이 등으로 배열되는 경우에 비해 훨씬 다수의 제1 오목 확산부(311)를 확보할 수 있게 되어, 보다 넓고 균일한 광 확산이 이루어질 수 있고, 이를 통해 본 일체형 광학 필름(100)을 통과한 최종적인 광의 휘도가 크게 향상될 수 있다.
또한 도 5를 참조하면, 복수의 제2 오목 확산부(331)는 하나의 제2 오목 확산부(331)를 다른 6개의 제2 오목 확산부(331)가 둘러싸는 허니콤 구조로 배열될 수 있다. 여기서, 허니콤 구조라 함은 앞서 살핀 바와 같으므로 상세한 설명은 생략한다.
이와 같이 복수의 제2 오목 확산부(331)를 허니콤 구조로 배열함으로써, 제2 오목 확산부(331)가 바둑판(격자) 어레이 등으로 배열되는 경우에 비해 훨씬 다수의 제2 오목 확산부(331)를 확보할 수 있고, 확산층(3)의 하면이 광 전달층(5)과 맞닿는 면적을 소정의 일체성을 확보하는 범위 내에서 최소화할 수 있어, 모아레 현상의 발생의 방지가 보다 용이하게 이루어질 수 있다.
또한, 본 일체형 광학 필름(100)은 굴절층(1)을 포함한다.
굴절층(1)은 확산층(3)을 거쳐 전달되는 광이 굴절되도록 확산층(3) 상에 적층된다.
이러한 굴절층(1)은 소정의 광 투과성을 갖는 투명 또는 반투명한 합성수지로 이루어질 수 있다. 합성수지로는 폴리에틸렌 테레프탈레이트(PET), 메타크릴 수지, 아크릴 수지, 폴리 카보네이트(PC) 수지, 폴리에스테르 수지, 염화비닐 수지 등이 있으며, 예시적으로 굴절층(1)은 투명한 폴리에틸렌 테레프탈레이트 및 폴리카보네이트 중 하나 이상의 물질을 통해 형성될 수 있다.
또한, 굴절층(1)은 확산층(3)으로부터 전달된 광이 디스플레이 패널 등으로 전달되도록 광을 굴절시키는 역할을 하는 것으로서, 도 1 내지 도 3를 참조하면 굴절층(1)의 상측에는 복수의 프리즘부(11)가 형성될 수 있다.
도 1 내지 도 3에 나타난 바와 같이, 프리즘부(11)는 정점이 위로 향한 삼각형 형태를 갖도록 형성될 수 있다. 예시적으로, 통상적인 프리즘부(11)의 정점각은 대략 90˚ 정도이며, 보다 효율적인 광 굴절을 위해서는 프리즘부(11)는 90˚보다 작은 정점각을 가지는 것이 바람직할 수 있고, 보다 바람직하게는 80˚ 이하의 정점각을 가질 수 있다.
다만, 이러한 프리즘부(11)의 형상은 삼각형 형태에 한정될 필요는 없으며, 굴절 방향 등의 필요에 따라 다양한 형상(각도 및 피치)으로 형성될 수 있다.
또한 도면에는 도시되지 않았지만, 프리즘부(11)의 표면에는 굴절 방향, 휘도, 광 투과율 등을 보다 세밀하게 조절할 수 있는 미세한 요철이 형성될 수 있다.
한편, 도 7은 본원의 일 실시예에 따른 확산층 및 이를 제작하는 몰드를 나타낸 개념도이고, 도 8은 본원의 일 실시예에 따른 확산층 제조방법을 나타낸 흐름도이며, 도 9는 본원의 일 실시예에 따른 확산층 제조방법을 이용한 일체형 광학 필름 제조방법을 나타낸 흐름도이다.
이하에서는 본원의 일 실시예에 따른 확산층 제조방법(이하 '본 확산층 제조방법 '이라 함)(S10) 및 본원의 일 실시예에 따른 본 확산층 제조방법을 이용한 일체형 광학 필름 제조방법(이하 '본 일체형 광학 필름 제조방법 '이라 함)(S100)에 대해 설명한다. 다만, 이는 앞서 설명한 본원의 일 실시예에 따른 일체형 광학 필름(100)의 제조와 관련된 방법에 관한 것이므로, 앞서 살핀 구성과 동일하거나 유사한 구성에 대해서는 동일한 도면 부호를 사용하고 중복되는 설명은 간략히 하거나 생략하기로 한다.
우선, 확산부(311, 331)에 형성된 가경화 상태의 확산층을 제조하는 방법에 관한 것인 본 확산층 제조방법(S10)을 설명한다.
도 3, 도 7, 및 도 8을 참조하면, 본 확산층 제조방법(S10)은 확산부(311, 331)에 대응되는 패턴(610, 710)을 갖는 몰드(600, 700) 상에 레진을 코팅하는 단계(S11)를 포함한다.
이러한 몰드의 패턴은 확산층의 확산부의 형상에 맞추어 다양하게 형성될 수 있다. 예시적으로 도 7의 (a)를 참조하면, 제1 몰드(600)의 패턴(610)은 제1 확산층(31)의 제1 오목 확산부(311)에 대응되게 형성될 수 있다. 또한 도 7의 (b)를 참조하면, 제2 몰드(700)의 패턴(710)은 제2 확산층(33)의 제2 오목 확산부(313)에 대응되게 형성될 수 있다. 아울러 도면에는 도시되지 않았지만, 확산층의 확산부가 볼록한 형상인 경우라면, 몰드의 패턴은 이에 대응되도록 오목하게 형성될 수도 있을 것이다.
또한 도 7 및 도 8을 참조하면, 본 확산층 제조방법(S10)은 몰드(600, 700) 상에 코팅된 레진을 가경화하여 확산층(31, 33)을 형성하는 단계(S13) 및 가경화 상태의 확산층(31, 33)을 몰드(600, 700)로부터 분리하는 단계(S15)를 포함한다. 이러한 제조 과정을 거쳐 가경화 상태의 확산층(31, 33)이 완성된다.
즉, 본 확산층 제조방법(S10)은 기재층(35) 상에 직접 레진을 도포하는 방식으로 확산층(31, 33)을 제조하는 것이 아니라, 별도의 몰드(600, 700)에 대한 코팅 후 가경화를 통해 확산층(31, 33)을 제조함으로서, 확산층(31, 33)에 형성되는 확산부(311, 331)가 원하는 형태로 형성될 수 있도록 하였다.
만약, 기재층(35) 상에 레진을 직접 도포하고 경화시키는 방식으로 확산층(31, 33)을 형성하게 되면, 확산층(31, 33)에 원하는 형태를 갖는 확산부(311, 331)를 형성시키기는 것이 매우 어려워진다. 예를 들어 기재층(35) 상에 레진을 도포한 다음 레진이 경화되기 전에 프레스를 통해 확산부(31, 33)의 형상을 가공한다면, 프레스된 확산부(311, 331)의 형상이 계속 유지되기 어렵고 압축에 의해 옆으로 흘러내리게 될 수 있다. 또한, 레진이 경화된 후에는 확산층(31, 33)의 파손 또는 변형의 우려가 심해져 프레스 가공이 더욱 어려워진다. 이와 같이, 기재층(35) 상에 레진을 직접 도포하는 방식으로는 확산부(311, 331)를 갖는 확산층(31, 33)을 명확한 형상으로 제조하기가 불가능에 가까웠다.
이에 반해, 본 확산층 제조방법(S10)은 몰드(600, 700)를 통해 확산층(311, 331)을 제작하는 것이므로, 확산층(31, 33)에 원하는 형상의 확산부(311, 331)가 명확하게 형성될 수 있다. 더불어, 본 확산층 제조방법(S10)은 점착성 또는 접착성 있는 레진을 통해 확산층(31, 33)이 제조된다는 측면을 고려하여, 확산 층(31, 33)이 몰드(600, 700)와 엉겨 붙어 일체화되지 않도록 몰드(600, 700) 상에서는 확산층(31, 33)이 분리 가능한 가경화된 상태로 제조되도록 하였다.
즉, 본 확산층 제조방법(S10)은 확산층(31, 33)의 재료적 측면(점착성 또는 접착성 있는 레진), 확산층(31, 33)의 제조수단 측면(몰드를 이용), 및 확산층(31, 33)의 제조공정 측면(몰드로부터 가경화 상태로 분리)이 유기적으로 연계되도록 조합한 발명이다.
참고로, 가경화가 어느 정도의 경화를 의미하는 것인지 보다 구체적으로 설명하면, 몰드(600, 700)에 레진을 코팅한 후 소정 이상으로 경화시켜 확산층(31, 33)을 제조하게 되면, 제조된 확산층(31, 33)이 몰드(600, 700)에 엉겨 붙게 되어 확산층(31, 33)을 몰드(600, 700)로부터 분리하기가 어려워지거나, 확산층(31, 33)이 분리되더라도 표면 등이 손상될 수 있다. 즉, 가경화는 확산층(31, 33)이 몰드(600, 700)로부터 손상 없이 쉽게 분리될 수 있는 정도 및 확산층(31, 33)이 몰드(600, 700)로부터 분리된 이후에 확산부(311, 331)의 형상이 변형 없이 유지될 수 있는 정도로 이루어지는 경화를 의미한다.
즉, 본 확산층 제조방법(S10)에 의하면, 확산층(31, 33)에 원하는 형상의 확산부(311, 331)가 명확하게 형성될 수 있어, 이러한 확산층(31, 33)을 적용한 광학 필름의 휘도가 크게 향상될 수 있다. 또한, 확산층(31, 33) 자체가 점착제 또는 접착제의 역할을 할 수 있어, 이러한 확산층(31, 33)을 적용한 광학 필름이 보다 슬림한 두께로 구비될 수 있으면서도 서로 쉽게 분리되지 않게 되고, 이에 따라 빛샘 현상 등이 방지될 수 있다.
특히, 본 일체형 광학 필름(100)의 확산층(31, 33)은 제1 오목 확산부(311)와 제2 오목 확산부(331)가 서로 상이한 깊이로 함몰되며, 이러한 함몰 깊이 차이에 따라 휘도 및 광 균일도가 크게 달라지게 된다. 따라서, 본 일체형 광학 필름(100)의 제조에 있어서 본 확산층 제조방법(S10)의 적용을 통해 제1 오목 확산부(311)와 제2 오목 확산부(331)가 휘도 및 광 균일도가 보다 향상될 수 있는 함몰 깊이 및 형상으로 명확하게 형성되도록 하는 것이 바람직하다.
다음으로, 본 일체형 광학 필름 제조방법(S100)을 설명한다.
도 9를 참조하면, 본 일체형 광학 필름 제조방법(S100)은 본 확산층 제조방법에 의해 가경화 상태의 확산층(31, 33)을 제조하는 단계(S10)를 포함한다.
예시적으로 도 3 및 도 7을 참조하면, 본 확산층 제조방법(S10)에 의해 제1 오목 확산부(311)에 대응하는 제1 패턴(610)을 갖는 제1 몰드(600)를 이용하여 제1 확산층(31)이 제조될 수 있다.
또한 도 9를 참조하면, 본 일체형 광학 필름 제조방법(S100)은 확산층(31, 33)과 일체화시킬 층에 이웃하도록 가경화 상태의 확산층(31, 33)을 배치하는 단계(S20)를 포함한다.
도 3을 참조하면, 이러한 적층 단계(S20)는 기재층(35)의 상면 및 하면 중 한 면 상에 제1 확산층(31)을 적층하고, 제1 확산층(31) 상에 굴절층(1) 및 광 전달층(5) 중 하나를 적층하는 단계일 수 있다. 예시적으로 도 3에 나타난 바와 같이, 적층 단계(S20)는 기재층(35)의 상면에 제1 확산층( 31)을 적층하고, 제1 확산층(31) 상에 굴절층(1)을 적층하는 단계가 될 수 있다.
또한 도 9를 참조하면, 본 일체형 광학 필름 제조방법(S100)은 적층된 확산층을 완전 경화시켜 이웃한 층과 일체화하는 단계(S30)를 포함한다.
도 3을 참조하면, 이러한 일체화 단계(S30)는 제1 확산층(31)을 완전 경화시켜 굴절층(1) 및 광 전달층(5) 중 하나와 일체화하고 기재층(35)과 일체화하는 단계일 수 있다. 예시적으로 도 3에 나타난 바와 같이, 일체화 단계(S30)는 제1 확산층(31)을 완전 경화시켜 굴절층(1) 및 기재층(35)과 일체화하는 단계가 될 수 있다.
한편, 본 일체형 광학 필름 제조방법(S100)은 가경화 상태의 확산층 제조 단계(S10), 적층 단계(S20), 및 일체화 단계(S30)를 반복할 수 있다.
예를 들어, 기재층(35)의 상면에 대해 제1 확산층(31)을 제조, 적층, 및 일체화시켜 1차적으로 일체형 광학 필름을 제조한 다음, 기재층(35)의 하면에 대해 제2 확산층(33)을 제조, 적층, 및 일체화시켜 본 일체형 광학 필름(100)의 제조를 완료할 수 있다. 참고로, 반드시 제1 확산층(31) 부분이 먼저 제조되어야 하는 것은 아니며, 제조 여건 등에 따라 제2 확산층(33) 부분이 먼저 제조될 수도 있을 것이다.
예시적으로 도 3 및 도 7을 참조하면, 본 확산층 제조방법(S10)에 의해 제2 오목 확산부(331)에 대응하는 제2 패턴(710)을 갖는 제2 몰드(700)를 이용하여 제2 확산층(33)이 제조될 수 있다.
다음으로 도 3을 참조하면, 이번 적층 단계(S20)에서는 기재층(35)의 상면 및 하면 중 다른 한 면 상에 제2 확산층(33)을 적층하고, 제2 확산층(33) 상에 굴절층(1) 및 광 전달층(5) 중 다른 하나를 적층할 수 있다. 예시적으로 도 3에 나타난 바와 같이, 이번 적층 단계(S20)는 기재층(35)의 하면에 제2 확산층(33)을 적층하고, 제2 확산층(33) 상에 광 전달층(5)을 적층하는 단계가 될 수 있다.
다음으로 도 3을 참조하면, 이번 일체화 단계(S30)에서는 제2 확산층(33)을 완전 경화시켜 굴절층(1) 및 광 전달층(5) 중 다른 하나와 일체화하고 기재층(35)과 일체화할 수 있다. 예시적으로 도 3에 나타난 바와 같이, 이번 일체화 단계(S30)는 제2 확산층(33)을 완전 경화시켜 광 전달층(5) 및 기재층(35)과 일체화하는 단계가 될 수 있다.
이와 같이, 가경화 상태의 확산층 제조 단계(S10), 적층 단계(S20), 및 일체화 단계(S30)를 2번 반복함으로써, 상면과 하면에 각각 다른 함몰 높이로 형성된 확산부(311, 331)를 갖는 확산층(3)을 포함하는 본 일체형 광학 필름(100)이 제조될 수 있다.
전술한 본원의 설명은 예시를 위한 것이며, 본원이 속하는 기술분야의 통상의 지식을 가진 자는 본원의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.
본원의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본원의 범위에 포함되는 것으로 해석되어야 한다.

Claims (15)

  1. 일체형 광학 필름에 있어서,
    상면에 복수의 제1 오목 확산부가 형성되고 하면에 복수의 제2 오목 확산부가 형성되는 확산층; 및
    상기 확산층을 거쳐 전달되는 광이 굴절되도록 상기 확산층 상에 적층되는 굴절층을 포함하되,
    상기 확산층은 상기 굴절층과 일체로 형성되도록 점착성 또는 접착성 있는 재질로 이루어지며,
    상기 제2 오목 확산부는 상기 제1 오목 확산부가 하향으로 함몰된 깊이보다 작은 깊이만큼 상향으로 함몰되는 것인 일체형 광학 필름.
  2. 제1항에 있어서,
    상기 제1 오목 확산부 및 제2 오목 확산부 각각은 미리 설정된 하나의 곡률 반경 또는 미리 설정된 복수의 곡률 반경의 조합에 의해 형성되는 오목한 곡면 형상으로 함몰되는 것인 일체형 광학 필름.
  3. 제2항에 있어서,
    상기 제1 오목 확산부는 그 단면이 제1 곡률 반경을 갖는 오목한 곡면 형상으로 함몰되고,
    상기 제2 오목 확산부는 그 단면이 제2 곡률 반경을 갖는 오목한 곡면 형상으로 함몰되되,
    상기 제1 곡률 반경은 상기 제2 곡률 반경보다 작은 것인 일체형 광학 필름.
  4. 제1항에 있어서,
    상기 제2 오목 확산부의 단면의 폭은 상기 제1 오목 확산부의 단면의 폭보다 큰 것인 일체형 광학 필름.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서,
    상기 복수의 제1 오목 확산부는 하나의 제1 오목 확산부를 다른 6개의 제1 오목 확산부가 둘러싸는 허니콤 구조로 배열되는 것인 일체형 광학 필름.
  6. 제1항 내지 제4항 중 어느 한 항에 있어서,
    상기 복수의 제2 오목 확산부는 하나의 제2 오목 확산부를 다른 6개의 제2 오목 확산부가 둘러싸는 허니콤 구조로 배열되는 것인 일체형 광학 필름.
  7. 제1항 내지 제4항 중 어느 한 항에 있어서,
    상기 확산층은 점착성 있는 레진으로 형성되는 것인 일체형 광학 필름.
  8. 제7항에 있어서,
    상기 레진은 경화된 상태에서도 점착성이 유지되는 경화성 레진인 것인 일체형 광학 필름.
  9. 제1항 내지 제4항 중 어느 한 항에 있어서,
    상기 굴절층은 상측에 복수의 프리즘부가 형성되는 것인 일체형 광학 필름.
  10. 제1항 내지 제4항 중 어느 한 항에 있어서,
    상기 확산층은
    상기 제1 오목 확산부가 형성되는 제1 확산층;
    상기 제2 오목 확산부가 형성되는 제2 확산층; 및
    상기 제1 확산층과 상기 제2 확산층 사이에 개재되는 기재층을 포함하는 것인 일체형 광학 필름.
  11. 제1항 내지 제4항 중 어느 한 항에 있어서,
    상기 확산층을 상측에 적층하는 광 전달층을 더 포함하고,
    상기 확산층은 상기 광 전달층과 일체로 형성되는 것인 일체형 광학 필름.
  12. 확산부가 형성된 확산층 제조방법에 있어서,
    (a) 상기 확산부에 대응되는 패턴을 갖는 몰드 상에 레진을 코팅하는 단계;
    (b) 상기 몰드 상에 코팅된 레진을 가경화하여 확산층을 형성하는 단계; 및
    (c) 가경화 상태의 상기 확산층을 상기 몰드로부터 분리하는 단계를 포함하는 확산층 제조방법.
  13. 일체형 광학 필름 제조방법에 있어서,
    (a) 제12항에 따른 확산층 제조방법에 의해 가경화 상태의 확산층을 제조하는 단계;
    (b) 상기 확산층과 일체화시킬 층에 이웃하도록 가경화 상태의 상기 확산층을 배치하는 단계; 및
    (c) 적층된 상기 확산층을 완전 경화시켜 상기 이웃한 층과 일체화하는 단계를 포함하는 일체형 광학 필름 제조방법.
  14. 제13항에 있어서,
    상기 (a) 단계 내지 (c) 단계를 반복하는 일체형 광학 필름 제조방법.
  15. 일체형 광학 필름 제조방법에 있어서,
    (a) 제12항에 따른 확산층 제조방법에 의해 가경화 상태의 제1 확산층을 제조하는 단계;
    (b) 기재층의 상면 및 하면 중 한 면 상에 상기 제1 확산층을 적층하고, 상기 제1 확산층 상에 굴절층 및 광 전달층 중 하나를 적층하는 단계;
    (c) 상기 제1 확산층을 완전 경화시켜 상기 굴절층 및 광 전달층 중 하나와 일체화하고 상기 기재층과 일체화하는 단계;
    (d) 제12항에 따른 확산층 제조방법에 의해 가경화 상태의 제2 확산층을 제조하는 단계;
    (e) 상기 기재층의 상면 및 하면 중 다른 한 면 상에 상기 제2 확산층을 적층하고, 상기 제2 확산층 상에 상기 굴절층 및 광 전달층 중 다른 하나를 적층하는 단계; 및
    (f) 상기 제2 확산층을 완전 경화시켜 상기 굴절층 및 광 전달층 중 다른 하나와 일체화하고 상기 기재층과 일체화하는 단계를 포함하는 일체형 광학 필름 제조방법.
PCT/KR2013/002437 2012-04-06 2013-03-25 일체형 광학 필름,확산층 제조방법 및 확산층 제조방법을 이용한 일체형 광학 필름 제조방법 WO2013151261A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120036147A KR101213079B1 (ko) 2012-04-06 2012-04-06 일체형 광학 필름 ,확산층 제조방법 및 확산층 제조방법을 이용한 일체형 광학 필름 제조방법
KR10-2012-0036147 2012-04-06

Publications (1)

Publication Number Publication Date
WO2013151261A1 true WO2013151261A1 (ko) 2013-10-10

Family

ID=47907799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/002437 WO2013151261A1 (ko) 2012-04-06 2013-03-25 일체형 광학 필름,확산층 제조방법 및 확산층 제조방법을 이용한 일체형 광학 필름 제조방법

Country Status (2)

Country Link
KR (1) KR101213079B1 (ko)
WO (1) WO2013151261A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006178092A (ja) * 2004-12-21 2006-07-06 Dainippon Printing Co Ltd 光拡散部材及び透過型スクリーン
KR20060127609A (ko) * 2005-06-08 2006-12-13 엘지전자 주식회사 백라이트 장치에 사용되는 프리즘시트
KR20090022229A (ko) * 2007-08-30 2009-03-04 정학술 Lcd 장치의 일체형 백라이트 구조 및 그의 제조방법
KR20090034684A (ko) * 2007-10-04 2009-04-08 엘지전자 주식회사 광학필름의 제조방법
KR20110056012A (ko) * 2009-11-20 2011-05-26 주식회사 엘지화학 광추출 및 빔-정형을 위한 유기발광표시장치용 광학 시트

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006178092A (ja) * 2004-12-21 2006-07-06 Dainippon Printing Co Ltd 光拡散部材及び透過型スクリーン
KR20060127609A (ko) * 2005-06-08 2006-12-13 엘지전자 주식회사 백라이트 장치에 사용되는 프리즘시트
KR20090022229A (ko) * 2007-08-30 2009-03-04 정학술 Lcd 장치의 일체형 백라이트 구조 및 그의 제조방법
KR20090034684A (ko) * 2007-10-04 2009-04-08 엘지전자 주식회사 광학필름의 제조방법
KR20110056012A (ko) * 2009-11-20 2011-05-26 주식회사 엘지화학 광추출 및 빔-정형을 위한 유기발광표시장치용 광학 시트

Also Published As

Publication number Publication date
KR101213079B1 (ko) 2012-12-18

Similar Documents

Publication Publication Date Title
US8730579B2 (en) Optical sheet having enhanced optical characteristics
WO2015105317A1 (ko) 광학시트 조립체 및 이를 포함하는 백라이트 유닛
WO2013019025A2 (en) Lighting device and liquid crystal display using the same
WO2016159563A1 (ko) 광학시트 및 이를 구비한 백라이트 유닛
WO2015156548A1 (ko) 백라이트 유닛, 및 이를 포함하는 디스플레이 장치
WO2017008314A1 (zh) 液晶显示装置及其导光板的制造方法
WO2015119435A1 (ko) 조명 장치
WO2013019023A2 (en) Lighting device and liquid crystal display device having the same
WO2013032286A1 (en) Optical sheet
WO2013032053A1 (ko) 광학부재 및 그 제조방법
WO2013168990A1 (ko) 광학시트유닛
WO2012153891A1 (ko) 광학부재 및 그 제조방법
WO2013151261A1 (ko) 일체형 광학 필름,확산층 제조방법 및 확산층 제조방법을 이용한 일체형 광학 필름 제조방법
KR100898047B1 (ko) 광학부재 및 그 제조방법
WO2014208978A1 (ko) 복합광학시트 및 이를 포함하는 백라이트 유닛
WO2014168387A1 (ko) 역프리즘 타입 광학소자
KR101209803B1 (ko) 일체형 광학 필름 제조 방법 및 일체형 광학 필름
WO2010044619A2 (ko) 확산비드가 구비된 광학소자, 이를 갖는 백라이트 유닛 및 액정표시장치
WO2013125816A1 (ko) 광학부재
WO2016117931A1 (ko) 백라이트 유닛을 위한 광학 시트 및 그 제조 방법
WO2014021594A1 (ko) 일체형 광학 필름 제조 방법
WO2012030084A1 (en) Backlight unit
WO2013055112A1 (ko) 광학시트 구조물
WO2012165702A1 (ko) 광학부재 및 그 제조방법
WO2016099169A1 (ko) 반사시트 구조물 및 이를 구비한 백라이트 유닛

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13771850

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13771850

Country of ref document: EP

Kind code of ref document: A1