WO2013150639A1 - Hardened layer formation device - Google Patents

Hardened layer formation device Download PDF

Info

Publication number
WO2013150639A1
WO2013150639A1 PCT/JP2012/059398 JP2012059398W WO2013150639A1 WO 2013150639 A1 WO2013150639 A1 WO 2013150639A1 JP 2012059398 W JP2012059398 W JP 2012059398W WO 2013150639 A1 WO2013150639 A1 WO 2013150639A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
hardened layer
layer forming
vacuum chamber
forming apparatus
Prior art date
Application number
PCT/JP2012/059398
Other languages
French (fr)
Japanese (ja)
Inventor
良政 高橋
輝一 坪田
一男 種岡
Original Assignee
株式会社東亜精機工作所
國友熱工株式会社
カインド・ヒート・テクノロジー株式会社
平田ネジ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東亜精機工作所, 國友熱工株式会社, カインド・ヒート・テクノロジー株式会社, 平田ネジ株式会社 filed Critical 株式会社東亜精機工作所
Priority to PCT/JP2012/059398 priority Critical patent/WO2013150639A1/en
Priority to JP2014508974A priority patent/JPWO2013150639A1/en
Publication of WO2013150639A1 publication Critical patent/WO2013150639A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32018Glow discharge
    • H01J37/32027DC powered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/338Changing chemical properties of treated surfaces
    • H01J2237/3385Carburising
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/338Changing chemical properties of treated surfaces
    • H01J2237/3387Nitriding

Definitions

  • the present invention relates to a hardened layer forming apparatus used for forming a hardened layer on the surface of a small metal part.
  • glow discharge generated between an object to be processed placed on a cathode electrode and an anode is used in a reduced pressure processing gas atmosphere.
  • Patent Document 1 a method described in Patent Document 1 has been proposed as a method for efficiently performing a surface modification process using plasma discharge on a small object to be processed.
  • This Patent Document 1 describes a plasma nitriding apparatus and a nitriding method for the purpose of forming a stable and uniform nitride surface layer on an object to be processed such as an ultra-small spherical shape made of various alloys. . Specifically, a plurality of workpieces having a very small spherical shape, such as ball bearings, are placed on one jig base, and the jig base is vibrated or swung to provide stable and uniform. A hardened layer is to be formed.
  • an object to be processed having a very small spherical shape such as a ball bearing is a processing target.
  • the threaded portion for example, screws, bolts, nuts, etc.
  • cylindrical small parts such as a shaft
  • the threaded portion is not used.
  • the present invention was devised in view of such circumstances, and provides a cured layer forming apparatus capable of processing small parts in a lump in a large amount to form a stable and uniform cured layer. .
  • the present invention is an apparatus for forming a hardened layer of at least one of a carburized layer and a nitrided layer on the surface of a small metal part, and at least one of carbon gas and nitrogen gas
  • a vacuum chamber for introducing a gas, a container disposed in the vacuum chamber and capable of accommodating a plurality of small parts, a pulsed DC power source for applying a cathode voltage to the container, and provided in the vicinity of the container
  • a heater a driving device for driving the container, a gas supply device for supplying the gas into the vacuum chamber, and a pressure control device for controlling the pressure in the vacuum chamber, wherein the container is conductive.
  • carbon gas and nitrogen gas in the present invention include a gas containing carbon and a gas containing nitrogen.
  • the gas introduced into the vacuum chamber includes argon, hydrogen and the like in addition to carbon gas and nitrogen gas.
  • a plurality of small parts are accommodated in the container, and the surface hardening process is performed while moving the container in the plasma atmosphere. Therefore, a plurality of small parts can be accommodated and processed in the container. It is possible to process the small parts at once. Therefore, cost can be reduced.
  • the container is made of a conductive material and the container to which the cathode voltage is applied acts as a movable cathode during glow discharge, the processing speed is fast and the plasma uniformly covers small parts. Therefore, a cured layer having a uniform thickness can be formed in a short time on the entire surface of the small component.
  • a pulse DC power source is used to apply a cathode voltage to the container, arcing and plasma instability can be prevented, and stable pulse plasma discharge can be obtained. Therefore, a cured layer having a uniform thickness can be suitably formed on the entire surface of the small component.
  • the temperature around the container can be uniformly increased by using both heating by plasma discharge and heating by the heater. Therefore, the time required to raise the temperature to the predetermined temperature can be shortened.
  • the container is configured by a tray at least a part of which is formed of a multi-hole metal plate or a metal mesh.
  • the tray is driven to swing in the direction.
  • the small parts since the surface hardening treatment is performed while swinging the small parts on the tray, the small parts roll slowly on the tray. Therefore, it is possible to prevent small parts from being dented.
  • the processing gas is supplied into the tray through the multi-hole. Therefore, since a plasma atmosphere is generated inside and outside the tray, small parts are present in the plasma atmosphere, so that a stable and uniform hardened layer can be formed on the entire surface of the small parts. Moreover, it is possible to design the tray by setting the shape and size of the hole according to the size and shape of the small parts.
  • a plurality of the trays may be provided. In this case, a large number of small parts can be processed at a time. Further, since the tray can be appropriately arranged according to the shape and quantity of the small parts, the convenience is high.
  • the present invention is the above-described cured layer forming apparatus, wherein the container is configured by a cylindrical rotating container having a circumferential surface formed of a multi-hole plate or a wire mesh, and the driving device is configured to rotate. The container is driven to rotate.
  • a plurality of small parts are accommodated in a rotating container, and at least one of carburizing and nitriding is performed in the discharge plasma while rotating the rotating container and stirring the small parts. Is possible.
  • the rotating container is a cylindrical body having a circumferential surface formed of a multi-hole plate or a wire mesh, the processing gas is supplied through the multi-holes on the circumferential surface. Therefore, since a plasma atmosphere is generated inside and outside the rotating container, a stable and uniform hardened layer can be formed on the entire surface of the small component.
  • the rotating container is formed of a cylindrical body, it rotates when it is rotated around the central axis of the cylinder (the axis that passes through the center of the circle on both sides) in a horizontal state with the circumferential surface of the cylindrical body as a horizontal plane. Since the small parts accommodated in the container are suitably stirred, a stable and uniform cured layer can be efficiently formed on the entire surface of the small parts.
  • the driving device may be provided outside the vacuum chamber. In this case, since it is possible to prevent the drive device from becoming high temperature, it is possible to prevent problems due to thermal expansion.
  • a hardened layer forming apparatus capable of forming a stable and uniform hardened layer on the entire surface of a small part and capable of processing a large amount of small parts at once.
  • the hardened layer forming apparatus 1 is provided with a metal container 3 capable of storing a plurality of small parts in a vacuum chamber 2, and a pulse DC power source for applying a cathode voltage to the tray 3. 4, a heater 5 provided in the vicinity of the container 3, a motor (driving device) 6 that drives the container 3 to swing in the horizontal direction, and a gas supply device 7 that supplies the gas into the vacuum chamber 2. have.
  • the vacuum chamber 2 is made of, for example, austenitic stainless steel and is designed to prevent sputtering of excess impurities due to discharge.
  • argon or hydrogen is also included in addition to the carbon gas and nitrogen gas.
  • the container 3 is formed of a tray 31 of a conductive material (for example, made of stainless steel) having a bottom surface made of a large number of perforated plates (punching metal), and is configured to accommodate a large number of small parts therein.
  • a conductive material for example, made of stainless steel
  • the processing gas is supplied into the tray 31 through the multi-holes of the bottom surface 32. Therefore, since a plasma atmosphere is generated inside and outside the tray 31, a stable and uniform hardened layer can be formed on the entire surface of the small component.
  • tray 31 by setting the shape and size of the holes according to the size and shape of the small parts.
  • the tray 31 may be provided with partitions according to the size, shape, and quantity of the objects to be processed to form small baskets or baskets formed in rows.
  • various small parts can be applied as the object to be processed, and in particular, it is preferably applied to a cylindrical small part such as a shaft.
  • a case where the present invention is applied to a shaft will be described as an example.
  • the shaft 8 is arranged like a roller conveyor on the row-shaped cage 33 of the tray 31, and the tray 31 is swung to thereby rotate the shaft.
  • the plasma carburizing / nitriding treatment is performed such that 8 rolls on the tray 31, the plasma carburizing / nitriding treatment can be performed without generating dents.
  • a uniform glow discharge is generated around the row of cages 33, so that the occurrence of discharge traces on the shaft 8 is prevented.
  • the gas can be dissociated at a low voltage by heating the heater 5, which will be described later, so that the temperature of small parts that are the objects to be processed becomes uniform, and glow discharge is uniformly generated.
  • the container 3 is preferably provided with a plurality of trays 31 as shown in FIG. This is because a large number of objects to be processed can be processed at a time by providing a large number of trays 31.
  • the pulse DC power source 4 is a power source applied for plasma generation, and is set so that, for example, a voltage within a range of 300V to 800V is applied. Further, a cathode voltage is applied to the container 3 and an anode voltage is applied to the vacuum chamber 2.
  • the heater 5 is composed of a sheathed heater, for example, and is provided in the vicinity of the container 3.
  • a sheathed heater for example, and is provided in the vicinity of the container 3.
  • the temperature in the container 3 is measured, for example, by placing a thermocouple near the container 3. Moreover, the heating control apparatus 51 which performs a highly accurate temperature rising control using the sequencer is provided.
  • the motor 6 reciprocates with the bottom surface 32 of the tray 31 in a horizontal state with a slight inclination from the horizontal direction, and swings small parts (the shaft 8) on the tray 31 in the horizontal direction. It is used as a drive means. As described above, when the small component (shaft 8) on the tray 31 swings in the horizontal direction, the shaft 8 rotates and moves, so that the entire surface of the shaft 8 can be uniformly processed.
  • the motor 6 is preferably provided outside the vacuum chamber 2. This is because if the motor 6 is provided outside the vacuum chamber 2, it is possible to prevent the motor from becoming hot due to plasma discharge or a heater, and thus it is possible to prevent problems due to thermal expansion.
  • the gas supply device 7 is for introducing at least one of carbon gas and nitrogen gas into the vacuum chamber 2, and a high-quality valve is used.
  • a high-quality mass flow controller is used to control the gas flow rate.
  • a vacuum gauge that is not affected by the type of gas or plasma is adopted, and the pressure in the vacuum chamber 2 is determined based on the signal of this vacuum gauge.
  • a pressure control device 71 for controlling the pressure.
  • a vacuum pump (not shown) is also provided.
  • the temperature around the container 3 is set so as to be heated within a range of 350 ° C. to 800 ° C., and a hardened layer is formed on the entire surface of the small part.
  • processing pressure in the vacuum chamber is set within a range of several Pa to several hundred Pa, and the applied voltage is set within a range of several hundred V to several thousand V.
  • a plurality of small parts are accommodated on a container 3 (tray 31) provided in the vacuum chamber 2.
  • the shafts 8 are arranged on the tray 31 like a roller conveyor (see FIG. 3).
  • the carbon gas includes a gas containing carbon gas, and may be a mixed gas of CH 4 , C 2 H 2 and Ar, for example.
  • the nitrogen gas contains a gas containing nitrogen gas, and may be N 2 H 2 or a mixed gas of Ar, for example.
  • accessory part may be formed of austenitic stainless steel.
  • Austenitic stainless steel is excellent in corrosion resistance and toughness, but has a drawback that it is easy to generate adhesive wear due to its softness and inferior in wear resistance.
  • the conventional carburizing and nitriding treatment at a high temperature has a problem that the corrosion resistance of the stainless steel is remarkably lowered. Therefore, in the present invention, by processing at a low temperature of 350 ° C. to 800 ° C., the hard parts are formed by forming a hardened layer without impairing the corrosion resistance, thereby ensuring the toughness and enhancing the wear resistance. It becomes possible to provide.
  • the reason why the lower limit of the processing temperature is set to 350 ° C. is as follows. That is, when the treatment temperature is lower than 350 ° C., the diffusion rate of nitrogen or carbon becomes low, and thus a very long nitriding or carburizing treatment is required to obtain a hardened layer having a practical thickness. . Thus, if processing requires a long time, cost will increase and it is not practical.
  • the processing pressure in the vacuum chamber is set within a range of several Pa to several hundred Pa, and the applied voltage is set within a range of several hundred V to several thousand V.
  • the second embodiment is different from the first embodiment in the shape and driving operation of the container. Mainly, different forms will be described, and description of the same forms will be omitted.
  • the rotary container 300 is formed of a stainless steel cylindrical body having a circumferential surface made of a large number of perforated plates (punched metal), and is configured to accommodate a large number (about 2000 to 3000) of small parts therein. .
  • the circumferential surface of the rotary container 300 is formed of a large number of perforated plates, the processing gas is supplied through the large number of holes on the circumferential surface. Therefore, since a plasma atmosphere is generated inside and outside the rotating container 300, a stable and uniform hardened layer can be formed on the entire surface of the small component.
  • the multi-hole plate forming the circumferential surface of the rotating container 300 may be configured to be detachable. In this case, it is possible to prepare several types of multi-hole plates corresponding to small parts and replace them according to the object to be processed, or to replace them when the multi-hole plate deteriorates.
  • the rotating container 300 is provided with an opening for taking in and out small parts and a lid for opening and closing the opening.
  • the motor 6 is used as a driving means for rotating the rotating container 300 around the central axis of the cylinder (the axis passing through the center of the circle on both sides) in the horizontal state where the circumferential surface of the cylindrical body is a horizontal plane. is there.
  • the small part that is the object to be processed is particularly suitable for processing a small part having an uneven surface such as a screw.
  • the method and apparatus for forming a cured layer according to the present invention is advantageous in that a stable and uniform cured layer can be formed on the entire surface of a small component, and a large amount of small components can be processed collectively. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

The present invention is equipped with a vacuum chamber (2) into which carbon gas and/or nitrogen gas is introduced, and a container (3) which is arranged in the vacuum chamber (2) and is capable of accommodating multiple small components. In addition, the present invention has: a pulse DC power source (4) that applies an anode voltage to the container (3); a heater (5) provided in the vicinity of the container (3); a drive device (6) that drives the container (3); a gas supply device (7) that supplies gas to the interior of the vacuum chamber (2); and a pressure control device (71) that controls the pressure within the vacuum chamber (2). The container (3) is formed of an electroconductive material, and by using the container (3) to which an anode voltage has been applied as a movable anode during glow discharge, a hardened layer is formed over the entire surface of the small components with a uniform thickness.

Description

硬化層形成装置Hardened layer forming device
 本発明は、金属製の小物部品の表面に硬化層を形成するために用いられる硬化層形成装置に関する。 The present invention relates to a hardened layer forming apparatus used for forming a hardened layer on the surface of a small metal part.
 従来から、鉄鋼材料や各種合金などからなる被処理物の表面の硬化や耐食性を向上させることを目的として、種々の改質処理が行われている。 Conventionally, various reforming treatments have been performed for the purpose of improving the surface hardening and corrosion resistance of the object to be treated made of steel materials or various alloys.
 これらの改質処理のうち、近年ではプラズマを媒体として利用するプラズマ浸炭処理やプラズマ窒化処理が、省資源や省エネルギー、環境への負荷を低減するといった観点から着目されている。 Among these reforming treatments, in recent years, plasma carburizing treatment and plasma nitriding treatment using plasma as a medium have attracted attention from the viewpoints of resource saving, energy saving, and reduction of environmental load.
 一般的なプラズマ浸炭処理やプラズマ窒化処理では、減圧した処理ガス雰囲気中で、陰極電極上に載置した被処理物と、陽極との間に生じるグロー放電を利用している。 In general plasma carburizing treatment and plasma nitriding treatment, glow discharge generated between an object to be processed placed on a cathode electrode and an anode is used in a reduced pressure processing gas atmosphere.
 ところで、小型の被処理物に対してプラズマ浸炭処理やプラズマ窒化処理を行う場合、効率を良くするためには、一度に大量の被処理物を処理する必要がある。 By the way, when plasma carburizing or plasma nitriding is performed on a small object to be processed, it is necessary to process a large amount of object to be processed at a time in order to improve efficiency.
 しかし、複数個の被処理物に対して均質で安定的な処理を行うためには、被処理物の間隔を互いにあけた状態で陰極電極上に被処理物を治具上に載置する必要があり、被処理物を治具にセットするための手間がかかるといった問題が生じていた。また、一つ一つの被処理物をそれぞれの治具にセットしていたのでは、一度に大量の被処理物を処理することはできない。 However, in order to perform homogeneous and stable processing on a plurality of objects to be processed, it is necessary to place the objects to be processed on the jig with the cathodes spaced apart from each other. There has been a problem that it takes time and effort to set the workpiece on the jig. Further, if each workpiece is set on each jig, a large amount of workpieces cannot be processed at a time.
 そこで、プラズマ放電を利用した表面改質処理を小型の被処理物に対して効率的に行う方法として、例えば特許文献1に記載の方法が提案されている。 Therefore, for example, a method described in Patent Document 1 has been proposed as a method for efficiently performing a surface modification process using plasma discharge on a small object to be processed.
 この特許文献1には、各種合金からなる超小な球状形状などの被処理物に対し安定かつ均一な窒化物表面層を形成させることを目的としたプラズマ窒化装置および窒化方法が記載されている。具体的には、ボールベアリングなどの超小な球状形状である被処理物を、1つの治具ベース上に複数個載置し、治具ベースを振動、或いは揺動させることにより、安定かつ均一な硬化層を形成しようとするものである。 This Patent Document 1 describes a plasma nitriding apparatus and a nitriding method for the purpose of forming a stable and uniform nitride surface layer on an object to be processed such as an ultra-small spherical shape made of various alloys. . Specifically, a plurality of workpieces having a very small spherical shape, such as ball bearings, are placed on one jig base, and the jig base is vibrated or swung to provide stable and uniform. A hardened layer is to be formed.
特開2008-115422号公報JP 2008-115422 A
 この特許文献1に記載のプラズマ窒化装置および窒化方法では、ボールベアリングなどの超小な球状形状である被処理物を処理対象としている。しかし、このような球状形状ではなく、例えば、ねじ部を有する小物部品(例えば、ねじ、ボルト、ナットなど)や、シャフトのような円柱形状の小物部品を処理する場合にあっては、ねじ部のような高低差の大きい凹凸面を有する小物部品に均一な表面処理を行うこと自体が困難であるのに加えて、複数個の小物部品を1つの治具ベース上に載置すれば小物部品同士が重なり合うため、安定かつ均一な硬化層を表面全体に形成することは極めて困難である。 In the plasma nitriding apparatus and the nitriding method described in Patent Document 1, an object to be processed having a very small spherical shape such as a ball bearing is a processing target. However, when processing small parts having a threaded portion (for example, screws, bolts, nuts, etc.) or cylindrical small parts such as a shaft, the threaded portion is not used. In addition to the fact that it is difficult to perform uniform surface treatment on small parts having uneven surfaces with a large difference in height, such as small parts, it is possible to place a plurality of small parts on a single jig base. Since they overlap each other, it is extremely difficult to form a stable and uniform cured layer over the entire surface.
 本発明は、このような事情に鑑み創案されたもので、小物部品を大量に一括して処理し、安定かつ均一な硬化層を形成することが可能な硬化層形成装置を提供するものである。 The present invention was devised in view of such circumstances, and provides a cured layer forming apparatus capable of processing small parts in a lump in a large amount to form a stable and uniform cured layer. .
 本発明は、金属製の小物部品の表面に、浸炭層および窒化層のうちの少なくともいずれか一つの硬化層を形成するための装置であって、炭素ガスおよび窒素ガスのうちの少なくともいずれか一方のガスを導入する真空チャンバと、前記真空チャンバ内に配置され、小物部品を複数個収容可能な容器とを備え、前記容器に陰極電圧を印加するパルスDC電源と、前記容器の近傍に設けられたヒータと、前記容器を駆動させる駆動装置と、前記真空チャンバ内に前記ガスを供給するガス供給装置と、前記真空チャンバ内の圧力を制御する圧力制御装置とを有し、前記容器は導電性材料で形成されており、陰極電圧を印加された容器がグロー放電中に可動陰極として作用することにより、小物部品の表面全体に均一な厚さの硬化層を形成することを特徴とする。 The present invention is an apparatus for forming a hardened layer of at least one of a carburized layer and a nitrided layer on the surface of a small metal part, and at least one of carbon gas and nitrogen gas A vacuum chamber for introducing a gas, a container disposed in the vacuum chamber and capable of accommodating a plurality of small parts, a pulsed DC power source for applying a cathode voltage to the container, and provided in the vicinity of the container A heater, a driving device for driving the container, a gas supply device for supplying the gas into the vacuum chamber, and a pressure control device for controlling the pressure in the vacuum chamber, wherein the container is conductive. Forming a hardened layer with a uniform thickness over the entire surface of small parts by forming a container made of a material and acting as a movable cathode during glow discharge. And features.
 なお、本発明における炭素ガス、窒素ガスの用語には、炭素を含むガス、窒素を含むガスが含まれるものとする。また、真空チャンバ内に導入されるガスには、炭素ガス、窒素ガスの他、アルゴンや水素なども含まれる。 Note that the terms carbon gas and nitrogen gas in the present invention include a gas containing carbon and a gas containing nitrogen. Further, the gas introduced into the vacuum chamber includes argon, hydrogen and the like in addition to carbon gas and nitrogen gas.
 この発明によれば、容器に小物部品を複数個収容し、プラズマ雰囲気中でこの容器を動かしながら表面硬化処理を行っているので、容器内に複数の小物部品を収容して処理できるので、大量の小物部品を一括して処理することが可能である。したがって、コストを低減することが可能である。 According to the present invention, a plurality of small parts are accommodated in the container, and the surface hardening process is performed while moving the container in the plasma atmosphere. Therefore, a plurality of small parts can be accommodated and processed in the container. It is possible to process the small parts at once. Therefore, cost can be reduced.
 また、容器は導電性材料で形成されており、陰極電圧を印加された容器がグロー放電中に可動陰極として作用するので、処理速度が速く、しかもプラズマが均一に小物部品を覆うことになる。したがって、小物部品の表面全体に均一な厚さの硬化層を短時間で形成することができる。 Also, since the container is made of a conductive material and the container to which the cathode voltage is applied acts as a movable cathode during glow discharge, the processing speed is fast and the plasma uniformly covers small parts. Therefore, a cured layer having a uniform thickness can be formed in a short time on the entire surface of the small component.
 さらに、容器に陰極電圧を印加するためにパルスDC電源を用いているので、アーキングやプラズマの不安定化を防止することができ、安定したパルスプラズマ放電を得ることができる。したがって、小物部品の表面全体に均一な厚さの硬化層を好適に形成することができる。 Furthermore, since a pulse DC power source is used to apply a cathode voltage to the container, arcing and plasma instability can be prevented, and stable pulse plasma discharge can be obtained. Therefore, a cured layer having a uniform thickness can be suitably formed on the entire surface of the small component.
 さらにまた、容器内に複数の小物部品を収容し、容器を動かせながらて処理できるので、小物部品を一々治具の上に並べるといった手間を省くことができる。したがって、コストを低減することが可能である。 Furthermore, since a plurality of small parts can be accommodated in the container and processed while moving the container, the trouble of arranging the small parts one by one on the jig can be saved. Therefore, cost can be reduced.
 上記に加えて、容器の近傍に備えられたヒータを用いて加熱しているので、プラズマ放電による加熱と、ヒータによる加熱を併用して容器周囲の温度を均一に上昇させることができる。したがって、所定温度に昇温させるために要する時間を短縮することができる。 In addition to the above, since heating is performed using a heater provided in the vicinity of the container, the temperature around the container can be uniformly increased by using both heating by plasma discharge and heating by the heater. Therefore, the time required to raise the temperature to the predetermined temperature can be shortened.
 本発明は、上記記載の硬化層形成装置において、前記容器は、少なくとも一部が多数孔金属板または金網で形成されたトレイで構成されており、前記駆動装置は、トレイ上の小物部品が水平方向に揺動するように前記トレイを駆動させることを特徴としている。 According to the present invention, in the hardened layer forming apparatus described above, the container is configured by a tray at least a part of which is formed of a multi-hole metal plate or a metal mesh. The tray is driven to swing in the direction.
 この発明によれば、トレイ上の小物部品を揺動させながら表面硬化処理を行うので、トレイ上を小物部品がゆっくりと転がる。したがって、小物部品に打痕が付くことが防止できる。 According to the present invention, since the surface hardening treatment is performed while swinging the small parts on the tray, the small parts roll slowly on the tray. Therefore, it is possible to prevent small parts from being dented.
 また、前記トレイは、少なくとも一部が多数孔金属板または金網で形成されているので、多数孔等を介して処理ガスがトレイ内に供給される。したがって、トレイの内外にプラズマ雰囲気が発生するので、小物部品がプラズマ雰囲気中に存在することになるため、小物部品の表面全体に安定かつ均一な硬化層を形成することができる。また、小物部品の大きさや形状に応じて孔の形状や大きさを設定して、トレイの設計をすることが可能である。 In addition, since at least a part of the tray is formed of a multi-hole metal plate or a wire mesh, the processing gas is supplied into the tray through the multi-hole. Therefore, since a plasma atmosphere is generated inside and outside the tray, small parts are present in the plasma atmosphere, so that a stable and uniform hardened layer can be formed on the entire surface of the small parts. Moreover, it is possible to design the tray by setting the shape and size of the hole according to the size and shape of the small parts.
  上記記載の硬化層形成装置において、前記トレイを、複数備えているもので構成してもよい。この場合、大量の小物部品を一度に処理することが可能である。また、小物部品の形状や数量にあわせて適宜トレイを配置することができるので、利便性が高い。 In the cured layer forming apparatus described above, a plurality of the trays may be provided. In this case, a large number of small parts can be processed at a time. Further, since the tray can be appropriately arranged according to the shape and quantity of the small parts, the convenience is high.
 また、本発明は、上記記載の硬化層形成装置において、前記容器は、多数孔板または金網で形成された円周面を有する円筒体の回転容器で構成されており、前記駆動装置は、回転容器を回転駆動させることを特徴とする。 Further, the present invention is the above-described cured layer forming apparatus, wherein the container is configured by a cylindrical rotating container having a circumferential surface formed of a multi-hole plate or a wire mesh, and the driving device is configured to rotate. The container is driven to rotate.
 この発明によれば、回転容器に小物部品を複数個収容して、この回転容器を回転させて小物部品を攪拌しながら放電プラズマ中で浸炭処理および窒化処理の少なくともいずれか一方の処理を行うことが可能である。 According to this invention, a plurality of small parts are accommodated in a rotating container, and at least one of carburizing and nitriding is performed in the discharge plasma while rotating the rotating container and stirring the small parts. Is possible.
 したがって、小物部品の表面全体に安定かつ均一な硬化層を形成することが可能で、大量の小物部品を一括して処理することができ、プラズマ浸炭またはプラズマ窒化処理、若しくは双方の処理に要するコストを大幅に低減することができる。 Therefore, it is possible to form a stable and uniform hardened layer on the entire surface of the small parts, it is possible to process a large amount of small parts at once, and the cost required for plasma carburizing or plasma nitriding treatment, or both processes. Can be greatly reduced.
 また、回転容器は、多数孔板または金網で形成された円周面を有する円筒体であるから、円周面の多数孔等を介して処理ガスが供給される。したがって、回転容器の内外にプラズマ雰囲気が発生するので、小物部品の表面全体に安定かつ均一な硬化層を形成することができる。 Further, since the rotating container is a cylindrical body having a circumferential surface formed of a multi-hole plate or a wire mesh, the processing gas is supplied through the multi-holes on the circumferential surface. Therefore, since a plasma atmosphere is generated inside and outside the rotating container, a stable and uniform hardened layer can be formed on the entire surface of the small component.
 また、小物部品の大きさや形状に応じて孔の形状や大きさを設定して、回転容器の設計をすることが可能である。 Also, it is possible to design the rotating container by setting the shape and size of the hole according to the size and shape of the small parts.
 さらに、回転容器が円筒体で形成されているので、円筒体の円周面を水平面とした横置き状態で、円筒中心軸(両側面の円中心を貫通する軸)回りに回転させると、回転容器内に収容した小物部品が好適に攪拌されるので、安定かつ均一な硬化層を小物部品の表面全体に効率良く形成することができる。 Furthermore, since the rotating container is formed of a cylindrical body, it rotates when it is rotated around the central axis of the cylinder (the axis that passes through the center of the circle on both sides) in a horizontal state with the circumferential surface of the cylindrical body as a horizontal plane. Since the small parts accommodated in the container are suitably stirred, a stable and uniform cured layer can be efficiently formed on the entire surface of the small parts.
 上記記載の硬化層形成装置において、前記駆動装置を、前記真空チャンバの外部に備えるように構成してもよい。この場合、駆動装置が高温になることが防止できるので、熱膨張による不具合などを防止することが可能である。 In the cured layer forming apparatus described above, the driving device may be provided outside the vacuum chamber. In this case, since it is possible to prevent the drive device from becoming high temperature, it is possible to prevent problems due to thermal expansion.
 本発明によれば、小物部品の表面全体に安定かつ均一な硬化層を形成することが可能で、大量の小物部品を一括して処理することが可能な硬化層形成装置を提供することができる。 According to the present invention, it is possible to provide a hardened layer forming apparatus capable of forming a stable and uniform hardened layer on the entire surface of a small part and capable of processing a large amount of small parts at once. .
本発明の第1実施形態に係る硬化層形成装置の概要を示す概略図である。It is the schematic which shows the outline | summary of the hardened layer forming apparatus which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係るトレイを示す概略図である。It is the schematic which shows the tray which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係るトレイに小物部品を配置した例を示す概略斜視図である。It is a schematic perspective view which shows the example which has arrange | positioned accessory components to the tray which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る硬化層形成装置の概要を示す概略図である。It is the schematic which shows the outline | summary of the hardened layer forming apparatus which concerns on 2nd Embodiment of this invention.
 以下、本発明に係る硬化層形成装置1の実施の形態について説明する。
<第1実施形態>
 この硬化層形成装置1は、図1に示すように、真空チャンバ2内に、小物部品を複数個収容可能な金属製の容器3が備えられ、このトレイ3に陰極電圧を印加するパルスDC電源4と、容器3の近傍に設けられたヒータ5と、容器3を水平方向に揺動するように駆動させるモータ(駆動装置)6、および真空チャンバ2内に前記ガスを供給するガス供給装置7を有している。
Hereinafter, embodiments of the hardened layer forming apparatus 1 according to the present invention will be described.
<First Embodiment>
As shown in FIG. 1, the hardened layer forming apparatus 1 is provided with a metal container 3 capable of storing a plurality of small parts in a vacuum chamber 2, and a pulse DC power source for applying a cathode voltage to the tray 3. 4, a heater 5 provided in the vicinity of the container 3, a motor (driving device) 6 that drives the container 3 to swing in the horizontal direction, and a gas supply device 7 that supplies the gas into the vacuum chamber 2. have.
 真空チャンバ2は、例えばオーステナイト系ステンレス鋼で形成されており、放電による余分な不純物のスパッタを防止するように図られている。 The vacuum chamber 2 is made of, for example, austenitic stainless steel and is designed to prevent sputtering of excess impurities due to discharge.
 なお、真空チャンバ2内には、炭素ガスおよび窒素ガスのうちの少なくともいずれか一方のガスが導入されるが、炭素ガス、窒素ガスの他、アルゴンや水素なども含まれる。 In addition, although at least one of carbon gas and nitrogen gas is introduced into the vacuum chamber 2, argon or hydrogen is also included in addition to the carbon gas and nitrogen gas.
 容器3は、多数孔板(パンチングメタル)からなる底面を有する導電性材料(例えばステンレス製)のトレイ31で形成され、内部に多数の小物部品を収容可能に構成されている。 The container 3 is formed of a tray 31 of a conductive material (for example, made of stainless steel) having a bottom surface made of a large number of perforated plates (punching metal), and is configured to accommodate a large number of small parts therein.
 このように、トレイ31の底面32が多数孔板で形成されているので、底面32の多数孔を介して処理ガスがトレイ31内に供給される。したがって、トレイ31の内外にプラズマ雰囲気が発生するので、小物部品の表面全体に安定かつ均一な硬化層を形成することができる。 As described above, since the bottom surface 32 of the tray 31 is formed of a multi-hole plate, the processing gas is supplied into the tray 31 through the multi-holes of the bottom surface 32. Therefore, since a plasma atmosphere is generated inside and outside the tray 31, a stable and uniform hardened layer can be formed on the entire surface of the small component.
 また、小物部品の大きさや形状に応じて孔の形状や大きさを設定して、トレイ31の設計をすることが可能である。 Also, it is possible to design the tray 31 by setting the shape and size of the holes according to the size and shape of the small parts.
 さらに、トレイ31は、被処理物の大きさや形状、数量に応じて仕切りを設け、小型のカゴや、列状に形成されたカゴを形成してもよい。 Furthermore, the tray 31 may be provided with partitions according to the size, shape, and quantity of the objects to be processed to form small baskets or baskets formed in rows.
 なお、被処理物としては、種々の小物部品が適用可能であるが、特にシャフトのような円柱形状の小物部品に好適に適用される。本実施形態では、シャフトに適用した場合を例にとって説明する。 Note that various small parts can be applied as the object to be processed, and in particular, it is preferably applied to a cylindrical small part such as a shaft. In this embodiment, a case where the present invention is applied to a shaft will be described as an example.
 シャフトは、その機能上、凸状の打痕や放電痕の発生は致命的な欠陥となってしまう。そこで、図3に示すように、本実施形態の硬化層形成装置1を用いて、トレイ31の列状のカゴ33にシャフト8をローラーコンベアのように並べ、トレイ31を揺動させることによりシャフト8がトレイ31上を転がるようにして、プラズマ浸炭・窒化処理を行うと、打痕が発生することなく、プラズマ浸炭・窒化処理を行うことが可能である。また、プラズマ浸炭・窒化処理中の真空チャンバ2内において、列状のカゴ33の周囲には均一なグロー放電が発生するので、シャフト8に放電痕が発生することが防止される。 ∙ Due to the function of the shaft, the occurrence of convex dents and discharge marks becomes a fatal defect. Therefore, as shown in FIG. 3, by using the hardened layer forming apparatus 1 of the present embodiment, the shaft 8 is arranged like a roller conveyor on the row-shaped cage 33 of the tray 31, and the tray 31 is swung to thereby rotate the shaft. When the plasma carburizing / nitriding treatment is performed such that 8 rolls on the tray 31, the plasma carburizing / nitriding treatment can be performed without generating dents. Further, in the vacuum chamber 2 during the plasma carburizing / nitriding process, a uniform glow discharge is generated around the row of cages 33, so that the occurrence of discharge traces on the shaft 8 is prevented.
 これは、後述するヒータ5の加熱により、低い電圧でガスを解離できるので、被処理物である小物部品の温度が均一となり、グロー放電が均一に発生するためである。 This is because the gas can be dissociated at a low voltage by heating the heater 5, which will be described later, so that the temperature of small parts that are the objects to be processed becomes uniform, and glow discharge is uniformly generated.
 なお、容器3には、図2に示すように、複数段のトレイ31を設けるのが好ましい。トレイ31を多数設けることにより、大量の被処理物を一度に処理できるからである。 The container 3 is preferably provided with a plurality of trays 31 as shown in FIG. This is because a large number of objects to be processed can be processed at a time by providing a large number of trays 31.
 パルスDC電源4は、プラズマ発生用として印加される電源であって、例えば300Vから800Vの範囲内の電圧が印加されるように設定される。また、容器3に陰極電圧を印加し、真空チャンバ2に陽極電圧を印加している。 The pulse DC power source 4 is a power source applied for plasma generation, and is set so that, for example, a voltage within a range of 300V to 800V is applied. Further, a cathode voltage is applied to the container 3 and an anode voltage is applied to the vacuum chamber 2.
 ヒータ5は、例えばシーズヒータで構成されており、容器3の近傍に備えられている。このように容器3の近傍にヒータ5を備えることにより、プラズマ放電による加熱と、ヒータ5による加熱を併用して容器3の周囲の温度を上昇させることができる。したがって、所定温度に昇温させるために要する時間を短縮することができる。また、このように熱源が2つ有ることから、処理時のプラズマによるガスの解離状態を調整することができる。 The heater 5 is composed of a sheathed heater, for example, and is provided in the vicinity of the container 3. By providing the heater 5 in the vicinity of the container 3 in this way, the temperature around the container 3 can be raised by using both the heating by plasma discharge and the heating by the heater 5 together. Therefore, the time required to raise the temperature to the predetermined temperature can be shortened. Moreover, since there are two heat sources in this way, the dissociation state of the gas by the plasma at the time of processing can be adjusted.
 容器3内の温度計測については、例えばサーモカップルを容器3の近傍に配置して行っている。また、シーケンサーを用いて、高精度な昇温制御を行う加熱制御装置51を備えている。 The temperature in the container 3 is measured, for example, by placing a thermocouple near the container 3. Moreover, the heating control apparatus 51 which performs a highly accurate temperature rising control using the sequencer is provided.
 モータ6は、トレイ31の底面32を水平面とした横置き状態で、水平方向から若干傾斜させた状態で往復動させ、トレイ31上の小物部品(シャフト8)を水平方向に揺動させるための駆動手段として用いられるものである。このように、トレイ31上の小物部品(シャフト8)が水平方向に揺動すると、シャフト8が回転移動するため、シャフト8の表面全体を均一に処理することが可能になる。 The motor 6 reciprocates with the bottom surface 32 of the tray 31 in a horizontal state with a slight inclination from the horizontal direction, and swings small parts (the shaft 8) on the tray 31 in the horizontal direction. It is used as a drive means. As described above, when the small component (shaft 8) on the tray 31 swings in the horizontal direction, the shaft 8 rotates and moves, so that the entire surface of the shaft 8 can be uniformly processed.
 なお、モータ6は真空チャンバ2の外部に設けることが好ましい。モータ6を真空チャンバ2の外部に設けると、プラズマ放電やヒータによりモータが高温になることが防止できるため、熱膨張による不具合などを防止することが可能になるからである。 The motor 6 is preferably provided outside the vacuum chamber 2. This is because if the motor 6 is provided outside the vacuum chamber 2, it is possible to prevent the motor from becoming hot due to plasma discharge or a heater, and thus it is possible to prevent problems due to thermal expansion.
 ガス供給装置7は、真空チャンバ2内に炭素ガスおよび窒素ガスのうちの少なくともいずれか一方のガスを導入するためのものであり、高品位なバルブが用いられている。また、優れた表面処理層の均一性および製品間の品質の均一性を担保するために、高品位なマスフローコントローラーを使用してガス流量の制御を行っている。 The gas supply device 7 is for introducing at least one of carbon gas and nitrogen gas into the vacuum chamber 2, and a high-quality valve is used. In addition, in order to ensure excellent surface treatment layer uniformity and quality uniformity between products, a high-quality mass flow controller is used to control the gas flow rate.
 さらに、プラズマ放電中の圧力を制御するために、ガスの種類やプラズマの影響を受けない真空測定子(キャパシタンス・マノメーター)を採用し、この真空測定子の信号に基づいて真空チャンバ2内の圧力を制御する圧力制御装置71を備えている。また、真空ポンプ(図示省略)も備えている。 Furthermore, in order to control the pressure during plasma discharge, a vacuum gauge (capacitance manometer) that is not affected by the type of gas or plasma is adopted, and the pressure in the vacuum chamber 2 is determined based on the signal of this vacuum gauge. There is provided a pressure control device 71 for controlling the pressure. A vacuum pump (not shown) is also provided.
 なお、容器3周囲の温度は、350℃から800℃の範囲内に加熱されるように設定されており、小物部品の表面全体に硬化層を形成する。 In addition, the temperature around the container 3 is set so as to be heated within a range of 350 ° C. to 800 ° C., and a hardened layer is formed on the entire surface of the small part.
 また、真空チャンバ内の処理圧力は、数Paから数百Paの範囲内、印加電圧は、数百Vから数千Vの範囲内に設定される。 Further, the processing pressure in the vacuum chamber is set within a range of several Pa to several hundred Pa, and the applied voltage is set within a range of several hundred V to several thousand V.
 次に、上記の硬化層形成装置1を用いた硬化層形成方法について説明する。 Next, a cured layer forming method using the cured layer forming apparatus 1 will be described.
 まず、真空チャンバ2内に備えられた容器3(トレイ31)上に小物部品を複数個収容する。このとき、トレイ31上に例えばシャフト8をローラーコンベア状に並べる(図3参照)。 First, a plurality of small parts are accommodated on a container 3 (tray 31) provided in the vacuum chamber 2. At this time, for example, the shafts 8 are arranged on the tray 31 like a roller conveyor (see FIG. 3).
 次に、真空チャンバ2内部を減圧した後、炭素ガスおよび窒素ガスのうちの少なくともいずれか一方のガスを供給して、このガス雰囲気中で容器3に陰極電圧を印加してプラズマ放電を行う一方、容器3を揺動させながら、ヒータ5を用いて容器内の温度を350℃から800℃の範囲内に加熱し、シャフト8の表面全体に硬化層を形成する。 Next, after depressurizing the inside of the vacuum chamber 2, at least one of carbon gas and nitrogen gas is supplied, and a cathode voltage is applied to the container 3 in this gas atmosphere to perform plasma discharge. While the container 3 is being swung, the temperature in the container is heated within the range of 350 ° C. to 800 ° C. using the heater 5 to form a hardened layer on the entire surface of the shaft 8.
 なお、炭素ガスには、炭素ガスを含むガスが含まれており、例えば、CH4、C22とArの混合ガスであってもよい。また、窒素ガスには窒素ガスを含むガスが含まれており、例えば、N22で若しくはArの混合ガスであってもよい。 The carbon gas includes a gas containing carbon gas, and may be a mixed gas of CH 4 , C 2 H 2 and Ar, for example. Further, the nitrogen gas contains a gas containing nitrogen gas, and may be N 2 H 2 or a mixed gas of Ar, for example.
 また、小物部品(シャフト8)は、オーステナイト系ステンレス鋼で形成されていても良い。 Further, the accessory part (shaft 8) may be formed of austenitic stainless steel.
 オーステナイト系ステンレス鋼は、耐食性、靭性に優れているが、柔らかいために凝着磨耗を発生しやすく、耐磨耗性に劣るという欠点がある。一方、従来の高温での浸炭、窒化処理では、ステンレス鋼の耐食性が著しく低下するといった問題があった。そこで、本発明では350℃から800℃の低温で処理することにより、耐食性を損なうことなく、硬化層を形成して表面を硬くすることにより、靭性を担保しつつ耐摩耗性を強化した小物部品を提供することが可能になる。 Austenitic stainless steel is excellent in corrosion resistance and toughness, but has a drawback that it is easy to generate adhesive wear due to its softness and inferior in wear resistance. On the other hand, the conventional carburizing and nitriding treatment at a high temperature has a problem that the corrosion resistance of the stainless steel is remarkably lowered. Therefore, in the present invention, by processing at a low temperature of 350 ° C. to 800 ° C., the hard parts are formed by forming a hardened layer without impairing the corrosion resistance, thereby ensuring the toughness and enhancing the wear resistance. It becomes possible to provide.
 ここで、処理温度の下限値を350℃としているのは、次の理由による。すなわち、処理温度が350℃を下回ると、窒素或いは炭素の拡散速度が低くなることから、実用的な厚さの硬化層を得るためには、非常に長時間の窒化或いは浸炭処理が必要となる。このように処理に長時間を要すると、コストが嵩み、実用的ではない。 Here, the reason why the lower limit of the processing temperature is set to 350 ° C. is as follows. That is, when the treatment temperature is lower than 350 ° C., the diffusion rate of nitrogen or carbon becomes low, and thus a very long nitriding or carburizing treatment is required to obtain a hardened layer having a practical thickness. . Thus, if processing requires a long time, cost will increase and it is not practical.
 また、真空チャンバ内の処理圧力は、数Paから数百Paの範囲内、印加電圧は、数百Vから数千Vの範囲内に設定されるのが好適である。 Further, it is preferable that the processing pressure in the vacuum chamber is set within a range of several Pa to several hundred Pa, and the applied voltage is set within a range of several hundred V to several thousand V.
 上記の方法でシャフトの窒化処理、浸炭処理、または窒化処理と浸炭処理の複合処理を行った結果、打痕の発生は無く、大きな放電痕も生じていなかった。また、全面に均等な厚さの高硬度と耐食性を併せ持つS層が形成されており、優れた品質を有していることが確認された。 As a result of shaft nitriding treatment, carburizing treatment, or combined treatment of nitriding treatment and carburizing treatment by the above method, no dent was generated and no large discharge trace was generated. Moreover, it was confirmed that the S layer having high hardness and corrosion resistance of uniform thickness was formed on the entire surface, and it had excellent quality.
 以上、本発明の第1実施形態について説明したが、上述した例に限られるものではない。 As mentioned above, although 1st Embodiment of this invention was described, it is not restricted to the example mentioned above.
 <第2実施形態>
 次に、本発明の第2の実施形態について説明する。
<Second Embodiment>
Next, a second embodiment of the present invention will be described.
 この第2実施形態は、図4に示すように、容器の形状と駆動動作が第1実施形態と異なっているものであって、主として異なる形態について説明し、同じ形態については説明を省略する。 As shown in FIG. 4, the second embodiment is different from the first embodiment in the shape and driving operation of the container. Mainly, different forms will be described, and description of the same forms will be omitted.
 回転容器300は、多数孔板(パンチングメタル)からなる円周面を有するステンレス製の円筒体で形成され、内部に多数(2000個ないし3000個程度)の小物部品を収容可能に構成されている。 The rotary container 300 is formed of a stainless steel cylindrical body having a circumferential surface made of a large number of perforated plates (punched metal), and is configured to accommodate a large number (about 2000 to 3000) of small parts therein. .
 このように、回転容器300の円周面が多数孔板で形成されているので、円周面の多数孔を介して処理ガスが供給される。したがって、回転容器300の内外にプラズマ雰囲気が発生するので、小物部品の表面全体に安定かつ均一な硬化層を形成することができる。 Thus, since the circumferential surface of the rotary container 300 is formed of a large number of perforated plates, the processing gas is supplied through the large number of holes on the circumferential surface. Therefore, since a plasma atmosphere is generated inside and outside the rotating container 300, a stable and uniform hardened layer can be formed on the entire surface of the small component.
 また、小物部品の大きさや形状に応じて孔の形状や大きさを設定して、回転容器300の設計をすることが可能である。 Also, it is possible to design the rotating container 300 by setting the shape and size of the holes according to the size and shape of the small parts.
 さらに、回転容器300の円周面を形成している多数孔板を着脱自在に構成してもよい。この場合、小物部品に応じた多数孔板を数種類用意しておき、被処理物に応じて付け替えたり、多数孔板が劣化したときに取り替えることが可能になる。 Furthermore, the multi-hole plate forming the circumferential surface of the rotating container 300 may be configured to be detachable. In this case, it is possible to prepare several types of multi-hole plates corresponding to small parts and replace them according to the object to be processed, or to replace them when the multi-hole plate deteriorates.
 なお、回転容器300には、小物部品を出し入れするための開口と、この開口を開閉するための蓋部が設けられている。 The rotating container 300 is provided with an opening for taking in and out small parts and a lid for opening and closing the opening.
 モータ6は、回転容器300を円筒体の円周面を水平面とした横置き状態で、円筒中心軸(両側面の円中心を貫通する軸)回りに回転させるための駆動手段として用いられるものである。 The motor 6 is used as a driving means for rotating the rotating container 300 around the central axis of the cylinder (the axis passing through the center of the circle on both sides) in the horizontal state where the circumferential surface of the cylindrical body is a horizontal plane. is there.
 この実施形態では、被処理物である小物部品は、特にねじのような表面に凹凸のある小物部品を処理するのに適している。 In this embodiment, the small part that is the object to be processed is particularly suitable for processing a small part having an uneven surface such as a screw.
 つまり、回転容器3に多数のねじを収容し、プラズマ雰囲気中でこの回転容器300を回転させながら表面硬化処理を行っているので、回転容器300の内部でねじが攪拌される。したがって、ねじの近傍における処理ガスの流れやプラズマシースの分布が攪拌されることにより変化するため、ねじの表面全体に均一な厚さの硬化層を形成することができる。 That is, since a number of screws are accommodated in the rotating container 3 and the surface hardening process is performed while rotating the rotating container 300 in a plasma atmosphere, the screws are agitated inside the rotating container 300. Therefore, since the flow of the processing gas and the distribution of the plasma sheath in the vicinity of the screw are changed by stirring, a hardened layer having a uniform thickness can be formed on the entire surface of the screw.
 本発明に係る硬化層形成方法および装置は、小物部品の表面全体に安定かつ均一な硬化層を形成することが可能で、大量の小物部品を一括して処理することができる点で有益である。 The method and apparatus for forming a cured layer according to the present invention is advantageous in that a stable and uniform cured layer can be formed on the entire surface of a small component, and a large amount of small components can be processed collectively. .
1 硬化層形成装置
2 真空チャンバ
3 容器
31 トレイ
300 回転容器
4 パルスDC電源
5 ヒータ
6 モータ(駆動装置)
7 ガス供給装置
71 圧力制御装置
8 シャフト(小物部品)
DESCRIPTION OF SYMBOLS 1 Hardened layer forming apparatus 2 Vacuum chamber 3 Container 31 Tray 300 Rotating container 4 Pulse DC power supply 5 Heater 6 Motor (drive device)
7 Gas supply device 71 Pressure control device 8 Shaft (small parts)

Claims (5)

  1.  金属製の小物部品の表面に、浸炭層および窒化層のうちの少なくともいずれか一つの硬化層を形成するための装置であって、
     炭素ガスおよび窒素ガスのうちの少なくともいずれか一方のガスを導入する真空チャンバと、前記真空チャンバ内に配置され、小物部品を複数個収容可能な容器とを備え、
     前記容器に陰極電圧を印加するパルスDC電源と、前記容器の近傍に設けられたヒータと、前記容器を駆動させる駆動装置と、前記真空チャンバ内に前記ガスを供給するガス供給装置と、前記真空チャンバ内の圧力を制御する圧力制御装置とを有し、
     前記容器は導電性材料で形成されており、陰極電圧を印加された容器がグロー放電中に可動陰極として作用することにより、小物部品の表面全体に均一な厚さの硬化層を形成することを特徴とする硬化層形成装置。
    An apparatus for forming a hardened layer of at least one of a carburized layer and a nitrided layer on the surface of a metal accessory part,
    A vacuum chamber for introducing at least one of carbon gas and nitrogen gas, and a container disposed in the vacuum chamber and capable of accommodating a plurality of small parts,
    A pulsed DC power source for applying a cathode voltage to the container, a heater provided in the vicinity of the container, a driving device for driving the container, a gas supply device for supplying the gas into the vacuum chamber, and the vacuum A pressure control device for controlling the pressure in the chamber;
    The container is made of a conductive material, and a container to which a cathode voltage is applied acts as a movable cathode during glow discharge, thereby forming a cured layer having a uniform thickness over the entire surface of small parts. A hardened layer forming apparatus.
  2.  請求項1に記載の硬化層形成装置において、
     前記容器は、少なくとも一部が多数孔金属板または金網で形成されたトレイで構成されており、
     前記駆動装置は、前記トレイ上の小物部品が水平方向に揺動するように前記トレイを駆動させることを特徴とする硬化層形成装置。
    In the hardened layer forming apparatus according to claim 1,
    The container is composed of a tray at least partly formed of a multi-hole metal plate or a wire mesh,
    The hardened layer forming apparatus, wherein the driving device drives the tray so that small components on the tray swing in a horizontal direction.
  3.  請求項2に記載の硬化層形成装置において、
     前記トレイは、複数備えられていることを特徴とする硬化層形成装置。
    In the hardened layer forming device according to claim 2,
    A hardened layer forming apparatus comprising a plurality of trays.
  4.  請求項1に記載の硬化層形成装置において、
     前記容器は、多数孔板または金網で形成された円周面を有する円筒体の回転容器で構成されており、
     前記駆動装置は、前記回転容器を回転駆動させることを特徴とする硬化層形成装置。
     
    In the hardened layer forming apparatus according to claim 1,
    The container is composed of a cylindrical rotating container having a circumferential surface formed of a multi-hole plate or a wire mesh,
    The hardened layer forming apparatus, wherein the driving device rotationally drives the rotating container.
  5.  請求項1ないし4のいずれか1項に記載の硬化層形成装置において、
     前記駆動装置は、前記真空チャンバの外部に備えられていることを特徴とする硬化層形成装置。
    In the hardened layer forming device according to any one of claims 1 to 4,
    The hardened layer forming apparatus, wherein the driving device is provided outside the vacuum chamber.
PCT/JP2012/059398 2012-04-05 2012-04-05 Hardened layer formation device WO2013150639A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2012/059398 WO2013150639A1 (en) 2012-04-05 2012-04-05 Hardened layer formation device
JP2014508974A JPWO2013150639A1 (en) 2012-04-05 2012-04-05 Hardened layer forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/059398 WO2013150639A1 (en) 2012-04-05 2012-04-05 Hardened layer formation device

Publications (1)

Publication Number Publication Date
WO2013150639A1 true WO2013150639A1 (en) 2013-10-10

Family

ID=49300161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/059398 WO2013150639A1 (en) 2012-04-05 2012-04-05 Hardened layer formation device

Country Status (2)

Country Link
JP (1) JPWO2013150639A1 (en)
WO (1) WO2013150639A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016196696A (en) * 2015-04-06 2016-11-24 学校法人トヨタ学園 Nitriding treatment apparatus and nitriding treatment method
WO2017074161A1 (en) * 2015-10-30 2017-05-04 한국생산기술연구원 Low temperature carburizing method and carburizing apparatus
CN106929796A (en) * 2017-05-05 2017-07-07 郑州大学 Discrete multianode bell-jar ion nitriding furnace
WO2018105693A1 (en) * 2016-12-07 2018-06-14 國友熱工株式会社 Method for vacuum-curing metal workpiece and method for producing metal workpiece using same
JP2019119927A (en) * 2017-12-28 2019-07-22 ワークソリューション株式会社 Stainless steel product, and manufacturing method of stainless steel product

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02301553A (en) * 1989-05-02 1990-12-13 Surface Combustion Inc Ion carburization
JPH09209117A (en) * 1996-02-06 1997-08-12 Yawata Mekki Kogyo Kk Production of game ball
JP2008115422A (en) * 2006-11-02 2008-05-22 Parker Netsu Shori Kogyo Kk Plasma nitriding device and nitriding method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5531139A (en) * 1978-08-25 1980-03-05 Nippon Denshi Kogyo Kk Ion-treating apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02301553A (en) * 1989-05-02 1990-12-13 Surface Combustion Inc Ion carburization
JPH09209117A (en) * 1996-02-06 1997-08-12 Yawata Mekki Kogyo Kk Production of game ball
JP2008115422A (en) * 2006-11-02 2008-05-22 Parker Netsu Shori Kogyo Kk Plasma nitriding device and nitriding method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016196696A (en) * 2015-04-06 2016-11-24 学校法人トヨタ学園 Nitriding treatment apparatus and nitriding treatment method
WO2017074161A1 (en) * 2015-10-30 2017-05-04 한국생산기술연구원 Low temperature carburizing method and carburizing apparatus
CN108350559A (en) * 2015-10-30 2018-07-31 韩国生产技术研究院 Low temperature carburization processing method and carburizing processing apparatus
US10697054B2 (en) 2015-10-30 2020-06-30 Korea Institute Of Industrial Technology Low temperature carburizing method and carburizing apparatus
CN108350559B (en) * 2015-10-30 2020-09-08 韩国生产技术研究院 Low-temperature carburization method and carburization apparatus
WO2018105693A1 (en) * 2016-12-07 2018-06-14 國友熱工株式会社 Method for vacuum-curing metal workpiece and method for producing metal workpiece using same
JPWO2018105693A1 (en) * 2016-12-07 2019-11-14 國友熱工株式会社 Method of vacuum hardening metal workpiece and method of manufacturing metal workpiece using the same
JP7044307B2 (en) 2016-12-07 2022-03-30 國友熱工株式会社 Vacuum curing method of metal work and manufacturing method of metal work using this
CN106929796A (en) * 2017-05-05 2017-07-07 郑州大学 Discrete multianode bell-jar ion nitriding furnace
CN106929796B (en) * 2017-05-05 2023-12-05 郑州大学 Discrete multi-anode bell-type ion nitriding furnace
JP2019119927A (en) * 2017-12-28 2019-07-22 ワークソリューション株式会社 Stainless steel product, and manufacturing method of stainless steel product
JP7197109B2 (en) 2017-12-28 2022-12-27 八田工業株式会社 Stainless steel product and method for manufacturing stainless steel product

Also Published As

Publication number Publication date
JPWO2013150639A1 (en) 2015-12-14

Similar Documents

Publication Publication Date Title
WO2013150639A1 (en) Hardened layer formation device
Belkin et al. Plasma electrolytic hardening of steels
JP5822975B2 (en) Internal nitriding system using hollow cathode discharge
JP6260996B2 (en) Mold material forming method
WO2017122044A1 (en) Equipment for ion nitriding/nitrocarburizing treatment comprising two furnace chambers with shared resources, able to run glow discharge treatment continuously between the two chambers
JP2008115422A (en) Plasma nitriding device and nitriding method
KR101519189B1 (en) Method and system for nitriding bore of pipe with hollow cathode discharge
JP6542381B2 (en) Method and apparatus for processing an article
Elwar et al. Plasma (Ion) Nitriding and Nitrocarburizing of Steels
Van Huy et al. Developing installation to increase cylindrical part surface hardness
JPS5948862B2 (en) Equipment for hardening metal surfaces using glow discharge
CN214032669U (en) Temperature homogenizing device applied to ionic nitriding/nitrocarburizing
Smirnov et al. Microstructure and wear resistance of modified surfaces obtained by ion-plasma nitriding of 40ХН2МА steel
RU2777250C1 (en) Installation for ion nitridation in glow discharge plasma
JPS6134505B2 (en)
JP3516804B2 (en) Ion carburizing furnace and transfer jig
JP2004052023A (en) Nitriding method
JP7174943B2 (en) Nitriding equipment
CN114107883B (en) Local ion nitriding method for inner cavity of precipitation hardening stainless steel annular part
RU2682986C1 (en) Steel product strengthening method by ion-plasma carbonitriding
JP5644590B2 (en) Surface treatment method
JP6629807B2 (en) Plasma processing equipment
Marteeny et al. Optimizing Cycle Time and Process Flexibility Using Vacuum Sealed Quenching
KR100349423B1 (en) Plasma using for surface treatment apparatus
JPH0480351A (en) Simultaneous treatment for nitridation and boridation using glow discharge

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12873506

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014508974

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/01/2015)

122 Ep: pct application non-entry in european phase

Ref document number: 12873506

Country of ref document: EP

Kind code of ref document: A1