JP6260996B2 - Mold material forming method - Google Patents

Mold material forming method Download PDF

Info

Publication number
JP6260996B2
JP6260996B2 JP2014038436A JP2014038436A JP6260996B2 JP 6260996 B2 JP6260996 B2 JP 6260996B2 JP 2014038436 A JP2014038436 A JP 2014038436A JP 2014038436 A JP2014038436 A JP 2014038436A JP 6260996 B2 JP6260996 B2 JP 6260996B2
Authority
JP
Japan
Prior art keywords
nitriding
stainless steel
nitrogen
mask
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014038436A
Other languages
Japanese (ja)
Other versions
JP2015161011A (en
Inventor
龍彦 相澤
龍彦 相澤
治樹 酒寄
治樹 酒寄
鉄也 山口
鉄也 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Institute of Technology
Original Assignee
Shibaura Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shibaura Institute of Technology filed Critical Shibaura Institute of Technology
Priority to JP2014038436A priority Critical patent/JP6260996B2/en
Publication of JP2015161011A publication Critical patent/JP2015161011A/en
Application granted granted Critical
Publication of JP6260996B2 publication Critical patent/JP6260996B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Description

この発明は、ステンレス鋼の表面に窒素を固溶させることにより、硬化させる技術に関する。   The present invention relates to a technique for hardening by dissolving nitrogen on the surface of stainless steel.

ステンレス鋼は耐食性に優れているため、機械部品から化学品製造プラント等、様々な用途に広く利用されているが、硬度が低く耐摩耗性に劣るという欠点がある。このため、ステンレス鋼に窒素を固溶させることにより、その表面硬度を高める研究がなされている。
例えば、非特許文献1においては、高温加圧ガス法によって窒素を固溶させる技術が開示されている。また、非特許文献2においては、DCプラズマ窒化と浸炭の複合処理により、オーステナイト系ステンレス鋼の表面を低温窒化する技術が開示されている。
近未来の鉄鋼材料を知る インターネットURL:http://www.nims.go.jp/stx-21/jp/publications/stpanf/pdf/tainetsu2.pdf 検索日:2014年2月16日 オーステナイトステンレス鋼の低温プラズマ窒化・浸炭処理 インターネットURL:http://tri-osaka.jp/densi_kannkoubutu/syoho/TRI25(2011)29.pdf 検索日:2014年2月16日
Since stainless steel is excellent in corrosion resistance, it is widely used in various applications such as machine parts to chemical production plants, but has a drawback of low hardness and poor wear resistance. For this reason, studies have been made to increase the surface hardness by dissolving nitrogen in stainless steel.
For example, Non-Patent Document 1 discloses a technique for solidly dissolving nitrogen by a high-temperature pressurized gas method. Non-Patent Document 2 discloses a technique for low-temperature nitriding the surface of austenitic stainless steel by a combined treatment of DC plasma nitriding and carburizing.
Knowing near future steel materials Internet URL: http://www.nims.go.jp/stx-21/jp/publications/stpanf/pdf/tainetsu2.pdf Search date: February 16, 2014 Low temperature plasma nitriding and carburizing treatment of austenitic stainless steel Internet URL: http://tri-osaka.jp/densi_kannkoubutu/syoho/TRI25(2011)29.pdf Search date: February 16, 2014

非特許文献1の方法によれば、材料全体に窒素を固溶させることができるが、その窒化濃度は1mass%程度に止まるため、材料の表面層の硬度をより高めたいという要望には応えられないという問題があった。
また、非特許文献2の方法による場合、導入窒素分布が10%以下と小さく、またその分布も深さ方向に単調減少する傾向があるため、ステンレス鋼の表面部分を高濃度で安定的に窒化できないという問題があった。
According to the method of Non-Patent Document 1, nitrogen can be dissolved in the entire material. However, since the nitriding concentration is only about 1 mass%, the demand for increasing the hardness of the surface layer of the material can be met. There was no problem.
In addition, according to the method of Non-Patent Document 2, the introduced nitrogen distribution is as small as 10% or less, and the distribution tends to monotonously decrease in the depth direction, so the surface portion of stainless steel is stably nitrided at a high concentration. There was a problem that I could not.

この発明は、従来の上記問題を解決するために案出されたものであり、ステンレス鋼の表面に比較的深く、高窒素濃度で高硬度の窒化層を形成したステンレス鋼を提供することを第1の目的としている。
また、この高窒素固溶ステンレス鋼を型材として応用する技術を提供することを第2の目的としている。
The present invention has been devised in order to solve the above-mentioned conventional problems. It is a first object of the present invention to provide a stainless steel in which a nitride layer having a relatively deep, high nitrogen concentration and high hardness is formed on the surface of the stainless steel. One purpose.
A second object is to provide a technique for applying this high nitrogen solid solution stainless steel as a mold material.

上記第1の目的を達成するため、この発明に係る高窒素固溶ステンレス鋼は、ステンレス鋼の表面にプラズマ窒化処理によって窒素を高濃度で固溶させることにより、相変態による窒化層を表面部位に形成したことを特徴としている。
上記窒化層は、例えば、表面から5μm以上、好ましくは20μm以上、より好ましくは50μm以上の深さに形成される。
また上記窒化層は、例えば、10at%以上、好ましくは20at%以上、より好ましくは40at%の窒素濃度を備えている。
また上記窒化層は、例えば、1000Hv以上、好ましくは1500Hv以上、より好ましくは1700Hv以上の硬度を備えている。
In order to achieve the first object, the high nitrogen solid solution stainless steel according to the present invention has a surface portion of a nitrided layer formed by phase transformation by dissolving nitrogen at a high concentration on the surface of the stainless steel by plasma nitriding. It is characterized by being formed.
The nitride layer is formed, for example, at a depth of 5 μm or more, preferably 20 μm or more, more preferably 50 μm or more from the surface.
The nitride layer has a nitrogen concentration of, for example, 10 at% or more, preferably 20 at% or more, more preferably 40 at%.
The nitride layer has a hardness of, for example, 1000 Hv or higher, preferably 1500 Hv or higher, more preferably 1700 Hv or higher.

また、上記第2の目的を達成するため、この発明に係る型材の形成方法は、ステンレス鋼の表面にマスクを所定パターンで配置する工程と、上記ステンレス鋼の表面にプラズマ窒化処理を施し、マスクを配置していない部分に窒化層を形成する工程と、上記マスクを除去する工程と、上記ステンレス鋼の表面にサンドブラスト処理やレーザ加工処理等を施し、窒化層の非形成箇所に凹部を形成する工程とからなることを特徴としている。   In order to achieve the second object, a method for forming a mold according to the present invention includes a step of arranging a mask in a predetermined pattern on a surface of stainless steel, a plasma nitriding treatment on the surface of the stainless steel, and a mask Forming a nitride layer on the portion where no metal is disposed, removing the mask, and subjecting the surface of the stainless steel to sand blasting, laser processing, etc., and forming a recess in a portion where the nitride layer is not formed It consists of a process.

この発明に係る高窒素固溶ステンレス鋼の場合、表面から比較的深い領域までほぼ均一の高窒素濃度で高硬度の窒化層が形成されているため、優れた耐摩耗性を備えている。
このため、例えば表面にマスクパターンを形成して選択的に窒化層と非窒化部を形成した後、硬度の低い非窒化部をサンドブラストやレーザ照射等によって除去することにより、凹部を備えた型材として応用することが可能となる。
In the case of the high nitrogen solid solution stainless steel according to the present invention, a highly uniform nitride layer having a high nitrogen concentration and a uniform hardness is formed from the surface to a relatively deep region, and thus has excellent wear resistance.
For this reason, for example, after forming a mask pattern on the surface and selectively forming a nitrided layer and a non-nitrided portion, the non-nitrided portion having a low hardness is removed by sandblasting, laser irradiation, etc. It becomes possible to apply.

図1は、この発明に係るRF-DC低温プラズマ窒化装置10の構造を示す模式図であり、真空チャンバ12と、その内部に配置されたDCバイアス14と、このDCバイアス14上に載置されたステンレス製の加工対象物16と、DCバイアス14内に装着されたヒータ18と、一対のRF電極20と、真空チャンバ12の外部に配置された出力2MHzのRF発振器22とを備えている。
図示は省略したが、真空チャンバ12の外部には、RF発振器22の制御装置と、DCバイアスの制御装置と、冷却装置が設置されている。
FIG. 1 is a schematic diagram showing the structure of an RF-DC low-temperature plasma nitriding apparatus 10 according to the present invention. The vacuum chamber 12, a DC bias 14 disposed in the vacuum chamber 12, and the DC bias 14 are mounted thereon. A stainless steel workpiece 16, a heater 18 mounted in the DC bias 14, a pair of RF electrodes 20, and an RF oscillator 22 with an output of 2 MHz disposed outside the vacuum chamber 12 are provided.
Although not shown, outside the vacuum chamber 12, a control device for the RF oscillator 22, a control device for the DC bias, and a cooling device are installed.

この真空チャンバ12の給気口(図示省略)から原料となるNとHの混合ガスを内部に導入し、RF電極20, 20間に高周波を印加すると同時にDCバイアス用電圧を印加し、さらにヒータ18に給電して真空チャンバ12内を摂氏450度以下に加熱すると、混合ガスがプラズマ化し、図2に示すように、高密度の窒素イオン及びNHラディカルが発生し、窒素原子が加工対象物16の表面に浸透する。 A mixed gas of N 2 and H 2 as a raw material is introduced into the inside from the air supply port (not shown) of the vacuum chamber 12, and a high frequency is applied between the RF electrodes 20 and 20 and simultaneously a DC bias voltage is applied, When the heater 18 is further powered and the inside of the vacuum chamber 12 is heated to 450 degrees Celsius or lower, the mixed gas becomes plasma, and as shown in FIG. 2, high-density nitrogen ions and NH radicals are generated, and nitrogen atoms are processed. It penetrates the surface of the object 16.

この装置10の場合、RFプラズマとDCプラズマとを独立に制御できるため、20Pa〜1kPaの広い高圧力範囲(メゾ圧力領域)で窒化を行うことができる。
このメゾ圧力範囲での窒素イオン、NHラディカルの密度は、5×1017m-3以上であり、その高窒素イオン・高NHラディカル状態で窒化を行うため、低い保持温度でも加工対象物16中に窒素原子を溶質原子として投入できる。
また、従来のプラズマ装置と異なり、入出力パワーのマッチングを周波数領域で行うため、投入エネルギーは無駄なく、迅速にプラズマに投入される。この結果、加工対象物16の表面にムラなく安定的に窒素を固溶させることができる。
In the case of this apparatus 10, since RF plasma and DC plasma can be controlled independently, nitriding can be performed in a wide high pressure range (meso pressure region) of 20 Pa to 1 kPa.
The density of nitrogen ions and NH radicals in this meso pressure range is 5 × 10 17 m −3 or more, and nitriding is performed in the high nitrogen ion / high NH radical state. Nitrogen atoms can be introduced as solute atoms.
In addition, unlike conventional plasma devices, input / output power matching is performed in the frequency domain, so input energy is not wasted and is quickly input to plasma. As a result, it is possible to stably dissolve nitrogen in the surface of the workpiece 16 without unevenness.

以上の処理を所定時間継続すると、加工対象物16の表面に窒素が高濃度で固溶される。
図3は、上記した高密度RF-DCプラズマによる窒化処理により、摂氏450度で2時間プラズマ窒化したSUS420(マルテンサイト系ステンレス)の試料に対し、AES(オージェ電子スペクトル法)による分析を行った結果を示すグラフである。
図示の通り、表面から窒化先端(深さ4μm付近)まで、30〜40at%の高い窒素濃度が実現されている。
すなわち、表面から窒化先端まで高窒素濃度が一定し、固溶窒素がステンレス鋼の結晶格子の空孔位置に規則的に導入されているものと考えられる。
加工時間を2時間以上に延ばすことにより、50μm以上の深さまで、しかもほぼ等しい窒素濃度で窒化層を形成することができる。
When the above processing is continued for a predetermined time, nitrogen is dissolved at a high concentration on the surface of the workpiece 16.
Fig. 3 shows AES (Auger Electron Spectroscopy) analysis of a SUS420 (martensitic stainless steel) sample that was plasma-nitrided at 450 degrees Celsius for 2 hours by nitriding with high-density RF-DC plasma. It is a graph which shows a result.
As shown in the drawing, a high nitrogen concentration of 30 to 40 at% is realized from the surface to the nitriding tip (around 4 μm depth).
That is, it is considered that the high nitrogen concentration is constant from the surface to the tip of nitriding, and solute nitrogen is regularly introduced into the vacancy positions of the crystal lattice of stainless steel.
By extending the processing time to 2 hours or more, a nitride layer can be formed to a depth of 50 μm or more and with a substantially equal nitrogen concentration.

一方、クロム・鉄の窒化物のXRDピークは全く観測できないことから、これら高濃度窒素はすべてステンレス中に固溶しているものといえる。
このように、クロムや鉄の窒化物が析出したいため、ステンレス鋼本来の特性に悪影響を及ぼすことがない。
On the other hand, since the XRD peak of chromium / iron nitride cannot be observed at all, it can be said that all of these high-concentration nitrogen is dissolved in stainless steel.
Thus, since chromium and iron nitrides are desired to precipitate, the original characteristics of stainless steel are not adversely affected.

図4は、上記試料に対してXRD分析を行った結果を示すグラフである。
マルテンサイト系ステンレス鋼であるSUS420材の主ピークは、本来、体心立方格子結晶の最稠密面である(110)面に対応する。
これに対し、上記のプラズマ高窒素固溶化処理により、a軸を含む面内の歪みよりもc軸方向に歪み、元の(110)面に平行に(111)面を持つオーステナイト相に変態する。すなわち、オーステナイト単相になることから、極めて高濃度の窒素がステンレス中に固溶していることがわかる。
一方で、クロム、鉄の窒化物のピークは検出されていない。
FIG. 4 is a graph showing the results of XRD analysis performed on the sample.
The main peak of the SUS420 material, which is martensitic stainless steel, originally corresponds to the (110) plane, which is the closest dense surface of the body-centered cubic lattice crystal.
On the other hand, the plasma high nitrogen solution treatment described above causes distortion in the c-axis direction rather than in-plane distortion including the a-axis, and transforms to an austenite phase having a (111) plane parallel to the original (110) plane. . That is, since it becomes an austenite single phase, it turns out that very high concentration nitrogen is dissolved in stainless steel.
On the other hand, chromium and iron nitride peaks are not detected.

図5は、Φ25mmのディスク状のSUS420J2試験片(厚さ:5mm)30を摂氏425度で4時間低温窒化した際の、圧下荷重200gでのマイクロ・ビカース硬さ試験の結果を示すものである。
図示の通り、試験片30の中心部の硬さは平均で1750Hvであり、その周辺部の硬さは平均で2400Hvに上った。
FIG. 5 shows the results of a micro-Vickers hardness test with a rolling load of 200 g when a Φ25 mm disk-shaped SUS420J2 test piece (thickness: 5 mm) 30 is low-temperature nitridated at 425 degrees Celsius for 4 hours. .
As shown in the figure, the hardness of the central portion of the test piece 30 was 1750 Hv on average, and the hardness of its peripheral portion was 2400 Hv on average.

図6は、正方形状の窒化処理部42と、同じく正方形状の非窒化処理部44を交互に配置させた矩形状のSUS420J2試験片(厚さ:5mm)40に対する硬度測定の結果を示すものである。
同図の[測定結果]が示す通り、窒化処理部42(位置(1)、位置(2)、位置(4)、位置(6)、位置(7))における硬度が、何れも非窒化処理部44(位置(3)、位置(5))に比べて大幅に向上している。
FIG. 6 shows the results of hardness measurement on a rectangular SUS420J2 test piece (thickness: 5 mm) 40 in which square nitriding sections 42 and square non-nitriding sections 44 are alternately arranged. is there.
As shown in [Measurement results] in the figure, the hardness at the nitriding section 42 (position (1), position (2), position (4), position (6), position (7)) is non-nitriding treatment. Compared with part 44 (position (3), position (5)), it is significantly improved.

この試験片40は、以下の手順で作成される。
(1)矩形状のSUS420J2板の表面における非窒化処理部44の形成を意図する位置に、正方形状のマスク(カーボンテープ)を貼り付ける。
(2)このSUS420J2板に対し、摂氏425度で4時間、上記の低温窒化処理を施す。
(3)最後に、上記のマスクを除去する。
図7は、窒化処理部42の表面におけるEDX(エネルギー分散型X線分析計)による窒素元素の測定結果を示すものであり、SUS420J2試験片の表面から約5μmの深さまで窒化層が形成されている様子が示されている。
The test piece 40 is prepared by the following procedure.
(1) A square mask (carbon tape) is affixed at a position where the non-nitriding portion 44 is intended to be formed on the surface of the rectangular SUS420J2 plate.
(2) The low temperature nitriding treatment is performed on the SUS420J2 plate at 425 degrees Celsius for 4 hours.
(3) Finally, the above mask is removed.
FIG. 7 shows the measurement result of nitrogen element by EDX (energy dispersive X-ray analyzer) on the surface of the nitriding section 42, and a nitride layer is formed to a depth of about 5 μm from the surface of the SUS420J2 test piece. The situation is shown.

図8は、図6に示したのと同じ試験片40に対し、平均表面粗さ(Ra)を測定した結果を示すものである。
同図の[測定結果]が示す通り、窒化処理部42におけるRa値が、何れも非窒化処理部44に比べて大幅に(100nm近く)上昇している。
FIG. 8 shows the result of measuring the average surface roughness (Ra) for the same test piece 40 as shown in FIG.
As shown in [Measurement Result] in the figure, the Ra value in the nitriding unit 42 is significantly increased (nearly 100 nm) as compared to the non-nitriding unit 44.

本来、SUS420J2の表面粗さは約10nmであり、窒化処理前はマスク部と非マスク部で同じ表面粗さを備えているが、非マスク部のみに窒素が高濃度で固溶することで、格子膨張により、表面がマスク部(窒素が固溶していない部分)よりも高くなったため、その表面粗さが拡大したものと考えられる。   Originally, the surface roughness of SUS420J2 is about 10 nm, and it has the same surface roughness in the mask part and the non-mask part before nitriding treatment, but because nitrogen dissolves at a high concentration only in the non-mask part, It is considered that the surface roughness is increased because the surface is higher than the mask portion (portion where nitrogen is not dissolved) due to lattice expansion.

ここで、窒化層の厚さが5μmであり、40at%の固溶窒素によるSUS420・単結晶のc軸方向の歪みが7%(理論推定値)とする。
実際のSUS420材は多結晶であり、圧延・鍛造により、c軸の厚さ方向への配向割合が33%とする。
以上のことから、実際のSUS420材の厚さ方向の膨張変形量は、以下の通り計算できる。
(5000nm)×0.07×0.33=100nm
Here, the thickness of the nitrided layer is 5 μm, and the strain in the c-axis direction of SUS420 / single crystal caused by 40 at% solute nitrogen is 7% (theoretical estimated value).
The actual SUS420 material is polycrystalline, and the orientation ratio in the c-axis thickness direction is set to 33% by rolling and forging.
From the above, the amount of expansion deformation in the thickness direction of the actual SUS420 material can be calculated as follows.
(5000 nm) × 0.07 × 0.33 = 100 nm

このように、計算の結果求められた値(100nm)と、上記の計測結果がほぼ一致したことから、表面粗さの差異(100nm)は、窒化プロセスによって非マスク部が選択的に膨張変形したためと考えることができる。   Thus, since the value obtained as a result of calculation (100 nm) and the above measurement result almost coincided, the difference in surface roughness (100 nm) was caused by the selective expansion and deformation of the non-mask part by the nitriding process. Can be considered.

つぎに、この選択的な窒化プロセスを応用することにより、型材を形成する方法について説明する。
まず、図9(a)に示すように、SUS420よりなる母材50の表面にマスク52を一定の間隔をおいて貼り付けた上で、上記した窒化処理を施す。
この結果、母材50の表面の非マスク部に窒素が約5μmの深さで固溶され、図9(b)に示すように、窒化層54が多数形成される。
Next, a method for forming a mold material by applying this selective nitriding process will be described.
First, as shown in FIG. 9 (a), a mask 52 is attached to the surface of a base material 50 made of SUS420 at a predetermined interval, and then the above nitriding treatment is performed.
As a result, nitrogen is dissolved in the non-mask portion on the surface of the base material 50 at a depth of about 5 μm, and a large number of nitride layers 54 are formed as shown in FIG. 9B.

つぎに、図10(a)に示すように、マスク52を除去した後、母材50の表面に向けて砂等の研磨材56を吹き付けるサンドブラスト処理を施す。
この結果、先の窒化処理によって硬度が上昇している窒化層54が残され、窒化処理が施されていなかったマスク部に凹部58が多数形成された型材60を得ることができる(図10(b))。
Next, as shown in FIG. 10A, after the mask 52 is removed, a sand blast process is performed in which an abrasive material 56 such as sand is sprayed toward the surface of the base material 50.
As a result, it is possible to obtain a mold 60 in which a nitride layer 54 whose hardness has been increased by the previous nitriding treatment remains, and a large number of recesses 58 are formed in the mask portion that has not been subjected to nitriding treatment (FIG. 10 ( b)).

最近は色々なフィラや鉱物等が充填された樹脂材が増えており、通常のステンレス鋼で型材を形成した場合には摩耗が激しいという問題があったが、上記のプラズマ窒化処理及びサンドブラスト処理によって形成された型材は、その表面に十分な硬度を備えているため、高い耐久性が期待できる。   Recently, resin materials filled with various fillers and minerals are increasing, and there is a problem that the wear is severe when the mold material is formed of ordinary stainless steel, but the above-mentioned plasma nitriding treatment and sandblasting treatment Since the formed mold material has sufficient hardness on the surface, high durability can be expected.

この発明に係るRF-DC低温プラズマ窒化装置の構造を示す模式図である。1 is a schematic diagram showing the structure of an RF-DC low temperature plasma nitriding apparatus according to the present invention. 窒素原子が加工対象物の表面に浸透する様子を示す概念図である。It is a conceptual diagram which shows a mode that a nitrogen atom osmose | permeates the surface of a workpiece. 窒化処理が施されたステンレス鋼に対するAESによる分析結果を示すグラフである。It is a graph which shows the analysis result by AES with respect to the nitriding stainless steel. 窒化処理が施されたステンレス鋼に対するXRDによる分析結果を示すグラフである。It is a graph which shows the analysis result by XRD with respect to the nitriding stainless steel. 窒化処理が施されたディスク状ステンレス鋼に対する硬さ試験の結果を示す図である。It is a figure which shows the result of the hardness test with respect to the disk-shaped stainless steel in which the nitriding process was performed. ステンレス鋼の表面における窒化処理が施された部分の硬度と窒化処理が施されていない部分の硬度の測定結果を示す図である。It is a figure which shows the measurement result of the hardness of the part by which the nitriding process was performed on the surface of stainless steel, and the hardness of the part which has not been nitrided. 窒化処理部におけるEDXによる窒素元素の測定結果を示す図である。It is a figure which shows the measurement result of the nitrogen element by EDX in a nitriding part. ステンレス鋼の表面における窒化処理が施された部分と窒化処理が施されていない部分の表面粗さの測定結果を示す図である。It is a figure which shows the measurement result of the surface roughness of the part by which the nitriding process was performed on the surface of stainless steel, and the part which has not been nitrided. 型材の形成過程を示す図である。It is a figure which shows the formation process of a mold material. 型材の形成過程を示す図である。It is a figure which shows the formation process of a mold material.

10 低温プラズマ窒化装置
12 真空チャンバ
14 DCバイアス
16 加工対象物
18 ヒータ
20 RF電極
22 RF発振器
30 試験片
40 試験片
42 窒化処理部
44 非窒化処理部
50 母材
52 マスク
54 窒化層
56 研磨材
58 凹部
60 型材
10 Low temperature plasma nitriding equipment
12 Vacuum chamber
14 DC bias
16 Workpiece
18 Heater
20 RF electrodes
22 RF oscillator
30 specimens
40 specimens
42 Nitriding section
44 Non-nitriding part
50 base material
52 Mask
54 Nitride layer
56 abrasive
58 recess
60 Mold material

Claims (1)

ステンレス鋼の表面にマスクを所定パターンで配置する工程と、
上記ステンレス鋼の表面にプラズマ窒化処理を施し、マスクを配置していない部分に窒化層を形成する工程と、
上記マスクを除去する工程と、
上記ステンレス鋼の表面における窒化層の非形成箇所に凹部を形成する工程と、
からなることを特徴とする型材形成方法
Placing a mask in a predetermined pattern on the surface of stainless steel;
Performing a plasma nitriding treatment on the surface of the stainless steel, and forming a nitride layer on a portion where no mask is disposed;
Removing the mask;
Forming a recess in a non-formed portion of the nitride layer on the surface of the stainless steel;
A mold material forming method comprising:
JP2014038436A 2014-02-28 2014-02-28 Mold material forming method Active JP6260996B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014038436A JP6260996B2 (en) 2014-02-28 2014-02-28 Mold material forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014038436A JP6260996B2 (en) 2014-02-28 2014-02-28 Mold material forming method

Publications (2)

Publication Number Publication Date
JP2015161011A JP2015161011A (en) 2015-09-07
JP6260996B2 true JP6260996B2 (en) 2018-01-17

Family

ID=54184328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014038436A Active JP6260996B2 (en) 2014-02-28 2014-02-28 Mold material forming method

Country Status (1)

Country Link
JP (1) JP6260996B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6432738B2 (en) * 2015-04-08 2018-12-05 学校法人 芝浦工業大学 Fine processing method, mold manufacturing method, and plastic molded product manufacturing method
JP6647707B2 (en) * 2015-10-13 2020-02-14 学校法人 芝浦工業大学 Method for manufacturing micro press die and method for manufacturing micro product
KR101747094B1 (en) 2015-12-23 2017-06-15 주식회사 포스코 Triple-phase stainless steel and manufacturing method thereof
JP6711533B2 (en) * 2016-03-30 2020-06-17 学校法人 芝浦工業大学 Method for manufacturing plastic molded products
JP7035794B2 (en) 2018-05-18 2022-03-15 トヨタ自動車株式会社 Manufacturing method and manufacturing equipment for separators for fuel cells
JP7454859B2 (en) * 2021-07-02 2024-03-25 株式会社サーフテクノロジー Surface treatment method for parts
CN114107883B (en) * 2021-11-29 2024-01-12 上海航天设备制造总厂有限公司 Local ion nitriding method for inner cavity of precipitation hardening stainless steel annular part

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3248773B2 (en) * 1993-04-23 2002-01-21 エア・ウォーター株式会社 Corrosion resistant decorative items
JP3305435B2 (en) * 1993-06-15 2002-07-22 帝国ピストンリング株式会社 Side rail of combined steel oil ring and method of manufacturing the same
JP2003073800A (en) * 2001-08-31 2003-03-12 Hitachi Ltd Surface treatment method for steel material, and steel material having impact resistance, abrasion resistance, and corrosion resistance

Also Published As

Publication number Publication date
JP2015161011A (en) 2015-09-07

Similar Documents

Publication Publication Date Title
JP6260996B2 (en) Mold material forming method
Balusamy et al. Plasma nitriding of AISI 304 stainless steel: Role of surface mechanical attrition treatment
Allenstein et al. Improvement of the cavitation erosion resistance for low-temperature plasma nitrided Ca-6NM martensitic stainless steel
Allenstein et al. Strong evidences of tempered martensite-to-nitrogen-expanded austenite transformation in CA-6NM steel
Farghali et al. Nitrogen supersaturation process in the AISI420 martensitic stainless steels by low temperature plasma nitriding
Farghali et al. Phase transformation induced by high nitrogen content solid solution in the martensitic stainless steels
Chang et al. Investigation of the characteristics of DLC films on oxynitriding-treated ASP23 high speed steel by DC-pulsed PECVD process
Tadepalli et al. A review on effects of nitriding of AISI409 ferritic stainless steel
Lee et al. Behavior of the S-phase of plasma nitrocarburized 316L austenitic stainless steel on changing pulse frequency and discharge voltage at fixed pulse-off time
RU2419676C1 (en) Procedure for ion-vacuum nitriding long-length steel part in glow discharge
Aizawa et al. Homogeneous and heterogeneous micro-structuring of austenitic stainless steels by the low temperature plasma nitriding
JP2008308759A (en) Low-current high-density plasma nitriding method and low-current high-density plasma nitriding device
JP5606707B2 (en) Nitriding processing apparatus and nitriding processing method
Aizawa et al. Inner nitriding behavior and mechanism in stainless steels at 753 K and 623 K
KR101249539B1 (en) Real time nitriding depth monitoring method for plasma nitriding process
Jong-Do et al. Laser transformation hardening on rod-shaped carbon steel by Gaussian beam
Danh Optimization of technological parameters when plasma nitriding the gear working surface
Han et al. Study on the fast nitriding process of active screen plasma nitriding
Taherkhani et al. Investigation nitride layers and properties surfaces on pulsed plasma nitrided hot working steel AISI H13
JP2015025176A (en) Ni OR Ni ALLOY SPUTTERING TARGET AND MANUFACTURING METHOD OF THE SAME
Zheng et al. Plasma carburizing and post-treatment of austenitic stainless steel
Han et al. Research into grinding hardening of microalloyed non-quenched and tempered steel
Hirota et al. Microstructural change induced by fine particle peening and its effect on elemental diffusion
RU2522872C2 (en) Nitration of machine parts with production of nanostructured surface ply and ply composition
Budilov et al. Local Ion Nitriding of 38KhMYuA Steel with Glow Discharge in a Hollow Cathode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170922

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171206

R150 Certificate of patent or registration of utility model

Ref document number: 6260996

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250