WO2013150151A1 - Hybrid electrode for a supercapacitor - Google Patents

Hybrid electrode for a supercapacitor Download PDF

Info

Publication number
WO2013150151A1
WO2013150151A1 PCT/EP2013/057245 EP2013057245W WO2013150151A1 WO 2013150151 A1 WO2013150151 A1 WO 2013150151A1 EP 2013057245 W EP2013057245 W EP 2013057245W WO 2013150151 A1 WO2013150151 A1 WO 2013150151A1
Authority
WO
WIPO (PCT)
Prior art keywords
macromolecular material
electrode
function
carbon
macromolecular
Prior art date
Application number
PCT/EP2013/057245
Other languages
French (fr)
Inventor
Pierre Le Barny
Laurent Divay
Christophe Galindo
Original Assignee
Thales
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales filed Critical Thales
Publication of WO2013150151A1 publication Critical patent/WO2013150151A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/34Carbon-based characterised by carbonisation or activation of carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the invention lies in the field of energy storage and more particularly in the field of electrodes for supercapacitors.
  • the basic principle of supercapacitors is based on the capacitive properties of the interface between the electrodes which are solid electrical conductors and the electrolyte which is a liquid ionic conductor.
  • Energy storage is effected by the distribution of ions of the electrolyte in the vicinity of the surface of each electrode, under the influence of the potential difference applied between the two electrodes. It creates at the interfaces a space charge zone, called double electrochemical layer, of a thickness limited to a few nanometers.
  • Supercapacitors are therefore capabilities in their own right. Energy storage is de facto electrostatic, not electrochemical as in the case of accumulators, which gives them a potentially high specific power.
  • activated carbon as a supercapacitor electrode material is well known in the state of the art. However, since the electrical conductivity of the active carbons is very low, a metal electrode is necessary to collect the current, which reduces the performance of the supercapacitors that use this type of electrode.
  • Carbon nanotubes have higher electrical conductivity sometimes allowing them to be used as electrode material without the need for a current collector.
  • This material implemented in the form of nanotube mattresses muiti walls has a specific surface, of the order of 270 m 2 .g -1 , much lower than activated carbons which have an activated surface of the order of 2000 to 3000 m 2 g -1 .
  • materials such as metal foams are also often used as electrode material for supercapacitors. Indeed, this type of material has a very good electrical conductivity and a specific surface of the order of 10 2 m 2 . g "1 .
  • An object of the invention is to provide a hybrid electrode for a supercapacitor whose specific surface area is increased relative to the electrodes conventionally used such as metal foam electrodes, carbon nanotubes or activated carbon.
  • a supercapacitor electrode comprising a first electrically conductive material and a macromolecular material.
  • the macromolecular material is grafted onto the first material, the macromolecular material being able to generate a graphitic structure by pyrolysis.
  • the first material is a metal foam of gold or silver or carbon-based.
  • grafting corresponds to the creation of a chemical bond between the first material and the macromolecular material.
  • Hybrid electrode material allows the addition of a conductive graphite structure to the surface of the electrode which increases the specific surface area with respect to an electrode consisting solely of a material of electrode usually used.
  • the macromolecular material is polyacrylonitrile.
  • Polyacrylonitrile makes it possible to increase the specific surface area of the first material and consequently to increase the interaction surface between the electrode and the electrolyte while limiting the increase in mass, which allows a cost saving.
  • the macromolecular material is graphitized.
  • the grafting is carried out by heating.
  • the macromolecular material is polyacetonitrile.
  • the first material is based on carbon and preferably carbon nanotubes.
  • the function is an azide or diazonium salt function.
  • the first material is a metal foam, preferably gold or silver.
  • the function is a thiol function.
  • FIG. 1 illustrates, on the one hand, the grafting of a macromolecular material 1 on a carbon nanotube 2 to form a functionalized carbon nanotube 3a.
  • Figure 1 illustrates the electrochemical growth of the macromolecule from a carbon nanotube to lead to a functionalized carbon nanotube 3b.
  • the macromolecular material 1 may be a functionalized polymer which comprises a first nitrile CN side chain capable of forming a graphitized structure by graphitization, and a group X capable of forming at least one covalent bond with the first material.
  • structure 3a is obtained in which the covalent bond is created between a carbon of the carbon-based structure 2 and an intermediate carbon of the main chain of macromolecule 1.
  • structure 3b is then obtained.
  • the covalent bond is created between a carbon of the carbon-based structure 2 and a terminal carbon of a main chain of the macromolecular material 1.
  • a macromolecular material capable of creating a graphite structure by graphitization and which comprises a function X capable of generating a covalent bond on a metal structure, such as a gold metal foam or silver.
  • the function X can be a -SH thiol group
  • Figure 2a illustrates the various steps of synthesis of the methacrylate monomer functionalized with an azide function from 4-azidobenzoic acid.
  • Urea is formed and is separated by filtration.
  • Methacrylate is characterized by infrared spectroscopy and nuclear magnetic resonance, we obtain the following results:
  • a first solution is obtained and is cooled to a temperature of -10 ° C.
  • a solution of 12.13 g (0.038 mole) of sodium nitrite in 8 mL of water is added dropwise into the first solution.
  • the reaction medium is en masse.
  • the temperature is brought back to 0 ° C. After stirring for 30 minutes at a temperature of 0 ° C., the solid obtained is removed by filtration.
  • a yellow filtrate comprising diazonium salt is placed in a 500 ml beaker and then cooled to a temperature of -10 ° C.
  • FIG. 2b illustrates the synthesis of the copolymer 4 from the methacrylate functionalized with an azide function 6 and acrylonitrile 5 according to the procedure presented hereinafter.
  • the reaction medium is degassed three times under vacuum and then sealed under vacuum and the reaction medium is heated at 60 ° C. for 24 hours.
  • the copolymer is precipitated in 250 ml of methanol.
  • the solid is separated by filtration and then dried under vacuum at room temperature.
  • the product thus obtained is purified by dissolving in a mixture of 20 ml of THF and 20 ml of DMF followed by reprecipitation in 600 ml of methanol.
  • the solid is separated by filtration and then dried under vacuum.
  • FIG. 2c illustrates the grafting reaction of the copolymer 4 on a carbon nanotube 2 according to the procedure described hereinafter.
  • the dispersion of carbon nanotubes thus obtained is introduced into a three-necked flask of 100 ml.
  • the reaction medium is heated at a temperature of 135 ° C. under argon for 24 hours.
  • the black solid is washed twice with DMF and then isolated by filtration on a Sartorius stedem filter (PTFE, 4,45 ⁇ ), washed with acetone and dried under vacuum at a temperature of 110 ° C. 0.167 g of solid is obtained, ie a yield of 86.5%.
  • PTFE Sartorius stedem filter
  • the nanotubes modified with the polyacrylonitrile chains are then pyrolized at a temperature of 1000 ° C. for 3 hours in a neutral atmosphere.
  • the hybrid material of carbon nanotubes and graphite thus obtained can be used directly to prepare a supercapacitor electrode.
  • This hybrid material obtained by grafting a macromolecular material capable of forming a graphite structure makes it possible to increase the specific surface area of the electrodes conventionally used.

Abstract

The invention relates to an electrode for a supercapacitor and its manufacturing process. The electrode comprises an electrically conductive first material and a macromolecular material. The macromolecular material is grafted onto the first material; said macromolecular material generates a graphitic structure by pyrolysis, thereby increasing the specific surface area of the electrodes. The first material is a metallic foam made of silver or gold or based on carbon.

Description

Electrode hybride pour supercondensateur  Hybrid electrode for supercapacitor
L'invention se situe dans le domaine du stockage d'énergie et plus particulièrement dans le domaine des électrodes pour des supercondensateurs. The invention lies in the field of energy storage and more particularly in the field of electrodes for supercapacitors.
Un supercondensateur ou condensateur électrochimique est un condensateur de technique particulière permettant d'obtenir des densités de puissance et d'énergie intermédiaires entre les batteries et les condensateurs électrolytiques classiques. La plupart des supercondensateurs comprend deux électrodes poreuses imprégnées d'électrolyte et séparées par une membrane isolante et poreuse permettant la circulation des ions contenus dans l'électrolyte.  A supercapacitor or electrochemical capacitor is a capacitor of particular technique for obtaining intermediate power and energy densities between batteries and conventional electrolytic capacitors. Most supercapacitors comprise two porous electrodes impregnated with electrolyte and separated by an insulating and porous membrane allowing the circulation of the ions contained in the electrolyte.
Le principe de base des supercondensateurs repose sur les propriétés capacitives de l'interface entre les électrodes qui sont des conducteurs électriques solides et l'électrolyte qui est un conducteur ionique liquide. Le stockage d'énergie s'effectue par la distribution des ions de l'électrolyte au voisinage de la surface de chaque électrode, sous l'influence de la différence de potentiel appliquée entre les deux électrodes. Il se crée ainsi aux interfaces une zone de charge d'espace, appelée double couche électrochimique, d'épaisseur limitée à quelques nanomètres. Les supercondensateurs sont donc des capacités à part entière. Le stockage d'énergie est de fait d'origine électrostatique, et non pas électrochimique comme dans le cas des accumulateurs, ce qui leur confère une puissance spécifique potentiellement élevée.  The basic principle of supercapacitors is based on the capacitive properties of the interface between the electrodes which are solid electrical conductors and the electrolyte which is a liquid ionic conductor. Energy storage is effected by the distribution of ions of the electrolyte in the vicinity of the surface of each electrode, under the influence of the potential difference applied between the two electrodes. It creates at the interfaces a space charge zone, called double electrochemical layer, of a thickness limited to a few nanometers. Supercapacitors are therefore capabilities in their own right. Energy storage is de facto electrostatic, not electrochemical as in the case of accumulators, which gives them a potentially high specific power.
Un des paramètres clés permettant d'atteindre une densité de charges stockées importante est la géométrie des électrodes. En effet, la capacité C est proportionnelle à la surface spécifique S de l'électrode et inversement proportionnelle à l'épaisseur e de la double couche, selon la relation (i) où ε est la permittivité de l'électrolyte : C = ε (i).  One of the key parameters to achieve a high stored charge density is the geometry of the electrodes. Indeed, the capacitance C is proportional to the specific surface S of the electrode and inversely proportional to the thickness e of the double layer, according to the relation (i) where ε is the permittivity of the electrolyte: C = ε ( i).
L'utilisation de charbon activé comme matériau d'électrode pour supercondensateur est bien connue dans l'état de l'art. Toutefois, la conductivité électrique des charbons actifs étant très faible, une électrode métallique est nécessaire pour collecter le courant ce qui diminue les performances des supercondensateurs qui utilisent ce type d'électrode.  The use of activated carbon as a supercapacitor electrode material is well known in the state of the art. However, since the electrical conductivity of the active carbons is very low, a metal electrode is necessary to collect the current, which reduces the performance of the supercapacitors that use this type of electrode.
II est bien connu aussi dans l'état de l'art d'utiliser des nanotubes de carbone comme matériau d'électrode pour des supercondensateurs. Les nanotubes de carbone présentent une conductivité électrique plus élevée permettant parfois de les utiliser comme matériau d'électrode sans avoir besoin d'un collecteur de courant. Ce matériau mis en œuvre sous la forme de matelas de nanotubes muiti parois, présente une surface spécifique, de l'ordre de 270 m2.g"1, bien plus faible que les charbons activés qui présentent une surface activée de l'ordre de 2000 à 3000 m2. g"1. It is also well known in the state of the art to use carbon nanotubes as electrode material for supercapacitors. Carbon nanotubes have higher electrical conductivity sometimes allowing them to be used as electrode material without the need for a current collector. This material implemented in the form of nanotube mattresses muiti walls, has a specific surface, of the order of 270 m 2 .g -1 , much lower than activated carbons which have an activated surface of the order of 2000 to 3000 m 2 g -1 .
Par ailleurs, des matériaux tels que des mousses métalliques sont aussi souvent utilisés comme matériau d'électrode pour supercondensateur. En effet, ce type de matériau présente une très bonne conductivité électrique et une surface spécifique de l'ordre de 102 m2. g"1. Moreover, materials such as metal foams are also often used as electrode material for supercapacitors. Indeed, this type of material has a very good electrical conductivity and a specific surface of the order of 10 2 m 2 . g "1 .
Un but de l'invention est de proposer une électrode hybride pour supercondensateur dont la surface spécifique est augmentée par rapport aux électrodes traditionnellement utilisées telles que les électrodes de mousses métalliques, de nanotubes de carbone ou de charbons activés.  An object of the invention is to provide a hybrid electrode for a supercapacitor whose specific surface area is increased relative to the electrodes conventionally used such as metal foam electrodes, carbon nanotubes or activated carbon.
Selon un aspect de l'invention, il est proposé une électrode pour supercondensateur comprenant un premier matériau conducteur électrique et un matériau macromoléculaire. Le matériau macromoléculaire est greffé sur le premier matériau, le matériau macromoléculaire étant apte à générer une structure graphitique par pyrolyse. Le premier matériau est une mousse métallique d'or ou d'argent ou à base de carbone.  According to one aspect of the invention, there is provided a supercapacitor electrode comprising a first electrically conductive material and a macromolecular material. The macromolecular material is grafted onto the first material, the macromolecular material being able to generate a graphitic structure by pyrolysis. The first material is a metal foam of gold or silver or carbon-based.
En l'espèce, le terme "greffage" correspond à la création d'une liaison chimique entre le premier matériau et le matériau macromoléculaire. In this case, the term "grafting" corresponds to the creation of a chemical bond between the first material and the macromolecular material.
Un matériau d'électrode hybride, selon un aspect de l'invention permet l'ajout d'une structure graphite conductrice à la surface de l'électrode ce qui augmente la surface spécifique par rapport à une électrode constituée uniquement d'un matériau d'électrode habituellement utilisé.  Hybrid electrode material, according to one aspect of the invention allows the addition of a conductive graphite structure to the surface of the electrode which increases the specific surface area with respect to an electrode consisting solely of a material of electrode usually used.
Avantageusement, le matériau macromoléculaire est le polyacrylonitrile. Le polyacrylonitrile permet d'augmenter la surface spécifique du premier matériau et par voie de conséquence d'augmenter la surface d'interaction entre l'électrode et l'électrolyte tout en limitant l'augmentation de masse ce qui permet un gain de coût.  Advantageously, the macromolecular material is polyacrylonitrile. Polyacrylonitrile makes it possible to increase the specific surface area of the first material and consequently to increase the interaction surface between the electrode and the electrolyte while limiting the increase in mass, which allows a cost saving.
Selon un autre aspect de l'invention, il est proposé un procédé d'élaboration d'une électrode telle que décrite précédemment dans laquelle : According to another aspect of the invention, there is provided a method for producing an electrode as described above in which:
- on synthétise un matériau macromoléculaire apte à être graphitisé et comprenant une fonction capable de créer au moins une liaison covalente, - on greffe le matériau macromoléculaire sur ledit premier matériau, et a macromolecular material capable of being graphitized and comprising a function capable of creating at least one covalent bond is synthesized, the macromolecular material is grafted onto said first material, and
- on graphitise le matériau macromoléculaire.  the macromolecular material is graphitized.
Ainsi réaliser l'électrode hybride selon un aspect de l'invention, permet une graphitisation du précurseur de carbone en surface du premier matériau de manière à augmenter sa surface spécifique. La structure graphite ainsi réalisée n'obstrue pas les pores du premier matériau. La distribution des plans graphitiques dans la structure poreuse du premier matériau est homogène.  Thus, producing the hybrid electrode according to one aspect of the invention allows a graphitization of the carbon precursor on the surface of the first material so as to increase its specific surface area. The graphite structure thus produced does not obstruct the pores of the first material. The distribution of the graphitic planes in the porous structure of the first material is homogeneous.
Avantageusement, le greffage est réalisé par chauffage.  Advantageously, the grafting is carried out by heating.
Avantageusement, le matériau macromoléculaire est du polyacétonitrile.  Advantageously, the macromolecular material is polyacetonitrile.
Dans un mode de réalisation, le premier matériau est à base de carbone et préférentiellement des nanotubes de carbone.  In one embodiment, the first material is based on carbon and preferably carbon nanotubes.
Avantageusement la fonction est une fonction azide ou sel de diazonium.  Advantageously, the function is an azide or diazonium salt function.
Dans un autre mode de réalisation, le premier matériau est une mousse métallique, avantageusement de l'or ou de l'argent.  In another embodiment, the first material is a metal foam, preferably gold or silver.
Avantageusement, la fonction est une fonction thiol.  Advantageously, the function is a thiol function.
L'invention sera mieux comprise à l'étude de quelques modes de réalisation décrits à titre d'exemples nullement limitatifs, et illustrés par des dessins annexés sur lesquels :  The invention will be better understood from the study of some embodiments described by way of non-limiting examples, and illustrated by appended drawings in which:
- la figure 1 représente schématiquement le greffage d'un matériau macromoléculaire sur un substrat comprenant du carbone, selon un aspect de l'invention, et FIG. 1 schematically represents the grafting of a macromolecular material on a substrate comprising carbon, according to one aspect of the invention, and
- les figures 2a, 2b et 2c représentent un exemple de procédé de réalisation d'une électrode hybride, selon un aspect de l'invention. FIGS. 2a, 2b and 2c show an exemplary method of producing a hybrid electrode, according to one aspect of the invention.
La figure 1 illustre d'une part le greffage d'un matériau macromoléculaire 1 sur un nanotube de carbone 2 pour former un nanotube de carbone fonctionnalisé 3a. D'autre part, la figure 1 illustre la croissance électrochimique de la macromolécule à partir d'un nanotube de carbone pour conduire à un nanotube de carbone fonctionnalisé 3b.  FIG. 1 illustrates, on the one hand, the grafting of a macromolecular material 1 on a carbon nanotube 2 to form a functionalized carbon nanotube 3a. On the other hand, Figure 1 illustrates the electrochemical growth of the macromolecule from a carbon nanotube to lead to a functionalized carbon nanotube 3b.
Le matériau macromoléculaire 1 , en l'espèce le polyacrylonitrile, est apte à créer une structure graphite par graphitisation et comprend une fonction X capable de générer des liaisons covalentes  The macromolecular material 1, in this case polyacrylonitrile, is capable of creating a graphitized structure by graphitization and comprises a function X capable of generating covalent bonds
Préférentiellement, le matériau macromoléculaire 1 peut être un polymère fonctionnalisé qui comprend une première chaîne latérale de type nitrile CN apte à former une structure graphite par graphitisation, et un groupement X capable de former au moins une liaison covalente avec le premier matériau. Preferably, the macromolecular material 1 may be a functionalized polymer which comprises a first nitrile CN side chain capable of forming a graphitized structure by graphitization, and a group X capable of forming at least one covalent bond with the first material.
Avantageusement, la fonction X peut être une fonction azide N3 ou un sel de diazonium -N=N+. Advantageously, the function X may be an azide function N 3 or a diazonium salt -N = N + .
En l'espèce, la figure 1 représente le greffage d'un matériau macromoléculaire 1 sur un nanotube de carbone 2.  In this case, Figure 1 shows the grafting of a macromolecular material 1 on a carbon nanotube 2.
Toutefois, le greffage d'un matériau macromoléculaire 1 par l'intermédiaire de fonctions azide ou sel de diazonium peut être réalisé sur n'importe quelle structure à base de carbone.  However, the grafting of a macromolecular material 1 via azide or diazonium salt functions can be carried out on any carbon-based structure.
Le greffage peut être réalisé par voie chimique ou par voie électrochimique, selon un article de P. Petrov et al. , Macromolecular Rapid Communications, 25, 987-990, (2004).  The grafting can be carried out chemically or electrochemically, according to an article by P. Petrov et al. Macromolecular Rapid Communications, 25, 987-990, (2004).
Par voie chimique, on obtient la structure 3a où la liaison covalente est créée entre un carbone de la structure à base de carbone 2 et un carbone intermédiaire de la chaîne principale de la macromolécule 1 .  By chemical means, structure 3a is obtained in which the covalent bond is created between a carbon of the carbon-based structure 2 and an intermediate carbon of the main chain of macromolecule 1.
Par voie électrochimique, on obtient alors la structure 3b. La liaison covalente est créée entre un carbone de la structure à base de carbone 2 et un carbone terminal d'une chaîne principale du matériau macromoléculaire 1 .  Electrochemically, structure 3b is then obtained. The covalent bond is created between a carbon of the carbon-based structure 2 and a terminal carbon of a main chain of the macromolecular material 1.
Selon une variante de l'invention, il possible de greffer un matériau macromoléculaire apte à créer une structure graphite par graphitisation et qui comprend une fonction X capable de générer une liaison covalente sur une structure métallique, telle qu'une mousse métallique d'or ou d'argent.  According to a variant of the invention, it is possible to graft a macromolecular material capable of creating a graphite structure by graphitization and which comprises a function X capable of generating a covalent bond on a metal structure, such as a gold metal foam or silver.
Avantageusement, la fonction X peut être un groupement -SH thiol Advantageously, the function X can be a -SH thiol group
Les figures 2a, 2b et 2c illustrent les étapes d'un exemple de procédé de réalisation d'un matériau hybride, selon un aspect de l'invention. Figures 2a, 2b and 2c illustrate the steps of an exemplary method of producing a hybrid material, according to one aspect of the invention.
En l'espèce, il s'agit du greffage d'un copolymère 4 comprenant un monomère de méthacrylate fonctionnalisé par une fonction azide 5 copolymérisé avec de l'acrylonitrile 6, sur des nanotubes de carbone 2.  In this case, it is the grafting of a copolymer 4 comprising a methacrylate monomer functionalized with an azide function 5 copolymerized with acrylonitrile 6, on carbon nanotubes 2.
La figure 2a illustre les différentes étapes de synthèse du monomère de méthacrylate fonctionnalisé par une fonction azide 5 à partir de l'acide 4- azidobenzoïque.  Figure 2a illustrates the various steps of synthesis of the methacrylate monomer functionalized with an azide function from 4-azidobenzoic acid.
Dans un ballon tricol de 100 mL, on dissout, sous un courant d'argon, 1 ,04 g (8 mmoles) de méthacrylate d'hydroxyéthyle et 1 ,304 g (8 mmoles) d'acide 4-azidobenzoïque dans un mélange comprenant 30 mL de tétrahydrofurane THF distillé sur du sodium et 15 mL de dichlorométhane. On introduit ensuite 234 mg (0,8 mmole) de paratoluène sulfonate de 4-diméthylamino pyridinium DPTS et on agite pendant 30 minutes à température ambiante, puis on ajoute 1 ,814 g (8,8 mmoles) de dicyclohexyl carbodiimide DCCI. On agite ensuite pendant 20h à température ambiante. In a 100 ml three-necked flask, 1.04 g (8 mmol) of hydroxyethyl methacrylate and 1.304 g (8 mmol) of 4-azidobenzoic acid are dissolved under a stream of argon in a mixture comprising 30 mL of tetrahydrofuran THF distilled on sodium and 15 mL of dichloromethane. Then 234 mg (0.8 mmol) of 4-dimethylamino pyridinium DPTS Paratoluene Sulfonate are added and the mixture is stirred for 30 minutes at room temperature and then 1.814 g (8.8 mmol) of dicyclohexyl carbodiimide DCCI are added. It is then stirred for 20 hours at room temperature.
De l'urée se forme et est séparée par filtration.  Urea is formed and is separated by filtration.
Le filtrat est évaporé à sec et le produit brut ainsi obtenu est purifié par chromatographie sur 120 g de silice. L'éluant utilisé pour la chromatographie est un mélange 50/50 de dichlorométhane et d'hexane puis du dichlorométhane pur.  The filtrate is evaporated to dryness and the crude product thus obtained is purified by chromatography on 120 g of silica. The eluent used for the chromatography is a 50/50 mixture of dichloromethane and hexane and then pure dichloromethane.
On obtient 1 ,62g (5,88 mmoles) de méthacrylate jaune soit un rendement de 73,5%. 1. 62 g (5.88 mmol) of yellow methacrylate are obtained, ie a yield of 73.5%.
Le méthacrylate est caractérisé par spectroscopie infra rouge et résonance magnétique nucléaire, on obtient les résultats suivants :  Methacrylate is characterized by infrared spectroscopy and nuclear magnetic resonance, we obtain the following results:
IR (fenêtre NaCI; cm"1) : 2125 (s, élongation -N3), 1720 (s, élongation C=O), 1637 (w, C=C méthacrylate) 1603 (s, C=C aromatique) IR (NaCl window; cm "1 ): 2125 (s, elongation -N 3 ), 1720 (s, elongation C = O), 1637 (w, C = C methacrylate) 1603 (s, C = C aromatic)
1H-RMN (CDCIs, 300MHz; δ ppm) :1 ,95 (s, 3H); 4,49 (m, 2H); 4,56 (m, 2H); 5,59 (m, 1 H); 6,1 (m, 1 H) 7,0 (d, 2H); 8,0 (d, 2H) 13,0. 1 H-NMR (CDCl 3, 300 MHz, δ ppm): 1.95 (s, 3H); 4.49 (m, 2H); 4.56 (m, 2H); 5.59 (m, 1H); 6.1 (m, 1H) 7.0 (d, 2H); 8.0 (d, 2H) 13.0.
Avantageusement, l'acide 4-azidobenzoïque est synthétisé selon le procédé présenté ci-après.  Advantageously, 4-azidobenzoic acid is synthesized according to the process presented below.
Dans un bêcher de 100 mL, on dissout 4,1 1 g (0,03 mole) d'acide 4- aminobenzoïque dans une solution acide obtenue en diluant 6,6 mL d'acide chlorhydrique 25% dans 72 mL d'eau.  In a 100 ml beaker, 4.1 l (0.03 mole) of 4-aminobenzoic acid is dissolved in an acidic solution obtained by diluting 6.6 ml of 25% hydrochloric acid in 72 ml of water.
Une première solution est obtenue et est refroidie à une température de -10°C.  A first solution is obtained and is cooled to a temperature of -10 ° C.
Une solution de 12,13 g (0,038 mole) de nitrite de sodium dans 8 mL d'eau est ajoutée goutte à goutte dans la première solution. Le milieu réactionnel prend en masse.  A solution of 12.13 g (0.038 mole) of sodium nitrite in 8 mL of water is added dropwise into the first solution. The reaction medium is en masse.
La température est ramenée à 0°C. Après 30 minutes d'agitation à une température de O°C, le solide obtenu est éliminé par filtration.  The temperature is brought back to 0 ° C. After stirring for 30 minutes at a temperature of 0 ° C., the solid obtained is removed by filtration.
Un filtrat jaune comprenant du sel de diazonium est placé dans un bêcher de 500 mL, puis refroidi à une température de -10°C.  A yellow filtrate comprising diazonium salt is placed in a 500 ml beaker and then cooled to a temperature of -10 ° C.
Sous agitation vigoureuse, on ajoute goutte à goutte une solution obtenue en dissolvant 1 ,95 g (0,03 mole) d'azoture de sodium dans 8 mL d'eau à la solution de sel de diazonium. Il y a formation abondante de mousse. On continue d'agiter pendant 30 minutes à une température -10°C après la fin de l'addition d'azoture de sodium. Le solide est séparé par filtration, lavé à l'eau puis à l'éther de pétrole. Il est enfin séché sous vide à température ambiante. Under vigorous stirring, a solution obtained by dissolving 1.95 g (0.03 mol) of sodium azide in 8 ml of water is added dropwise to the diazonium salt solution. There is abundant formation of moss. Stirring is continued for 30 minutes at -10 ° C after the addition of sodium azide. The solid is separated by filtration, washed with water and then with petroleum ether. Finally, it is dried under vacuum at room temperature.
On obtient 2,81 g (0,017 mole) d'acide 4-azidobenzoïque soit un rendement de 57,4%.  2.81 g (0.017 mol) of 4-azidobenzoic acid is obtained, a yield of 57.4%.
La figure 2b illustre la synthèse du copolymère 4 à partir du méthacrylate fonctionnalisé par une fonction azide 6 et de l'acrylonitrile 5 selon le mode opératoire présenté ci-après.  FIG. 2b illustrates the synthesis of the copolymer 4 from the methacrylate functionalized with an azide function 6 and acrylonitrile 5 according to the procedure presented hereinafter.
L'acrylonitrile est séché sur hydrure de calcium pendant plusieurs jours puis distillé à pression atmosphérique sous courant d'argon.  The acrylonitrile is dried over calcium hydride for several days and then distilled at atmospheric pressure under a stream of argon.
Dans une ampoule pré-scellée, on introduit 2,1 g (39,5 mmoles) d'acrylonitrile, 1 10 mg (0,4 mmole) de méthacrylate dans 20 mL de DMF sec et 65,6 mg (0,4 mmole) d'azobisisobutyronitrile ou AIBN.  In a pre-sealed ampoule, 2.1 g (39.5 mmol) of acrylonitrile, 1.1 mg (0.4 mmol) of methacrylate in 20 mL of dry DMF and 65.6 mg (0.4 mmol) are introduced. ) azobisisobutyronitrile or AIBN.
Le milieu réactionnel est dégazé trois fois sous vide puis scellé sous vide et le milieu réactionnel est chauffé à 60 °C pendant 24h.  The reaction medium is degassed three times under vacuum and then sealed under vacuum and the reaction medium is heated at 60 ° C. for 24 hours.
Le copolymère est précipité dans 250mL de méthanol. Le solide est séparé par filtration puis séché sous vide à température ambiante. Le produit ainsi obtenu est purifié par dissolution dans un mélange de 20 mL de THF et 20 mL de DMF suivie d'une reprécipitation dans 600 mL de méthanol. Le solide est séparé par filtration puis séché sous vide.  The copolymer is precipitated in 250 ml of methanol. The solid is separated by filtration and then dried under vacuum at room temperature. The product thus obtained is purified by dissolving in a mixture of 20 ml of THF and 20 ml of DMF followed by reprecipitation in 600 ml of methanol. The solid is separated by filtration and then dried under vacuum.
On obtient 1 ,88 g de copolymère soit un rendement de 85%  1.88 g of copolymer is obtained, a yield of 85%.
La figure 2c illustre la réaction de greffage du copolymère 4 sur un nanotube de carbone 2 selon le mode opératoire décrit ci-après.  FIG. 2c illustrates the grafting reaction of the copolymer 4 on a carbon nanotube 2 according to the procedure described hereinafter.
On disperse, par traitement ultra-sons pendant 3h, 40 mg de nanotubes de carbone multi-feuillet dans 36 mL de 1 ,2-dichlorobenzène.  40 mg of multi-layer carbon nanotubes are dispersed by ultrasonic treatment for 3 hours in 36 ml of 1,2-dichlorobenzene.
La dispersion de nanotubes de carbone ainsi obtenue est introduite dans un ballon tricol de 100 mL.  The dispersion of carbon nanotubes thus obtained is introduced into a three-necked flask of 100 ml.
Sous balayage d'argon, on ajoute goutte à goutte à la dispersion de nanotubes de carbone une solution de 153 mg de copolymère 4 dans 5 mL de DMF sec.  Under argon flushing, a solution of 153 mg of copolymer 4 in 5 ml of dry DMF is added dropwise to the carbon nanotube dispersion.
Le milieu réactionnel est chauffé à une température de 135 °C sous argon pendant 24h.  The reaction medium is heated at a temperature of 135 ° C. under argon for 24 hours.
Un solide noir est séparé par centrifugation à 3000 tours par minute. A black solid is separated by centrifugation at 3000 rpm.
Le solide noir est lavé deux fois avec le DMF puis isolé par filtration sur filtre Sartorius stedem (marque déposée) (PTFE, 4,45μιτι), lavé à l'acétone et séché sous vide à température de 1 10°C. On obtient 0,167 g de solide soit un rendement de 86,5%. The black solid is washed twice with DMF and then isolated by filtration on a Sartorius stedem filter (PTFE, 4,45 μιτι), washed with acetone and dried under vacuum at a temperature of 110 ° C. 0.167 g of solid is obtained, ie a yield of 86.5%.
Les nanotubes modifiés par les chaînes de polyacrylonitrile sont ensuite pyrolisés à une température de 1000°C pendant 3h dans une atmosphère neutre.  The nanotubes modified with the polyacrylonitrile chains are then pyrolized at a temperature of 1000 ° C. for 3 hours in a neutral atmosphere.
Le matériau hybride de nanotubes de carbone et de graphite ainsi obtenu est directement utilisable pour préparer une électrode pour supercondensateur.  The hybrid material of carbon nanotubes and graphite thus obtained can be used directly to prepare a supercapacitor electrode.
Ce matériau hybride obtenu par greffage d'un matériau macromoléculaire capable de former une structure graphite permet d'augmenter la surface spécifique des électrodes utilisées traditionnellement.  This hybrid material obtained by grafting a macromolecular material capable of forming a graphite structure makes it possible to increase the specific surface area of the electrodes conventionally used.

Claims

Revendications claims
1 . Electrode pour supercondensateur comprenant un premier matériau conducteur électrique (2) et un matériau macromoléculaire (1 ) caractérisée en ce que le matériau macromoléculaire (1 ) est greffé sur le premier matériau (2), ledit matériau macromoléculaire (1 ) est apte à générer une structure graphitique par pyrolyse, le premier matériau étant une mousse métallique d'or ou d'argent ou à base de carbone. 1. Supercapacitor electrode comprising a first electrically conductive material (2) and a macromolecular material (1) characterized in that the macromolecular material (1) is grafted onto the first material (2), said macromolecular material (1) is capable of generating a graphitic structure by pyrolysis, the first material being a metal foam of gold or silver or carbon-based.
2. Electrode selon la revendication 1 dans laquelle le matériau macromoléculaire (1 ) est du polyacrylonitrile.  2. The electrode of claim 1 wherein the macromolecular material (1) is polyacrylonitrile.
3. Electrode selon l'une des revendications 1 ou 2 dans laquelle ledit premier matériau (2) comprend des nanotubes de carbone.  3. Electrode according to one of claims 1 or 2 wherein said first material (2) comprises carbon nanotubes.
4. Procédé d'élaboration d'une d'électrode selon l'une des revendications précédentes caractérisé en ce qu'il comprend les étapes dans lesquelles :  4. A method of producing an electrode according to one of the preceding claims characterized in that it comprises the steps in which:
- on synthétise le matériau macromoléculaire (1 ) apte à être graphitisé et comprenant une fonction (X) capable de créer des liaisons covalentes,  the macromolecular material (1) capable of being graphitized and comprising a function (X) capable of creating covalent bonds, is synthesized,
on greffe le matériau macromoléculaire (1 ) sur ledit premier matériau (1 ), et  the macromolecular material (1) is grafted onto said first material (1), and
- on graphitisé le matériau macromoléculaire (1 ).  the macromolecular material (1) is graphitized.
5. Procédé selon la revendication 4 dans lequel le matériau macromoléculaire est du polyacrylonitrile.  The method of claim 4 wherein the macromolecular material is polyacrylonitrile.
6. Procédé selon l'une des revendications 4 ou 5 dans lequel ledit premier matériau (2) est à base de carbone.  6. Method according to one of claims 4 or 5 wherein said first material (2) is carbon-based.
7. Procédé selon l'une des revendications 4 à 6dans lequel ledit premier matériau (2) comprend des nanotubes de carbone. 7. Method according to one of claims 4 to 6 wherein said first material (2) comprises carbon nanotubes.
8. Procédé selon l'une des revendications 4 à 7 dans lequel la fonction (X) est une fonction azide (-N3) ou une fonction sel de diazonium (-N=N+).8. Method according to one of claims 4 to 7 wherein the function (X) is an azide function (-N 3 ) or a diazonium salt function (-N = N + ).
9. Procédé selon l'une des revendications 4 ou 5 dans lequel ledit premier matériau (2) est une mousse métallique d'or ou d'argent. 9. Method according to one of claims 4 or 5 wherein said first material (2) is a metal foam of gold or silver.
10. Procédé selon l'une des revendications 4, 5 ou 9 dans lequel la fonction (X) est une fonction thiol (-SH).  10. Method according to one of claims 4, 5 or 9 wherein the function (X) is a thiol function (-SH).
1 1 . Procédé selon l'une des revendications 4 à 1 1 dans lequel le greffage est réalisé par traitement ultra-sons suivi d'un chauffage à 135°C.  1 1. Process according to one of Claims 4 to 11, in which the grafting is carried out by ultrasonic treatment followed by heating at 135 ° C.
PCT/EP2013/057245 2012-04-06 2013-04-05 Hybrid electrode for a supercapacitor WO2013150151A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1201029A FR2989215B1 (en) 2012-04-06 2012-04-06 HYBRID ELECTRODE FOR SUPERCONDENSER
FR12/01029 2012-04-06

Publications (1)

Publication Number Publication Date
WO2013150151A1 true WO2013150151A1 (en) 2013-10-10

Family

ID=46754479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/057245 WO2013150151A1 (en) 2012-04-06 2013-04-05 Hybrid electrode for a supercapacitor

Country Status (2)

Country Link
FR (1) FR2989215B1 (en)
WO (1) WO2013150151A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11028193B2 (en) * 2017-04-13 2021-06-08 Braskem America, Inc. Azide-modified olefin as polymeric coupling agent

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2015010853A (en) 2013-02-21 2016-07-20 Univ California Universal scalable and cost-effective surface modifications.
JP7161776B2 (en) 2016-12-01 2022-10-27 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Energy supply device and its use
CA3083976A1 (en) 2017-12-01 2019-06-06 The Regents Of The University Of California Biofouling resistant coatings and methods of making and using the same
US11807701B2 (en) 2019-06-05 2023-11-07 The Regents Of The University Of California Biofouling resistant coatings and methods of making and using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003088374A2 (en) * 2002-04-08 2003-10-23 Powergenix Systems, Inc. Asymmetric supercapacitor device with extended capability
US20060098389A1 (en) * 2002-07-01 2006-05-11 Tao Liu Supercapacitor having electrode material comprising single-wall carbon nanotubes and process for making the same
US20090053512A1 (en) * 2006-03-10 2009-02-26 The Arizona Bd Of Reg On Behalf Of The Univ Of Az Multifunctional polymer coated magnetic nanocomposite materials
US7623340B1 (en) * 2006-08-07 2009-11-24 Nanotek Instruments, Inc. Nano-scaled graphene plate nanocomposites for supercapacitor electrodes

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9613758B2 (en) * 2009-12-22 2017-04-04 Pasi Moilanen Fabrication and application of polymer-graphitic material nanocomposites and hybride materials

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003088374A2 (en) * 2002-04-08 2003-10-23 Powergenix Systems, Inc. Asymmetric supercapacitor device with extended capability
US20060098389A1 (en) * 2002-07-01 2006-05-11 Tao Liu Supercapacitor having electrode material comprising single-wall carbon nanotubes and process for making the same
US20090053512A1 (en) * 2006-03-10 2009-02-26 The Arizona Bd Of Reg On Behalf Of The Univ Of Az Multifunctional polymer coated magnetic nanocomposite materials
US7623340B1 (en) * 2006-08-07 2009-11-24 Nanotek Instruments, Inc. Nano-scaled graphene plate nanocomposites for supercapacitor electrodes

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
P. PETROV ET AL., MACROMOLECULAR RAPID COMMUNICATIONS, vol. 25, 2004, pages 987 - 990
ZHANG H ET AL: "The synthesis of polyacrylonitrile/carbon nanotube microspheres by aqueous deposition polymerization under ultrasonication", CARBON, ELSEVIER, OXFORD, GB, vol. 48, no. 3, 1 March 2010 (2010-03-01), pages 688 - 695, XP026804739, ISSN: 0008-6223, [retrieved on 20091013] *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11028193B2 (en) * 2017-04-13 2021-06-08 Braskem America, Inc. Azide-modified olefin as polymeric coupling agent

Also Published As

Publication number Publication date
FR2989215A1 (en) 2013-10-11
FR2989215B1 (en) 2015-04-03

Similar Documents

Publication Publication Date Title
KR100714347B1 (en) Proton Conducting Material and Method for Preparing the Same, and Electrochemical Device Using the Same
US11370665B2 (en) Method for producing activated carbon
KR101543486B1 (en) Metal encapsulated dendritic carbon nanostructure, carbon nanostructure, process for producing metal encapsulated dendritic carbon nanostructure, process for producing carbon nanostructure, and capacitor
KR100569188B1 (en) Carbon-porous media composite electrode and preparation method thereof
WO2013150151A1 (en) Hybrid electrode for a supercapacitor
WO2005088657A2 (en) Method for making an electrode, resulting electrode and supercapacitor including same
WO2010026332A1 (en) Composite electrode material, battery electrode consisting of said material, and lithium battery including such an electrode
WO2002043088A2 (en) Electrochemical double-layer energy storage cells with high energy density and high power density
JP5136733B2 (en) Conductive polymer / porous carbon material composite and electrode material using the same
Lee et al. Bacterial cellulose as source for activated nanosized carbon for electric double layer capacitors
EP1883937A2 (en) Electrode for energy storage systems, production method thereof and energy storage system comprising said electrode
EP0930627A1 (en) Supercapacitor with aqueous electrolyte and electrode made of activated carbon
JP2018530102A (en) Diatom energy storage device
WO2022218088A1 (en) Method for preparing porous graphene film, porous graphene film, and electrode
FR2901156A1 (en) Catalytic composition, useful to cover the electrode collectors and as electrode like electrochemical supercondenser, comprises polymeric binder and catalytic compound comprising carbon nanotubes and catalytic activated carbon
JP2012023196A (en) Conductive polymer/porous carbon material complex
EP3440727B1 (en) Method for producing proton-conducting platinum particles with a large active surface area and surface-grafted with specific, proton-conducting polymers
JP4691794B2 (en) Method for manufacturing electrochemical device
CA3020975A1 (en) High-density microporous carbon and method for preparing same
JP2000138141A (en) Manufacture of carbon porous body for electric double layer capacitor polarizable electrode
JP2011029136A (en) Electrode for secondary battery, secondary battery, and manufacturing method of electrode for secondary battery
FR2989821A1 (en) Hybrid electrode for supercapacitor, has electrical conducting material and mesoporous carbon, where conducting material includes three-dimensional structure and opened porosities, and mesoporous carbon is filled in porosities of material
WO2020109064A1 (en) Method for preparing a catalytic material made from w or mo mononuclear precursor for electrochemical reduction reactions
JP4439175B2 (en) Carbon composite and production method thereof
JP4718320B2 (en) Porous material and electric double layer capacitor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13719750

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13719750

Country of ref document: EP

Kind code of ref document: A1