WO2013149503A1 - 直接换热式蒸气冷凝装置 - Google Patents

直接换热式蒸气冷凝装置 Download PDF

Info

Publication number
WO2013149503A1
WO2013149503A1 PCT/CN2013/070412 CN2013070412W WO2013149503A1 WO 2013149503 A1 WO2013149503 A1 WO 2013149503A1 CN 2013070412 W CN2013070412 W CN 2013070412W WO 2013149503 A1 WO2013149503 A1 WO 2013149503A1
Authority
WO
WIPO (PCT)
Prior art keywords
condensing
impeller
heat exchange
direct heat
exhaust
Prior art date
Application number
PCT/CN2013/070412
Other languages
English (en)
French (fr)
Inventor
傅利江
傅心怡
Original Assignee
Fu Lijiang
Fu Xinyi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fu Lijiang, Fu Xinyi filed Critical Fu Lijiang
Publication of WO2013149503A1 publication Critical patent/WO2013149503A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B3/00Condensers in which the steam or vapour comes into direct contact with the cooling medium
    • F28B3/08Condensers in which the steam or vapour comes into direct contact with the cooling medium with rotatable members

Definitions

  • the present invention relates to a condensing device, and more particularly to a condensing device that brings vapor into direct contact with a heat absorbing medium to promote vapor condensation.
  • the conversion of steam into a liquid is carried out by a condensing device which indirectly exchanges heat through a condensing pipe, that is, a vapor and a medium for absorbing vapor heat to cool the vapor into a liquid (hereinafter referred to as The heat absorbing medium is separated by a condensing pipe, one passing through the inside of the condensing pipe and the other passing through the outside of the condensing pipe.
  • a condensing device is disclosed in the patent document entitled "High Efficiency Vacuum Cylinder" in Chinese Patent No. 972019146, issued on January 20, 1999.
  • the device mainly comprises a condenser body and a condensing core installed in the condenser body.
  • the condensing core is provided with a condensing tube. When used, the medium in the condensing tube is vaporized to absorb the heat of the vapor outside the condensing tube to make the vapor become a liquid. .
  • a condensing device a condensing device in the document, is also disclosed in the patent document entitled "Gas-Enclosed Circulating Desalination Machine” in Chinese Patent Publication No. 1778691A, published on May 31, 2006.
  • the condensation is carried out in the same manner as in the case of the prior patent document, and condensation is achieved by expanding the vaporization of the refrigerant located in the heat transfer tube (condensation tube) to absorb the heat of the vapor located outside the condenser tube.
  • a condensing device is disclosed in the patent document entitled “Flash Evaporation Integrated Seawater Talking Device” in Chinese Patent No. ZL2010102700217, filed on Feb. 16, 2011.
  • the heat exchange body of the condensing device in this patent document is a fin-type heat exchange tube assembly. In use, deep seawater (low temperature seawater) flows through the heat transfer tubes, and water vapor flows through the outside of the heat exchange tubes to achieve condensation.
  • the present invention aims to provide a direct heat exchange steam condensing device in which steam and direct heat absorbing medium are in direct contact with each other in motion to solve the problem of low heat exchange efficiency, slow heat exchange rate and poor condensation effect of the existing condensing device. The problem.
  • a direct heat exchange type steam condensing device including condensation An impeller
  • the condensing impeller includes a plurality of condensing impeller blades, a condensing impeller shaft for driving rotation of the condensing impeller blades, and a synchronously rotating inlet passage for conveying the heat absorbing medium to the surface of the condensing impeller blades, the circumferential direction of the condensing impeller blades along the condensing impeller shaft Distribution, a vapor channel is formed between adjacent condensing wheel blades.
  • the vapor When in use, the vapor enters between the condensing impellers from one end of the steam passage, and uses the same liquid substance as the condensed vapor as the heat absorbing medium.
  • the condensing impeller continuously rotates, and the heat absorbing medium is input through the liquid inlet channel, and the heat absorbing medium is fed through the liquid.
  • the passage flows to the surface of the condensing impeller vane. Under the action of centrifugal force, the heat absorbing medium is scattered to the surface of the condensing impeller vane and exits from the end of the condensing impeller vane away from the rotating shaft of the condensing impeller, and the vapor flows through the vapor passage.
  • the heat absorbing medium is in direct contact, the heat is absorbed by the condensing medium and condensed, along with the condensing medium, exiting from the end of the condensing impeller blade remote from the condensing impeller shaft.
  • the optimum shape of the outlet of the inlet passage is: a slit extending in the axial direction of the condensing impeller, enabling the condensing medium to be continuously laid flat on the surface of the condensing impeller blade.
  • the condensing impeller is provided with a synchronously rotating condensing impeller casing, the condensing impeller casing being provided with an intake port and a drain passage aligned with an end of the condensing impeller blade away from the condensing impeller shaft.
  • the vapor flows from the inlet port on the condensing impeller casing into the condensed impeller blades and is condensed, and the vapor is condensed to obtain a combination of pure liquid and condensing medium (hereinafter, "the pure liquid and the condensing medium obtained by vapor condensation"
  • the complex “called “pure liquid” flows out of the drain passage by centrifugal force.
  • the design can prevent the pure liquid from being thrown onto the external object and splash back into the vapor passage, resulting in inconvenient recovery of the pure liquid and affecting the condensation effect, thereby improving the compactness of the equipment; If the condensing impeller casing is not designed, the size of the outer space along the radial direction of the condensing impeller needs to be designed to be large when the above problems are overcome, thereby causing the overall bulk of the device to be bulky, and the greater the rotational speed, the radial dimension of the device along the condensing impeller. The need is bigger.
  • the condensing impeller casing can be connected to the condensing impeller shaft via a condensing impeller blade or to the condensing impeller shaft by means of a design connecting rod or the like.
  • the former can design the condensing impeller casing as an open structure, and the open port of the casing forms an air inlet, and the fluency of the vapor entering is better.
  • the outer end of the condensing impeller blades is sealingly coupled to the inner surface of the condensing impeller casing.
  • the condensate can smoothly and completely transfer from the condensing vane blades to the drain passage.
  • the drain passage is inclined rearward in the direction of rotation of the condensing impeller.
  • the running direction is backward along the rotating direction of the condensing impeller.
  • the condensing impeller blades pass through the condensing impeller casing through the drain passage.
  • the pure liquid can completely leave the vapor through hole, and does not fall into the vapor to generate secondary evaporation, which affects the condensation efficiency.
  • one end of the condensing impeller vane penetrating the condensing impeller casing is provided with a flow guiding surface which is inclined rearward in the rotating direction of the condensing impeller.
  • the pure liquid leaves the condensing impeller blades more smoothly.
  • the condensing impeller shaft is provided with a liquid storage chamber, the inner end of the condensing impeller blade is inserted into the liquid storage chamber, and the inner end of the condensing impeller blade is provided with a blade portion inlet hole and along the condensation A hem that is bent forward in the direction of rotation of the impeller, a crease formed between the hem and the condensed impeller blade, and a nip and a liquid inlet of the blade portion constitute the liquid inlet passage.
  • the heat absorbing medium flows through the liquid inlet hole and the nip to the front surface of the condensing impeller blade in the direction of rotation of the condensing impeller.
  • the pressure of the liquid in the inlet hole is small, and the liquid does not generate back splash when flowing to the surface of the condensing impeller blade, so that the liquid can be better spread on the condensing impeller blade.
  • the condensing impeller casing of the present invention is provided with an air outlet, and an outer end of the air outlet is provided with an exhaust impeller, and the exhaust impeller includes an exhaust impeller shaft and a plurality of exhaust impeller blades driven by the exhaust impeller shaft.
  • the exhaust impeller blades are distributed along the circumferential direction of the exhaust impeller shaft.
  • the exhaust impeller acts to drive the non-condensable gas and the uncondensed vapor away from the condensing impeller, and at the same time, generates a negative pressure at the outlet end of the vapor passage to guide the flow of the vapor along the vapor passage, which is beneficial to the improvement of the condensation effect.
  • the present invention also includes a mounting chamber having a vapor inlet and a cooling chamber, the vapor inlet being coupled to the air inlet on the condensing impeller housing, the cooling chamber being provided with a cooling chamber wall protruding toward the cooling chamber A dimple is formed on the surface of the cooling chamber, the exhaust impeller is received in the dimple, and a bottom wall of the dimple is provided with a gas pipe extending through the cooling chamber.
  • the cold liquid is placed in the cooling chamber so that the temperature of the wall of the dimple is low, and the vapor flowing out of the vapor passage acts on the exhaust impeller. It is condensed by contact with the wall surface of the pit. It can make the condensation more thorough, while better ensuring the fluency of the vapor flowing in the vapor channel.
  • Non-condensable gas is discharged from the installation chamber through the air pipe. Condensate is collected in the installation room.
  • the surface of the condensing impeller blade is provided with a plurality of grooves distributed along the axial direction of the condensing impeller, and the groove extends along the outer end portion of the condensing impeller blade to be docked together with the outlet end of the inlet liquid passage.
  • the heat absorbing medium flows through the groove on the surface of the chilled impeller blade to prevent secondary evaporation.
  • the exhaust impeller and the condensing impeller are disposed coaxially and synchronously, and the exhaust impeller blades and the condensing impeller blades are staggered.
  • the effect of forming a negative pressure zone above the condensing impeller is good and compact.
  • the present invention has the following advantages: the centrifugal action is caused by the rotation to continuously tiling the condensing medium onto the condensing impeller blades and leaving, thereby realizing direct contact heat exchange between the vapor and the condensing medium, so the heat exchange effect is good and the heat exchange speed is high. Fast, pure liquid collection is convenient; due to condensation, the condensing medium is flowing and the position in the vapor is constantly changing, so the condensation of the vapor is even and thorough; the invention of the direct heat exchange steam condensing device makes the condensation When the heat released is recycled, it can be realized.
  • FIG. 1 is a schematic diagram of Embodiment 1 of the present invention.
  • 2 is a cross-sectional view taken along line A-A of FIG. 1.
  • FIG. 3 is a partially enlarged schematic view of the portion B of FIG. 2.
  • FIG. 4 is a schematic view of a condensing impeller according to a second embodiment of the present invention.
  • a direct heat exchange type steam condensing device includes a mounting chamber 1, a cooling device 2, a condensing impeller 3, and an exhaust impeller 4.
  • the bottom of the installation chamber 1 is provided with a vapor inlet 11 and a reservoir 12.
  • a pure liquid discharge valve port 121 is provided in the liquid storage tank 12.
  • the pure liquid discharge valve port 121 is provided with a pure liquid discharge valve 122.
  • the upper end of the installation chamber 1 is provided with a cooling chamber 13.
  • the bottom wall of the cooling chamber 13 is convex toward the inside of the cooling chamber to form a recess 131 on the outdoor surface of the cooling chamber.
  • the exhaust impeller 4 is housed in the recess 131.
  • a plurality of air tubes 16 penetrating the cooling chamber 13 are provided on the bottom wall of the recess 131.
  • a heat absorbing medium inlet 132 is provided in the wall portion of the cooling chamber 13.
  • the cooling device 2 is located outside the installation room 1.
  • the cooling device 2 is a heat exchanger.
  • the inlet end of the cooling device 2 is connected to the pure liquid discharge port 121 through a pipe, and the outlet end of the cooling device 2 is connected to the heat absorption medium inlet 132 through a pipe.
  • the outside of the installation chamber 1 is provided with a cavity 14.
  • An exhaust port 15 is provided in the cavity 14.
  • An exhaust valve 151 is provided in the exhaust port 15.
  • the outlet ends of the gas tubes 16 are connected together through the chamber 4.
  • the condensing impeller 3 is supported in the installation chamber 1 by the support frame 6.
  • the condensing impeller 3 includes a plurality of condensing impeller blades 31, a condensing impeller shaft 32, a condensing impeller casing 33, and a drive motor 35 that drives the condensing impeller shaft 32 to rotate.
  • a liquid storage chamber 321 is disposed in the condensing impeller shaft 32.
  • the inner end of the condensing impeller vane 31 is bored into the liquid storage chamber 321 .
  • the condensing impeller blades 31 and the condensing impeller shaft 32 are sealingly coupled together.
  • the condensing impeller blades 31 and the condensing impeller shaft 32 are sealed and fixed together by welding.
  • the inner end of the condensing impeller vane 31 is provided with a plurality of vane portion inlet holes 311.
  • the blade portion inlet holes 311 are distributed along the axial direction of the condensing impeller shaft 32.
  • the outer end of the condensing impeller vane 31 is welded to the inner surface of the condensing impeller casing 33.
  • An axial passage extending along the axial direction of the condensing impeller shaft is formed between adjacent condensing wheel blades 31 34.
  • the condensing impeller casing 33 is open at both upper and lower ends to form a gas inlet 332 and an air outlet 333.
  • the air inlet 332 is sealingly butted together with the steam inlet 11.
  • the condensing impeller casing 33 is provided with a drain passage 331.
  • the condensing impeller casing 33 is rotatable relative to the vapor inlet 11.
  • the exhaust impeller 4 is located on the outer end of the air outlet 333.
  • the exhaust impeller 4 includes an exhaust impeller shaft 41 and a plurality of exhaust impeller blades 42 fixed to the exhaust impeller shaft 41.
  • the exhaust impeller shaft 41 and the condensing impeller shaft 32 are coaxial and have a unitary structure.
  • the exhaust impeller shaft 41 is internally provided with a liquid distribution pipe 5.
  • the lower end of the liquid dispensing tube 5 extends into the reservoir chamber 321 .
  • the upper end of the liquid dispensing tube 5 extends into the cooling chamber 13.
  • the liquid supply tube 5 is sealed and fixed together with the wall portion of the cooling chamber 5.
  • the liquid distribution pipe 5 is provided with a liquid supply pipe inlet 51 for communicating the cooling chamber 5 and the inside of the liquid distribution pipe 5.
  • the condensing impeller blades 31 are distributed along the circumferential direction of the condensing impeller shaft 32.
  • the inner end of the condensing impeller vane 31 is provided with a hem 312 which is bent forward in the direction of rotation of the condensing impeller, that is, C in the drawing.
  • the condensing impeller casing 33 is fixed to the condensing impeller shaft 32 by the condensing vane blades 31.
  • the surface 314 of the front side of the condensing impeller vane in the direction of rotation of the condensing impeller is aligned with the inlet end of the drain passage 331.
  • the drain passage 331 is inclined rearward in the direction of rotation of the condensing impeller.
  • the exhaust impeller blades 42 are distributed along the circumferential direction of the exhaust impeller shaft 41.
  • the outer end of the exhaust impeller vane 42 extends beyond the outer surface of the condensing impeller casing 33.
  • the exhaust impeller blades 42 are offset from the condensing impeller blades 31.
  • a nip 313 is formed between the hem 312 and the condensing impeller blade 31.
  • the nip 313 and the blade portion inlet hole 311 constitute a liquid inlet passage 36.
  • the drive motor 35 drives the condensing impeller shaft 32 to rotate in the C direction in FIG.
  • the condensing impeller shaft 32 drives the condensing impeller blades 31, the condensing impeller casing 33, the inlet passage 36, the exhaust impeller shaft 41 and the exhaust impeller blades 42 to rotate synchronously.
  • the low-temperature pure liquid in the cooling chamber 13 enters the liquid storage chamber 321 through the liquid inlet portion 51 and the liquid distribution tube 5, and then reaches through the liquid inlet passage 36 and spreads under the centrifugal force on the condensing impeller blades.
  • the surface 314 on the front side of the direction in which the condensing impeller rotates is finally ejected from the outer end of the condensing impeller vane 31 and through the liquid-dispensing passage 331 to the upper side of the liquid storage tank 12 and condensed into the liquid storage tank 12 by gravity.
  • the vapor enters from the vapor inlet 11 and then rises under the pressure difference and flows through the vapor passage 34.
  • the vapor is condensed by heat exchange with the low-temperature pure liquid on the surface of the condensing impeller vane 31.
  • the pure liquid is produced and enters into the liquid storage tank 12.
  • each of the condensing impeller blades 31 is provided with a plurality of grooves 315 distributed along the axial direction of the condensing impeller.
  • the groove 315 extends along the outer end portion of the condensing impeller blade 31 to be butted together with the outlet end of the liquid outlet hole 322.
  • the liquid outlet hole 322 is provided on the condensing impeller shaft 32.
  • the condensing impeller blades 31 pass through the drain passage 331.
  • One end of the condensing impeller vane 31 passing through the condensing impeller casing 33 is provided with a flow guiding surface 315 which is inclined in the direction of rotation of the condensing impeller, that is, D in the drawing.
  • the condensing impeller blades 31 are welded to the outer surface of the condensing impeller shaft 32.
  • the inner surface of the condensing impeller shaft 32 is provided with a cover 323 covering the inner end of the liquid outlet hole 322, and the cover is provided with a shaft portion inlet hole 324.
  • the liquid inlet passage 36 is composed of a shaft portion inlet hole 324, a lid 323, and a liquid outlet hole 322.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

一种直接换热式蒸气冷凝装置,包括冷凝叶轮(3)。冷凝叶轮(3)包括若干冷凝叶轮叶片(31)、驱动冷凝叶轮叶片(31)转动的冷凝叶轮转轴(32)和输送吸热介质到冷凝叶轮叶片(31)表面上的同步转动的进液通道(36)。冷凝叶轮叶片(31)沿冷凝叶轮转轴(32)的周向分布,相邻的冷凝叶轮叶片(31)之间形成蒸气通道(34)。由于蒸气同吸热介质在运动中直接接触换热,因此该直接换热式蒸气冷凝装置能够提高热交换效率和换热速度,并改善冷凝效果。

Description

直接换热式蒸气冷凝装置 技术领域
[0001] 本发明涉及冷凝装置,尤其涉及一种使蒸气同吸热介质进行直接接触以促使蒸气冷凝 的冷凝装置。
背景技术
[0002] 将蒸气转换为液体是通过冷凝装置来进行的,现有的冷凝装置是通过冷凝管进行间接 换热的, 即蒸气和用于吸收蒸气的热量使蒸气冷却为液体的介质(以下称为吸热介质)是被 冷凝管隔开的, 一者从冷凝管的内部通过, 另一者从冷凝管的外部通过。
[0003] 在中国专利号为 972019146、 授权公告日为 1999年 1月 20日、 名称为 "高效真空冷 凝器"的专利文献中公开了一种冷凝装置。该装置主要包括冷凝器体和安装在冷凝器体内的 冷凝芯构成, 冷凝芯内设有冷凝管, 使用时通过冷凝管内的介质气化吸收位于冷凝管外的蒸 气的热量而使蒸气变为液体。
[0004] 在中国专利公开号为 1778691A、 公开日为 2006年 5月 31 日、 名称为 "气体封闭循 环式海水淡化机"的专利文献中也公开了一种冷凝装置, 该文献中的冷凝装置的冷凝方式同 上一个专利文献的情况相同, 通过位于换热管(冷凝管) 内的冷媒的膨胀气化去吸收位于冷 凝管外的蒸气的热量来实现冷凝。
[0005] 在中国专利号为 ZL2010102700217、 申请公布日为 2011年 2月 16日、名称为 "闪蒸 冷凝一体化海水谈化装置"的专利文献中公开了一种冷凝装置。该专利文献中的冷凝装置的 换热体为翅片式换热管组件。 使用时使深层海水(低温海水)从换热管内流过, 水蒸汽从换 热管的外部流过而实现冷凝作用。
[0006] 采用非接触式即间接换热方式来进行冷凝时存在以下不足:蒸气的热量是通过导热介 质间接传递给吸热介质的、 冷凝过程会在导热介质表面形成静止的液膜而阻碍热交换的进 行, 因此热交换效率低且换热速度慢; 换热时导热介质是静止不动的, 导热介质同蒸气流之 间的接触位置不变, 使得蒸气流远离导热介质的部分的热量传递给导热介质的速度慢, 造成 冷凝不彻底 (没有被冷凝的蒸气的比率高); 因此现有的冷凝装置存在冷凝效果差的不足。 发明内容
[0007] 本发明的旨在提供一种蒸气同吸热介质在运动中直接接触的直接换热式蒸气冷凝装 置, 以解决现有的冷凝装置热交换效率低、 换热速度慢、 冷凝效果差的问题。
[0008] 以上技术问题是通过下列技术方案解决的:一种直接换热式蒸气冷凝装置,包括冷凝 叶轮, 所述冷凝叶轮包括若干冷凝叶轮叶片、驱动冷凝叶轮叶片转动的冷凝叶轮转轴和输送 吸热介质到冷凝叶轮叶片表面上的同步转动的进液通道,冷凝叶轮叶片沿冷凝叶轮转轴的周 向分布, 相邻的冷凝轮叶片之间形成蒸气通道。 使用时, 蒸气从蒸汽通道的一端进入冷凝叶 轮之间, 用同被冷凝的蒸气相同的液态物质作为吸热介质, 冷凝叶轮连续转动, 吸热介质经 进液通道输入, 吸热介质经进液通道流到冷凝叶轮叶片的表面上, 在离心力的作用下吸热介 质散开到冷凝叶轮叶片的表面上并从冷凝叶轮叶片的远离冷凝叶轮转轴的一端离开,蒸气流 过蒸气通道的过程中同吸热介质直接接触, 热量被冷凝介质吸收而冷凝, 随同冷凝介质一起 从冷凝叶轮叶片的远离冷凝叶轮转轴的一端离开。进液通道的出口的最佳形状为: 沿冷凝叶 轮的轴向延伸的缝隙, 能够使冷凝介质连续地平铺在冷凝叶轮叶片的表面上。
[0009] 作为优选,所述冷凝叶轮设有同步转动的冷凝叶轮外壳,所述冷凝叶轮外壳设有进气 口和同冷凝叶轮叶片远离冷凝叶轮转轴一端对齐的排液通道。使用时, 蒸气从冷凝叶轮外壳 上的进气口流入冷凝叶轮叶片之间被冷凝,蒸气冷凝后所得的纯净液体和冷凝介质的综合体 (以下将 "蒸气冷凝后所得的纯净液体和冷凝介质的综合体"称为 "纯液") 在离心力的作 用下从排液通道流出。 由于纯液是靠离心力离开冷凝叶轮叶片的, 该设计能够防止纯液被抛 到外部物体上而反溅回蒸气通道内, 导致纯液回收不便且影响冷凝效果, 提高了设备的紧凑 性; 如果不设计冷凝叶轮外壳, 则克服上述问题时, 沿冷凝叶轮的径向的外部空间的尺寸需 要设计得较大, 从而造成设备整体体积庞大, 且转速越大则设备的沿冷凝叶轮的径向尺寸需 要越大。冷凝叶轮外壳可以通过冷凝叶轮叶片同冷凝叶轮转轴连接在一起或通过设计连接杆 等部件同冷凝叶轮转轴连接在一起。前者能够将冷凝叶轮外壳设计为敞口的结构形式, 外壳 敞开的端口形成进气口, 蒸气进入时的通畅性更佳。
[0010] 作为优选,冷凝叶轮叶片的外端密封连接在冷凝叶轮外壳的内表面上。在冷凝叶轮的 转速变化时, 冷凝液能顺畅完全地从冷凝叶片叶片转移到排液通道中。
[0011] 作为优选,排液通道沿冷凝叶轮转动方向向后倾斜。纯液离开冷凝叶轮叶片时的运行 方向为沿冷凝叶轮转动方向向后的, 该设计能够使得纯液流出排液通道时顺畅, 不会产生回 流。
[0012] 作为另一优选,冷凝叶轮叶片经所述排液通道穿出冷凝叶轮外壳。纯液能够完全离开 蒸气通孔, 不会掉入蒸气产生二次蒸发而影响冷凝效率。
[0013] 作为优选,冷凝叶轮叶片穿出冷凝叶轮外壳的一端设有沿冷凝叶轮转动方向向后倾斜 的导流面。 纯液离开冷凝叶轮叶片时更加之顺畅。 [0014] 作为优选,所述冷凝叶轮转轴内设有储液腔,冷凝叶轮叶片的内端穿设到所述储液腔 内, 冷凝叶轮叶片的内端设有叶片部进液孔和沿冷凝叶轮转动方向向前弯折的折边, 折边和 冷凝叶轮叶片之间形成夹缝, 夹缝和叶片部进液孔构成所述进液通道。 使用过程中, 吸热介 质依次经进液孔和夹缝流到冷凝叶轮叶片的位于冷凝叶轮转动方向的前方的表面上。冷凝叶 轮转动的过程中, 进液孔内的液体的压力小, 液体流到冷凝叶轮叶片的表面上时不会产生反 溅, 使得液体能够更好地铺开在冷凝叶轮叶片上。
[0015] 本发明所述冷凝叶轮外壳设有出气口, 出气口的外端设有排气叶轮,所述排气叶轮包 括排气叶轮转轴和通过排气叶轮转轴驱动的若干排气叶轮叶片,排气叶轮叶片沿排气叶轮转 轴的周向分布。排气叶轮起到将不凝气体和没有被冷凝的蒸气驱离冷凝叶轮的作用, 同时能 在蒸气通道的出气端产生负压, 以引导蒸气沿蒸气通道流动, 有利于冷凝效果的提升。
[0016] 本发明还包括安装室,安装室设有蒸气进口和冷却室,蒸气进口同冷凝叶轮外壳上的 进气口对接在一起,冷却室设有由冷却室壁朝向冷却室内部凸起而形成的位于冷却室外表面 上的凹坑, 所述排气叶轮容置在所述凹坑内, 凹坑的底壁上设有贯穿冷却室的气管。 使用时 蒸气经蒸气进口、冷凝叶轮外壳上的进气口进入蒸气通道而被冷凝, 在冷却室内装入冷的液 体使得凹坑壁面的温度较低,流出蒸气通道的蒸气在排气叶轮的作用下同凹坑壁面接触而被 冷凝。 能够使冷凝更为彻底, 同时更好地保证蒸气在蒸气通道内流动时的流畅性。 不凝气体 经气管排出安装室。 冷凝水收集在安装室内。
[0017] 所述冷凝叶轮叶片的表面上设有若干沿冷凝叶轮的轴向分布的沟,所述沟沿冷凝叶轮 叶片的外端部开始延伸到同进液通道的出口端对接在一起。使用过程中, 吸热介质经沟在冷 凝叶轮叶片表面上流动, 能起到防止二次蒸发的作用。
[0018] 作为优选,排气叶轮和冷凝叶轮同轴设置且同步转动,排气叶轮叶片和冷凝叶轮叶片 错开。 在冷凝叶轮上方形成负压区的效果好且结构紧凑。
[0019] 本发明具有下述优点,通过转动产生离心作用使冷凝介质连续平铺到冷凝叶轮叶片上 并离开, 实现了蒸气同冷凝介质的直接接触换热, 因此换热效果好且换热速度快, 纯液收集 时方便; 由于冷凝时冷凝介质是流动的且在蒸气中的位置是不停地改变的, 因此对蒸气的冷 凝作用均匀彻底; 直接换热式蒸气冷凝装置的发明, 使得冷凝时释放的热量被回收利用能够 得以实现。
附图说明
[0020] 图 1为本发明实施例一的示意图。 [0021] 图 2为图 1的 A— A剖视示意图。
[0022] 图 3为图 2的 B处的局部放大示意图。
[0023] 图 4为本发明实施例二的冷凝叶轮的示意图。
[0024] 图中: 安装室 1, 蒸气进口 11, 储液槽 12, 纯液排放阀口 121, 纯液排放阀 122, 冷 却室 13, 凹坑 131, 吸热介质入口 132, 腔体 14, 排气口 15, 排气阀 151, 气管 16, 冷却 装置 2, 冷凝叶轮 3, 冷凝叶轮叶片 31, 叶片部进液孔 311, 折边 312, 夹缝 313, 冷凝叶轮 叶片的位于冷凝叶轮转动方向的前侧的表面 314, 沟 315, 叶轮转轴 32, 储液腔 321, 出液 孔 322, 盖子 323, 转轴部进液孔 324, 冷凝叶轮外壳 33, 排液通道 331, 进气口 332, 出气 口 333, 蒸气通道 34, 驱动马达 35, 进液通道 36, 气叶轮 4, 排气叶轮转轴 41, 排气叶轮 叶片 42, 配液管 5, 配液管部进液孔 51, 支撑架 6。
具体实施方式
[0025] 下面结合附图与实施例对本发明作进一步的说明。
[0026] 实施例一, 参见图 1, 一种直接换热式蒸气冷凝装置, 包括安装室 1、 冷却装置 2、 冷凝叶轮 3和排气叶轮 4。
[0027] 安装室 1的底部设有蒸气进口 11和储液槽 12。 储液槽 12上设有纯液排放阀口 121。 纯液排放阀口 121设有纯液排放阀 122。 安装室 1的上端设有冷却室 13。 冷却室 13的底壁 朝向冷却室内部凸起而形成位于冷却室外表面上的凹坑 131。排气叶轮 4容置在凹坑 131内。 凹坑 131的底壁上设有多根贯通冷却室 13的气管 16。 冷却室 13的壁部上设有吸热介质入 口 132。 冷却装置 2位于安装室 1的外部。 冷却装置 2为换热器。 冷却装置 2的入口端通过 管道同纯液排放口 121连接在一起,冷却装置 2的出口端通过管道同吸热介质入口 132对接 在一起。 安装室 1的外部设有腔体 14。 腔体 14上设有排气口 15。 排气口 15上设有排气阀 151。 气管 16的出口端通过腔体 4相连通在一起。
[0028] 冷凝叶轮 3通过支撑架 6支撑在安装室 1内。冷凝叶轮 3包括若干冷凝叶轮叶片 31、 冷凝叶轮转轴 32、 冷凝叶轮外壳 33和驱动冷凝叶轮转轴 32转动的驱动马达 35。
[0029] 冷凝叶轮转轴 32内设置有储液腔 321。冷凝叶轮叶片 31的内端穿设到储液腔 321内。 冷凝叶轮叶片 31和冷凝叶轮转轴 32密封固接连接在一起。 冷凝叶轮叶片 31和冷凝叶轮转 轴 32通过焊接的方式密封固接在一起。冷凝叶轮叶片 31的内端设有多个叶片部进液孔 311。 叶片部进液孔 311沿冷凝叶轮转轴 32的轴向分布。冷凝叶轮叶片 31的外端焊接在冷凝叶轮 外壳 33的内表面上。相邻的冷凝轮叶片 31之间形成沿冷凝叶轮转轴的轴向延伸的蒸气通道 34。 冷凝叶轮外壳 33为上下两端都敞开而形式进气口 332和出气口 333。 进气口 332同蒸 气进口 11密封对接在一起。 冷凝叶轮外壳 33设有排液通道 331。 冷凝叶轮外壳 33可相对 于蒸气进口 11转动。
[0030] 排气叶轮 4位于出气口 333的外端上。 排气叶轮 4包括排气叶轮转轴 41和固接在排 气叶轮转轴 41上的若干排气叶轮叶片 42。 排气叶轮转轴 41和冷凝叶轮转轴 32同轴且为一 体结构。
[0031] 排气叶轮转轴 41 内穿设有配液管 5。 配液管 5的下端伸到储液腔 321内。 配液管 5 的上端伸到冷却室 13内。 配液管 5同冷却室 5的壁部之间密封固接在一起。 配液管 5上设 有连通冷却室 5和配液管 5内部的配液管部进液孔 51。
[0032] 参见图 2, 冷凝叶轮叶片 31沿冷凝叶轮转轴 32的周向分布。 冷凝叶轮叶片 31的内 端设有沿冷凝叶轮转动方向即图中 C向向前弯折的折边 312。 冷凝叶轮外壳 33通过冷凝叶 轮叶片 31同冷凝叶轮转轴 32固接在一起。冷凝叶轮叶片的位于冷凝叶轮转动方向的前侧的 表面 314同排液通道 331的进口端对齐。排液通道 331沿冷凝叶轮转动方向向后倾斜。排气 叶轮叶片 42沿排气叶轮转轴 41的周向分布。 排气叶轮叶片 42的外端超出冷凝叶轮外壳 33 的外表面。 排气叶轮叶片 42同冷凝叶轮叶片 31错开。
[0033] 参见图 3,折边 312和冷凝叶轮叶片 31之间形成夹缝 313。夹缝 313和叶片部进液孔 311构成进液通道 36。
[0034] 使用时,参见图 1和图 2,驱动马达 35驱动冷凝叶轮转轴 32按照图 2中的 C向转动。 冷凝叶轮转轴 32带动冷凝叶轮叶片 31、 冷凝叶轮外壳 33、 进液通道 36、 排气叶轮转轴 41 和排气叶轮叶片 42同步转动。冷却室 13内的低温纯液依次经配液管部进液孔 51、配液管 5 后进入储液腔 321内, 然后经进液通道 36到达并在离心力的作用下摊开在冷凝叶轮叶片的 位于冷凝叶轮转动方向的前侧的表面 314上, 最后从冷凝叶轮叶片 31的外端并经配液通道 331抛洒到储液槽 12的上方并在重力作用下汇聚到储液槽 12内。 蒸气从蒸气进口 11进入, 然后在压差的作用下上升并流过蒸气通道 34, 蒸气流过蒸气通道 34的过程中同冷凝叶轮叶 片 31表面上的低温纯液产生热交换而被冷凝, 所产生纯液进入到储液槽 12内。 储液槽 12 内的纯液一部分经纯液排放阀 122排放, 另一部分被冷却装置 2降温后回到冷却室 13中。 不凝气体和没有被冷凝的蒸气被排气叶轮 4驱离冷凝叶轮 3的上方即蒸气通道 34的出气端, 有利于压差的形成, 然后经气管 16离开安装室 1, 在离开的过程中, 气体会流经凹坑 131, 使得没有冷凝的蒸气也被冷凝掉。 [0035] 实施例二, 参见图 4, 同实施例一的不同之处为: 每一片冷凝叶轮叶片 31的表面上 都设有多条沿冷凝叶轮的轴向分布的沟 315。 沟 315沿冷凝叶轮叶片 31的外端部开始延伸 到同出液孔 322的出口端对接在一起。 出液孔 322设置在冷凝叶轮转轴 32上。 冷凝叶轮叶 片 31穿出排液通道 331。 冷凝叶轮叶片 31穿出冷凝叶轮外壳 33的一端设有沿冷凝叶轮转 动方向即图中 D向向后倾斜的导流面 315。冷凝叶轮叶片 31焊接在冷凝叶轮转轴 32的外表 面上。 冷凝叶轮转轴 32的内表面上设有盖在出液孔 322内端上的盖子 323, 盖子上设有转 轴部进液孔 324。 进液通道 36由转轴部进液孔 324、 盖子 323和出液孔 322构成。

Claims

权利要求书
1. 一种直接换热式蒸气冷凝装置, 其特征在于, 包括冷凝叶轮, 所述冷凝叶轮包括若干冷 凝叶轮叶片、驱动冷凝叶轮叶片转动的冷凝叶轮转轴和输送吸热介质到冷凝叶轮叶片表面上 的同步转动的进液通道, 冷凝叶轮叶片沿冷凝叶轮转轴的周向分布, 相邻的冷凝轮叶片之间 形成蒸气通道。
2. 根据权利要求 1 所述的直接换热式蒸气冷凝装置, 其特征在于, 所述冷凝叶轮设有同步 转动的冷凝叶轮外壳,所述冷凝叶轮外壳设有进气口和同冷凝叶轮叶片远离冷凝叶轮转轴一 端对齐的排液通道。
3. 根据权利要求 2所述的直接换热式蒸气冷凝装置, 其特征在于, 冷凝叶轮叶片的外端密 封连接在冷凝叶轮外壳的内表面上。
4. 根据权利要求 3 所述的直接换热式蒸气冷凝装置, 其特征在于, 排液通道沿冷凝叶轮转 动方向向后倾斜。
5. 根据权利要求 2所述的直接换热式蒸气冷凝装置, 其特征在于, 冷凝叶轮叶片经所述排 液通道穿出冷凝叶轮外壳。
6. 根据权利要求 3 所述的直接换热式蒸气冷凝装置, 其特征在于, 冷凝叶轮叶片穿出冷凝 叶轮外壳的一端设有沿冷凝叶轮转动方向向后倾斜的导流面。
7. 根据权利要求 1或 2或 3或 4或 5或 6所述的直接换热式蒸气冷凝装置, 其特征在于, 所述冷凝叶轮转轴内设有储液腔, 冷凝叶轮叶片的内端穿设到所述储液腔内, 冷凝叶轮叶片 的内端设有叶片部进液孔和沿冷凝叶轮转动方向向前弯折的折边,折边和冷凝叶轮叶片之间 形成夹缝, 夹缝和叶片部进液孔构成所述进液通道。
8. 根据权利要求 2或 3或 4或 5或 6所述的直接换热式蒸气冷凝装置, 其特征在于, 所述 冷凝叶轮外壳设有出气口, 出气口的外端设有排气叶轮, 所述排气叶轮包括排气叶轮转轴和 通过排气叶轮转轴驱动的若干排气叶轮叶片, 排气叶轮叶片沿排气叶轮转轴的周向分布。
9. 根据权利要求 8 所述的直接换热式蒸气冷凝装置, 其特征在于, 还包括安装室, 安装室 设有蒸气进口和冷却室, 蒸气进口同冷凝叶轮外壳上的进气口对接在一起, 冷却室设有由冷 却室壁朝向冷却室内部凸起而形成的位于冷却室外表面上的凹坑,所述排气叶轮容置在所述 凹坑内, 凹坑的底壁上设有贯穿冷却室的气管。
10. 根据权利要求 1或 2或 3或 4或 5或 6所述的直接换热式蒸气冷凝装置, 其特征在于, 所述冷凝叶轮叶片的表面上设有若干沿冷凝叶轮的轴向分布的沟,所述沟沿冷凝叶轮叶片的 外端部开始延伸到同进液通道的出口端对接在一起;
PCT/CN2013/070412 2012-04-01 2013-01-14 直接换热式蒸气冷凝装置 WO2013149503A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN 201210095647 CN102679759B (zh) 2012-04-01 2012-04-01 直接换热式蒸气冷凝装置
CN201210095647.8 2012-04-01

Publications (1)

Publication Number Publication Date
WO2013149503A1 true WO2013149503A1 (zh) 2013-10-10

Family

ID=46812057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/070412 WO2013149503A1 (zh) 2012-04-01 2013-01-14 直接换热式蒸气冷凝装置

Country Status (2)

Country Link
CN (1) CN102679759B (zh)
WO (1) WO2013149503A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190066365A (ko) * 2017-12-05 2019-06-13 인제대학교 산학협력단 스팀분배장치가 설치된 스팀응축장치

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102679759B (zh) * 2012-04-01 2013-09-18 傅利江 直接换热式蒸气冷凝装置
CN108678075B (zh) * 2018-05-21 2020-11-10 广州市宸宇环保设备有限公司 一种利用空气中的水分制成纯净水的装置
CN109593542B (zh) * 2018-12-17 2020-09-01 山东理工大学 一种一体式生物质热解分级冷凝装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR427990A (fr) * 1911-03-31 1911-08-19 Emanuel Fisher Jr Condenseur
US3795587A (en) * 1971-07-19 1974-03-05 James Glenn Obtaining increased head in water systems
US4339398A (en) * 1979-12-21 1982-07-13 Vaclav Feres Column for heat and mass transfer
JP2001004289A (ja) * 1999-06-21 2001-01-12 Fumio Yokoi 蒸気と冷却水を回転させる直接接触式復水器
CN101018594A (zh) * 2004-06-17 2007-08-15 奥维深产品公司 叶片式热交换器
CN102679759A (zh) * 2012-04-01 2012-09-19 傅利江 直接换热式蒸气冷凝装置
CN202532910U (zh) * 2012-04-01 2012-11-14 傅利江 直接换热式蒸气冷凝装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4296802A (en) * 1975-06-16 1981-10-27 Hudson Products Corporation Steam condensing apparatus
DE4441749A1 (de) * 1994-11-23 1996-05-30 Linde Ag Vorrichtung zum In-Kontakt-Bringen einer Flüssigkeit mit einem Gas
CN2247320Y (zh) * 1995-11-20 1997-02-12 肖跃钢 高效过流汽-水直接热交换器
CN2415334Y (zh) * 2000-04-10 2001-01-17 臧宝华 流体热交换装置
CN201306933Y (zh) * 2008-10-29 2009-09-09 蒋飞云 一种冷凝器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR427990A (fr) * 1911-03-31 1911-08-19 Emanuel Fisher Jr Condenseur
US3795587A (en) * 1971-07-19 1974-03-05 James Glenn Obtaining increased head in water systems
US4339398A (en) * 1979-12-21 1982-07-13 Vaclav Feres Column for heat and mass transfer
JP2001004289A (ja) * 1999-06-21 2001-01-12 Fumio Yokoi 蒸気と冷却水を回転させる直接接触式復水器
CN101018594A (zh) * 2004-06-17 2007-08-15 奥维深产品公司 叶片式热交换器
CN102679759A (zh) * 2012-04-01 2012-09-19 傅利江 直接换热式蒸气冷凝装置
CN202532910U (zh) * 2012-04-01 2012-11-14 傅利江 直接换热式蒸气冷凝装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190066365A (ko) * 2017-12-05 2019-06-13 인제대학교 산학협력단 스팀분배장치가 설치된 스팀응축장치
KR102004853B1 (ko) * 2017-12-05 2019-07-29 인제대학교 산학협력단 스팀분배장치가 설치된 스팀응축장치

Also Published As

Publication number Publication date
CN102679759B (zh) 2013-09-18
CN102679759A (zh) 2012-09-19

Similar Documents

Publication Publication Date Title
KR970009807B1 (ko) 열 펄프
WO2013149503A1 (zh) 直接换热式蒸气冷凝装置
CN205619611U (zh) 一种采用蒸发式冷凝的风冷模块热泵机组
CN110005614B (zh) 一种真空设备水气分离装置
CN215427374U (zh) 一种连续化运行的闪蒸系统
CN105978225A (zh) 一种新能源汽车电机的水冷却系统
CN115790202A (zh) 一种可用于节水改造的复合流闭式冷却塔
CN116761407A (zh) 一种用于石油网电钻机的兆瓦级变频器的水冷散热装置
CN208312597U (zh) 空调烟机
CN207894278U (zh) 高效罐壳式换热器
CN102095292B (zh) 空调机风叶溅水风冷复合冷凝器
CN215593022U (zh) 一种薄荷素油生产加工用蒸馏装置
CN202532910U (zh) 直接换热式蒸气冷凝装置
CN205792027U (zh) 一种新能源汽车电机的水冷却系统
CN202096977U (zh) 冷却式磨辊
CN108662915A (zh) 浓缩蒸发器系统末效泛汽的间接换热蒸发式冷凝系统
CN209371574U (zh) 一种高换热效率的蒸发式冷凝器
CN109442809B (zh) 一种用于水冷离心机组的扩张式除沫疏通的干式蒸发器
JP6081186B2 (ja) 液体冷却装置
CN201954851U (zh) 空调机风叶溅水风冷复合冷凝器
CN216977580U (zh) 一种高过热度蒸汽冷却装置
CN214120458U (zh) 一种复合型蒸发冷凝器
JP2927306B2 (ja) 吸収式冷凍機
CN218090214U (zh) 衣物护理设备的烘道组件和具有其的衣物护理设备
CN216203923U (zh) 一种布草洗涤车间降温装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13771844

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13771844

Country of ref document: EP

Kind code of ref document: A1