WO2013147470A1 - 이중 대역을 가지는 인체 착용형 안테나 - Google Patents

이중 대역을 가지는 인체 착용형 안테나 Download PDF

Info

Publication number
WO2013147470A1
WO2013147470A1 PCT/KR2013/002417 KR2013002417W WO2013147470A1 WO 2013147470 A1 WO2013147470 A1 WO 2013147470A1 KR 2013002417 W KR2013002417 W KR 2013002417W WO 2013147470 A1 WO2013147470 A1 WO 2013147470A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
antenna
human body
feed line
radiator
Prior art date
Application number
PCT/KR2013/002417
Other languages
English (en)
French (fr)
Inventor
최재훈
권결
하재근
이순용
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020120054392A external-priority patent/KR101466440B1/ko
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Priority to US14/387,828 priority Critical patent/US9831544B2/en
Publication of WO2013147470A1 publication Critical patent/WO2013147470A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/273Adaptation for carrying or wearing by persons or animals

Definitions

  • Embodiments of the present invention relate to a human body wearable antenna having a dual band, and more particularly, to a human body wearable antenna having a dual band for relaying communication between the implantable wireless device and the radio device outside the human body.
  • the RF wireless communication includes a wireless sensor network and a wireless personal area network, as well as a wireless sensor network and a wireless personal network, as well as a WBAN in which a human body is formed as a node by mounting a device that can be implanted or worn on the body. Combined, it can be extended to various applications.
  • devices for monitoring health by implanting medical equipment inside the human body are used.
  • Such medical devices operate, for example, to check heart rate or blood pressure and transmit them to an external device, and an antenna is used for wireless transmission of data.
  • the present invention proposes a dual-band human body wearable antenna that relays communication between a human implantable wireless device and a wireless device external to the human body.
  • a substrate A zero-order resonant antenna formed under the substrate and receiving a signal from a human implantable wireless device; And a microstrip antenna formed on the substrate and transmitting the signal to a wireless device external to the human body.
  • the zero-order resonant antenna may include a radiator formed under the substrate and a ground plane formed around the radiator under the substrate.
  • the zero-order resonant antenna may include a radiator formed under the substrate and receiving a feed signal from the second feed line to radiate an RF signal; A ground plane formed under the substrate; And at least one inductor coupled to the radiator and the ground plane.
  • the second feed line is preferably a CPW feed line.
  • the radiator may be spaced apart from the second feed line by a predetermined distance, and a gap may be formed between the radiator and the second feed line.
  • the inductor is preferably a chip inductor.
  • the wearable antenna may be attached to a band made of a stretchable material.
  • the substrate may be a flexible substrate.
  • the zero-order resonant antenna may have a radiation pattern of internal human orientation in the MICS band, and the microstrip antenna may have a radiation pattern of external human orientation in the ISM band.
  • the substrate A zero-order resonant antenna formed under the substrate; A microstrip antenna formed on the substrate; And a feed line inserted into a via hole penetrating through an upper portion and a lower portion of the substrate, and electrically coupled to a feed line of the zero-order resonant antenna formed under the substrate and a feed line of the microstrip antenna formed on the substrate.
  • a human wearable antenna is provided that includes a shorting post.
  • the substrate A zero-order resonant antenna formed under the substrate; And a microstrip antenna formed on the substrate, wherein the zero-order resonant antenna includes a radiator formed under the substrate and a ground plane surrounding the radiator. do.
  • the dual band human body wearable antenna of the present invention may relay communication between a human implantable wireless device and a wireless device outside the human body.
  • FIG. 1 is a diagram illustrating an example of a wearable relay system according to an exemplary embodiment of the present invention.
  • FIG. 2 is a top plan view of a wearable antenna according to an embodiment of the present invention.
  • FIG. 3 is a bottom plan view of a wearable antenna according to an embodiment of the present invention.
  • FIG. 4 is a diagram illustrating a device structure for experimenting with a wearable antenna of the present invention.
  • FIG. 5 illustrates return loss performance when a wearable antenna is positioned over a phantom and in air according to an embodiment of the present invention.
  • FIG. 6 is a diagram illustrating a radiation pattern at an operating frequency of a wearable antenna according to an embodiment of the present invention.
  • FIG. 7 illustrates measured average SAR values of a wearable antenna according to an embodiment of the present invention.
  • the present invention collects biosignals from a human implantable wireless device to solve the degradation of the antenna caused by the characteristics of the human body having a high dielectric constant when a signal is wirelessly transmitted from the human implantable wireless device to a wireless device outside the human body.
  • the present invention proposes a wearable antenna for transmitting a collected biological signal to a wireless device outside the human body.
  • FIG. 1 is a diagram illustrating an example of a wearable relay system according to an exemplary embodiment of the present invention.
  • a human body wearable relay system may include a human implantable wireless device 100, a human wearable antenna 110, and a wireless device 120 external to the human body.
  • the human implantable wireless device 100 is implanted inside the human body to measure bio signals such as heart rate or blood pressure and transmit them to an external device.
  • the wearable antenna 110 receives a signal transmitted from the implantable wireless device 100 and transmits the signal to the wireless device 120 outside the human body. That is, the human body wearable antenna 110 serves to relay communication between the human implantable wireless device 100 and the external wireless device 120.
  • the wireless device 120 outside the human body monitors the health state of the patient by analyzing the transmitted biological signal.
  • the human implantable wireless device 100 generally operates in a medical implantable communication service (MICS) band (402 MHz to 405 MHz), and the wireless device 120 outside the human body is an industrial scientific and medical (ISM) band (2.4 GHz to 2.485). GHz).
  • MICS medical implantable communication service
  • ISM industrial scientific and medical
  • the wearable antenna 110 of the present invention uses a dual band to operate in both the ISM band and the MICS band. It can be implemented with an antenna having.
  • the upper portion of the wearable antenna 110 is implemented as a microstrip antenna having an external directional radiation pattern in the ISM band, and the lower portion is a zero-order resonance having an internal directional radiation pattern in the MICS band.
  • ENG ZOR Electronic Negative Zeroth Order resonance
  • the microstrip antenna is an antenna having a structure in which a feed line is disposed above the substrate and a ground plane is disposed below the substrate, and a signal is transmitted between the feed line and the ground plane.
  • the zero-order resonant antenna of the present invention for simultaneously implementing a microstrip antenna and a zero-order resonant antenna on one substrate is implemented using a ground plane disposed below the substrate and a radiator disposed on the same plane as the ground plane. Can be.
  • the wearable antenna 110 of the present invention simultaneously implements the microstrip antenna and the zero-order resonant antenna by using one ground plane.
  • FIG. 2 is a view showing a top plan view of a wearable antenna according to an embodiment of the present invention
  • Figure 3 is a view showing a bottom plan view of a wearable antenna according to an embodiment of the present invention.
  • the dielectric substrate 11 provides a dielectric constant for radiation of the RF signal and functions as a body portion to which the antenna is coupled.
  • the upper structure of FIG. 2 and the lower structure of FIG. 3 are formed on the dielectric substrate 11 and bonded onto the dielectric substrate 11 using various metal bonding techniques.
  • the structures of FIGS. 2 and 3 may be formed on the dielectric substrate 11 by using a technique such as etching and printing.
  • the dielectric substrate 11 of the present invention has a relative dielectric constant of 4.4, may have a thickness of 1.6 mm, and an FR-4 substrate may be used.
  • the thickness and material of the substrate may vary based on the frequency band used.
  • the first radiator 12 and the first feed line 13 are formed on the dielectric substrate 11 to implement the microstrip antenna.
  • a ground plane 15, a second feed line 16, a second radiator 17, and an inductor 18 are formed under the dielectric substrate 11 to implement a zero-order resonant antenna.
  • the first feed line 13 is electrically coupled to the feed unit 14 and provides a feed signal to the first radiator 12.
  • the first feed line 13 is made of a conductive material.
  • the first feed line 13 may be combined with a connector. When the first feed line 13 is coupled with the connector, the inner core of the connector to which the feed signal is provided is coupled with the first feed line 13.
  • the first radiator 12 may be spaced apart from the first feed line 13 by a predetermined distance for feeding an inset edge.
  • the signal of the microstrip antenna is induced in a field form between the first feed line 13 and the ground plane 15 through the ground plane 15 formed under the dielectric substrate 11.
  • the ground plane 15 since the ground plane 15 exists below the first radiator 12, the ground plane 15 reduces the amount of radio waves radiated from the first radiator 12 to the human body, which is a specific absorption rate of the human body (SAR). Absorption Rate is reduced.
  • the frequency radiated by the length and width of the first radiator 12 may be adjusted.
  • FIG. 1 shows the first radiator 12 having a '' 'shape, the shape of the radiator may be variously changed as necessary.
  • the microstrip antenna of the present invention can be used in the ISM band to communicate with systems outside the human body.
  • the first feed line 13 having a width of 3 mm connected to the feed portion 14 is formed on the first radiator 12 having a length and a width of 27.5 mm to use the microstrip antenna in the ISM band.
  • the distance between the first radiator 12 and the first feed line 13 was set to 8.75 mm in length and 7 mm in width to implement the edge feed structure.
  • the length and width of the first radiator 12 and the first feed line 13 may be adjusted according to the use frequency.
  • the second feed line 16 formed below the dielectric substrate 11 is electrically coupled to the shorting pillar 19 inserted into the via hole penetrating the upper and lower portions of the dielectric substrate 11 and the second radiator 17.
  • the feed signal provided through one feed unit 14 is provided to the second feed line 16 through a shorting column 19 electrically coupled with the first feed line 13.
  • the present invention has an advantage of operating the microstrip antenna and the zero-order resonant antenna at the same time by using one feeder 14.
  • the second feed line 16 is implemented as a feed line 16 of CPW structure having a ground plane 15 formed around the same plane of the second feed line 16.
  • the feed line of the CPW structure forms a ground plane around the same plane of the feed line and generates an electric field between the feed line and the ground plane and is mainly used for a flat antenna.
  • Ground plane 15 is electrically coupled to ground to provide a ground voltage. According to an embodiment of the present invention, the ground plane 15 may be arranged in a structure surrounding the second feed line 16 and the second radiator 17.
  • the ground plane 15 is spaced apart from the second feeding line 16 by a distance that can be coupled.
  • the present invention can implement the wearable antenna 110 to the upper portion of the dielectric substrate 11 to operate as a microstrip antenna and the lower portion to operate as a zero-order resonant antenna through one ground plane 15. There is an advantage.
  • the second radiator 17 is supplied in a gap feeding manner spaced apart from the feed line 16 of the CPW structure by a predetermined distance.
  • the frequency radiated by the length and width of the second radiator 17 may be controlled, and although the second radiator 17 having a rectangular shape is illustrated in FIG. 1, the shape of the radiator may be variously changed as necessary. will be.
  • the second radiator 17 and the ground plane 15 are connected by an inductor 18. That is, the zero-order resonant antenna of the present invention implements zero-order resonance with a negative dielectric constant by coupling the inductor 18 between the second radiator 17 and the ground plane 15.
  • the zero-order resonant antenna of the present invention can change the resonant frequency by adjusting the size of the inductor 18.
  • the inductor 18 is preferably a chip inductor, and a structure having a high inductance may be applied as necessary.
  • the zero-order resonant antenna formed on the lower surface of the dielectric substrate 11 of the present invention can be used in the MICS band to collect biometric information from the implantable device.
  • the length of the second feed line 16 is set to 8 mm and the width to 6 mm for use in the MISC band.
  • the length of the second radiator 17 was set to 7 mm and the width to 14 mm, and the distance between the second feed line 16 and the radiator 17 was set to 0.2 mm.
  • the length and width of the second radiator 17 and the second feed line 16 may be adjusted according to the frequency of use.
  • the microstrip antenna on the top of the dielectric substrate 11 operating in the ISM band of the present invention does not change the reflection loss characteristics even when the distance between the human body surface and the antenna is close by the influence of the ground plane 15 formed under the dielectric substrate 12. It has a radiation pattern of directivity outside the human body.
  • the zero-order resonant antenna under the dielectric substrate 11 operating in the MISC band suppresses radiation toward the outside of the human body under the influence of the upper microstrip antenna, and thus has a radiation pattern of internal human orientation. Even if the distance between the human body surface and the antenna gets closer, the reflection loss characteristic is almost unchanged.
  • the present invention since the present invention has a radiation pattern of directivity of the human body in the MICS band and directivity of the human body in the ISM band, the effect of the human body having a high dielectric constant on the antenna performance is very insensitive and reliability of communication can be improved. .
  • the human body implantable antenna 110 relays the communication between the human implantable wireless device 100 and the external human body wireless device 120 so that the conventional human implantable wireless device 100 is a wireless device 120 outside the human body.
  • the signal received from the human implantable wireless device 100 through the zero-order resonant antenna is frequency-modulated through a separate signal processing device (not shown) to wirelessly transmit to the outside of the human body through a microstrip patch antenna. May be transmitted to the device 120.
  • the wearable antenna 110 may be attached on a band made of an elastic material so that the human body wearable antenna 110 can be adhered flexibly according to the curvature of the human body.
  • the dielectric substrate 11 may be a flexible substrate to be in close contact with the body.
  • the wearable antenna 110 may include a fixing part (not shown) to be inserted into the clothes worn by the human body or to be fixed to the clothes.
  • a fixing part not shown
  • FIG. 4 is a diagram illustrating a device structure for experimenting with a wearable antenna of the present invention.
  • the performance of the antenna was measured in a state of being separated by 10 mm from the center of the surface of the semi-solid phantom having a human body equivalent dielectric constant of 70 mm in height and 270 mm ⁇ 200 mm in FIG. 4.
  • FIG. 5 is a diagram illustrating a return loss performance when the wearable antenna is positioned on the phantom and in the air according to an embodiment of the present invention.
  • the reflection loss characteristic of the wearable antenna 110 may be confirmed to be very insensitive to the influence of the human body. have.
  • FIG. 6 is a diagram illustrating a radiation pattern at an operating frequency of a wearable antenna according to an exemplary embodiment of the present invention.
  • the zero-order resonant antenna implemented in the lower portion of the human wearing antenna 110 of the present invention in the human body at 403.5MHz to communicate with a radio device implanted inside the human body operating in the MICS band It can be seen that it has a directional reflection pattern.
  • the microstrip antenna implemented on the upper part of the wearable antenna 110 of the present invention transmits external directional radiation to the human body at 2459 MHz to communicate with the external human body wireless device 120 operating in the ISM band. You can see that it has a pattern.
  • FIG. 7 illustrates measured average SAR values of a wearable antenna according to an exemplary embodiment of the present invention.

Landscapes

  • Details Of Aerials (AREA)
  • Waveguide Aerials (AREA)

Abstract

이중 대역을 가지는 인체 착용형 안테나가 개시된다. 개시된 인체 착용형 안테나는 기판; 상기 기판의 하부에 형성되며, 인체 이식형 무선기기로부터 신호를 수신하는 0차 공진 안테나; 및 상기 기판의 상부에 형성되며, 상기 신호를 인체 외부의 무선기기로 전송하는 마이크로스트립 안테나를 포함한다. 본 발명의 이중 대역의 인체 착용형 안테나는 인체 이식형 무선기기와 인체 외부의 무선기기간의 통신을 중계할 수 있다.

Description

이중 대역을 가지는 인체 착용형 안테나
본 발명의 실시예들은 이중 대역을 가지는 인체 착용형 안테나에 관한 것으로서, 더욱 상세하게는 인체 이식형 무선기기와 인체 외부의 무선기기간의 통신을 중계하는 이중 대역을 가지는 인체 착용형 안테나에 관한 것이다.
인체에 근접하거나 인체를 중심으로 하는 RF 무선 통신은 인체 근거리 통신(WBAN, Wireless Body Area Network)에 대한 관심의 증가로 인해 그 중요도가 커지고 있다. 이러한, RF 무선 통신은 몸에 이식하거나, 착용할 수 있는 장치를 인체에 탑재하여 인체를 하나의 노드로 형성한 WBAN 뿐만 아니라 무선 센서 네트워크(Wireless Sensor Network) 및 무선 사설망(Wireless Personal Area Network) 등과 결합하여 다양한 응용분야로 확장될 수 있다.
상기 응용분야 중 인체 내부에 의료 장비를 이식하여 건강 상태를 모니터링하는 장치들이 이용되고 있다. 이러한 의료 장비들은, 예를 들어, 심장 박동이나 혈압 등을 체크하여 외부 장치로 전송하도록 동작하며, 데이터의 무선 전송을 위해 안테나가 사용된다.
안테나를 포함하는 종래의 인체 이식형 무선기기가 인체 외부의 무선기기와 직접 통신하는 경우 인체의 높은 유전율로 인해 안테나의 반사손실 특성이 변화되어 실제 사용시 성능 저하가 발생하거나 원하지 않는 동작 특성이 나타나는 문제가 있었다. 또한 낮은 방사 효율, 낮은 소비 전력, 주변 의료기기간의 간섭을 방지하기 위한 방사 전력 제한 등의 한계로 인체 외부의 무선기기와 직접 통신하는데 한계가 있었다.
상기한 바와 같은 종래기술의 문제점을 해결하기 위해 본 발명에서는 인체 이식형 무선기기와 인체 외부의 무선기기간의 통신을 중계하는 이중 대역의 인체 착용형 안테나를 제안한다.
본 발명의 다른 목적들은 하기의 실시예를 통해 당업자에 의해 도출될 수 있을 것이다.
상기한 목적을 달성하기 위해 본 발명의 바람직한 일 실시예에 따르면, 기판; 상기 기판의 하부에 형성되며, 인체 이식형 무선기기로부터 신호를 수신하는 0차 공진 안테나; 및 상기 기판의 상부에 형성되며, 상기 신호를 인체 외부의 무선기기로 전송하는 마이크로스트립 안테나를 포함하는 것을 특징으로 하는 인체 착용형 안테나가 제공된다.
상기 0차 공진 안테나는 상기 기판의 하부에 형성되는 방사체 및 상기 기판의 하부에 상기 방사체를 둘러싸며 형성되는 접지면을 포함할 수 있다.
상기 기판의 상부와 하부를 관통하는 비아홀에 삽입되며, 상기 기판의 상부에 형성되는 상기 마이크로스트립 안테나의 제1 급전 선로 및 상기 하부에 형성되는 상기 0차 공진 안테나의 제2 급전 선로와 전기적으로 결합되는 단락 기둥을 더 포함할 수 있다.
상기 0차 공진 안테나는, 상기 기판의 하부에 형성되며 상기 제2 급전 선로로부터 급전 신호를 제공 받아 RF 신호를 방사하는 방사체; 상기 기판 하부에 형성되는 접지면; 및 상기 방사체와 상기 접지면과 결합되는 적어도 하나의 인덕터를 포함할 수 있다.
상기 제2 급전 선로는 CPW 급전 선로인 것이 바람직하다.
상기 방사체는 상기 제2 급전 선로와 소정 거리 이격되어 상기 방사체와 상기 제2 급전 선로 사이에는 갭이 형성될 수 있다.
상기 인덕터는 칩 인덕터인 것이 바람직하다.
상기 인체 착용형 안테나는 신축성 있는 재질로 구성되는 밴드상에 부착될 수 있다.
상기 기판은 플렉서블 기판일 수 있다.
상기 0차 공진 안테나는 MICS 대역에서 인체 내부 지향성의 방사 패턴을 가지며, 상기 마이크로스트립 안테나는 ISM 대역에서 인체 외부 지향성의 방사 패턴을 가질 수 있다.
본 발명의 다른 실시예에 따르면, 기판; 상기 기판의 하부에 형성되는 0차 공진 안테나; 상기 기판의 상부에 형성되는 마이크로스트립 안테나; 및 상기 기판의 상부와 하부를 관통하는 비아홀에 삽입되며, 상기 기판의 하부에 형성되는 상기 0차 공진 안테나의 급전 선로 및 상기 기판의 상부에 형성되는 상기 마이크로스트립 안테나의 급전 선로와 전기적으로 결합되는 단락 기둥을 포함하는 것을 특징으로 하는 인체 착용형 안테나가 제공된다.
본 발명의 또 다른 실시예에 따르면, 기판; 상기 기판의 하부에 형성되는 0차 공진 안테나; 상기 기판의 상부에 형성되는 마이크로스트립 안테나를 포함하되, 상기 0차 공진 안테나는 상기 기판의 하부에 형성되는 방사체 및 상기 방사체를 둘러싸고 있는 접지면을 포함하고 있는 것을 특징으로 하는 인체 착용형 안테나가 제공된다.
본 발명의 이중 대역의 인체 착용형 안테나는 인체 이식형 무선기기와 인체 외부의 무선기기간의 통신을 중계할 수 있다.
도 1은 본 발명의 일 실시예에 따른 인체 착용형 중계 시스템의 일례를 도시한 도면이다.
도 2는 본 발명의 일 실시예에 따른 인체 착용형 안테나의 상부 평면도를 도시한 도면.
도 3은 본 발명의 일 실시예에 따른 인체 착용형 안테나의 하부 평면도를 도시한 도면.
도 4는 본 발명의 인체 착용형 안테나를 실험하기 위한 장치 구조를 도시한 도면.
도 5는 본 발명의 일 실시예에 따른 인체 착용형 안테나가 팬텀 위에 위치할 때와 공기 중에 있을 때의 반사 손실 성능을 도시한 도면.
도 6은 본 발명의 일 실시예에 따른 인체 착용형 안테나의 동작 주파수에서의 방사 패턴을 도시한 도면.
도 7은 본 발명의 일 실시예에 따른 인체 착용형 안테나의 측정된 평균 SAR 값을 도시한 도면.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다.
이하에서, 본 발명에 따른 실시예들을 첨부된 도면을 참조하여 상세하게 설명한다.
본 발명은 인체 이식형 무선기기에서 인체 외부의 무선기기로 신호가 무선 전송되는 경우 높은 유전율을 갖는 인체의 특성으로 인해 발생하는 안테나의 성능 저하를 해결하기 위해 인체 이식형 무선기기로부터 생체 신호등을 수집하고, 수집된 생체 신호를 인체 외부의 무선기기로 전송하는 인체 착용형 안테나를 제안한다.
도 1은 본 발명의 일 실시예에 따른 인체 착용형 중계 시스템의 일례를 도시한 도면이다.
도 1을 참조하면, 인체 착용형 중계 시스템은 인체 이식형 무선기기(100), 인체 착용형 안테나(110) 및 인체 외부의 무선기기(120)를 포함할 수 있다.
인체 이식형 무선기기(100)는 인체 내부에 이식되어 심장 박동이나 혈압 등의 생체 신호를 측정하여 외부 기기로 전송한다.
인체 착용형 안테나(110)는 인체 이식형 무선기기(100)로부터 전송되는 신호를 수신하여 인체 외부의 무선기기(120)로 전송한다. 즉, 인체 착용형 안테나(110) 인체 이식형 무선기기(100)와 인체 외부의 무선기기(120)간의 통신을 중계하는 역할을 한다.
인체 외부의 무선기기(120)는 전송된 생체 신호를 분석하여 환자의 건강 상태를 모니터링 한다.
인체 이식형 무선기기(100)는 일반적으로 MICS(Medical Implantable Communication Service) 대역(402MHz~405MHz)에서 동작하며, 인체 외부의 무선기기(120)는 ISM(Industrial Scientific and Medical) 대역(2.4GHz~2.485GHz)에서 동작한다.
따라서, 인체 이식형 무선기기(100)와 인체 외부의 무선기기(120)간의 통신을 중계하기 위해 본 발명의 인체 착용형 안테나(110)는 ISM 대역과 MICS 대역에서 모두 동작할 수 있도록 이중대역을 갖는 안테나로 구현될 수 있다.
본 발명의 일 실시예에 따르면 인체 착용형 안테나(110)의 상부는 ISM 대역에서 인체 외부 지향성 방사 패턴을 가지는 마이크로스트립 안테나로 구현되며, 하부는 MICS 대역에서 인체 내부 지향성 방사 패턴을 가지는 0차 공진(Epsilon Negative Zeroth Order resonance, ENG ZOR) 안테나로 구현될 수 있다.
여기서, 마이크로스트립 안테나는 기판의 상부에 급전 선로가 배치되고 기판의 하부에 접지면이 배치되는 구조를 가지는 안테나로서, 급전 선로와 접지면 사이로 신호가 전송되는 안테나이다.
따라서, 하나의 기판에 마이크로스트립 안테나와 0차 공진 안테나를 동시에 구현하기 위한 본 발명의 0차 공진 안테나는 기판의 하부에 배치된 접지면 및 접지면과 동일 평면상에 배치되는 방사체를 이용하여 구현될 수 있다.
즉, 본 발명의 인체 착용형 안테나(110)는 하나의 접지면을 이용하여 마이크로스트립 안테나 및 0차 공진 안테나를 동시에 구현한다.
이하, 인체 착용형 안테나(110)의 상세한 구성에 대해 도 2 내지 도 3을 참조하여 보다 상세하게 설명하도록 한다.
도 2는 본 발명의 일 실시예에 따른 인체 착용형 안테나의 상부 평면도를 도시한 도면이며, 도 3은 본 발명의 일 실시예에 따른 인체 착용형 안테나의 하부 평면도를 도시한 도면이다.
유전체 기판(11)은 RF 신호의 방사를 위한 유전율을 제공하며 안테나가 결합되는 바디부로서 기능한다. 도 2의 상부 구조 및 도 3의 하부 구조는 유전체 기판(11)상에 형성되며, 다양한 금속 결합 기법을 이용하여 유전체 기판(11)상에 결합된다. 일례로, 에칭, 프린팅 등의 기법을 이용하여 유전체 기판(11)상에 도 2 및 도 3의 구조가 형성될 수 있다.
본 발명의 일 실시예에 따르면, 본 발명의 유전체 기판(11)은 비유전율이 4.4이며, 1.6mm의 두께를 가질 수 있으며, FR-4 기판이 사용될 수 있다. 물론 기판의 두께 및 재질은 사용 주파수 대역에 기초하여 달라질 수 있을 것이다. 저가의 FR-4 기판의 상, 하면을 이용함으로써 단일 평면 구조의 착용형 시스템에 적합한 간단한 안테나를 설계할 수 있으며, 제작 원가 절감 효과를 가질 수 있다.
유전체 기판(11)의 상부에는 마이크로스트립 안테나의 구현을 위해 제1 방사체(12) 및 제1 급전 선로(13)가 형성된다.
또한, 유전체 기판(11)의 하부에는 0차 공진 안테나의 구현을 위해 접지면(15), 제2 급전 선로(16), 제2 방사체(17) 및 인턱터(18)가 형성된다.
우선, 마이크로스트립 안테나로 구현되는 유전체 기판(11)의 상부의 구성에 대해 살펴보도록 한다.
제1 급전 선로(13)는 급전부(14)와 전기적으로 결합되며, 제1 방사체(12)에 급전 신호를 제공한다. 제1 급전 선로(13)는 도전성 재질로 이루어지며, 일례로, 커넥터와 결합될 수 있다. 제1 급전 선로(13)가 커넥터와 결합될 때 급전 신호가 제공되는 커넥터의 내심이 제1 급전 선로(13)와 결합된다.
제1 방사체(12)는 인셋(inset) 엣지 급전을 위해 제1 급전 선로(13)와 소정 거리 이격 될 수 있다.
유전체 기판(11)의 하부에 형성된 접지면(15)을 통해 마이크로스트립 안테나의 신호는 제1 급전 선로(13)와 접지면(15) 사이에 필드 형태로 유기되어 전달된다.
또한, 제1 방사체(12)의 하부에 접지면(15)이 존재하므로, 접지면(15)은 제1 방사체(12)로부터 인체로 방사되는 전파의 양을 줄여 전파의 인체 흡수율인 SAR(Specific Absorption Rate)이 감소되도록 한다.
본 발명의 일 실시예에 따르면, 제1 방사체(12)의 길이 및 폭에 의해 방사되는 주파수가 조절될 수 있다. 도 1에는 ''자 형태의 제1 방사체(12)가 도시되어 있으나 방사체의 형태는 필요에 따라 다양하게 변화될 수 있을 것이다.
본 발명의 마이크로스트립 안테나는 인체 외부의 시스템과 통신할 수 있도록 ISM 대역에서 사용될 수 있다. 본 발명에서는 마이크로스트립 안테나를 ISM 대역에서 사용하기 위해 길이 및 폭이 27.5mm인 제1 방사체(12)에 급전부(14)와 연결된 폭 3 mm의 제1 급전 선로(13)를 형성한다. 또한, 엣지 급전 구조의 구현을 위해 제1 방사체(12)와 제1 급전 선로(13)간의 간격은 길이 8.75mm, 폭 7mm로 설정하였다. 물론, 상기 제1 방사체(12) 및 제1 급전 선로(13)의 길이 및 폭은 사용 주파수에 상응하여 조절될 수 있다.
이어서, 0차 공진 안테나로 구현되는 유전체 기판(11)의 하부에 대해 설명하도록 한다.
유전체 기판(11)의 하부에 형성된 제2 급전 선로(16)는 유전체 기판(11)의 상부와 하부를 관통하는 비아홀에 삽입된 단락 기둥(19)과 전기적으로 결합되며, 제2 방사체(17)에 급전 신호를 제공한다. 즉, 하나의 급전부(14)를 통해 제공되는 급전 신호는 제1 급전 선로(13)와 전기적으로 결합된 단락 기둥(19)을 통해 제2 급전 선로(16)로 제공된다.
다시 말해 본 발명은 하나의 급전부(14)를 이용하여 마이크로스트립 안테나와 0차 공진 안테나를 동시에 동작시킬 수 있는 장점이 있다.
본 발명의 일 실시예에 따르면, 제2 급전 선로(16)는 제2 급전 선로(16)의 동일 평면상의 주변으로 형성된 접지면(15)이 존재하는 CPW 구조의 급전 선로(16)로 구현된다. CPW 구조의 급전 선로는 급전 선로의 동일 평면상의 주변으로 접지면을 형성하고, 급전 선로와 접지면 사이에 전계를 발생시켜 RF 신호를 전송하는 급전 선로로서 평판 구조의 안테나에 주로 사용된다.
접지면(15)은 전기적으로 접지와 결합되어 접지 전압을 제공한다. 본 발명의 일 실시예에 따르면, 접지면(15)은 2 급전 선로(16) 및 제2 방사체(17)를 둘러싸는 구조로 배치될 수 있다.
도 3에 도시된 0차 공진 안테나는 CPW 급전 구조를 가지기에 접지면(15)은 제2 급전 선로(16)와는 커플링 가능한 거리로 이격된다.
따라서, 본 발명은 하나의 접지면(15)을 통해 유전체 기판(11)의 상부는 마이크로스트립 안테나로 동작하도록 하고 하부는 0차 공진 안테나로서 동작하도록 하는 인체 착용형 안테나(110)를 구현할 수 있는 이점이 있다.
제2 방사체(17)는 CPW 구조의 급전선로(16)와 소정 거리 이격되는 갭 피딩 방식으로 급전된다. 제2 방사체(17)의 길이 및 폭에 의해 방사되는 주파수가 조절될 수 있으며, 도 1에는 사각형 형상의 제2 방사체(17)가 도시되어 있으나 방사체의 형태는 필요에 따라 다양하게 변화될 수 있을 것이다.
제2 방사체(17)와 접지면(15)은 인덕터(18)에 의해 연결된다. 즉, 본 발명의 0차 공진 안테나는 인덕터(18)를 제2 방사체(17)와 접지면(15) 사이에 결합시킴으로써 음의 유전율을 갖는 0차 공진을 구현한다.
본 발명의 0차 공진 안테나는 인덕터(18)의 크기를 조절함으로써 공진 주파수를 변화시킬 수 있다. 여기서, 인덕터(18)는 칩 인덕터인 것이 바람직하며 필요에 따라 높은 인덕턴스를 가지는 구조가 적용될 수도 있을 것이다.
본 발명의 유전체 기판(11)의 하부면에 형성된 0차 공진 안테나는 인체 이식형 기기로부터 생체 정보를 수집할 수 있도록 MICS 대역에서 사용될 수 있다.
본 발명에서는 MISC 대역에서의 사용을 위해 제2 급전 선로(16)의 길이를 8mm, 폭을 6 mm로 설정하였다. 또한, 제2 방사체(17)의 길이를 7mm, 폭을 14mm로 설정하였으며 제2 급전 선로(16)와 방사체(17)간의 간격을 0.2mm로 설정하였다. 물론, 제2 방사체(17) 및 제2 급전 선로(16)의 길이 및 폭은 사용 주파수에 상응하여 조절될 수 있다.
본 발명의 ISM 대역에서 동작하는 유전체 기판(11)의 상부의 마이크로스트립 안테나는 유전체 기판(12) 하부에 형성된 접지면(15)의 영향으로 인체 표면과 안테나의 간격이 가까워져도 반사 손실 특성이 변하지 않고, 인체 외부 지향성의 방사 패턴을 갖게 된다.
또한, MISC 대역에서 동작하는 유전체 기판(11) 하부의 0차 공진 안테나는 상부의 마이크로스트립 안테나의 영향으로 인체 외부 방향으로의 방사가 억제되어 인체 내부 지향성의 방사 패턴을 갖고, 0차 공진의 특성 상 인체 표면과 안테나의 간격이 가까워져도 반사 손실 특성이 거의 변하지 않는 특징이 있다.
따라서, 본 발명은 MICS 대역에서는 인체 내부 지향성, ISM 대역에서는 인체 외부 지향성의 방사 패턴을 가지므로 높은 유전율을 갖는 인체가 안테나의 성능에 미치는 영향이 매우 둔감해지게 되어 통신의 신뢰도가 향상될 수 있다.
다시 말해, 인체 착용형 안테나(110)가 인체 이식형 무선기기(100)와 인체 외부 무선기기(120)간의 통신을 중계함으로써 종래의 인체 이식형 무선기기(100)가 인체 외부의 무선기기(120)와 직접 통신하는 경우 발생하는 통신 성능 저하 문제를 해결할 수 있는 장점이 있다.
본 발명의 일 실시예에 따르면 0차 공진 안테나를 통해 인체 이식형 무선기기(100)로부터 수신된 신호는 별도의 신호 처리 장치(미도시)를 통해 주파수 변조되어 마이크로스트립 패치 안테나를 통해 인체 외부 무선기기(120)로 전송될 수 있다.
본 발명의 일 실시예에 따르면, 인체 착용형 안테나(110)는 인체의 피부 곡률에 따라 유연성이 있게 밀착될 수 있도록 신축성 있는 재질로 구성되는 밴드상에 부착될 수도 있을 것이다. 이 경우 유전체 기판(11)은 신체에 밀착될 수 있도록 플렉서블 기판이 사용될 수 있다.
또한, 인체 착용형 안테나(110)는 인체가 착용하는 옷 내부에 삽입되거나 옷에 고정될 수 있도록 하는 고정부(미도시)를 포함할 수 있다. 이 외에도 인체 착용형 안테나(110)가 인체에 안정적으로 착용될 수 있도록 하는 다양한 실시예가 존재함은 당업자에게 있어 자명할 것이다.
도 4는 본 발명의 인체 착용형 안테나를 실험하기 위한 장치 구조를 도시한 도면이다.
도 4의 높이 70mm, 270mm×200mm의 인체 등가 유전율을 갖는 반고체형 팬텀(Phantom)의 표면 중앙으로부터 10mm만큼 떨어져 있는 상태로 안테나의 성능 측정을 진행하였다.
도 5는 본 발명의 일 실시예에 따른 인체 착용형 안테나가 팬텀 위에 위치할 때와 공기 중에 있을 때의 반사 손실 성능을 도시한 도면이다.
도 5를 참조하면, MICS 대역과 ISM 대역 모두에서 인체가 인체 착용형 안테나(110)와 가깝게 위치할 때, 인체 착용형 안테나(110)의 반사 손실 특성은 인체의 영향에 매우 둔감한 것을 확인할 수 있다.
도 6은 본 발명의 일 실시예에 따른 인체 착용형 안테나의 동작 주파수에서의 방사 패턴을 도시한 도면이다.
도 6(a)를 참조하면, 본 발명의 인체 착용형 안테나(110)의 하부에 구현된 0차 공진 안테나는 MICS 대역에서 동작하는 인체 내부에 이식된 무선기기와 통신하기 위하여 403.5MHz에서 인체 내부 지향성 반사패턴을 가지는 것을 확인할 수 있다.
도 6(b)를 참조하면, 본 발명의 인체 착용형 안테나(110)의 상부에 구현된 마이크로스트립 안테나는 ISM 대역에서 동작하는 인체 외부 무선기기(120)와 통신하기 위하여 2459MHz 에서 인체 외부 지향성 방사 패턴을 가지는 것을 확인할 수 있다.
도 7은 본 발명의 일 실시예에 따른 인체 착용형 안테나의 측정된 평균 SAR 값을 도시한 도면이다.
일반적인 휴대 전화 SAR 측정 입력전력인 250 mW를 인가하였을 때 도 6(a) 와 같이 MICS 대역의 403.5 MHz에서는 0.411 W/kg로 측정되었으며 도 6(b)와 같이 ISM 대역의 2450MHz에서는 0.455 W/kg으로 측정되었다. 이는 ANSI/IEEE 기준인 1.6W/kg에 비해 충분히 작은 값을 나타낸다.
이상과 같이 본 발명에서는 구체적인 구성 요소 등과 같은 특정 사항들과 한정된 실시예 및 도면에 의해 설명되었으나 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상적인 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. 따라서, 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다.

Claims (12)

  1. 기판;
    상기 기판의 하부에 형성되며, 인체 이식형 무선기기로부터 신호를 수신하는 0차 공진 안테나; 및
    상기 기판의 상부에 형성되며, 상기 신호를 인체 외부의 무선기기로 전송하는 마이크로스트립 안테나를 포함하는 것을 특징으로 하는 인체 착용형 안테나.
  2. 제1항에 있어서,
    상기 0차 공진 안테나는 상기 기판의 하부에 형성되는 방사체 및 상기 기판의 하부에 상기 방사체를 둘러싸며 형성되는 접지면을 포함하는 것을 특징으로 하는 인체 착용형 안테나.
  3. 제1항에 있어서,
    상기 기판의 상부와 하부를 관통하는 비아홀에 삽입되며, 상기 기판의 상부에 형성되는 상기 마이크로스트립 안테나의 제1 급전 선로 및 상기 하부에 형성되는 상기 0차 공진 안테나의 제2 급전 선로와 전기적으로 결합되는 단락 기둥을 더 포함하는 것을 특징으로 하는 인체 착용형 안테나.
  4. 제3항에 있어서,
    상기 0차 공진 안테나는,
    상기 기판의 하부에 형성되며 상기 제2 급전 선로로부터 급전 신호를 제공 받아 RF 신호를 방사하는 방사체;
    상기 기판 하부에 형성되는 접지면; 및
    상기 방사체와 상기 접지면과 결합되는 적어도 하나의 인덕터를 포함하는 것을 특징으로 하는 인체 착용형 안테나.
  5. 제4항에 있어서,
    상기 제2 급전 선로는 CPW 급전 선로인 것을 특징으로 하는 인체 착용형 안테나.
  6. 제5항에 있어서
    상기 방사체는 상기 제2 급전 선로와 소정 거리 이격되어 상기 방사체와 상기 제2 급전 선로 사이에는 갭이 형성되는 것을 특징으로 하는 인체 칙용형 안테나.
  7. 제4항에 있어서,
    상기 인덕터는 칩 인덕터인 것을 특징으로 하는 착용형 안테나.
  8. 제1항에 있어서,
    상기 인체 착용형 안테나는 신축성 있는 재질로 구성되는 밴드상에 부착되는 것을 특징으로 하는 인체 착용형 안테나.
  9. 제1항에 있어서,
    상기 기판은 플렉서블 기판인 것을 특징으로 하는 인체 착용형 안테나.
  10. 제1항에 있어서,
    상기 0차 공진 안테나는 MICS 대역에서 인체 내부 지향성의 방사 패턴을 가지며,
    상기 마이크로스트립 안테나는 ISM 대역에서 인체 외부 지향성의 방사 패턴을 가지는 것을 특징으로 하는 인체 착용형 안테나.
  11. 기판;
    상기 기판의 하부에 형성되는 0차 공진 안테나;
    상기 기판의 상부에 형성되는 마이크로스트립 안테나; 및
    상기 기판의 상부와 하부를 관통하는 비아홀에 삽입되며, 상기 기판의 하부에 형성되는 상기 0차 공진 안테나의 급전 선로 및 상기 기판의 상부에 형성되는 상기 마이크로스트립 안테나의 급전 선로와 전기적으로 결합되는 단락 기둥을 포함하는 것을 특징으로 하는 인체 착용형 안테나.
  12. 기판;
    상기 기판의 하부에 형성되는 0차 공진 안테나;
    상기 기판의 상부에 형성되는 마이크로스트립 안테나를 포함하되,
    상기 0차 공진 안테나는 상기 기판의 하부에 형성되는 방사체 및 상기 방사체를 둘러싸고 있는 접지면을 포함하고 있는 것을 특징으로 하는 인체 착용형 안테나.
PCT/KR2013/002417 2012-03-26 2013-03-22 이중 대역을 가지는 인체 착용형 안테나 WO2013147470A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/387,828 US9831544B2 (en) 2012-03-26 2013-03-22 Human body wearable antenna having dual bandwidth

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2012-0030485 2012-03-26
KR20120030485 2012-03-26
KR1020120054392A KR101466440B1 (ko) 2012-03-26 2012-05-22 이중 대역을 가지는 인체 착용형 안테나
KR10-2012-0054392 2012-05-22

Publications (1)

Publication Number Publication Date
WO2013147470A1 true WO2013147470A1 (ko) 2013-10-03

Family

ID=49260656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/002417 WO2013147470A1 (ko) 2012-03-26 2013-03-22 이중 대역을 가지는 인체 착용형 안테나

Country Status (1)

Country Link
WO (1) WO2013147470A1 (ko)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015095219A1 (en) * 2013-12-17 2015-06-25 Elwha Llc System wirelessly transferring power to a target device over a modeled transmission pathway without exceeding a radiation limit for human beings
WO2016012791A1 (en) * 2014-07-22 2016-01-28 Toshiba Research Europe Limited Antenna and related method
US9385435B2 (en) 2013-03-15 2016-07-05 The Invention Science Fund I, Llc Surface scattering antenna improvements
WO2016109833A1 (en) * 2014-12-31 2016-07-07 Chad David Andresen Patch antenna assembly
US9448305B2 (en) 2014-03-26 2016-09-20 Elwha Llc Surface scattering antenna array
US9450310B2 (en) 2010-10-15 2016-09-20 The Invention Science Fund I Llc Surface scattering antennas
CN106229655A (zh) * 2016-08-30 2016-12-14 中国计量大学 一种地辐耦合的五频段可穿戴天线
CN106374217A (zh) * 2016-11-15 2017-02-01 中国人民解放军国防科学技术大学 一种用于可穿戴式无线系统的拉链天线
US9647345B2 (en) 2013-10-21 2017-05-09 Elwha Llc Antenna system facilitating reduction of interfering signals
US9711852B2 (en) 2014-06-20 2017-07-18 The Invention Science Fund I Llc Modulation patterns for surface scattering antennas
US9843103B2 (en) 2014-03-26 2017-12-12 Elwha Llc Methods and apparatus for controlling a surface scattering antenna array
US9853361B2 (en) 2014-05-02 2017-12-26 The Invention Science Fund I Llc Surface scattering antennas with lumped elements
US9882288B2 (en) 2014-05-02 2018-01-30 The Invention Science Fund I Llc Slotted surface scattering antennas
US9923271B2 (en) 2013-10-21 2018-03-20 Elwha Llc Antenna system having at least two apertures facilitating reduction of interfering signals
US9935375B2 (en) 2013-12-10 2018-04-03 Elwha Llc Surface scattering reflector antenna
CN109904602A (zh) * 2019-03-11 2019-06-18 南京信息工程大学 一种双频段双模式无线体域网天线
US10361481B2 (en) 2016-10-31 2019-07-23 The Invention Science Fund I, Llc Surface scattering antennas with frequency shifting for mutual coupling mitigation
US10446903B2 (en) 2014-05-02 2019-10-15 The Invention Science Fund I, Llc Curved surface scattering antennas
CN112968274A (zh) * 2021-02-03 2021-06-15 维沃移动通信有限公司 电子设备
CN112993547A (zh) * 2021-02-05 2021-06-18 安徽华米信息科技有限公司 电子设备及其天线结构的制作方法
CN114221121A (zh) * 2021-12-23 2022-03-22 上海交通大学 人工肛门括约肌圆极化天线通讯系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5626630A (en) * 1994-10-13 1997-05-06 Ael Industries, Inc. Medical telemetry system using an implanted passive transponder
JP2009106307A (ja) * 2007-09-28 2009-05-21 National Institute Of Information & Communication Technology 医療無線通信システム用の人体埋設型アンテナ
KR20110011849A (ko) * 2009-07-29 2011-02-09 전자부품연구원 임플란트용 마이크로스트립 타입 듀얼밴드 안테나
KR101021495B1 (ko) * 2009-12-30 2011-03-16 한국과학기술원 무선통신장치 및 무선통신방법
KR20110060389A (ko) * 2009-11-30 2011-06-08 중앙대학교 산학협력단 가요성 기판에 제작된 0차 공진 메타 안테나

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5626630A (en) * 1994-10-13 1997-05-06 Ael Industries, Inc. Medical telemetry system using an implanted passive transponder
JP2009106307A (ja) * 2007-09-28 2009-05-21 National Institute Of Information & Communication Technology 医療無線通信システム用の人体埋設型アンテナ
KR20110011849A (ko) * 2009-07-29 2011-02-09 전자부품연구원 임플란트용 마이크로스트립 타입 듀얼밴드 안테나
KR20110060389A (ko) * 2009-11-30 2011-06-08 중앙대학교 산학협력단 가요성 기판에 제작된 0차 공진 메타 안테나
KR101021495B1 (ko) * 2009-12-30 2011-03-16 한국과학기술원 무선통신장치 및 무선통신방법

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9450310B2 (en) 2010-10-15 2016-09-20 The Invention Science Fund I Llc Surface scattering antennas
US10062968B2 (en) 2010-10-15 2018-08-28 The Invention Science Fund I Llc Surface scattering antennas
US10320084B2 (en) 2010-10-15 2019-06-11 The Invention Science Fund I Llc Surface scattering antennas
US10090599B2 (en) 2013-03-15 2018-10-02 The Invention Science Fund I Llc Surface scattering antenna improvements
US9385435B2 (en) 2013-03-15 2016-07-05 The Invention Science Fund I, Llc Surface scattering antenna improvements
US10673145B2 (en) 2013-10-21 2020-06-02 Elwha Llc Antenna system facilitating reduction of interfering signals
US9647345B2 (en) 2013-10-21 2017-05-09 Elwha Llc Antenna system facilitating reduction of interfering signals
US9923271B2 (en) 2013-10-21 2018-03-20 Elwha Llc Antenna system having at least two apertures facilitating reduction of interfering signals
US9935375B2 (en) 2013-12-10 2018-04-03 Elwha Llc Surface scattering reflector antenna
US10236574B2 (en) 2013-12-17 2019-03-19 Elwha Llc Holographic aperture antenna configured to define selectable, arbitrary complex electromagnetic fields
WO2015095219A1 (en) * 2013-12-17 2015-06-25 Elwha Llc System wirelessly transferring power to a target device over a modeled transmission pathway without exceeding a radiation limit for human beings
US9871291B2 (en) 2013-12-17 2018-01-16 Elwha Llc System wirelessly transferring power to a target device over a tested transmission pathway
US9825358B2 (en) 2013-12-17 2017-11-21 Elwha Llc System wirelessly transferring power to a target device over a modeled transmission pathway without exceeding a radiation limit for human beings
US9448305B2 (en) 2014-03-26 2016-09-20 Elwha Llc Surface scattering antenna array
US9843103B2 (en) 2014-03-26 2017-12-12 Elwha Llc Methods and apparatus for controlling a surface scattering antenna array
US10727609B2 (en) 2014-05-02 2020-07-28 The Invention Science Fund I, Llc Surface scattering antennas with lumped elements
US9853361B2 (en) 2014-05-02 2017-12-26 The Invention Science Fund I Llc Surface scattering antennas with lumped elements
US10446903B2 (en) 2014-05-02 2019-10-15 The Invention Science Fund I, Llc Curved surface scattering antennas
US9882288B2 (en) 2014-05-02 2018-01-30 The Invention Science Fund I Llc Slotted surface scattering antennas
US9806416B2 (en) 2014-06-20 2017-10-31 The Invention Science Fund I Llc Modulation patterns for surface scattering antennas
US9806414B2 (en) 2014-06-20 2017-10-31 The Invention Science Fund I Llc Modulation patterns for surface scattering antennas
US9711852B2 (en) 2014-06-20 2017-07-18 The Invention Science Fund I Llc Modulation patterns for surface scattering antennas
US9806415B2 (en) 2014-06-20 2017-10-31 The Invention Science Fund I Llc Modulation patterns for surface scattering antennas
US10998628B2 (en) 2014-06-20 2021-05-04 Searete Llc Modulation patterns for surface scattering antennas
US9812779B2 (en) 2014-06-20 2017-11-07 The Invention Science Fund I Llc Modulation patterns for surface scattering antennas
WO2016012791A1 (en) * 2014-07-22 2016-01-28 Toshiba Research Europe Limited Antenna and related method
WO2016109833A1 (en) * 2014-12-31 2016-07-07 Chad David Andresen Patch antenna assembly
US10056688B2 (en) 2014-12-31 2018-08-21 Micron Devices Llc Patch antenna assembly
US11128049B2 (en) 2014-12-31 2021-09-21 Stimwave Technologies Incorporated Patch antenna assembly
CN106229655A (zh) * 2016-08-30 2016-12-14 中国计量大学 一种地辐耦合的五频段可穿戴天线
CN106229655B (zh) * 2016-08-30 2023-02-28 中国计量大学 一种地辐耦合的五频段可穿戴天线
US10361481B2 (en) 2016-10-31 2019-07-23 The Invention Science Fund I, Llc Surface scattering antennas with frequency shifting for mutual coupling mitigation
CN106374217A (zh) * 2016-11-15 2017-02-01 中国人民解放军国防科学技术大学 一种用于可穿戴式无线系统的拉链天线
CN106374217B (zh) * 2016-11-15 2023-09-22 中国人民解放军国防科学技术大学 一种用于可穿戴式无线系统的拉链天线
CN109904602A (zh) * 2019-03-11 2019-06-18 南京信息工程大学 一种双频段双模式无线体域网天线
CN109904602B (zh) * 2019-03-11 2024-02-06 南京信息工程大学 一种双频段双模式无线体域网天线
CN112968274A (zh) * 2021-02-03 2021-06-15 维沃移动通信有限公司 电子设备
CN112968274B (zh) * 2021-02-03 2023-12-15 维沃移动通信有限公司 电子设备
CN112993547A (zh) * 2021-02-05 2021-06-18 安徽华米信息科技有限公司 电子设备及其天线结构的制作方法
CN114221121A (zh) * 2021-12-23 2022-03-22 上海交通大学 人工肛门括约肌圆极化天线通讯系统

Similar Documents

Publication Publication Date Title
WO2013147470A1 (ko) 이중 대역을 가지는 인체 착용형 안테나
KR101466440B1 (ko) 이중 대역을 가지는 인체 착용형 안테나
WO2015016549A1 (en) Antenna device and electronic apparatus having the same
WO2020204436A1 (ko) 안테나 구조체
WO2016028010A1 (ko) 무선 전력 수신 장치
WO2010030128A2 (ko) 전자기적 커플링을 이용한 다중 대역 안테나
WO2011087177A1 (ko) 아이솔레이션 에이드를 구비한 내장형 mimo 안테나
WO2015041422A1 (ko) 안테나 장치 및 그를 구비하는 전자 기기
WO2011136576A2 (ko) 아이솔레이션 향상을 위한 mimo 안테나
EP3422823A1 (en) Flexible printed circuit board
JP2018046567A (ja) 通信装置
WO2011099693A2 (ko) 그라운드 방사 안테나
WO2010076982A2 (ko) 무한 파장 안테나 장치
WO2016013790A1 (ko) 레이더 장치
WO2015050318A1 (ko) 전자 기기의 안테나 장치
WO2017086633A1 (ko) 다중 밴드 안테나
WO2010090499A2 (ko) 이중 평행판 형태의 내장형 칩 안테나 구조
WO2017014598A1 (ko) Lte용 광대역 안테나 모듈
WO2014017813A1 (ko) 안테나 장치
WO2012002718A2 (ko) 표면실장형 안테나부를 포함한 기판형 내장 안테나 및 그 제조방법
WO2011126306A1 (ko) 광대역 급전 구조체를 가지는 안테나 및 급전 방법
WO2012093867A2 (ko) 안테나 및 이를 포함하는 전자 장치
WO2021080317A1 (ko) 소형 기기용 안테나 모듈
WO2022220429A1 (ko) 안테나 기능을 갖는 쉴드 캔
WO2012015131A1 (ko) 멀티밴드 칩 안테나 실장용 기판 및 이를 포함하는 멀티밴드 칩 안테나 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13768076

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14387828

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13768076

Country of ref document: EP

Kind code of ref document: A1