WO2013147302A1 - Lubricant base oil and method for producing same - Google Patents

Lubricant base oil and method for producing same Download PDF

Info

Publication number
WO2013147302A1
WO2013147302A1 PCT/JP2013/059947 JP2013059947W WO2013147302A1 WO 2013147302 A1 WO2013147302 A1 WO 2013147302A1 JP 2013059947 W JP2013059947 W JP 2013059947W WO 2013147302 A1 WO2013147302 A1 WO 2013147302A1
Authority
WO
WIPO (PCT)
Prior art keywords
base oil
oil
lubricating base
viscosity
mass
Prior art date
Application number
PCT/JP2013/059947
Other languages
French (fr)
Japanese (ja)
Inventor
一生 田川
和章 早坂
Original Assignee
Jx日鉱日石エネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石エネルギー株式会社 filed Critical Jx日鉱日石エネルギー株式会社
Priority to JP2014508256A priority Critical patent/JP5957515B2/en
Priority to US14/388,986 priority patent/US20150060328A1/en
Priority to EP13769463.4A priority patent/EP2835417B1/en
Publication of WO2013147302A1 publication Critical patent/WO2013147302A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M101/00Lubricating compositions characterised by the base-material being a mineral or fatty oil
    • C10M101/02Petroleum fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G67/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
    • C10G67/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G67/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
    • C10G67/16Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural parallel stages only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/02Hydrocarbon polymers; Hydrocarbon polymers modified by oxidation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M171/00Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
    • C10M171/02Specified values of viscosity or viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1022Fischer-Tropsch products
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/302Viscosity
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/10Lubricating oil
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/102Aliphatic fractions
    • C10M2203/1025Aliphatic fractions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/16Paraffin waxes; Petrolatum, e.g. slack wax
    • C10M2205/163Paraffin waxes; Petrolatum, e.g. slack wax used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/17Fisher Tropsch reaction products
    • C10M2205/173Fisher Tropsch reaction products used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/084Acrylate; Methacrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/02Viscosity; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/065Saturated Compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/071Branched chain compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/02Pour-point; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/10Inhibition of oxidation, e.g. anti-oxidants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/36Seal compatibility, e.g. with rubber
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2070/00Specific manufacturing methods for lubricant compositions

Definitions

  • the present invention relates to a lubricating base oil and a method for producing the same.
  • a pour point is generally used as an evaluation index for low temperature viscosity characteristics of lubricating base oils and lubricating oils.
  • a technique for evaluating low-temperature viscosity characteristics based on a lubricating base oil such as the content of normal paraffin or isoparaffin is also known.
  • the low temperature fluidity of the lubricating base oil is better, but according to the study of the present inventor, the conventional lubricating base oil having the low temperature fluidity is a seal.
  • the problem with sex More specifically, when the viscosity of the lubricating base oil is low, or when the sealing material is further contracted, the gap increases and oil leakage is likely to occur when pressure is applied to that portion.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a lubricating base oil that can achieve both a low-temperature viscosity characteristic and a sealing property at a high level and a method for producing the same. .
  • the present inventor firstly, as an approach different from the improvement of the low temperature viscosity characteristics of the lubricating base oil using the pour point as an index, the low temperature of the lubricating base oil using the SBV viscosity as an index. Attempts were made to achieve both viscosity characteristics and sealability. As a result, it was found that when the kinematic viscosity at 100 ° C., the viscosity index at -20 ° C. and the SBV viscosity at ⁇ 20 ° C. of the lubricating base oil satisfy specific requirements, the sealing property can be improved while sufficiently maintaining the low temperature viscosity characteristics, The present invention has been completed.
  • the present invention provides a lubricating base oil shown in the following [1] to [12] and a manufacturing method of the lubricating base oil shown in the following [13] to [18].
  • a lubricating base oil that is a hydrocarbon oil that satisfies any of the following conditions.
  • the ratio of CH 2 carbon constituting the main chain in the hydrocarbon oil satisfying the condition (i) and occupying the total carbon constituting the lubricating base oil in 13 C-NMR analysis is The lubricating base oil according to any one of [1] to [3], which is 15% or more.
  • the proportion of CH 2 carbon constituting the main chain in the hydrocarbon oil satisfying the condition (ii) and occupying in the total carbon constituting the lubricating base oil in 13 C-NMR analysis is The lubricating base oil according to any one of [1], [6], and [7], which is 20% or more.
  • the hydrocarbon oil satisfies the condition (ii) and has a cycloparaffin content of 60% or less in FD-MS analysis, [1], [6], [7], [8 ]
  • the hydrocarbon oil satisfies the condition (iii), and in 13 C-NMR analysis, the proportion of CH 2 carbon constituting the main chain in the total carbon constituting the lubricating oil base oil is The lubricating base oil according to any one of [1], [10], and [11], which is 15% or more.
  • the hydrocarbon oil satisfies the condition (iii) and has a cycloparaffin content of 30% or less in the FD-MS analysis.
  • [1], [10], [11], [12 ] The lubricating base oil as described in any one of the above.
  • By fractional distillation of the refined oil the following (i), (ii) or (iii): (I) a hydrocarbon oil having a kinematic viscosity at 100 ° C.
  • a method for producing a lubricating base oil comprising: [15] The lubricating base oil according to [14], wherein the lubricating base oil obtained in the third step satisfies the condition (i) and has a freezing point of ⁇ 20 to ⁇ 5 ° C. Production method.
  • the third step includes at least one crystalline solid acidic substance selected from the group consisting of ZSM-22 type zeolite, ZSM-23 type zeolite, SSZ32 and ZSM-48 type zeolite, and an active metal.
  • a method for producing a base oil. Any one of [14] to [18], wherein the hydrocarbon oil is obtained using GTL wax obtained from Fischer-Tropsch synthesis or slack wax obtained by solvent dewaxing as a raw material.
  • the kinematic viscosity and the viscosity index in the present invention mean the kinematic viscosity and the viscosity index measured according to JIS K 2283-1993, respectively.
  • the SBV viscosity referred to in the present invention is a method in which the viscosity is continuously measured by rotating the rotor at 0.3 rpm while cooling at a cooling rate of 1 ° C./hour according to the test method defined by ASTM D5133. The value to be measured.
  • the freezing point as used in the field of this invention means the value measured by the following procedures. That is, a sample taken in a test tube is preheated to 46 ° C. and then cooled at 2.5 ° C./min. The cooling rate is 1 ° C. from a temperature 10 ° C. higher than the expected freezing point (measured once in advance). Change to / min and start measurement. By this method, it is possible to obtain a reproducible freezing point as compared with JIS. This freezing point is distinct from the pour point measured according to JIS K 2269-1987 (JIS method pour point).
  • the pour point determined by JIS is suitable for measuring liquids having greatly different crystallization temperatures, such as petroleum-based lubricating base oils, which are multicomponent mixtures. .
  • a single component of only paraffin as in the present invention does not flow by the JIS measurement method for evaluating the fluidity when tilted, but it is confirmed that it flows when an external force is applied. It does not show sex.
  • This factor also has a compositional aspect, but the temperature decrease rate of 2.5 ° C./min also has an influence, and it is considered that the determination is made in a situation where crystallization does not proceed completely. Therefore, it is necessary to promote the fluidity of the base oil molecules and to obtain a freezing point closer to the true value by slowing the rate of temperature decrease.
  • the ratio of CH 2 carbon constituting the main chain to the total carbon constituting the lubricating base oil can be determined, for example, by performing 13 C-NMR analysis under the following analysis conditions. That is, in the present invention, at the time of 13 C-NMR measurement, a sample obtained by diluting 0.5 g of a sample with 3 g of deuterated chloroform was used, the measurement temperature was room temperature, and the resonance frequency was 100 MHz. Moreover, the measuring method used the coupling method with a gate.
  • the ratio of CH 2 to the total amount of constituent carbon of the lubricating base oil of the present invention is the ratio of the total integrated intensity due to the CH 2 main chain to the total integrated intensity of all carbon, as measured by 13 C-NMR. However, other methods may be used as long as an equivalent result is obtained.
  • the ratio of the cycloparaffin content can be determined, for example, by performing FD-MS analysis under the following analysis conditions.
  • the FD method is an ionization method in which a sample is applied on an emitter, the applied sample is heated by passing an electric current through the emitter, and the tunnel effect in a high electric field near the emitter surface and the whisker tip is used.
  • JEOL JMS-AX505H was used, and measurement was performed under the conditions of an acceleration voltage (cathode voltage) of 3.0 kV and an emitter current of 2 mA / min.
  • the type of compound in mass spectrometry is determined by the specific ions that are formed, and is usually classified by the z number.
  • This z number is represented by the general formula C n H 2n + z for all hydrocarbon species. Since this saturated phase is analyzed separately from the aromatic phase, it is possible to measure the content of different cycloparaffins having the same stoichiometry.
  • the cycloparaffin includes both one-ring cycloparaffin and two or more cycloparaffins.
  • a lubricating base oil that can achieve both low temperature viscosity characteristics and sealing properties at a high level and a method for producing the same.
  • Lubricating base oil that is a hydrocarbon oil that satisfies the condition (i)]
  • the lubricating base oil according to the first embodiment of the present invention is carbonized with a kinematic viscosity at 100 ° C. of 3.0 to 5.0 mm 2 / s and an SBV viscosity at ⁇ 20 ° C. of 3,000 to 60,000 mPa ⁇ s. Hydrogen oil.
  • the pour point used as an index of the low temperature viscosity characteristic of the lubricating base oil is to evaluate the ease of flow, in other words, the bulk viscosity.
  • the SBV viscosity in the present invention is not a bulk viscosity but an evaluation of the ease of movement of the base oil at the molecular level. For example, at a temperature lower than the pour point, the lubricant base oil does not flow, but can move at the molecular level due to a shift between molecules constituting the base oil, etc., and can give an SBV viscosity.
  • the lubricating base oil according to the present embodiment is based on the above-mentioned knowledge of the present inventor, and has a kinematic viscosity at 100 ° C. of 3.0 to 5.0 mm 2 / s and a lubricating oil base having a viscosity index of 145 or more.
  • the oil by setting the SBV viscosity of the lubricating base oil at ⁇ 20 ° C. to 3,000 to 60,000 mPa ⁇ s, it is possible to improve the sealing performance while maintaining the low-temperature viscosity characteristics sufficiently. It has a great effect.
  • the kinematic viscosity at 100 ° C. of the lubricating base oil according to this embodiment is 3.0 to 5.0 mm 2 / s, preferably 3.0 to 4.5 mm 2 / s, more preferably 3.2 to
  • the thickness is 4.3 mm 2 / s, more preferably 3.4 to 4.1 mm 2 / s.
  • the viscosity index of the lubricating base oil according to the present embodiment is 145 or more, preferably 147 or more, more preferably 148 to 160.
  • the viscosity index is less than the above lower limit, energy saving performance is lowered, and when it exceeds the upper limit, the fluidity at normal temperature is lowered and it tends to be unusable as a lubricating base oil.
  • the SBV viscosity at ⁇ 20 ° C. of the lubricating base oil according to this embodiment is 3,000 to 60,000 mPa ⁇ s, preferably 3,000 to 30,000 mPa ⁇ s, more preferably 3,000. ⁇ 15,000 mPa ⁇ s.
  • the SBV viscosity at ⁇ 30 ° C. of the lubricating base oil according to this embodiment is preferably 50,000 to 500,000 mPa ⁇ s, more preferably 50,000 to 400,000 mPa ⁇ s, and still more preferably. 50,000 to 300,000 mPa ⁇ s.
  • the kinematic viscosity at 40 ° C. of the lubricating base oil according to this embodiment is preferably 10 to 20 mm 2 / s, more preferably 12 to 16 mm 2 / s.
  • the freezing point of the lubricating base oil according to the present embodiment is preferably ⁇ 20 to ⁇ 5 ° C., more preferably ⁇ 18 to ⁇ 8 ° C., and further preferably ⁇ 15 to ⁇ 10 ° C. If the freezing point is less than the above lower limit value, the energy saving property tends to be lowered, and if it exceeds the above upper limit value, the fluidity at normal temperature is lowered and the lubricating base oil tends not to be used.
  • the proportion of CH 2 carbon constituting the main chain in the total carbon constituting the lubricating base oil is 15% or more. It is preferably 16% or more.
  • the ratio is not less than the above lower limit, the traction coefficient of the lubricating base oil can be lowered (that is, low friction), which is preferable in terms of energy saving.
  • the cycloparaffin content is preferably 50% or less, and more preferably 40% or less.
  • the wear resistance of the lubricating base oil can be further improved.
  • the urea adduct value of the lubricating base oil according to the present embodiment is preferably 4% by mass or less, more preferably 3.5%, from the viewpoint of improving the low temperature viscosity characteristics without impairing the viscosity-temperature characteristics at high temperatures. It is not more than mass%, more preferably not more than 3 mass%, particularly preferably not more than 2.5 mass%. Further, the urea adduct value of the lubricating base oil may be 0% by mass. However, it is possible to obtain a lubricating base oil having sufficient low-temperature viscosity characteristics and a higher viscosity index, and more preferably 0.1% by mass or more in terms of excellent economic efficiency by relaxing dewaxing conditions. Preferably it is 0.5 mass% or more, Most preferably, it is 0.8 mass% or more.
  • the content of the saturated component in the lubricating base oil according to the present embodiment is preferably 90% by mass or more, more preferably 93% by mass or more, and still more preferably 95% by mass or more, based on the total amount of the lubricating oil base oil. Especially preferably, it is 99 mass% or more.
  • the content of the saturated component satisfies the above conditions, viscosity-temperature characteristics and thermal / oxidation stability can be achieved, and when an additive is blended in the lubricating base oil, the addition The function of the additive can be expressed at a higher level while the agent is sufficiently and stably dissolved and retained in the lubricant base oil.
  • content of the saturated part as used in the field of this invention means the value (unit: mass%) measured based on ASTM D 2007-93.
  • the aromatic content in the lubricating base oil according to the present embodiment is preferably 5% by mass or less, more preferably 0.05 to 3% by mass, and still more preferably 0.1% based on the total amount of the lubricating base oil. To 1% by mass, particularly preferably 0.1 to 0.5% by mass. If the aromatic content exceeds the above upper limit, viscosity-temperature characteristics, thermal / oxidation stability, friction characteristics, volatilization prevention characteristics and low-temperature viscosity characteristics tend to be reduced. When an additive is blended with the additive, the effectiveness of the additive tends to decrease. Further, the lubricating base oil according to the present embodiment may not contain an aromatic component, but the solubility of the additive can be improved by setting the aromatic content to 0.05% by mass or more. It can be further increased.
  • the aromatic content in the present invention means a value measured according to ASTM D 2007-93.
  • the aromatic component usually includes alkylbenzene, alkylnaphthalene, anthracene, phenanthrene, and alkylated products thereof, as well as compounds in which four or more benzene rings are condensed, pyridines, quinolines, phenols, naphthols and the like. Aromatic compounds having atoms are included.
  • the sulfur content in the lubricating base oil according to the present embodiment depends on the sulfur content of the raw material.
  • a raw material that does not substantially contain sulfur such as a synthetic wax component obtained by a Fischer-Tropsch reaction or the like
  • a lubricating base oil that does not substantially contain sulfur can be obtained.
  • the sulfur content in the obtained lubricating base oil is usually 100 mass ppm. That's it.
  • the sulfur content is preferably 10 mass ppm or less, from the viewpoint of further improving thermal and oxidation stability and reducing sulfur, and preferably 5 mass ppm or less. Is more preferably 3 ppm by mass or less, and particularly preferably 1 ppm by mass or less.
  • the sulfur content in the obtained lubricating base oil is preferably 50 ppm by mass or less, and preferably 10 ppm by mass or less. More preferred.
  • the sulfur content means a sulfur content measured according to JIS K 2541-1996.
  • the pour point of the lubricating base oil according to the present embodiment is preferably ⁇ 5 ° C. or lower, more preferably ⁇ 10 ° C. or lower, and further preferably ⁇ 12.5 ° C. or lower.
  • the pour point of the lubricating base oil according to this embodiment is preferably ⁇ 20 ° C. or higher, more preferably ⁇ 17.5 ° C. or higher, and still more preferably ⁇ 15 ° C. or higher.
  • the pour point as used in the present invention means a pour point measured according to JIS K 2269-1987.
  • the CCS viscosity at ⁇ 30 ° C. of the lubricating base oil according to the present embodiment is preferably 1500 mPa ⁇ s or less, more preferably 1200 mPa ⁇ s or less.
  • the CCS viscosity of the lubricating base oil at ⁇ 35 ° C. is preferably 2500 mPa ⁇ s or less, more preferably 2000 mPa ⁇ s or less.
  • the CCS viscosity at ⁇ 30 ° C. or ⁇ 35 ° C. exceeds the upper limit, the low temperature fluidity of the whole lubricating oil using the lubricating base oil tends to be lowered.
  • the CCS viscosity at ⁇ 30 ° C. or ⁇ 35 ° C. means a viscosity measured in accordance with JIS K 2010-1993, respectively.
  • ⁇ 15 of the lubricating base oil is preferably 0.815 or less, more preferably 0.810 or less.
  • the density at 15 ° C. in the present invention means a density measured at 15 ° C. in accordance with JIS K 2249-1995.
  • the NOACK evaporation amount of the lubricating base oil according to the present embodiment is preferably 8% by mass or more, more preferably 9% by mass or more, still more preferably 10% or more, and preferably 15% by mass or less. Preferably it is 14 mass% or less, More preferably, it is 13 mass% or less.
  • the NOACK evaporation amount is the lower limit value, it tends to be difficult to improve the low temperature viscosity characteristics.
  • the NOACK evaporation amount exceeds the upper limit value, when the lubricating base oil is used as a lubricating oil for an internal combustion engine, the amount of evaporation loss of the lubricating oil increases, and accordingly, catalyst poisoning is promoted. It is not preferable.
  • the NOACK evaporation amount in the present invention means an evaporation loss amount measured according to ASTM D 5800-95.
  • Lubricating base oil that is a hydrocarbon oil that satisfies the condition (ii)]
  • the lubricating base oil according to the second embodiment of the present invention is a hydrocarbon oil having a kinematic viscosity at 100 ° C. of 5 to 9 mm 2 / s and an SBV viscosity at ⁇ 20 ° C. of 3,000 to 30,000 mPa ⁇ s. .
  • the pour point used as an index of the low temperature viscosity characteristic of the lubricating base oil is to evaluate the ease of flow, in other words, the bulk viscosity.
  • the SBV viscosity in the present invention is not a bulk viscosity but an evaluation of the ease of movement of the base oil at the molecular level. For example, at a temperature lower than the pour point, the lubricant base oil does not flow, but can move at the molecular level due to a shift between molecules constituting the base oil, etc., and can give an SBV viscosity.
  • the lubricating base oil according to the present embodiment has been made based on the above-mentioned knowledge of the present inventor.
  • the lubricating base oil having a kinematic viscosity of 5 to 9 mm 2 / s at 100 ° C.
  • the lubricating base oil By setting the SBV viscosity at ⁇ 20 ° C. to 3,000 to 30,000 mPa ⁇ s, there is an unexpected remarkable effect that the sealability can be improved while sufficiently maintaining the low temperature viscosity characteristics.
  • the kinematic viscosity at 100 ° C. of the lubricating base oil according to this embodiment is 5 to 9 mm 2 / s, preferably 5.5 to 8.5 mm 2 / s, more preferably 6 to 8 mm 2 / s. .
  • the SBV viscosity at ⁇ 20 ° C. of the lubricating base oil according to this embodiment is 3,000 to 30,000 mPa ⁇ s, preferably 3,000 to 25,000 mPa ⁇ s, more preferably 3,000. ⁇ 20,000 mPa ⁇ s.
  • the sealing property is insufficient
  • the SBV viscosity exceeds the above upper limit value, the low temperature viscosity characteristics become insufficient.
  • the SBV viscosity at ⁇ 25 ° C. of the lubricating base oil according to this embodiment is preferably 5,000 to 500,000 mPa ⁇ s, more preferably 5,000 to 400,000 mPa ⁇ s, and still more preferably. 5,000 to 300,000 mPa ⁇ s.
  • the sealing property becomes insufficient
  • the low temperature viscosity characteristic becomes insufficient.
  • the kinematic viscosity at 40 ° C. of the lubricating base oil according to this embodiment is preferably 25 to 40 mm 2 / s, more preferably 28 to 35 mm 2 / s.
  • the viscosity index of the lubricating base oil according to the present embodiment is 155 or more, preferably 157 or more, more preferably 158 to 165.
  • the viscosity index is less than the lower limit, energy saving performance is lowered.
  • the viscosity index is higher than the upper limit, the fluidity at normal temperature is lowered and the lubricating base oil tends not to be used.
  • the freezing point of the lubricating base oil according to this embodiment is preferably ⁇ 15 to ⁇ 5 ° C., more preferably ⁇ 14 to ⁇ 7 ° C., and further preferably ⁇ 13 to ⁇ 8 ° C. If the freezing point is less than the above lower limit value, the energy saving property tends to be lowered, and if it exceeds the above upper limit value, the fluidity at normal temperature is lowered and the lubricating base oil tends not to be used.
  • the proportion of CH 2 carbon constituting the main chain in the total carbon constituting the lubricating base oil is 20% or more. It is preferably 18% or more.
  • the ratio is not less than the above lower limit, the traction coefficient of the lubricating base oil can be lowered (that is, low friction), which is preferable in terms of energy saving.
  • the cycloparaffin content is preferably 60% or less, and more preferably 65% or less.
  • the wear resistance of the lubricating base oil can be further improved.
  • the urea adduct value of the lubricating base oil according to the present embodiment is preferably 4% by mass or less, more preferably 3.5%, from the viewpoint of improving the low temperature viscosity characteristics without impairing the viscosity-temperature characteristics at high temperatures. It is not more than mass%, more preferably not more than 3 mass%, particularly preferably not more than 2.5 mass%. Further, the urea adduct value of the lubricating base oil may be 0% by mass. However, it is possible to obtain a lubricating base oil having sufficient low-temperature viscosity characteristics and a higher viscosity index, and more preferably 0.1% by mass or more in terms of excellent economic efficiency by relaxing dewaxing conditions. Preferably it is 0.5 mass% or more, Most preferably, it is 0.8 mass% or more.
  • the content of the saturated component in the lubricating base oil according to the present embodiment is preferably 90% by mass or more, more preferably 93% by mass or more, and still more preferably 95% by mass or more, based on the total amount of the lubricating oil base oil. Especially preferably, it is 99 mass% or more.
  • the content of the saturated component satisfies the above conditions, viscosity-temperature characteristics and thermal / oxidation stability can be achieved, and when an additive is blended in the lubricating base oil, the addition The function of the additive can be expressed at a higher level while the agent is sufficiently and stably dissolved and retained in the lubricant base oil. Furthermore, it is possible to improve the friction characteristics of the lubricating base oil itself, and as a result, it is possible to achieve an improvement in friction reduction effect and an improvement in energy saving.
  • the aromatic content in the lubricating base oil according to the present embodiment is preferably 5% by mass or less, more preferably 0.05 to 3% by mass, and still more preferably 0.1% based on the total amount of the lubricating base oil. To 1% by mass, particularly preferably 0.1 to 0.5% by mass. If the aromatic content exceeds the above upper limit, viscosity-temperature characteristics, thermal / oxidation stability, friction characteristics, volatilization prevention characteristics and low-temperature viscosity characteristics tend to be reduced. When an additive is blended with the additive, the effectiveness of the additive tends to decrease. Further, the lubricating base oil according to the present embodiment may not contain an aromatic component, but the solubility of the additive can be improved by setting the aromatic content to 0.05% by mass or more. It can be further increased.
  • the sulfur content in the lubricating base oil according to the present embodiment depends on the sulfur content of the raw material.
  • a raw material that does not substantially contain sulfur such as a synthetic wax component obtained by a Fischer-Tropsch reaction or the like
  • a lubricating base oil that does not substantially contain sulfur can be obtained.
  • the sulfur content in the obtained lubricating base oil is usually 100 mass ppm. That's it.
  • the sulfur content is preferably 10 mass ppm or less, from the viewpoint of further improving thermal and oxidation stability and reducing sulfur, and preferably 5 mass ppm or less. Is more preferably 3 ppm by mass or less, and particularly preferably 1 ppm by mass or less.
  • the sulfur content in the obtained lubricating base oil is preferably 50 ppm by mass or less, and preferably 10 ppm by mass or less. More preferred.
  • the pour point of the lubricating base oil according to the present embodiment is preferably ⁇ 5 ° C. or lower, more preferably ⁇ 10 ° C. or lower, and further preferably ⁇ 12.5 ° C. or lower.
  • the pour point of the lubricating base oil according to this embodiment is preferably ⁇ 20 ° C. or higher, more preferably ⁇ 17.5 ° C. or higher, and still more preferably ⁇ 15 ° C. or higher.
  • the pour point is less than ⁇ 20 ° C., it becomes difficult to make the SBV viscosity at ⁇ 20 ° C. within the range of 3,000 to 30,000 mPa ⁇ s, and the sealing property tends to be insufficient.
  • the CCS viscosity at ⁇ 30 ° C. of the lubricating base oil according to the present embodiment is preferably 950 mPa ⁇ s or less, more preferably 900 mPa ⁇ s or less.
  • the CCS viscosity of the lubricating base oil at ⁇ 35 ° C. is preferably 1,600 mPa ⁇ s or less, more preferably 1,500 mPa ⁇ s or less.
  • ⁇ 15 of the lubricating base oil is preferably 0.830 or less, more preferably 0.825 or less.
  • Lubricating base oil that is a hydrocarbon oil that satisfies the condition (iii)]
  • the lubricating base oil according to the third embodiment of the present invention has a kinematic viscosity at 100 ° C. of 2.0 to 3.0 mm 2 / s, a viscosity index of 130 or more, and an SBV viscosity at ⁇ 30 ° C. of 1,000 to 30. , 000 mPa ⁇ s hydrocarbon oil.
  • the pour point used as an index of the low temperature viscosity characteristic of the lubricating base oil is to evaluate the ease of flow, in other words, the bulk viscosity.
  • the SBV viscosity in the present invention is not a bulk viscosity but an evaluation of the ease of movement of the base oil at the molecular level. For example, at a temperature lower than the pour point, the lubricant base oil does not flow, but can move at the molecular level due to a shift between molecules constituting the base oil, etc., and can give an SBV viscosity.
  • the lubricating base oil according to the present embodiment has been made based on the above-mentioned knowledge of the present inventor, and has a kinematic viscosity at 100 ° C. of 2.0 to 3.0 mm 2 / s and a lubricating oil base having a viscosity index of 130 or more.
  • the oil by setting the SBV viscosity at ⁇ 30 ° C. of the lubricating base oil to 1,000 to 30,000 mPa ⁇ s, it is possible to improve the sealing property while maintaining the low-temperature viscosity characteristics sufficiently. It has a great effect.
  • the kinematic viscosity at 100 ° C. of the lubricating base oil according to this embodiment is 2.0 to 3.0 mm 2 / s, preferably 2.1 to 2.9 mm 2 / s, more preferably 2.2 to 2.8 mm 2 / s.
  • the viscosity index of the lubricating base oil according to the present embodiment is 130 or more, preferably 131 or more, more preferably 132 to 140.
  • energy saving performance is lowered when the viscosity index is less than the lower limit, and when it exceeds the fluidity, the fluidity at normal temperature is lowered and the lubricating oil base oil cannot be used.
  • the SBV viscosity at ⁇ 30 ° C. of the lubricating base oil according to the present embodiment is 1,000 to 30,000 mPa ⁇ s, preferably 1,000 to 20,000 mPa ⁇ s, more preferably 1,000. ⁇ 15,000 mPa ⁇ s.
  • the sealing property is insufficient
  • the SBV viscosity exceeds the upper limit value the low temperature viscosity characteristic becomes insufficient.
  • the SBV viscosity at ⁇ 35 ° C. of the lubricating base oil according to this embodiment is preferably 3,000 to 500,000 mPa ⁇ s, more preferably 3,000 to 400,000 mPa ⁇ s, and still more preferably. 3,000 to 300,000 mPa ⁇ s.
  • the SBV viscosity at ⁇ 40 ° C. of the lubricating base oil according to the present embodiment is preferably 5,000 to 750,000 mPa ⁇ s, more preferably 5,000 to 500,000 mPa ⁇ s, and still more preferably. 5,000 to 400,000 mPa ⁇ s.
  • the sealing property at ⁇ 40 ° C. is less than the above lower limit, the sealing property is insufficient, and when it exceeds the upper limit, the low-temperature viscosity characteristics are insufficient.
  • the kinematic viscosity at 40 ° C. of the lubricating base oil according to the present embodiment is preferably 7 to 12 mm 2 / s, more preferably 8 to 10 mm 2 / s.
  • the freezing point of the lubricating base oil according to the present embodiment is preferably ⁇ 30 to ⁇ 10 ° C., more preferably ⁇ 29 to ⁇ 15 ° C., and further preferably ⁇ 28 to ⁇ 20 ° C. If the freezing point is less than the lower limit, the energy saving property tends to be lowered, and if the freezing point is exceeded, the fluidity at normal temperature is lowered and the lubricating base oil tends not to be used.
  • the proportion of CH 2 carbon constituting the main chain in the total carbon constituting the lubricating base oil is 15% or more. It is preferably 15% or more.
  • the ratio is not less than the above lower limit, the traction coefficient of the lubricating base oil can be lowered (that is, low friction), which is preferable in terms of energy saving.
  • the cycloparaffin content is preferably 30% or less, and more preferably 25% or less.
  • the wear resistance of the lubricating base oil can be further improved.
  • the urea adduct value of the lubricating base oil according to the present embodiment is preferably 4% by mass or less, more preferably 3.5%, from the viewpoint of improving the low temperature viscosity characteristics without impairing the viscosity-temperature characteristics at high temperatures. It is not more than mass%, more preferably not more than 3 mass%, particularly preferably not more than 2.5 mass%. Further, the urea adduct value of the lubricating base oil may be 0% by mass. However, it is possible to obtain a lubricating base oil having sufficient low-temperature viscosity characteristics and a higher viscosity index, and more preferably 0.1% by mass or more in terms of excellent economic efficiency by relaxing dewaxing conditions. Preferably it is 0.5 mass% or more, Most preferably, it is 0.8 mass% or more.
  • the content of the saturated component in the lubricating base oil according to the present embodiment is preferably 90% by mass or more, more preferably 93% by mass or more, and still more preferably 95% by mass or more, based on the total amount of the lubricating oil base oil. Especially preferably, it is 99 mass% or more.
  • the content of the saturated component satisfies the above conditions, viscosity-temperature characteristics and thermal / oxidation stability can be achieved, and when an additive is blended in the lubricating base oil, the addition The function of the additive can be expressed at a higher level while the agent is sufficiently and stably dissolved and retained in the lubricant base oil. Furthermore, it is possible to improve the friction characteristics of the lubricating base oil itself, and as a result, it is possible to achieve an improvement in friction reduction effect and an improvement in energy saving.
  • the aromatic content in the lubricating base oil according to the present embodiment is preferably 5% by mass or less, more preferably 0.05 to 3% by mass, and still more preferably 0.1% based on the total amount of the lubricating base oil. To 1% by mass, particularly preferably 0.1 to 0.5% by mass. If the aromatic content exceeds the above upper limit, viscosity-temperature characteristics, thermal / oxidation stability, friction characteristics, volatilization prevention characteristics and low-temperature viscosity characteristics tend to be reduced. When an additive is blended with the additive, the effectiveness of the additive tends to decrease. Further, the lubricating base oil according to the present embodiment may not contain an aromatic component, but the solubility of the additive can be improved by setting the aromatic content to 0.05% by mass or more. It can be further increased.
  • the sulfur content in the lubricating base oil according to the present embodiment depends on the sulfur content of the raw material.
  • a raw material that does not substantially contain sulfur such as a synthetic wax component obtained by a Fischer-Tropsch reaction or the like
  • a lubricating base oil that does not substantially contain sulfur can be obtained.
  • the sulfur content in the obtained lubricating base oil is usually 100 mass ppm. That's it.
  • the sulfur content is preferably 10 mass ppm or less, from the viewpoint of further improving thermal and oxidation stability and reducing sulfur, and preferably 5 mass ppm or less. Is more preferably 3 ppm by mass or less, and particularly preferably 1 ppm by mass or less.
  • the sulfur content in the obtained lubricating base oil is preferably 50 ppm by mass or less, and preferably 10 ppm by mass or less. More preferred.
  • the pour point of the lubricating base oil according to this embodiment is preferably ⁇ 5 ° C. or lower, more preferably ⁇ 12.5 ° C. or lower, and further preferably ⁇ 15 ° C. or lower.
  • the pour point of the lubricating base oil according to this embodiment is preferably ⁇ 27.5 ° C. or higher, more preferably ⁇ 25 ° C. or higher.
  • the pour point is less than ⁇ 27.5 ° C., it becomes difficult to make the SBV viscosity at ⁇ 20 ° C. within the range of 3,000 to 60,000 mPa ⁇ s, and the sealing property tends to be insufficient.
  • the CCS viscosity at ⁇ 30 ° C. of the lubricating base oil according to the present embodiment is preferably 1,000 mPa ⁇ s or less, more preferably 750 mPa ⁇ s or less.
  • the CCS viscosity of the lubricating base oil at ⁇ 35 ° C. is preferably 1,300 mPa ⁇ s or less, more preferably 1,000 mPa ⁇ s or less.
  • ⁇ 15 of the lubricating base oil is preferably 0.806 or less, more preferably 0.8058 or less.
  • the NOACK evaporation amount of the lubricating base oil according to the present embodiment is preferably 20% by mass or more, more preferably 25% by mass or more, still more preferably 30% or more, and preferably 50% by mass or less. Preferably it is 48 mass% or less, More preferably, it is 46 mass% or less.
  • the NOACK evaporation amount is the lower limit value, it tends to be difficult to improve the low temperature viscosity characteristics. Further, if the NOACK evaporation amount exceeds the upper limit value, when the lubricating base oil is used as a lubricating oil for an internal combustion engine, the amount of evaporation loss of the lubricating oil increases, and accordingly, catalyst poisoning is promoted. It is not preferable.
  • a fifth step of obtaining a lubricating base oil that is a hydrocarbon oil that satisfies any of the following conditions: Is provided.
  • a base oil fraction and a heavy fraction are fractionated from a hydrocarbon oil as a raw material (first step), and hydrogenation of the heavy fraction is performed.
  • the cracked oil obtained by cracking is returned to the first step (second step). That is, only the heavy fraction is subjected to hydroisomerization dewaxing (third step) through hydrocracking, and the base oil fraction is hydroisomerized and dewaxed without hydrocracking. Therefore, as a whole of the oil to be treated subjected to hydroisomerization dewaxing, isomerization is difficult to proceed as compared with the conventional method for producing highly refined mineral oil.
  • the base oil fraction is a fraction for obtaining a lubricating base oil through a dewaxing step, a hydrofinishing step and a second distillation step, and the boiling range thereof can be appropriately changed depending on the target product.
  • a suitable boiling range of the base oil fraction in this embodiment is exemplified by 340 to 520 ° C.
  • the heavy fraction is a heavy fraction having a boiling point higher than that of the base oil fraction.
  • the boiling point of the heavy fraction is preferably higher than 520 ° C.
  • the hydrocarbon oil may contain a light fraction (light fraction) having a boiling point lower than that of the base oil fraction in addition to the base oil fraction and the heavy fraction.
  • the boiling point of the light component is preferably less than 340 ° C.
  • hydrocarbon oils examples include hydrotreated or hydrocracked diesel oil, heavy diesel oil, vacuum diesel oil, lubricating oil raffinate, lubricating oil raw material, bright stock, slack wax (crude wax), waxy oil, deoiled oil
  • hydrocarbon oils include wax, paraffin wax, microcrystalline wax, petrolatum, synthetic oil, Fischer-Tropsch synthetic reaction oil (hereinafter referred to as “FT synthetic oil”), high pour point polyolefin, and linear ⁇ -olefin wax. These can be used individually by 1 type or in combination of 2 or more types.
  • hydrocarbon oils include vacuum gas oil, vacuum gas oil hydrocracked oil, atmospheric residue, atmospheric residue hydrocracked oil, vacuum residue, vacuum residue hydrocracked oil, slack wax, dewaxed oil. And at least one selected from the group consisting of paraffin wax, microcritalin wax, petratum and Fischer-Tropsch synthetic wax. More preferably, it is at least one selected from the group consisting of synthetic waxes.
  • the hydrocarbon oil is preferably FT (Fischer-Tropsch) synthetic oil.
  • the FT synthetic oil is a hydrocarbon oil synthesized from carbon monoxide and hydrogen by an FT synthesis reaction, and does not contain nitrogen. Therefore, when the hydrocarbon oil is an FT synthetic oil, there is no possibility of sulfur poisoning in hydrocracking and isomerization dewaxing described later, and various catalysts can be used.
  • hydrocarbon oil containing a hydrocarbon derived from a petroleum raw material
  • hydrocarbon oils include vacuum gas oil hydrocracked oil, atmospheric residue hydrocracked oil, vacuum residue hydrocracked oil, slack wax, dewaxed oil, paraffin wax, microcrystalline wax, and petratum. Can be mentioned.
  • the first distillation step is a step of fractionating the base oil fraction and the heavy fraction from the hydrocarbon oil.
  • the conditions of the fractionation step can be appropriately changed depending on the composition of the hydrocarbon oil.
  • the fractionation step includes atmospheric distillation for distilling the light component from the hydrocarbon oil, and base oil fraction and heavy oil from the bottom oil of atmospheric distillation.
  • the distillation is preferably performed by distillation under reduced pressure to fractionate the fractions.
  • the heavy fraction fractionated in the first distillation step is subjected to a hydrocracking step.
  • the hydrocracked oil obtained in the hydrocracking process is returned to the first distillation process.
  • the type of the reactor used in the hydrocracking step is not particularly limited, and a fixed bed flow reactor filled with a hydrocracking catalyst is preferably used.
  • a single reactor may be used, or a plurality of reactors may be arranged in series or in parallel. Further, the catalyst bed in the reactor may be single or plural.
  • hydrocracking catalyst a known hydrocracking catalyst is used.
  • a catalyst in which a metal belonging to Groups 8 to 10 of the periodic table of elements having hydrogenation activity is supported on an inorganic carrier having solid acidity (hereinafter, “ Hydrocracking catalyst A ”)) is preferably used.
  • the hydrocracking catalyst A is preferably used because there is no risk of catalyst poisoning due to sulfur.
  • Suitable inorganic supports having solid acidity constituting the hydrocracking catalyst A include zeolites such as ultrastable Y type (USY) zeolite, Y type zeolite, mordenite and ⁇ zeolite, and silica alumina, silica zirconia, and alumina. Examples thereof include those composed of one or more inorganic compounds selected from amorphous composite metal oxides having heat resistance such as boria.
  • the carrier is more preferably a composition comprising USY zeolite and one or more amorphous composite metal oxides selected from silica alumina, alumina boria and silica zirconia. USY zeolite, alumina More preferred is a composition comprising boria and / or silica alumina.
  • USY zeolite is obtained by ultra-stabilizing Y-type zeolite by hydrothermal treatment and / or acid treatment, and in addition to a micropore structure called micropores having a pore size originally possessed by Y-type zeolite of 2 nm or less. New pores having a pore diameter in the range of 10 nm are formed.
  • the average particle size of the USY zeolite is not particularly limited, but is preferably 1.0 ⁇ m or less, more preferably 0.5 ⁇ m or less.
  • the silica / alumina molar ratio is preferably 10 to 200, more preferably 15 to 100, and still more preferably 20 to 60.
  • the support of the hydrocracking catalyst A preferably contains 0.1 to 80% by mass of crystalline zeolite and 0.1 to 60% by mass of amorphous composite metal oxide having heat resistance.
  • the carrier of the hydrocracking catalyst A can be produced by molding a carrier composition containing the inorganic compound having solid acidity and a binder and then firing the carrier composition.
  • the blending ratio of the inorganic compound having solid acidity is preferably 1 to 70% by mass, more preferably 2 to 60% by mass based on the mass of the whole carrier.
  • the carrier contains USY zeolite
  • the blending ratio of USY zeolite is preferably 0.1 to 10% by mass, and preferably 0.5 to 5% by mass based on the mass of the entire carrier. More preferred.
  • the mixing ratio of USY zeolite and alumina boria is preferably 0.03 to 1 in terms of mass ratio.
  • the mixing ratio of USY zeolite and silica alumina is preferably 0.03 to 1 in terms of mass ratio.
  • the binder is not particularly limited, but alumina, silica, titania and magnesia are preferable, and alumina is more preferable.
  • the blending amount of the binder is preferably 20 to 98% by mass, more preferably 30 to 96% by mass based on the mass of the whole carrier.
  • the temperature at which the carrier composition is calcined is preferably in the range of 400 to 550 ° C., more preferably in the range of 470 to 530 ° C., and further in the range of 490 to 530 ° C. preferable. By baking at such a temperature, sufficient solid acidity and mechanical strength can be imparted to the carrier.
  • the metals in Groups 8 to 10 of the periodic table having hydrogenation activity supported on the carrier include cobalt, nickel, rhodium, palladium, iridium, and platinum. Among these, it is preferable to use the metal chosen from nickel, palladium, and platinum individually by 1 type or in combination of 2 or more types. These metals can be supported on the above-mentioned carrier by a conventional method such as impregnation or ion exchange.
  • the amount of metal to be supported is not particularly limited, but the total amount of metal is preferably 0.1 to 3.0% by mass with respect to the mass of the carrier.
  • the periodic table of elements means a periodic table of long-period elements based on the provisions of IUPAC (International Pure Applied Chemistry Association).
  • the conditions for contacting the base oil fraction and the hydrocracking catalyst A in the presence of hydrogen are not particularly limited, but the following reaction conditions can be selected.
  • the reaction temperature include 180 to 400 ° C., preferably 200 to 370 ° C., more preferably 250 to 350 ° C., and particularly preferably 280 to 350 ° C.
  • the reaction temperature exceeds 400 ° C., decomposition to light components proceeds and not only the yield of the base oil fraction decreases, but also the product tends to be colored and its use as a fuel oil base material tends to be limited. It is in.
  • the reaction temperature is lower than 180 ° C.
  • the hydrocracking reaction does not proceed sufficiently, and the yield of the base oil fraction decreases.
  • the hydrogen partial pressure include 0.5 to 12 MPa, and 1.0 to 5.0 MPa is preferable.
  • the liquid hourly space velocity of the heavy fraction include 0.1 ⁇ 10.0h -1 but is preferably 0.3 ⁇ 3.5 h -1.
  • LHSV liquid hourly space velocity of the heavy fraction
  • the base oil fraction may contain a sulfur content.
  • a porous inorganic oxide comprising two or more elements selected from aluminum, silicon, zirconium, boron, titanium and magnesium as the hydrocracking catalyst, and the porous inorganic oxide
  • hydrocracking catalyst B a catalyst having at least one metal selected from Group 6A and Group 8 elements supported on the periodic table. According to the hydrocracking catalyst B, a decrease in catalytic activity due to sulfur poisoning is sufficiently suppressed.
  • a porous inorganic oxide comprising two or more selected from aluminum, silicon, zirconium, boron, titanium and magnesium as described above is used.
  • the porous inorganic oxide is preferably at least two selected from aluminum, silicon, zirconium, boron, titanium and magnesium from the viewpoint that the hydrocracking activity can be further improved.
  • An inorganic oxide (a composite oxide of aluminum oxide and another oxide) is more preferable.
  • the aluminum content is preferably 1 to 97% by mass, more preferably 10 to 97% by mass in terms of alumina, based on the total amount of the porous inorganic oxide. %, More preferably 20 to 95% by mass.
  • the aluminum content is less than 1% by mass in terms of alumina, physical properties such as carrier acid properties are not suitable, and sufficient hydrocracking activity tends not to be exhibited.
  • the aluminum content exceeds 97% by mass in terms of alumina, the catalyst surface area becomes insufficient and the activity tends to decrease.
  • the method for introducing silicon, zirconium, boron, titanium and magnesium, which are carrier constituent elements other than aluminum, is not particularly limited, and a solution containing these elements may be used as a raw material.
  • silicon, silicon, water glass, silica sol, etc. for boron, boric acid, etc., for phosphorus, phosphoric acid and alkali metal salts of phosphoric acid, etc., for titanium, titanium sulfide, titanium tetrachloride and various alkoxide salts, etc.
  • zirconium zirconium sulfate and various alkoxide salts can be used.
  • the porous inorganic oxide preferably contains phosphorus as a constituent element.
  • the phosphorus content is preferably 0.1 to 10% by mass, more preferably 0.5 to 7% by mass, and further preferably 2 to 6% by mass, based on the total amount of the porous inorganic oxide. When the phosphorus content is less than 0.1% by mass, sufficient hydrocracking activity tends not to be exhibited, and when it exceeds 10% by mass, excessive decomposition may proceed.
  • the raw materials of the carrier constituents other than the above-described aluminum oxide in a step prior to the firing of the carrier.
  • the aluminum hydroxide gel containing these structural components may be prepared, and the said raw material may be added with respect to the prepared aluminum hydroxide gel.
  • the above raw materials may be added in a step of adding water or an acidic aqueous solution to a commercially available aluminum oxide intermediate or boehmite powder and kneading them, but it is more preferable to coexist at the stage of preparing aluminum hydroxide gel.
  • the porous inorganic oxide as the carrier carries one or more metals selected from Group 6A and Group 8 elements of the periodic table.
  • these metals it is preferable to use a combination of two or more metals selected from cobalt, molybdenum, nickel and tungsten.
  • suitable combinations include cobalt-molybdenum, nickel-molybdenum, nickel-cobalt-molybdenum, and nickel-tungsten. Of these, combinations of nickel-molybdenum, nickel-cobalt-molybdenum and nickel-tungsten are more preferred. In hydrocracking, these metals are used after being converted to a sulfide state.
  • the total supported amount of tungsten and molybdenum is preferably 12 to 35% by mass, more preferably 15 to 30% by mass in terms of oxide. If the total supported amount of tungsten and molybdenum is less than 12% by mass, the active sites tend to decrease and sufficient activity cannot be obtained. On the other hand, if it exceeds 35% by mass, the metal is not effectively dispersed and sufficient activity tends not to be obtained.
  • the range of the total supported amount of cobalt and nickel is preferably 1.0 to 15% by mass, more preferably 1.5 to 12% by mass in terms of oxide.
  • the method of incorporating these active metals into the catalyst is not particularly limited, and a known method applied when producing an ordinary hydrocracking catalyst can be used.
  • a method of impregnating a catalyst carrier with a solution containing a salt of an active metal is preferably employed.
  • an equilibrium adsorption method, a pore-filling method, an incident-wetness method, and the like are also preferably employed.
  • the pore-filling method is a method in which the pore volume of a support is measured in advance and impregnated with a metal salt solution having the same volume.
  • the impregnation method is not particularly limited, and it can be impregnated by an appropriate method according to the amount of metal supported and the physical properties of the catalyst carrier.
  • the number of types of hydrocracking catalyst B to be used is not particularly limited.
  • one type of catalyst may be used alone, or a plurality of catalysts having different active metal species and carrier components may be used.
  • a catalyst containing cobalt-molybdenum after the catalyst containing nickel-molybdenum, and nickel-cobalt-molybdenum after the catalyst containing nickel-molybdenum are used.
  • a catalyst containing nickel-cobalt-molybdenum after the catalyst containing nickel-tungsten, and a catalyst containing cobalt-molybdenum after the catalyst containing nickel-cobalt-molybdenum may be further combined before and / or after these combinations.
  • the content of aluminum oxide is included in the subsequent stage of the catalyst having an aluminum oxide content of 30% by mass or more and less than 80% by mass based on the total mass of the support.
  • a catalyst having an amount in the range of 80 to 99% by mass may be used.
  • a guard catalyst is used for trapping the scale component flowing in along with the base oil fraction as needed, or for supporting the hydrocracking catalyst B at the separation part of the catalyst bed.
  • a demetallizing catalyst or an inert packing may be used. In addition, these can be used individually or in combination.
  • the pore volume of the hydrocracking catalyst B by the nitrogen adsorption BET method is preferably 0.30 to 0.85 ml / g, more preferably 0.45 to 0.80 ml / g.
  • the pore volume is less than 0.30 ml / g, the dispersibility of the supported metal becomes insufficient, and there is a concern that the active site is verified.
  • the pore volume exceeds 0.85 ml / g, the catalyst strength becomes insufficient, and the catalyst may be pulverized or crushed during use.
  • the average pore diameter of the catalyst determined by the nitrogen adsorption BET method is preferably 5 to 11 nm, and more preferably 6 to 9 nm. If the average pore diameter is less than 5 nm, the reaction substrate may not sufficiently diffuse into the pores, and the reactivity may be reduced. On the other hand, if the average pore diameter exceeds 11 nm, the pore surface area decreases, and the activity may be insufficient.
  • the hydrocracking conditions are, for example, a hydrogen pressure of 2 to 13 MPa, a liquid space velocity (LHSV) of 0.1 to 3.0 h ⁇ 1 , a hydrogen oil ratio (hydrogen / oil ratio) of 150.
  • a hydrogen pressure of 2 to 13 MPa
  • a liquid space velocity LHSV
  • hydrogen oil ratio hydrogen / oil ratio
  • To 1500 NL / L preferably hydrogen pressure 4.5 to 12 MPa
  • liquid space velocity 0.3 to 1.5 h ⁇ 1
  • hydrogen oil ratio 380 to 1200 NL / L more preferably hydrogen
  • the pressure is 6 to 15 MPa
  • the space velocity is 0.3 to 1.5 h ⁇ 1
  • the hydrogen oil ratio is 350 to 1000 NL / L.
  • the reactivity tends to decrease or the activity rapidly decreases. is there.
  • the hydrogen pressure and the hydrogen oil ratio exceed the above upper limit values, there is a tendency that excessive equipment investment such as a compressor is required.
  • the lower the liquid space velocity tends to be advantageous for the reaction, but if the liquid space velocity is less than the above lower limit value, there is a tendency that an extremely large internal volume reactor is required and excessive equipment investment is required, When the liquid space velocity exceeds the above upper limit, the reaction tends not to proceed sufficiently.
  • reaction temperature examples include 180 to 400 ° C., preferably 200 to 370 ° C., more preferably 250 to 350 ° C., and particularly preferably 280 to 350 ° C.
  • reaction temperature exceeds 400 ° C.
  • decomposition into light fractions proceeds and not only the yield of the base oil fraction decreases, but also the product is colored and its use as a fuel oil base material is restricted. There is a tendency.
  • reaction temperature is lower than 180 ° C., the hydrocracking reaction does not proceed sufficiently, and the yield of the base oil fraction decreases.
  • the heavy fraction is converted into hydrocarbons having a boiling point of approximately 520 ° C. or less by hydrocracking.
  • a part of the heavy fraction is not sufficiently hydrocracked and remains as an undecomposed heavy fraction having a boiling point of 520 ° C. or higher.
  • the composition of hydrocracked oil is determined by the hydrocracking catalyst used and the hydrocracking reaction conditions.
  • the “hydrocracked oil” refers to the entire hydrocracked product containing an uncracked heavy fraction unless otherwise specified. If the hydrocracking reaction conditions are made stricter than necessary, the content of the undecomposed heavy fraction in the hydrocracked oil decreases, but the light fraction having a boiling point of 340 ° C. or less increases and a suitable base oil fraction (340 Yield of ⁇ 520 ° C. fraction). On the other hand, when the hydrocracking reaction conditions are milder than necessary, the uncracked heavy fraction increases and the base oil fraction yield decreases.
  • this decomposition rate M2 / M1 is usually The reaction conditions are preferably selected so as to be 5 to 70%, preferably 10 to 60%, more preferably 20 to 50%.
  • the dewaxing process will be described.
  • the base oil fraction fractionated in the first distillation step is brought into contact with the hydrogenation catalyst in the presence of hydrogen (molecular hydrogen).
  • hydrogen molecular hydrogen
  • a known fixed bed reaction tower can be used as a reaction tower in the dewaxing step. More specifically, for example, a hydroisomerization catalyst is charged into a fixed bed flow reactor, and hydrogen (molecular hydrogen) and a base oil fraction are passed through the reactor to perform hydroisomerization. Can be implemented.
  • hydroisomerization catalyst a catalyst generally used for hydroisomerization, that is, a catalyst in which a metal having a hydrogenation activity is supported on an inorganic carrier can be used.
  • Examples of the metal having hydrogenation activity constituting the hydroisomerization catalyst include one or more metals selected from the group consisting of metals of Group 6, Group 8, Group 9 and Group 10 of the periodic table of elements. Used. Specific examples of these metals include noble metals such as platinum, palladium, rhodium, ruthenium, iridium and osmium, or cobalt, nickel, molybdenum, tungsten, iron, etc., preferably platinum, palladium, nickel, Cobalt, molybdenum and tungsten are preferable, and platinum and palladium are more preferable. These metals are also preferably used in combination of a plurality of types. In this case, preferable combinations include platinum-palladium, cobalt-molybdenum, nickel-molybdenum, nickel-cobalt-molybdenum, nickel-tungsten, and the like.
  • noble metals such as platinum, palladium, rhodium, ruthenium, iridium and os
  • the inorganic carrier constituting the hydroisomerization catalyst examples include metal oxides such as alumina, silica, titania, zirconia, and boria. These metal oxides may be one kind or a mixture of two or more kinds or a composite metal oxide such as silica alumina, silica zirconia, alumina zirconia, alumina boria and the like.
  • the inorganic carrier is preferably a composite metal oxide having solid acidity such as silica alumina, silica zirconia, alumina zirconia, alumina boria, etc., from the viewpoint of efficiently proceeding hydroisomerization of normal paraffin.
  • the inorganic carrier may contain a small amount of zeolite.
  • the inorganic carrier may contain a binder for the purpose of improving the moldability and mechanical strength of the carrier. Preferred binders include alumina, silica, magnesia and the like.
  • the content of the metal having hydrogenation activity in the hydroisomerization catalyst is about 0.1 to 3% by mass as a metal atom based on the mass of the support when the metal is the above-mentioned noble metal. preferable. Further, when the metal is a metal other than the noble metal, the metal oxide is preferably about 2 to 50% by mass based on the mass of the support.
  • the content of the metal having hydrogenation activity is less than the lower limit, hydrorefining and hydroisomerization tend not to proceed sufficiently.
  • the content of the metal having hydrogenation activity exceeds the upper limit, the dispersion of the metal having hydrogenation activity tends to be reduced, and the activity of the catalyst tends to be reduced, and the catalyst cost is increased.
  • the hydroisomerization catalyst is selected from elements of Group 8 of the periodic table on a support made of a porous inorganic oxide composed of a material selected from aluminum, silicon, zirconium, boron, titanium, magnesium and zeolite.
  • a catalyst formed by supporting one or more metals may be used.
  • porous inorganic oxide used as a carrier for such a hydroisomerization catalyst examples include alumina, titania, zirconia, boria, silica, and zeolite, and among these, titania, zirconia, boria, silica, and zeolite. Among these, those composed of at least one kind and alumina are preferable.
  • the production method is not particularly limited, but any preparation method can be adopted using raw materials in a state of various sols, salt compounds, etc. corresponding to each element.
  • alumina gel and other hydroxides or in a suitable solution state It may be prepared by adding at any step.
  • the ratio of alumina to other oxides can be any ratio with respect to the support, but preferably alumina is 90% by mass or less, more preferably 60% by mass or less, more preferably 40% by mass or less, preferably Is 10% by mass or more, more preferably 20% by mass or more.
  • Zeolites are crystalline aluminosilicates, such as faujasite, pentasil, mordenite, TON, MTT, MRE, etc., which are ultra-stabilized by the prescribed hydrothermal treatment and / or acid treatment, or the alumina content in the zeolite What adjusted can be used.
  • faujasite and mordenite particularly preferably Y type and beta type are used.
  • the Y type is preferably ultra-stabilized, and the zeolite that has been super-stabilized by hydrothermal treatment forms new pores in the range of 20 to 100 mm in addition to the original pore structure called micropores of 20 mm or less.
  • Known conditions can be used for the hydrothermal treatment conditions.
  • the active metal of such a hydroisomerization catalyst one or more metals selected from Group 8 elements of the periodic table are used.
  • these metals it is preferable to use one or more metals selected from Pd, Pt, Rh, Ir, Au, and Ni, and it is more preferable to use them in combination.
  • Suitable combinations include, for example, Pd—Pt, Pd—Ir, Pd—Rh, Pd—Au, Pd—Ni, Pt—Rh, Pt—Ir, Pt—Au, Pt—Ni, Rh—Ir, Rh— Examples thereof include Au, Rh—Ni, Ir—Au, Ir—Ni, Au—Ni, Pd—Pt—Rh, Pd—Pt—Ir, and Pt—Pd—Ni.
  • the total content of active metals based on the catalyst mass is preferably 0.1 to 2% by mass, more preferably 0.2 to 1.5% by mass, and 0.5 to 1.3% by mass as the metal. Even more preferred. If the total supported amount of the metal is less than 0.1% by mass, the active sites tend to decrease and sufficient activity cannot be obtained. On the other hand, if it exceeds 2% by mass, the metal is not effectively dispersed and sufficient activity tends not to be obtained.
  • the method for supporting an active metal on a support is not particularly limited, and a known method applied when producing a normal hydroisomerization catalyst can be used. .
  • a method of impregnating a catalyst carrier with a solution containing a salt of an active metal is preferably employed.
  • an equilibrium adsorption method, a pore-filling method, an incident-wetness method, and the like are preferably employed.
  • the pore-filling method is a method in which the pore volume of the support is measured in advance and impregnated with the same volume of the metal salt solution, but the impregnation method is not particularly limited, and the amount of metal supported Further, it can be impregnated by an appropriate method depending on the physical properties of the catalyst support.
  • the following catalysts can also be used as the hydroisomerization catalyst.
  • an organic template-containing zeolite containing an organic template and having a 10-membered ring one-dimensional pore structure is ion-exchanged in a solution containing ammonium ions and / or protons.
  • a first step of obtaining a support precursor by heating a mixture containing the obtained ion-exchanged zeolite and a binder at a temperature of 250 to 350 ° C. in an N 2 atmosphere; and a platinum salt and / or A catalyst precursor containing a palladium salt is calcined at a temperature of 350 to 400 ° C. in an atmosphere containing molecular oxygen to obtain a hydroisomerization catalyst in which platinum and / or palladium is supported on a support containing zeolite. And obtaining a second step.
  • the organic template-containing zeolite used in the present embodiment is a one-dimensional pore composed of a 10-membered ring from the viewpoint of achieving both high isomerization activity and suppressed decomposition activity in normal paraffin hydroisomerization reaction at a high level. It has a structure.
  • zeolite examples include AEL, EUO, FER, HEU, MEL, MFI, NES, TON, MTT, WEI, * MRE, and SSZ-32.
  • the above three letters of the alphabet mean the skeletal structure code given by the Structure Committee of The International Zeolite Association for each classified structure of molecular sieve type zeolite. To do.
  • zeolites having the same topology are collectively referred to by the same code.
  • zeolites having the above-mentioned 10-membered ring one-dimensional pore structure among the zeolites having the above-mentioned 10-membered ring one-dimensional pore structure, zeolites having a TON or MTT structure, and * MRE structures in terms of high isomerization activity and low decomposition activity ZSM-48 zeolite and SSZ-32 zeolite which are zeolites are preferred.
  • ZSM-22 zeolite is more preferred as the zeolite having the TON structure
  • ZSM-23 zeolite is more preferred as the zeolite having the MTT structure.
  • the organic template-containing zeolite is hydrothermally synthesized by a known method from a silica source, an alumina source, and an organic template added to construct the predetermined pore structure.
  • the organic template is an organic compound having an amino group, an ammonium group or the like, and is selected according to the structure of the zeolite to be synthesized, but is preferably an amine derivative. Specifically, at least one selected from the group consisting of alkylamine, alkyldiamine, alkyltriamine, alkyltetramine, pyrrolidine, piperazine, aminopiperazine, alkylpentamine, alkylhexamine and derivatives thereof is more preferable.
  • the molar ratio ([Si] / [Al]) between silicon and aluminum constituting the organic template-containing zeolite having a 10-membered ring one-dimensional pore structure (hereinafter referred to as “Si / Al ratio”) is 10. Is preferably from 400 to 400, more preferably from 20 to 350.
  • Si / Al ratio is less than 10
  • the activity for the conversion of normal paraffin increases, but the isomerization selectivity to isoparaffin tends to decrease, and the increase in decomposition reaction accompanying the increase in reaction temperature tends to become rapid. Therefore, it is not preferable.
  • the Si / Al ratio exceeds 400, it is difficult to obtain the catalyst activity necessary for the conversion of normal paraffin, which is not preferable.
  • the organic template-containing zeolite synthesized preferably washed and dried usually has an alkali metal cation as a counter cation, and the organic template is included in the pore structure.
  • the zeolite containing an organic template used in producing the hydroisomerization catalyst according to the present invention is in such a synthesized state, that is, calcination for removing the organic template included in the zeolite. It is preferable that the treatment is not performed.
  • the organic template-containing zeolite is then ion-exchanged in a solution containing ammonium ions and / or protons.
  • the counter cation contained in the organic template-containing zeolite is exchanged with ammonium ions and / or protons.
  • a part of the organic template included in the organic template-containing zeolite is removed.
  • the solution used for the ion exchange treatment is preferably a solution using a solvent containing at least 50% by volume of water, and more preferably an aqueous solution.
  • the compound that supplies ammonium ions into the solution include various inorganic and organic ammonium salts such as ammonium chloride, ammonium sulfate, ammonium nitrate, ammonium phosphate, and ammonium acetate.
  • mineral acids such as hydrochloric acid, sulfuric acid and nitric acid are usually used as the compound for supplying protons into the solution.
  • An ion-exchanged zeolite obtained by ion-exchange of an organic template-containing zeolite in the presence of ammonium ions releases ammonia during subsequent calcination, and the counter cation serves as a proton as a brane. Stead acid point.
  • ammonium ions are preferred.
  • the content of ammonium ions and / or protons contained in the solution is preferably set to be 10 to 1000 equivalents with respect to the total amount of counter cations and organic templates contained in the organic template-containing zeolite used. .
  • the above ion exchange treatment may be performed on the powdery organic template-containing zeolite alone, and prior to the ion exchange treatment, the organic template-containing zeolite is blended with an inorganic oxide as a binder, molded, and obtained. You may perform with respect to the molded object obtained. However, if the molded body is subjected to an ion exchange treatment without firing, the molded body is likely to collapse and pulverize, so the powdered organic template-containing zeolite can be subjected to an ion exchange treatment. preferable.
  • the ion exchange treatment is preferably performed by an ordinary method, that is, a method of immersing zeolite containing an organic template in a solution containing ammonium ions and / or protons, preferably an aqueous solution, and stirring or flowing the zeolite. Moreover, it is preferable to perform said stirring or a flow under a heating in order to improve the efficiency of ion exchange.
  • a method in which the aqueous solution is heated and ion exchange is performed under boiling and reflux is particularly preferable.
  • the solution it is preferable to exchange the solution once or twice or more during the ion exchange of the zeolite with the solution, and exchange the solution once or twice. It is more preferable.
  • the organic template-containing zeolite is immersed in a solution containing ammonium ions and / or protons and heated to reflux for 1 to 6 hours. By heating and refluxing for ⁇ 12 hours, the ion exchange efficiency can be increased.
  • a carrier precursor is obtained by heating a mixture containing ion-exchanged zeolite and a binder at a temperature of 250 to 350 ° C. in a nitrogen atmosphere.
  • the mixture containing the ion exchange zeolite and the binder is preferably a mixture of the ion exchange zeolite obtained by the above method and an inorganic oxide as a binder and molding the resulting composition.
  • the purpose of blending the inorganic oxide with the ion-exchanged zeolite is to improve the mechanical strength of the carrier (particularly, the particulate carrier) obtained by firing the molded body to such an extent that it can be practically used.
  • the inventor has found that the choice of the inorganic oxide species affects the isomerization selectivity of the hydroisomerization catalyst.
  • the inorganic oxide is at least one selected from a composite oxide composed of alumina, silica, titania, boria, zirconia, magnesia, ceria, zinc oxide, phosphorus oxide, and combinations of two or more thereof.
  • Inorganic oxides are used.
  • silica and alumina are preferable and alumina is more preferable from the viewpoint of further improving the isomerization selectivity of the hydroisomerization catalyst.
  • the “composite oxide composed of a combination of two or more of these” is composed of at least two components of alumina, silica, titania, boria, zirconia, magnesia, ceria, zinc oxide, and phosphorus oxide.
  • the composite oxide is preferably a composite oxide mainly composed of alumina containing 50% by mass or more of an alumina component based on the composite oxide, and more preferably alumina-silica.
  • the mixing ratio of the ion exchange zeolite and the inorganic oxide in the above composition is preferably 10:90 to 90:10, more preferably 30:70 to 85 as a ratio of the mass of the ion exchange zeolite to the mass of the inorganic oxide. : 15.
  • this ratio is smaller than 10:90, it is not preferable because the activity of the hydroisomerization catalyst tends to be insufficient.
  • the ratio exceeds 90:10, the mechanical strength of the carrier obtained by molding and baking the composition tends to be insufficient, which is not preferable.
  • the method of blending the above-mentioned inorganic oxide with the ion-exchanged zeolite is not particularly limited. The method performed can be adopted.
  • the composition containing the ion-exchanged zeolite and the inorganic oxide or the viscous fluid containing the composition is molded by a method such as extrusion molding, and preferably dried to form a particulate molded body.
  • the shape of the molded body is not particularly limited, and examples thereof include a cylindrical shape, a pellet shape, a spherical shape, and a modified cylindrical shape having a trefoil / four-leaf cross section.
  • the size of the molded body is not particularly limited, but from the viewpoint of ease of handling, packing density in the reactor, etc., for example, the major axis is preferably about 1 to 30 mm and the minor axis is about 1 to 20 mm.
  • the molded body obtained as described above is preferably heated to a temperature of 250 to 350 ° C. in a N 2 atmosphere to form a carrier precursor.
  • the heating time is preferably 0.5 to 10 hours, and more preferably 1 to 5 hours.
  • the heating temperature when the heating temperature is lower than 250 ° C., a large amount of the organic template remains, and the pores are blocked by the remaining template. It is considered that the isomerization active site is present near the pore pore mouse. In the above case, the reaction substrate cannot diffuse into the pore due to the clogging of the pore, and the active site is covered and the isomerization reaction does not proceed easily. The conversion rate of normal paraffin tends to be insufficient. On the other hand, when the heating temperature exceeds 350 ° C., the isomerization selectivity of the resulting hydroisomerization catalyst is not sufficiently improved.
  • the lower limit temperature when the molded body is heated to form a carrier precursor is preferably 280 ° C or higher.
  • the upper limit temperature is preferably 330 ° C. or lower.
  • the micropore volume per unit mass of the hydroisomerization catalyst obtained through calcination after metal support described later is 0.02 to 0.11 cc / g, and the zeolite contained in the catalyst It is preferable to set the heating conditions so that the micropore volume per unit mass is 0.04 to 0.12 cc / g.
  • a catalyst precursor in which a platinum salt and / or palladium salt is contained in the carrier precursor is heated to 350 to 400 ° C., preferably 380 to 400 ° C., more preferably 400 ° C. in an atmosphere containing molecular oxygen.
  • a hydroisomerization catalyst in which platinum and / or palladium is supported on a support containing zeolite is obtained.
  • under an atmosphere containing molecular oxygen means that the gas is in contact with a gas containing oxygen gas, preferably air.
  • the firing time is preferably 0.5 to 10 hours, and more preferably 1 to 5 hours.
  • platinum salts include chloroplatinic acid, tetraamminedinitroplatinum, dinitroaminoplatinum, and tetraamminedichloroplatinum. Since the chloride salt generates hydrochloric acid during the reaction and may corrode the equipment, tetraamminedinitroplatinum, which is a platinum salt in which platinum is highly dispersed other than the chloride salt, is preferable.
  • the palladium salt examples include palladium chloride, tetraamminepalladium nitrate, and diaminopalladium nitrate. Since the chloride salt generates hydrochloric acid during the reaction and may corrode the equipment, tetraamminepalladium nitrate, which is a palladium salt in which palladium is highly dispersed other than the chloride salt, is preferable.
  • the amount of the active metal supported on the support containing zeolite according to this embodiment is preferably 0.001 to 20% by mass, more preferably 0.01 to 5% by mass based on the mass of the support.
  • the supported amount is less than 0.001% by mass, it is difficult to provide a predetermined hydrogenation / dehydrogenation function.
  • the supported amount exceeds 20% by mass, lightening by decomposition of hydrocarbons on the active metal tends to proceed, and the yield of the target fraction tends to decrease, This is not preferable because the catalyst cost tends to increase.
  • the hydroisomerization catalyst according to this embodiment is used for hydroisomerization of a hydrocarbon oil containing a large amount of a sulfur-containing compound and / or a nitrogen-containing compound, from the viewpoint of sustainability of catalyst activity, as an active metal, It is preferable to include a combination of nickel-cobalt, nickel-molybdenum, cobalt-molybdenum, nickel-molybdenum-cobalt, nickel-tungsten-cobalt and the like.
  • the amount of these metals supported is preferably 0.001 to 50 mass%, more preferably 0.01 to 30 mass%, based on the mass of the carrier.
  • the catalyst precursor is preferably calcined so that the organic template left on the carrier precursor remains.
  • the micropore volume per unit mass of the resulting hydroisomerization catalyst is 0.02 to 0.11 cc / g, and the micropore volume per unit mass of zeolite contained in the catalyst It is preferable to set the heating conditions so that is 0.04 to 0.12 cc / g.
  • the micropore volume per unit mass of the hydroisomerization catalyst is calculated by a method called nitrogen adsorption measurement. That is, for the catalyst, the physical adsorption / desorption isotherm of nitrogen measured at the liquid nitrogen temperature ( ⁇ 196 ° C.) is analyzed. Specifically, the adsorption isotherm of nitrogen measured at the liquid nitrogen temperature ( ⁇ 196 ° C.) The micropore volume per unit mass of the catalyst is calculated by analyzing by the ⁇ plot method. The micropore volume per unit mass of zeolite contained in the catalyst is also calculated by the above nitrogen adsorption measurement.
  • micropore refers to a “pore having a diameter of 2 nm or less” defined by the International Pure and Applied Chemistry Union IUPAC (International Union of Pure and Applied Chemistry).
  • Micropore volume V Z per unit mass of zeolite contained in the catalyst for example, if the binder does not have a micropore volume, the value of the micropore volume per unit mass of the hydroisomerization catalyst It can be calculated according to the following formula from V c and the content ratio M z (mass%) of the zeolite in the catalyst.
  • V Z V c / M z ⁇ 100
  • the hydroisomerization catalyst of this embodiment is preferably a catalyst that has been subjected to a reduction treatment after being charged into a reactor that performs a hydroisomerization reaction following the above-described calcination treatment.
  • reduction treatment is performed for about 0.5 to 5 hours in an atmosphere containing molecular hydrogen, preferably in a hydrogen gas flow, preferably at 250 to 500 ° C., more preferably at 300 to 400 ° C. It is preferable that By such a process, the high activity with respect to dewaxing of hydrocarbon oil can be more reliably imparted to the catalyst.
  • the hydroisomerization catalyst of this embodiment contains a zeolite having a 10-membered ring one-dimensional pore structure, a support containing a binder, and platinum and / or palladium supported on the support, and is a unit of catalyst.
  • the zeolite contained is derived from an ion exchange zeolite obtained by ion exchange in a solution containing ammonium ions and / or protons, and the micropore volume per unit mass of the zeolite contained in the catalyst is 0.04. It may be from 0.12 cc / g.
  • Said hydroisomerization catalyst can be manufactured by the method mentioned above.
  • the micropore volume per unit mass of the catalyst and the micropore volume per unit mass of the zeolite contained in the catalyst are the blending amount of the ion exchange zeolite in the mixture containing the ion exchange zeolite and the binder, and the N of the mixture.
  • the heating conditions under the two atmospheres and the heating conditions under the atmosphere containing the molecular oxygen of the catalyst precursor can be appropriately adjusted to be within the above range.
  • the reaction temperature in the dewaxing step is preferably 200 to 450 ° C, more preferably 220 to 400 ° C.
  • the reaction temperature is lower than 200 ° C.
  • the isomerization of normal paraffin contained in the base oil fraction is difficult to proceed, and the wax component tends to be insufficiently reduced and removed.
  • the reaction temperature exceeds 450 ° C., the decomposition of the base oil fraction becomes remarkable, and the yield of the lubricating base oil tends to decrease.
  • the reaction pressure in the dewaxing step is preferably 0.1 to 20 MPa, more preferably 0.5 to 15 MPa.
  • the reaction pressure is less than 0.1 MPa, the deterioration of the catalyst due to coke generation tends to be accelerated.
  • the reaction pressure exceeds 20 MPa, the cost for constructing the apparatus tends to increase, and it tends to be difficult to realize an economical process.
  • the liquid hourly space velocity for the base oil fraction of the catalyst is preferably 0.01 ⁇ 100 hr -1, more preferably 0.1 ⁇ 50 hr -1.
  • the liquid space velocity is less than 0.01 hr ⁇ 1 , decomposition of the base oil fraction tends to proceed excessively, and production efficiency tends to decrease.
  • the liquid space velocity exceeds 100 hr ⁇ 1 , isomerization of normal paraffin contained in the base oil fraction does not proceed easily, and the wax component tends to be insufficiently reduced and removed.
  • Supply ratio of hydrogen to base oil fraction is preferably 100 ⁇ 1000Nm 3 / m 3, more preferably 200 ⁇ 800Nm 3 / m 3.
  • the supply ratio is less than 100 Nm 3 / m 3 , for example, when the base oil fraction contains a sulfur content or a nitrogen content, hydrogen sulfide and ammonia gas generated by desulfurization and denitrogenation combined with the isomerization reaction are on the catalyst. Since the active metal is adsorbed and poisoned, it tends to be difficult to obtain a predetermined catalyst performance.
  • the supply ratio exceeds 1000 Nm 3 / m 3 , a hydrogen supply facility with a large capacity is required, so that it is difficult to realize an economical process.
  • the dewaxed oil obtained in the dewaxing process is subjected to a hydrofinishing process and subjected to a hydrofinishing process (hydrorefining process).
  • the reactor used in the hydrofinishing process is not particularly limited, and a predetermined hydrorefining catalyst is charged into a fixed bed flow reactor, and molecular hydrogen and the dewaxed oil are circulated through the reactor.
  • the hydrofinishing treatment can be suitably carried out.
  • the hydrofinishing treatment (hydrorefining treatment) in the present invention means to improve the oxidation stability and hue of the lubricating oil, and the olefin hydrogenation and aromatic hydrogenation of the dewaxed oil are performed.
  • hydrorefining catalyst for example, a support comprising one or more inorganic solid acidic substances selected from alumina, silica, zirconia, titania, boria, magnesia and phosphorus, and supported on the support, And a catalyst having at least one active metal selected from the group consisting of platinum, palladium, nickel-molybdenum, nickel-tungsten and nickel-cobalt-molybdenum.
  • a suitable carrier is an inorganic solid acidic substance containing at least two kinds of alumina, silica, zirconia, or titania.
  • the supported amount of active metal in the hydrotreating catalyst is preferably such that the total amount of metal is 0.1 to 25% by mass relative to the support.
  • the average pore diameter of the hydrorefining catalyst is preferably 6 to 60 nm, and more preferably 7 to 30 nm. When the average pore diameter is smaller than 6 nm, sufficient catalytic activity tends to be not obtained, and when the average pore diameter exceeds 60 nm, the catalytic activity tends to decrease due to a decrease in the degree of dispersion of the active metal.
  • the pore volume of the hydrotreating catalyst is preferably 0.2 mL / g or more. When the pore volume is less than 0.2 mL / g, the catalyst activity tends to be rapidly deteriorated.
  • the specific surface area of the hydrotreating catalyst is preferably 200 m 2 / g or more.
  • the specific surface area of the catalyst is less than 200 m 2 / g, the dispersibility of the active metal is insufficient and the activity tends to decrease.
  • the pore volume and specific surface area of these catalysts can be measured and calculated by a method called the BET method based on nitrogen adsorption.
  • the reaction conditions in the hydrofinishing step are preferably a reaction temperature of 200 to 300 ° C., a hydrogen partial pressure of 3 to 20 MPa, an LHSV of 0.5 to 5 h-1, and a hydrogen / oil ratio of 1000 to 5000 scfb, and a reaction temperature of 200 to 300 ° C. More preferably, the hydrogen partial pressure is 4 to 18 MPa, the LHSV is 0.5 to 4 h-1, and the hydrogen / oil ratio is 2000 to 5000 scfb.
  • the reaction conditions it is preferable to adjust the reaction conditions so that the sulfur content and the nitrogen content in the hydrorefined oil are 5 mass ppm or less and 1 mass ppm or less, respectively.
  • the refined oil obtained by the hydrofinishing process is subjected to the second fractionation process. Then, a desired lubricating oil fraction can be obtained by setting a plurality of cut points and distilling the hydrorefined oil under reduced pressure.
  • the hydrorefined oil may contain light fractions such as naphtha and kerosene oil produced as a by-product of hydroisomerization or hydrofinishing treatment (hydrorefining treatment). For example, it can be recovered as a fraction having a boiling point of 350 ° C. or lower.
  • the method for producing the lubricating base oil of the present invention is not limited to the above-described embodiment, and can be changed as appropriate.
  • the method for producing a lubricating base oil of the present invention includes a distillation step of fractionating the dewaxed oil obtained by the above dewaxed oil production method to obtain a lubricating oil fraction, and the distillation base step. And a hydrofinishing step of hydrofinishing (hydrorefining treatment) of the lubricating oil fraction.
  • the lubricant base oil according to the first to third embodiments and the lubricant base oil obtained by the production method according to the fourth embodiment have excellent low-temperature viscosity characteristics and sealing properties, and are used in various applications. It can be preferably used as a lubricating base oil.
  • Lubricating oil base oils are specifically used in internal combustion engines such as gasoline engines for passenger cars, gasoline engines for motorcycles, diesel engines, gas engines, gas heat pump engines, marine engines, and power generation engines. (Lubricating oil for internal combustion engines), automatic transmissions, manual transmissions, continuously variable transmissions, final reduction gears, etc. Lubricating oils (drive transmission device oils), shock absorbers, hydraulic equipment for construction machinery, etc.
  • Hydraulic oil compressor oil, turbine oil, industrial gear oil, refrigeration oil, rust prevention oil, heat medium oil, gas holder seal oil, bearing oil, paper machine oil, machine tool oil, slip guide surface oil , Electrical insulating oil, cutting oil, press oil, rolling oil, heat treatment oil, etc., and by using the lubricating base oil according to the present embodiment for these applications, It is possible at a high level both the Le resistance.
  • the lubricant base oil according to each embodiment may be used alone, and the lubricant base oil according to each embodiment is used in combination with one or more other base oils. May be.
  • the ratio of the lubricating base oil of the present invention in the mixed base oil is preferably 30% by mass or more. 50% by mass or more is more preferable, and 70% by mass or more is still more preferable.
  • the other base oil used in combination with the lubricating base oil according to each embodiment is not particularly limited.
  • the mineral base oil include solvent refined mineral oil having a kinematic viscosity at 100 ° C. of 1 to 100 mm 2 / s, Examples include hydrocracked mineral oil, hydrorefined mineral oil, and solvent dewaxing base oil.
  • Synthetic base oils include poly ⁇ -olefins or hydrides thereof, isobutene oligomers or hydrides thereof, isoparaffins, alkylbenzenes, alkylnaphthalenes, diesters (ditridecyl glutarate, di-2-ethylhexyl adipate, diisodecyl adipate, ditridec Decyl adipate, di-2-ethylhexyl sebacate, etc.), polyol esters (trimethylolpropane caprylate, trimethylolpropane pelargonate, pentaerythritol 2-ethylhexanoate, pentaerythritol pelargonate, etc.), polyoxyalkylene glycol, dialkyl Examples thereof include diphenyl ether and polyphenyl ether, and among them, poly ⁇ -olefin is preferable.
  • an ⁇ -olefin oligomer or co-oligomer (1-octene oligomer, decene oligomer, ethylene-propylene co-oligomer, etc.) having 2 to 32 carbon atoms, preferably 6 to 16 carbon atoms, and those Of the hydrides.
  • the production method of poly ⁇ -olefin is not particularly limited.
  • Friedel-Crafts catalyst containing a complex of aluminum trichloride or boron trifluoride with water, alcohol (ethanol, propanol, butanol, etc.), carboxylic acid or ester is not particularly limited.
  • a method of polymerizing ⁇ -olefin in the presence of a polymerization catalyst such as
  • various additives can be blended in the lubricating base oil according to each embodiment or a mixed base oil of the lubricating base oil and other lubricating base oils as necessary.
  • Such an additive is not particularly limited, and any additive conventionally used in the field of lubricating oils can be blended.
  • Specific examples of such lubricating oil additives include antioxidants, ashless dispersants, metallic detergents, extreme pressure agents, antiwear agents, viscosity index improvers, pour point depressants, friction modifiers, oiliness agents. , Corrosion inhibitors, rust inhibitors, demulsifiers, metal deactivators, seal swelling agents, antifoaming agents, colorants and the like. These additives may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the lubricating base oil according to each embodiment can effectively exert the effect of adding a pour point depressant. Therefore, when the pour point depressant is contained in the lubricating base oil according to each embodiment or the mixed base oil of the lubricating base oil and other lubricating base oil, excellent low temperature viscosity characteristics (MRV viscosity at ⁇ 40 ° C. Is preferably 20,000 mPa ⁇ s or less, more preferably 15,000 mPa ⁇ s or less, and still more preferably 10,000 mPa ⁇ s or less).
  • the MRV viscosity at ⁇ 40 ° C. means the MRV viscosity at ⁇ 40 ° C. measured according to JPI-5S-42-93.
  • the MRV viscosity at ⁇ 40 ° C. is 12,000 mPa ⁇ s or less. More preferably, a lubricating oil composition having extremely excellent low-temperature viscosity characteristics of 10,000 mPa ⁇ s or less, more preferably 8,000 mPa ⁇ s, and particularly preferably 6500 mPa ⁇ s or less can be obtained.
  • the blending amount of the pour point depressant is 0.05 to 2% by mass, preferably 0.1 to 1.5% by mass, based on the total amount of the composition.
  • the MRV viscosity can be lowered.
  • the pour point depressant has a weight average molecular weight of preferably 1 to 300,000, more preferably 50,000 to 200,000, and is particularly preferable.
  • polymethacrylates are particularly preferable.
  • Example 1-1 to 1-3 Comparative Examples 1-1 and 1-2
  • lubricating base oils shown in Table 1 were prepared.
  • the lubricating base oils of Examples 1-1 to 1-3 were obtained according to the manufacturing method of the lubricating base oil according to the fourth embodiment.
  • the lubricating base oils of Comparative Examples 1-1 and 1-2 were obtained by a conventional method for producing a lubricating base oil.
  • Examples 1-4 to 1-9, Comparative Examples 1-3 to 1-5 In Examples 1-4, 1-6, 1-8 and Comparative Examples 1-3, 1-5, the lubricating oil bases of Examples 1-1 to 1-3 or Comparative Examples 1-1 and 1-2, respectively. The oil was directly used as the sample oil. In Examples 1-5, 1-7 and 1-9 and Comparative Examples 1-4 and 1-6, each of Examples 1-1 to 1-3 or Comparative Examples 1-1 and 1-2 was used.
  • a lubricating oil composition was prepared by adding 10% by mass and 5% by mass of a viscosity index improver (polymethacrylate type, Mw 350,000, effective concentration 50%) to obtain a sample oil.
  • a viscosity index improver polymethacrylate type, Mw 350,000, effective concentration 50%
  • JC08 Hot Mode Fuel Efficiency Evaluation Test For the lubricating oil compositions of Examples 1-5, 1-7, 1-9 and Comparative Examples 1-4, 1-6, a JC08 hot mode fuel efficiency evaluation test was performed according to the following procedure.
  • the JC08 mode is a method for measuring the fuel consumption of automobiles set by the Ministry of Land, Infrastructure, Transport and Tourism (for details, see the Ministry of Land, Infrastructure, Transport and Tourism road safety vehicle detail specification [2009.07.30] Annex 42 Light / Medium Refer to the measurement method of car exhaust gas). JC08 is divided into a cold mode that starts when the engine is cold and a hot mode that measures when the engine is warm.
  • Examples 2-1 and 2-2, Comparative Examples 2-1 and 2-3 lubricating base oils shown in Table 4 were prepared.
  • the lubricating base oils of Examples 2-1 and 2-2 were obtained according to the manufacturing method of the lubricating base oil according to the fourth embodiment.
  • the lubricating base oils of Comparative Examples 2-1 to 2-3 were obtained by a conventional method for producing a lubricating base oil.
  • Examples 2-3 to 2-6, Comparative Examples 2-4 to 2-9 In Examples 2-3 and 2-5 and Comparative Examples 2-4, 2-6, and 2-8, the lubricating oil bases of Examples 2-1 and 2-2 or Comparative Examples 2-1 to 2-3 were used, respectively. The oil was directly used as the sample oil. In Examples 2-4 and 2-6 and Comparative Examples 2-5, 2-7, and 2-9, each of Examples 2-1 and 2-2 or Comparative Examples 2-1 to 2-3 was used. 0.8% by weight of package additives (breakdown: 60% by weight of antiwear agent, 25% by weight of antioxidant, 10% by weight of rust inhibitor and 5% by weight of metal deactivator) are added to the lubricating base oil. A lubricating oil composition was prepared and used as a sample oil.
  • Examples 3-1 to 3-3, Comparative Examples 3-1 to 3-3 In Examples 3-1 to 3-3 and Comparative Examples 3-1 to 3-3, lubricating base oils shown in Table 7 were prepared. Here, the lubricating base oils of Examples 3-1 to 3-3 were obtained according to the manufacturing method of the lubricating base oil according to the fourth embodiment. On the other hand, the lubricating base oils of Comparative Examples 3-1 to 3-3 were obtained by a conventional method for producing a lubricating base oil.
  • Example 3-4 to 3-6 Comparative Examples 3-4 to 3-6
  • the lubricant base oils of Examples 3-1 to 3-3 or Comparative Examples 3-1 to 3-3 were respectively packaged.
  • Additives (Breakdown: antiwear: 12% by mass, ashless dispersant: 50% by mass, pour point depressant: 1% by mass, antioxidant: 12% by mass, metallic detergent: 25% by mass) 8% by mass And 5 mass% of viscosity index improvers (polymethacrylate type, Mw 350,000, effective concentration 50 mass%) were added to prepare a lubricating oil composition.

Abstract

Provided is a lubricant base oil that is a hydrocarbon oil and satisfies any of the following conditions (i), (ii) and (iii): (i) A hydrocarbon oil having a dynamic viscosity between 3.0 and 5.0 mm2/s at 100ºC, a viscosity index of 145 or higher, and an SBV viscosity between 3,000 and 60,000 mPa·s at -20ºC (ii) A hydrocarbon oil having a dynamic viscosity between 5 and 9 mm2/s at 100ºC, a viscosity index of 155 or greater, and an SBV viscosity between 3,000 and 30,000 mPa·s at -20ºC. (iii) A hydrocarbon having a dynamic viscosity between 2.0 and 3.0 mm2/s at 100ºC, a viscosity index of 130 or greater, and an SBV viscosity between 1,000 and 30,000 mPa·s at -30ºC.

Description

潤滑油基油及びその製造方法Lubricating base oil and method for producing the same
 本発明は潤滑油基油及びその製造方法に関する。 The present invention relates to a lubricating base oil and a method for producing the same.
 従来、潤滑油基油及び潤滑油組成物について、高粘度指数と低温粘度特性との両立を図る試みがなされている。 Conventionally, attempts have been made to achieve both high viscosity index and low temperature viscosity characteristics for lubricating base oils and lubricating oil compositions.
 例えば、高度精製鉱油等の潤滑油基油に流動点降下剤等の添加剤を配合することによって、潤滑油の低温粘度特性の改善が図られている(例えば、特許文献1~3を参照)。また、高粘度指数基油の製造方法としては、天然や合成のノルマルパラフィンを含む原料油について水素化分解/水素化異性化による潤滑油基油の精製を行う方法が知られている(例えば、特許文献4~6を参照)。 For example, by adding an additive such as a pour point depressant to a lubricating base oil such as highly refined mineral oil, the low temperature viscosity characteristics of the lubricating oil are improved (see, for example, Patent Documents 1 to 3). . Further, as a method for producing a high viscosity index base oil, a method of refining a lubricating base oil by hydrocracking / hydroisomerization is known for a raw material oil containing natural or synthetic normal paraffin (for example, (See Patent Documents 4 to 6).
 潤滑油基油及び潤滑油の低温粘度特性の評価指標としては、流動点が一般的である。また、ノルマルパラフィンやイソパラフィンの含有量等の潤滑油基油に基づき低温粘度特性を評価する手法も知られている。 A pour point is generally used as an evaluation index for low temperature viscosity characteristics of lubricating base oils and lubricating oils. In addition, a technique for evaluating low-temperature viscosity characteristics based on a lubricating base oil such as the content of normal paraffin or isoparaffin is also known.
特開平4-36391号公報JP-A-4-36391 特開平4-68082号公報Japanese Patent Laid-Open No. 4-68082 特開平4-120193号公報Japanese Patent Laid-Open No. 4-120193 特開2005-154760号公報JP 2005-154760 A 特表2006-502298号公報JP-T-2006-502298 特表2002-503754号公報JP-T-2002-503754
 上記のとおり、一般的に、潤滑油基油の低温流動性は低い方がよいと考えられているが、本発明者の検討によれば、低温流動性を有する従来の潤滑油基油はシール性に問題がある。より具体的には、潤滑油基油の粘度が低いこと、あるいはさらにシール材が収縮することによって、隙間が増大し、その部位に圧力が加わったときにオイル漏れが生じやすくなる。 As described above, it is generally considered that the low temperature fluidity of the lubricating base oil is better, but according to the study of the present inventor, the conventional lubricating base oil having the low temperature fluidity is a seal. There is a problem with sex. More specifically, when the viscosity of the lubricating base oil is low, or when the sealing material is further contracted, the gap increases and oil leakage is likely to occur when pressure is applied to that portion.
 本発明は、このような実情に鑑みてなされたものであり、低温粘度特性とシール性とを高水準で両立することが可能な潤滑油基油及びその製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a lubricating base oil that can achieve both a low-temperature viscosity characteristic and a sealing property at a high level and a method for producing the same. .
 本発明者は、上記目的を達成するために、まず、流動点を指標とする潤滑油基油の低温粘度特性の改善とは別のアプローチとして、SBV粘度を指標とする潤滑油基油の低温粘度特性とシール性との両立を試みた。その結果、潤滑油基油の100℃における動粘度、粘度指数及び-20℃におけるSBV粘度がそれぞれ特定の要件を満たす場合に、低温粘度特性を十分に維持しつつシール性を改善できることを見出し、本発明を完成するに至った。 In order to achieve the above object, the present inventor firstly, as an approach different from the improvement of the low temperature viscosity characteristics of the lubricating base oil using the pour point as an index, the low temperature of the lubricating base oil using the SBV viscosity as an index. Attempts were made to achieve both viscosity characteristics and sealability. As a result, it was found that when the kinematic viscosity at 100 ° C., the viscosity index at -20 ° C. and the SBV viscosity at −20 ° C. of the lubricating base oil satisfy specific requirements, the sealing property can be improved while sufficiently maintaining the low temperature viscosity characteristics, The present invention has been completed.
 すなわち、本発明は、下記[1]~[12]に示す潤滑油基油、並びに下記[13]~[18]に示す潤滑油基油の製造方法を提供する。
[1]下記(i)、(ii)又は(iii):
(i)100℃における動粘度が3.0~5.0mm/s、粘度指数が145以上且つ-20℃におけるSBV粘度が3,000~60,000mPa・sの炭化水素油、
(ii)100℃における動粘度が5~9mm/s、粘度指数が155以上且つ-20℃におけるSBV粘度が3,000~30,000mPa・sの炭化水素油、
(iii)100℃における動粘度が2.0~3.0mm/s、粘度指数が130以上且つ-30℃におけるSBV粘度が1,000~30,000mPa・sの炭化水素油、
のいずれかの条件を満たす炭化水素油である潤滑油基油。
[2]前記炭化水素油が、前記(i)の条件を満たし、且つ、-30℃におけるSBV粘度が5,000~500,000mPa・sである、[1]に記載の潤滑油基油。
[3]前記炭化水素油が、前記(i)の条件を満たし、且つ、凝固点が-20~-5℃である、[1]又は[2]に記載の潤滑油基油。
[4]前記炭化水素油が、前記(i)の条件を満たし、且つ、13C-NMR分析において、潤滑油基油を構成する全炭素に占める、主鎖を構成するCH炭素の割合が15%以上である、[1]~[3]のいずれか一項に記載の潤滑油基油。
[5]前記炭化水素油が、前記(i)の条件を満たし、且つ、FD-MS分析において、シクロパラフィン分が50%以下である、[1]~[4]のいずれか一項に記載の潤滑油基油。
[6]前記炭化水素油が、前記(ii)の条件を満たし、且つ、-25℃におけるSBV粘度が5,000~500,000mPa・sである、[1]に記載の潤滑油基油。
[7]前記炭化水素油が、前記(ii)の条件を満たし、且つ、凝固点が-15~-5℃である、[1]又は[6]に記載の潤滑油基油。
[8]前記炭化水素油が、前記(ii)の条件を満たし、且つ、13C-NMR分析において、潤滑油基油を構成する全炭素に占める、主鎖を構成するCH炭素の割合が20%以上である、[1]、[6]、[7]のいずれか一項に記載の潤滑油基油。
[9]前記炭化水素油が、前記(ii)の条件を満たし、且つ、FD-MS分析において、シクロパラフィン分が60%以下である、[1]、[6]、[7]、[8]のいずれか一項に記載の潤滑油基油。
[10]前記炭化水素油が、前記(iii)の条件を満たし、且つ、-35℃におけるSBV粘度が3,000~500,000mPa・sである、[1]に記載の潤滑油基油。
[11]前記炭化水素油が、前記(iii)の条件を満たし、且つ、凝固点が-30~-10℃である、[1]又は[10]に記載の潤滑油基油。
[12]前記炭化水素油が、前記(iii)の条件を満たし、且つ、13C-NMR分析において、潤滑油基油を構成する全炭素に占める、主鎖を構成するCH炭素の割合が15%以上である、[1]、[10]、[11]のいずれか一項に記載の潤滑油基油。
[13]前記炭化水素油が、前記(iii)の条件を満たし、且つ、FD-MS分析において、シクロパラフィン分が30%以下である、[1]、[10]、[11]、[12]のいずれか一項に記載の潤滑油基油。
[14]基油留分及び該基油留分よりも重質の重質留分を含有する炭化水素油から、前記基油留分と前記重質留分とをそれぞれ分留する第1の工程と、
 前記第1の工程で分留された重質留分を水素化分解し、得られる分解油を前記第1の工程に戻す第2の工程と、
 前記基油留分を水素化異性化脱ろうして脱ろう油を得る第3の工程と、
 前記脱ろう油を精製して精製油を得る第4の工程と、
 前記精製油の分留により、下記(i)、(ii)又は(iii):
(i)100℃における動粘度が3.0~5.0mm/s、粘度指数が145以上且つ-20℃におけるSBV粘度が3,000~60,000mPa・sの炭化水素油、
(ii)100℃における動粘度が5~9mm/s、粘度指数が155以上且つ-20℃におけるSBV粘度が3,000~30,000mPa・sの炭化水素油、
(iii)100℃における動粘度が2.0~3.0mm/s、粘度指数が130以上且つ-30℃におけるSBV粘度が1,000~30,000mPa・sの炭化水素油、
のいずれかの条件を満たす炭化水素油である潤滑油基油を得る第5の工程と、
を備える潤滑油基油の製造方法。
[15]前記第3の工程において得られる潤滑油基油が、前記(i)の条件を満たし、且つ、凝固点が-20~-5℃である、[14]に記載の潤滑油基油の製造方法。
[16]前記第3の工程において得られる潤滑油基油が、前記(ii)の条件を満たし、且つ、凝固点が-15~-5℃である、[14]に記載の潤滑油基油の製造方法。
[17]前記第3の工程において得られる潤滑油基油が、前記(iii)の条件を満たし、且つ、凝固点が-30~-10℃である、[14]に記載の潤滑油基油の製造方法。
[18]前記第3の工程は、ZSM-22型ゼオライト、ZSM-23型ゼオライト、SSZ32及びZSM-48型ゼオライトからなる群より選択される少なくとも1種の結晶性固体酸性物質と、活性金属として白金および/またはパラジウムを含む水素化異性化触媒の存在下、前記基油留分を水素化異性化脱ろうする工程である、[14]~[17]のいずれか一項に記載の潤滑油基油の製造方法。
[19]前記炭化水素油が、フィッシャートロプシュ合成から得られたGTLワックスあるいは、溶剤脱ろうによって得られたスラックワックスを原料として得られたものである、[14]~[18]のいずれか一項に記載の潤滑油基油の製造方法。
That is, the present invention provides a lubricating base oil shown in the following [1] to [12] and a manufacturing method of the lubricating base oil shown in the following [13] to [18].
[1] The following (i), (ii) or (iii):
(I) a hydrocarbon oil having a kinematic viscosity at 100 ° C. of 3.0 to 5.0 mm 2 / s, a viscosity index of 145 or more, and an SBV viscosity at −20 ° C. of 3,000 to 60,000 mPa · s;
(Ii) a hydrocarbon oil having a kinematic viscosity at 100 ° C. of 5 to 9 mm 2 / s, a viscosity index of 155 or more and an SBV viscosity at −20 ° C. of 3,000 to 30,000 mPa · s,
(Iii) a hydrocarbon oil having a kinematic viscosity at 100 ° C. of 2.0 to 3.0 mm 2 / s, a viscosity index of 130 or more and an SBV viscosity at −30 ° C. of 1,000 to 30,000 mPa · s,
A lubricating base oil that is a hydrocarbon oil that satisfies any of the following conditions.
[2] The lubricating base oil according to [1], wherein the hydrocarbon oil satisfies the condition (i) and has an SBV viscosity of 5,000 to 500,000 mPa · s at −30 ° C.
[3] The lubricating base oil according to [1] or [2], wherein the hydrocarbon oil satisfies the condition (i) and has a freezing point of −20 to −5 ° C.
[4] The ratio of CH 2 carbon constituting the main chain in the hydrocarbon oil satisfying the condition (i) and occupying the total carbon constituting the lubricating base oil in 13 C-NMR analysis is The lubricating base oil according to any one of [1] to [3], which is 15% or more.
[5] The hydrocarbon oil according to any one of [1] to [4], wherein the hydrocarbon oil satisfies the condition (i) and has a cycloparaffin content of 50% or less in FD-MS analysis. Lubricant base oil.
[6] The lubricating base oil according to [1], wherein the hydrocarbon oil satisfies the condition (ii) and has an SBV viscosity of 5,000 to 500,000 mPa · s at −25 ° C.
[7] The lubricating base oil according to [1] or [6], wherein the hydrocarbon oil satisfies the condition (ii) and has a freezing point of −15 to −5 ° C.
[8] The proportion of CH 2 carbon constituting the main chain in the hydrocarbon oil satisfying the condition (ii) and occupying in the total carbon constituting the lubricating base oil in 13 C-NMR analysis is The lubricating base oil according to any one of [1], [6], and [7], which is 20% or more.
[9] The hydrocarbon oil satisfies the condition (ii) and has a cycloparaffin content of 60% or less in FD-MS analysis, [1], [6], [7], [8 ] The lubricating base oil as described in any one of the above.
[10] The lubricating base oil according to [1], wherein the hydrocarbon oil satisfies the condition (iii) and has an SBV viscosity at −35 ° C. of 3,000 to 500,000 mPa · s.
[11] The lubricating base oil according to [1] or [10], wherein the hydrocarbon oil satisfies the condition (iii) and has a freezing point of −30 to −10 ° C.
[12] The hydrocarbon oil satisfies the condition (iii), and in 13 C-NMR analysis, the proportion of CH 2 carbon constituting the main chain in the total carbon constituting the lubricating oil base oil is The lubricating base oil according to any one of [1], [10], and [11], which is 15% or more.
[13] The hydrocarbon oil satisfies the condition (iii) and has a cycloparaffin content of 30% or less in the FD-MS analysis. [1], [10], [11], [12 ] The lubricating base oil as described in any one of the above.
[14] A first fraction in which the base oil fraction and the heavy fraction are each fractionated from a base oil fraction and a hydrocarbon oil containing a heavy fraction heavier than the base oil fraction. Process,
A second step of hydrocracking the heavy fraction fractionated in the first step and returning the resulting cracked oil to the first step;
A third step of hydroisomerizing and dewaxing the base oil fraction to obtain a dewaxed oil;
A fourth step of refining the dewaxed oil to obtain a refined oil;
By fractional distillation of the refined oil, the following (i), (ii) or (iii):
(I) a hydrocarbon oil having a kinematic viscosity at 100 ° C. of 3.0 to 5.0 mm 2 / s, a viscosity index of 145 or more, and an SBV viscosity at −20 ° C. of 3,000 to 60,000 mPa · s;
(Ii) a hydrocarbon oil having a kinematic viscosity at 100 ° C. of 5 to 9 mm 2 / s, a viscosity index of 155 or more and an SBV viscosity at −20 ° C. of 3,000 to 30,000 mPa · s,
(Iii) a hydrocarbon oil having a kinematic viscosity at 100 ° C. of 2.0 to 3.0 mm 2 / s, a viscosity index of 130 or more and an SBV viscosity at −30 ° C. of 1,000 to 30,000 mPa · s,
A fifth step of obtaining a lubricating base oil that is a hydrocarbon oil that satisfies any of the following conditions:
A method for producing a lubricating base oil comprising:
[15] The lubricating base oil according to [14], wherein the lubricating base oil obtained in the third step satisfies the condition (i) and has a freezing point of −20 to −5 ° C. Production method.
[16] The lubricant base oil according to [14], wherein the lubricant base oil obtained in the third step satisfies the condition (ii) and has a freezing point of −15 to −5 ° C. Production method.
[17] The lubricating base oil according to [14], wherein the lubricating base oil obtained in the third step satisfies the condition (iii) and has a freezing point of −30 to −10 ° C. Production method.
[18] The third step includes at least one crystalline solid acidic substance selected from the group consisting of ZSM-22 type zeolite, ZSM-23 type zeolite, SSZ32 and ZSM-48 type zeolite, and an active metal. The lubricating oil according to any one of [14] to [17], which is a step of hydroisomerizing and dewaxing the base oil fraction in the presence of a hydroisomerization catalyst containing platinum and / or palladium. A method for producing a base oil.
[19] Any one of [14] to [18], wherein the hydrocarbon oil is obtained using GTL wax obtained from Fischer-Tropsch synthesis or slack wax obtained by solvent dewaxing as a raw material. The manufacturing method of the lubricating base oil of description to term.
 ここで、本発明でいう動粘度及び粘度指数とは、それぞれJIS K 2283-1993に準拠して測定された動粘度及び粘度指数を意味する。 Here, the kinematic viscosity and the viscosity index in the present invention mean the kinematic viscosity and the viscosity index measured according to JIS K 2283-1993, respectively.
 また、本発明でいうSBV粘度とは、ASTM D5133により規定された試験法により1℃/時の冷却速度で冷却しながらローターを0.3rpmで回転させ粘度を連続的に測定していく方法により測定される値をいう。 The SBV viscosity referred to in the present invention is a method in which the viscosity is continuously measured by rotating the rotor at 0.3 rpm while cooling at a cooling rate of 1 ° C./hour according to the test method defined by ASTM D5133. The value to be measured.
 また、本発明でいう凝固点とは、以下の手順によって測定される値をいう。
 すなわち、試験管にとった試料を46℃まで予備加熱した後、2.5℃/分で冷却していき、予想の凝固点(事前に一度測定)よりも10℃高い温度から冷却速度を1℃/分に変更し測定を開始する。この方法により、JISに比べ再現性の凝固点を得る事が可能である。この凝固点はJIS K 2269-1987(JIS法流動点)により測定される流動点とは区別されるものである。なお、本発明者の検討によれば、JISで定める流動点は、多成分の混合物である石油系潤滑油基油のように、結晶化温度の大きく異なる液体を測定するのには適している。しかし、当該発明のようにパラフィンのみの単一成分では、傾けたときの流動性を評価するJISの測定方法では流動しないが、外的に力を与えると流動することか確認され、実際の流動性を現していない。この要因として組成的な面もあるが、2.5℃/分という温度低下速度も影響しており、結晶化が完全に進まない状況で判断していることも要因として考えられる。そのため、温度の降下速度を遅くすることで、基油分子の流動性を促進しより真値に近い凝固点をえることが必要である。
Moreover, the freezing point as used in the field of this invention means the value measured by the following procedures.
That is, a sample taken in a test tube is preheated to 46 ° C. and then cooled at 2.5 ° C./min. The cooling rate is 1 ° C. from a temperature 10 ° C. higher than the expected freezing point (measured once in advance). Change to / min and start measurement. By this method, it is possible to obtain a reproducible freezing point as compared with JIS. This freezing point is distinct from the pour point measured according to JIS K 2269-1987 (JIS method pour point). According to the study by the present inventor, the pour point determined by JIS is suitable for measuring liquids having greatly different crystallization temperatures, such as petroleum-based lubricating base oils, which are multicomponent mixtures. . However, a single component of only paraffin as in the present invention does not flow by the JIS measurement method for evaluating the fluidity when tilted, but it is confirmed that it flows when an external force is applied. It does not show sex. This factor also has a compositional aspect, but the temperature decrease rate of 2.5 ° C./min also has an influence, and it is considered that the determination is made in a situation where crystallization does not proceed completely. Therefore, it is necessary to promote the fluidity of the base oil molecules and to obtain a freezing point closer to the true value by slowing the rate of temperature decrease.
 また、潤滑油基油を構成する全炭素に占める、主鎖を構成するCH炭素の割合は、例えば以下の分析条件により13C-NMR分析を行うことによって求めることができる。
 すなわち、本発明では、13C-NMRの測定の際に、サンプルとして試料0.5gに重クロロホルム3gを加えて希釈したものを使用し、測定温度を室温、共鳴周波数を100MHzとした。また、測定方はゲート付でカップリング法を使用した。
 本発明の潤滑油基油の構成炭素の全量に占めるCHの割合は、13C-NMRにより測定される、全炭素の積分強度の合計に対するCH主鎖に起因する積分強度の合計の割合を意味するが、同等の結果が得られるのであればその他の方法を用いてもよい。
Further, the ratio of CH 2 carbon constituting the main chain to the total carbon constituting the lubricating base oil can be determined, for example, by performing 13 C-NMR analysis under the following analysis conditions.
That is, in the present invention, at the time of 13 C-NMR measurement, a sample obtained by diluting 0.5 g of a sample with 3 g of deuterated chloroform was used, the measurement temperature was room temperature, and the resonance frequency was 100 MHz. Moreover, the measuring method used the coupling method with a gate.
The ratio of CH 2 to the total amount of constituent carbon of the lubricating base oil of the present invention is the ratio of the total integrated intensity due to the CH 2 main chain to the total integrated intensity of all carbon, as measured by 13 C-NMR. However, other methods may be used as long as an equivalent result is obtained.
 また、シクロパラフィン分の割合は、例えば以下の分析条件によりFD-MS分析を行うことによって求めることができる。
 FD法とは、試料をエミッター上に塗布し、エミッターに電流を流すことで塗布した試料を加熱し、エミッター表面やウィスカー先端近傍の高電界におけるトンネル効果を利用したイオン化法である。本発明では、日本電子JMS-AX505Hを使用し、加速電圧(カソード電圧)3.0kV、エミッタ電流2mA/minの条件にて測定した。質量分析での化合物の種類は、形成される特有イオンにより決定され、通常、z数により分類される。このz数は全ての炭化水素種について一般式C2n+zで示される。この飽和物相は芳香族物相とは別途分析されるので、同じ化学両論の異なるシクロパラフィンの含有量を測定することが可能である。なお、シクロパラフィンには1環シクロパラフィン及び2環以上のシクロパラフィンの双方が包含される。
In addition, the ratio of the cycloparaffin content can be determined, for example, by performing FD-MS analysis under the following analysis conditions.
The FD method is an ionization method in which a sample is applied on an emitter, the applied sample is heated by passing an electric current through the emitter, and the tunnel effect in a high electric field near the emitter surface and the whisker tip is used. In the present invention, JEOL JMS-AX505H was used, and measurement was performed under the conditions of an acceleration voltage (cathode voltage) of 3.0 kV and an emitter current of 2 mA / min. The type of compound in mass spectrometry is determined by the specific ions that are formed, and is usually classified by the z number. This z number is represented by the general formula C n H 2n + z for all hydrocarbon species. Since this saturated phase is analyzed separately from the aromatic phase, it is possible to measure the content of different cycloparaffins having the same stoichiometry. The cycloparaffin includes both one-ring cycloparaffin and two or more cycloparaffins.
 本発明によれば、低温粘度特性とシール性とを高水準で両立することが可能な潤滑油基油及びその製造方法が提供される。 According to the present invention, there is provided a lubricating base oil that can achieve both low temperature viscosity characteristics and sealing properties at a high level and a method for producing the same.
 以下、本発明の好適な実施形態について詳細に説明する。 Hereinafter, preferred embodiments of the present invention will be described in detail.
[第1実施形態:(i)の条件を満たす炭化水素油である潤滑油基油]
 本発明の第1実施形態に係る潤滑油基油は、100℃における動粘度が3.0~5.0mm/s且つ-20℃におけるSBV粘度が3,000~60,000mPa・sの炭化水素油である。
[First Embodiment: Lubricating base oil that is a hydrocarbon oil that satisfies the condition (i)]
The lubricating base oil according to the first embodiment of the present invention is carbonized with a kinematic viscosity at 100 ° C. of 3.0 to 5.0 mm 2 / s and an SBV viscosity at −20 ° C. of 3,000 to 60,000 mPa · s. Hydrogen oil.
 なお、従来、潤滑油基油の低温粘度特性の指標として用いられている流動点は、流動のしやすさ、換言すればバルクの粘性を評価するものである。これに対して、本発明におけるSBV粘度は、バルクの粘度ではなく、基油の分子レベルでの動きやすさを評価できるものである。例えば、流動点よりも低い温度では、潤滑油基油は流動しないが、基油を構成する分子間のずれ等により、分子レベルでは動くことができ、SBV粘度を与え得る。本実施形態に係る潤滑油基油は、上記の本発明者の知見に基づきなされたものであり、100℃における動粘度3.0~5.0mm/s、粘度指数145以上の潤滑油基油において、該潤滑油基油の-20℃におけるSBV粘度を3,000~60,000mPa・sとすることによって、低温粘度特性を十分に維持しつつシール性を改善できるという、予想外の顕著な効果を有する。 Conventionally, the pour point used as an index of the low temperature viscosity characteristic of the lubricating base oil is to evaluate the ease of flow, in other words, the bulk viscosity. On the other hand, the SBV viscosity in the present invention is not a bulk viscosity but an evaluation of the ease of movement of the base oil at the molecular level. For example, at a temperature lower than the pour point, the lubricant base oil does not flow, but can move at the molecular level due to a shift between molecules constituting the base oil, etc., and can give an SBV viscosity. The lubricating base oil according to the present embodiment is based on the above-mentioned knowledge of the present inventor, and has a kinematic viscosity at 100 ° C. of 3.0 to 5.0 mm 2 / s and a lubricating oil base having a viscosity index of 145 or more. In the oil, by setting the SBV viscosity of the lubricating base oil at −20 ° C. to 3,000 to 60,000 mPa · s, it is possible to improve the sealing performance while maintaining the low-temperature viscosity characteristics sufficiently. It has a great effect.
 本実施形態に係る潤滑油基油の100℃における動粘度は、3.0~5.0mm/sであり、好ましくは3.0~4.5mm/s、より好ましくは3.2~4.3mm/s、より好ましくは3.4~4.1mm/sである。 The kinematic viscosity at 100 ° C. of the lubricating base oil according to this embodiment is 3.0 to 5.0 mm 2 / s, preferably 3.0 to 4.5 mm 2 / s, more preferably 3.2 to The thickness is 4.3 mm 2 / s, more preferably 3.4 to 4.1 mm 2 / s.
 また、本実施形態に係る潤滑油基油の粘度指数は、145以上であり、好ましくは147以上、より好ましくは148~160である。なお、粘度指数が上記下限値未満であると省エネルギー性が低下し、前記上限置を超えると常温での流動性が低下し潤滑油基油として使用できなくなる傾向にある。 In addition, the viscosity index of the lubricating base oil according to the present embodiment is 145 or more, preferably 147 or more, more preferably 148 to 160. When the viscosity index is less than the above lower limit, energy saving performance is lowered, and when it exceeds the upper limit, the fluidity at normal temperature is lowered and it tends to be unusable as a lubricating base oil.
 また、本実施形態に係る潤滑油基油の-20℃におけるSBV粘度は、3,000~60,000mPa・sであり、好ましくは3,000~30,000mPa・s、より好ましくは3,000~15,000mPa・sである。-20℃におけるSBV粘度が上記下限値未満であるとシール性が不十分となり、また、上記上限値を超えると低温粘度特性が不十分となる。 Further, the SBV viscosity at −20 ° C. of the lubricating base oil according to this embodiment is 3,000 to 60,000 mPa · s, preferably 3,000 to 30,000 mPa · s, more preferably 3,000. ~ 15,000 mPa · s. When the SBV viscosity at −20 ° C. is less than the above lower limit value, the sealing property is insufficient, and when the SBV viscosity exceeds the above upper limit value, the low temperature viscosity characteristics become insufficient.
 また、本実施形態に係る潤滑油基油の-30℃におけるSBV粘度は、好ましくは50,000~500,000mPa・sであり、より好ましくは50,000~400,000mPa・s、さらに好ましくは50,000~300,000mPa・sである。-25℃におけるSBV粘度が上記下限値未満であるとシール性が不十分となり、また、上記上限値を超えると低温粘度特性が不十分となる。 The SBV viscosity at −30 ° C. of the lubricating base oil according to this embodiment is preferably 50,000 to 500,000 mPa · s, more preferably 50,000 to 400,000 mPa · s, and still more preferably. 50,000 to 300,000 mPa · s. When the SBV viscosity at −25 ° C. is less than the above lower limit value, the sealing property becomes insufficient, and when it exceeds the above upper limit value, the low temperature viscosity characteristic becomes insufficient.
 また、本実施形態に係る潤滑油基油の40℃における動粘度は、好ましくは10~20mm/s、より好ましくは12~16mm/sである。 Further, the kinematic viscosity at 40 ° C. of the lubricating base oil according to this embodiment is preferably 10 to 20 mm 2 / s, more preferably 12 to 16 mm 2 / s.
 また、本実施形態に係る潤滑油基油の凝固点は、好ましくは-20~-5℃、より好ましくは-18~-8℃、さらに好ましくは-15~-10℃である。なお、凝固点が上記下限値未満であると省エネルギー性が低下することとなる傾向にあり、また、上記上限値を超えると常温での流動性が低下し潤滑基油として使用できなくなる傾向にある。 In addition, the freezing point of the lubricating base oil according to the present embodiment is preferably −20 to −5 ° C., more preferably −18 to −8 ° C., and further preferably −15 to −10 ° C. If the freezing point is less than the above lower limit value, the energy saving property tends to be lowered, and if it exceeds the above upper limit value, the fluidity at normal temperature is lowered and the lubricating base oil tends not to be used.
 さらに、本実施形態に係る潤滑油基油について13C-NMR分析を行った場合、潤滑油基油を構成する全炭素に占める、主鎖を構成するCH炭素の割合が15%以上であることが好ましく、16%以上であることがより好ましい。当該割合が上記下限値以上であると、潤滑油基油のトラクション係数を低くすること(すなわち低摩擦)ができ、省エネルギー性の点で好ましい。 Further, when 13 C-NMR analysis is performed on the lubricating base oil according to the present embodiment, the proportion of CH 2 carbon constituting the main chain in the total carbon constituting the lubricating base oil is 15% or more. It is preferably 16% or more. When the ratio is not less than the above lower limit, the traction coefficient of the lubricating base oil can be lowered (that is, low friction), which is preferable in terms of energy saving.
 また、本実施形態に係る潤滑油基油についてFD-MS分析を行った場合、シクロパラフィン分が50%以下であることが好ましく、40%以下であることがより好ましい。シクロパラフィン分が上記上限値以下であると、潤滑油基油の耐摩耗性をさらに向上させることができる。 Further, when the FD-MS analysis is performed on the lubricating base oil according to the present embodiment, the cycloparaffin content is preferably 50% or less, and more preferably 40% or less. When the cycloparaffin content is not more than the above upper limit, the wear resistance of the lubricating base oil can be further improved.
 また、本実施形態に係る潤滑油基油の尿素アダクト値は、高温での粘度-温度特性を損なわずに低温粘度特性を改善する観点から、好ましくは4質量%以下、より好ましくは3.5質量%以下、さらに好ましくは3質量%以下、特に好ましくは2.5質量%以下である。また、潤滑油基油の尿素アダクト値は、0質量%でも良い。しかし、十分な低温粘度特性と、より粘度指数の高い潤滑油基油を得ることができ、また脱ろう条件を緩和して経済性にも優れる点で、好ましくは0.1質量%以上、より好ましくは0.5質量%以上、特に好ましくは0.8質量%以上である。 Further, the urea adduct value of the lubricating base oil according to the present embodiment is preferably 4% by mass or less, more preferably 3.5%, from the viewpoint of improving the low temperature viscosity characteristics without impairing the viscosity-temperature characteristics at high temperatures. It is not more than mass%, more preferably not more than 3 mass%, particularly preferably not more than 2.5 mass%. Further, the urea adduct value of the lubricating base oil may be 0% by mass. However, it is possible to obtain a lubricating base oil having sufficient low-temperature viscosity characteristics and a higher viscosity index, and more preferably 0.1% by mass or more in terms of excellent economic efficiency by relaxing dewaxing conditions. Preferably it is 0.5 mass% or more, Most preferably, it is 0.8 mass% or more.
 また、本実施形態に係る潤滑油基油における飽和分の含有量は、潤滑油基油全量を基準として、好ましくは90質量%以上、より好ましくは93質量%以上、さらに好ましくは95質量%以上、特に好ましくは99質量%以上である。飽和分の含有量が上記条件を満たすことにより、粘度-温度特性及び熱・酸化安定性を達成することができ、また、当該潤滑油基油に添加剤が配合された場合には、当該添加剤を潤滑油基油中に十分に安定的に溶解保持しつつ、当該添加剤の機能をより高水準で発現させることができる。更に、潤滑油基油自体の摩擦特性を改善することができ、その結果、摩擦低減効果の向上、ひいては省エネルギー性の向上を達成することができる。なお、本発明でいう飽和分の含有量とは、ASTM D 2007-93に準拠して測定される値(単位:質量%)を意味する。 In addition, the content of the saturated component in the lubricating base oil according to the present embodiment is preferably 90% by mass or more, more preferably 93% by mass or more, and still more preferably 95% by mass or more, based on the total amount of the lubricating oil base oil. Especially preferably, it is 99 mass% or more. When the content of the saturated component satisfies the above conditions, viscosity-temperature characteristics and thermal / oxidation stability can be achieved, and when an additive is blended in the lubricating base oil, the addition The function of the additive can be expressed at a higher level while the agent is sufficiently and stably dissolved and retained in the lubricant base oil. Furthermore, it is possible to improve the friction characteristics of the lubricating base oil itself, and as a result, it is possible to achieve an improvement in friction reduction effect and an improvement in energy saving. In addition, content of the saturated part as used in the field of this invention means the value (unit: mass%) measured based on ASTM D 2007-93.
 また、本実施形態に係る潤滑油基油における芳香族分は、潤滑油基油全量を基準として、好ましくは5質量%以下、より好ましくは0.05~3質量%、更に好ましくは0.1~1質量%、特に好ましくは0.1~0.5質量%である。芳香族分の含有量が上記上限値を超えると、粘度-温度特性、熱・酸化安定性及び摩擦特性、更には揮発防止性及び低温粘度特性が低下する傾向にあり、更に、潤滑油基油に添加剤が配合された場合に当該添加剤の効き目が低下する傾向にある。また、本実施形態に係る潤滑油基油は芳香族分を含有しないものであってもよいが、芳香族分の含有量を0.05質量%以上とすることにより、添加剤の溶解性を更に高めることができる。 The aromatic content in the lubricating base oil according to the present embodiment is preferably 5% by mass or less, more preferably 0.05 to 3% by mass, and still more preferably 0.1% based on the total amount of the lubricating base oil. To 1% by mass, particularly preferably 0.1 to 0.5% by mass. If the aromatic content exceeds the above upper limit, viscosity-temperature characteristics, thermal / oxidation stability, friction characteristics, volatilization prevention characteristics and low-temperature viscosity characteristics tend to be reduced. When an additive is blended with the additive, the effectiveness of the additive tends to decrease. Further, the lubricating base oil according to the present embodiment may not contain an aromatic component, but the solubility of the additive can be improved by setting the aromatic content to 0.05% by mass or more. It can be further increased.
 なお、本発明でいう芳香族分の含有量とは、ASTM D 2007-93に準拠して測定された値を意味する。芳香族分には、通常、アルキルベンゼン、アルキルナフタレンの他、アントラセン、フェナントレン及びこれらのアルキル化物、更にはベンゼン環が四環以上縮合した化合物、ピリジン類、キノリン類、フェノール類、ナフトール類等のヘテロ原子を有する芳香族化合物などが含まれる。 The aromatic content in the present invention means a value measured according to ASTM D 2007-93. The aromatic component usually includes alkylbenzene, alkylnaphthalene, anthracene, phenanthrene, and alkylated products thereof, as well as compounds in which four or more benzene rings are condensed, pyridines, quinolines, phenols, naphthols and the like. Aromatic compounds having atoms are included.
 また、本実施形態に係る潤滑油基油における硫黄分の含有量は、その原料の硫黄分の含有量に依存する。例えば、フィッシャートロプシュ反応等により得られる合成ワックス成分のように実質的に硫黄を含まない原料を用いる場合には、実質的に硫黄を含まない潤滑油基油を得ることができる。また、潤滑油基油の精製過程で得られるスラックワックスや精ろう過程で得られるマイクロワックス等の硫黄を含む原料を用いる場合には、得られる潤滑油基油中の硫黄分は通常100質量ppm以上となる。本発明の潤滑油基油においては、熱・酸化安定性の更なる向上及び低硫黄化の点から、硫黄分の含有量が10質量ppm以下であることが好ましく、5質量ppm以下であることがより好ましく、3質量ppm以下であることが更に好ましく、1質量ppm以下であることが特に好ましい。 Further, the sulfur content in the lubricating base oil according to the present embodiment depends on the sulfur content of the raw material. For example, when a raw material that does not substantially contain sulfur such as a synthetic wax component obtained by a Fischer-Tropsch reaction or the like is used, a lubricating base oil that does not substantially contain sulfur can be obtained. In addition, when using raw materials containing sulfur such as slack wax obtained in the refining process of the lubricating base oil and microwax obtained in the refining process, the sulfur content in the obtained lubricating base oil is usually 100 mass ppm. That's it. In the lubricating base oil of the present invention, the sulfur content is preferably 10 mass ppm or less, from the viewpoint of further improving thermal and oxidation stability and reducing sulfur, and preferably 5 mass ppm or less. Is more preferably 3 ppm by mass or less, and particularly preferably 1 ppm by mass or less.
 また、コスト低減の点からは、原料としてスラックワックス等を使用することが好ましく、その場合、得られる潤滑油基油中の硫黄分は50質量ppm以下が好ましく、10質量ppm以下であることがより好ましい。なお、本発明でいう硫黄分とは、JIS K 2541-1996に準拠して測定される硫黄分を意味する。 Further, from the viewpoint of cost reduction, it is preferable to use slack wax or the like as a raw material. In that case, the sulfur content in the obtained lubricating base oil is preferably 50 ppm by mass or less, and preferably 10 ppm by mass or less. More preferred. In the present invention, the sulfur content means a sulfur content measured according to JIS K 2541-1996.
 また、本実施形態に係る潤滑油基油の流動点は、好ましくは-5℃以下、より好ましくは-10℃以下、更に好ましくは-12.5℃以下である。流動点が前記上限値を超えると、その潤滑油基油を用いた潤滑油全体の低温流動性が低下する傾向にある。また、本実施形態に係る潤滑油基油の流動点は、好ましくは-20℃以上、より好ましくは-17.5℃以上、更に好ましくは-15℃以上である。流動点が-20℃未満であると、-20℃におけるSBV粘度を3,000~60,000mPa・sの範囲内とすることが困難となり、シール性が不十分となる傾向にある。なお、本発明でいう流動点とは、JIS K 2269-1987に準拠して測定された流動点を意味する。 Further, the pour point of the lubricating base oil according to the present embodiment is preferably −5 ° C. or lower, more preferably −10 ° C. or lower, and further preferably −12.5 ° C. or lower. When the pour point exceeds the upper limit, the low temperature fluidity of the entire lubricating oil using the lubricating base oil tends to decrease. Further, the pour point of the lubricating base oil according to this embodiment is preferably −20 ° C. or higher, more preferably −17.5 ° C. or higher, and still more preferably −15 ° C. or higher. When the pour point is less than −20 ° C., it becomes difficult to make the SBV viscosity at −20 ° C. within the range of 3,000 to 60,000 mPa · s, and the sealing property tends to be insufficient. The pour point as used in the present invention means a pour point measured according to JIS K 2269-1987.
 また、本実施形態に係る潤滑油基油の-30℃におけるCCS粘度は、好ましくは1500mPa・s以下、より好ましくは1200mPa・s以下である。さらに、潤滑油基油の-35℃におけるCCS粘度は、好ましくは2500mPa・s以下、より好ましくは2000mPa・s以下である。-30℃又は-35℃におけるCCS粘度が前記上限値を超えると、その潤滑油基油を用いた潤滑油全体の低温流動性が低下する傾向にある。なお、本発明でいう-30℃又は-35℃におけるCCS粘度とは、それぞれJIS K 2010-1993に準拠して測定された粘度を意味する。 Further, the CCS viscosity at −30 ° C. of the lubricating base oil according to the present embodiment is preferably 1500 mPa · s or less, more preferably 1200 mPa · s or less. Further, the CCS viscosity of the lubricating base oil at −35 ° C. is preferably 2500 mPa · s or less, more preferably 2000 mPa · s or less. When the CCS viscosity at −30 ° C. or −35 ° C. exceeds the upper limit, the low temperature fluidity of the whole lubricating oil using the lubricating base oil tends to be lowered. In the present invention, the CCS viscosity at −30 ° C. or −35 ° C. means a viscosity measured in accordance with JIS K 2010-1993, respectively.
 また、本実施形態に係る潤滑油基油の15℃における密度(ρ15)は、下記式(1)で表されるρの値以下であること、すなわちρ15≦ρであることが好ましい。
ρ=0.0025×kv100+0.816  (1)
[式中、kv100は潤滑油基油の100℃における動粘度(mm/s)を示す。]
Further, the density (ρ 15 ) at 15 ° C. of the lubricating base oil according to the present embodiment is preferably not more than the value of ρ represented by the following formula (1), that is, ρ 15 ≦ ρ.
ρ = 0.0025 × kv100 + 0.816 (1)
[Wherein, kv100 represents the kinematic viscosity (mm 2 / s) of the lubricating base oil at 100 ° C. ]
 なお、ρ15>ρとなる場合、粘度-温度特性及び熱・酸化安定性、更には揮発防止性及び低温粘度特性が低下する傾向にあり、また、潤滑油基油に添加剤が配合された場合に当該添加剤の効き目が低下する傾向にある。 When ρ 15 > ρ, viscosity-temperature characteristics and thermal / oxidation stability, as well as volatilization prevention and low-temperature viscosity characteristics tend to decrease, and additives are added to the lubricating base oil. In some cases, the effectiveness of the additive tends to decrease.
 より具体的には、潤滑油基油のρ15は、好ましくは0.815以下、より好ましくは0.810以下である。 More specifically, ρ 15 of the lubricating base oil is preferably 0.815 or less, more preferably 0.810 or less.
 なお、本発明でいう15℃における密度とは、JIS K 2249-1995に準拠して15℃において測定された密度を意味する。 In addition, the density at 15 ° C. in the present invention means a density measured at 15 ° C. in accordance with JIS K 2249-1995.
 また、本実施形態に係る潤滑油基油のNOACK蒸発量は、好ましくは8質量%以上、より好ましくは9質量%以上、更に好ましくは10以上であり、また、好ましくは15質量%以下、より好ましくは14質量%以下、更に好ましくは13質量%以下である。NOACK蒸発量が前記下限値の場合、低温粘度特性の改善が困難となる傾向にある。また、NOACK蒸発量が前記上限値を超えると、潤滑油基油を内燃機関用潤滑油等に用いた場合に、潤滑油の蒸発損失量が多くなり、それに伴い触媒被毒が促進されるため好ましくない。なお、本発明でいうNOACK蒸発量とは、ASTM D 5800-95に準拠して測定された蒸発損失量を意味する。 Further, the NOACK evaporation amount of the lubricating base oil according to the present embodiment is preferably 8% by mass or more, more preferably 9% by mass or more, still more preferably 10% or more, and preferably 15% by mass or less. Preferably it is 14 mass% or less, More preferably, it is 13 mass% or less. When the NOACK evaporation amount is the lower limit value, it tends to be difficult to improve the low temperature viscosity characteristics. Further, if the NOACK evaporation amount exceeds the upper limit value, when the lubricating base oil is used as a lubricating oil for an internal combustion engine, the amount of evaporation loss of the lubricating oil increases, and accordingly, catalyst poisoning is promoted. It is not preferable. The NOACK evaporation amount in the present invention means an evaporation loss amount measured according to ASTM D 5800-95.
[第2実施形態:(ii)の条件を満たす炭化水素油である潤滑油基油] [Second Embodiment: Lubricating base oil that is a hydrocarbon oil that satisfies the condition (ii)]
 本発明の第2実施形態に係る潤滑油基油は、100℃における動粘度が5~9mm/s且つ-20℃におけるSBV粘度が3,000~30,000mPa・sの炭化水素油である。 The lubricating base oil according to the second embodiment of the present invention is a hydrocarbon oil having a kinematic viscosity at 100 ° C. of 5 to 9 mm 2 / s and an SBV viscosity at −20 ° C. of 3,000 to 30,000 mPa · s. .
 なお、従来、潤滑油基油の低温粘度特性の指標として用いられている流動点は、流動のしやすさ、換言すればバルクの粘性を評価するものである。これに対して、本発明におけるSBV粘度は、バルクの粘度ではなく、基油の分子レベルでの動きやすさを評価できるものである。例えば、流動点よりも低い温度では、潤滑油基油は流動しないが、基油を構成する分子間のずれ等により、分子レベルでは動くことができ、SBV粘度を与え得る。本実施形態に係る潤滑油基油は、上記の本発明者の知見に基づきなされたものであり、100℃における動粘度5~9mm/sの潤滑油基油において、該潤滑油基油の-20℃におけるSBV粘度を3,000~30,000mPa・sとすることによって、低温粘度特性を十分に維持しつつシール性を改善できるという、予想外の顕著な効果を有する。 Conventionally, the pour point used as an index of the low temperature viscosity characteristic of the lubricating base oil is to evaluate the ease of flow, in other words, the bulk viscosity. On the other hand, the SBV viscosity in the present invention is not a bulk viscosity but an evaluation of the ease of movement of the base oil at the molecular level. For example, at a temperature lower than the pour point, the lubricant base oil does not flow, but can move at the molecular level due to a shift between molecules constituting the base oil, etc., and can give an SBV viscosity. The lubricating base oil according to the present embodiment has been made based on the above-mentioned knowledge of the present inventor. In the lubricating base oil having a kinematic viscosity of 5 to 9 mm 2 / s at 100 ° C., the lubricating base oil By setting the SBV viscosity at −20 ° C. to 3,000 to 30,000 mPa · s, there is an unexpected remarkable effect that the sealability can be improved while sufficiently maintaining the low temperature viscosity characteristics.
 本実施形態に係る潤滑油基油の100℃における動粘度は、5~9mm/sであり、好ましくは5.5~8.5mm/s、より好ましくは6~8mm/sである。 The kinematic viscosity at 100 ° C. of the lubricating base oil according to this embodiment is 5 to 9 mm 2 / s, preferably 5.5 to 8.5 mm 2 / s, more preferably 6 to 8 mm 2 / s. .
 また、本実施形態に係る潤滑油基油の-20℃におけるSBV粘度は、3,000~30,000mPa・sであり、好ましくは3,000~25,000mPa・s、より好ましくは3,000~20,000mPa・sである。-20℃におけるSBV粘度が上記下限値未満であるとシール性が不十分となり、また、上記上限値を超えると低温粘度特性が不十分となる。 Further, the SBV viscosity at −20 ° C. of the lubricating base oil according to this embodiment is 3,000 to 30,000 mPa · s, preferably 3,000 to 25,000 mPa · s, more preferably 3,000. ~ 20,000 mPa · s. When the SBV viscosity at −20 ° C. is less than the above lower limit value, the sealing property is insufficient, and when the SBV viscosity exceeds the above upper limit value, the low temperature viscosity characteristics become insufficient.
 また、本実施形態に係る潤滑油基油の-25℃におけるSBV粘度は、好ましくは5,000~500,000mPa・sであり、より好ましくは5,000~400,000mPa・s、さらに好ましくは5,000~300,000mPa・sである。-25℃におけるSBV粘度が上記下限値未満であるとシール性が不十分となり、また、上記上限値を超えると低温粘度特性が不十分となる。 Further, the SBV viscosity at −25 ° C. of the lubricating base oil according to this embodiment is preferably 5,000 to 500,000 mPa · s, more preferably 5,000 to 400,000 mPa · s, and still more preferably. 5,000 to 300,000 mPa · s. When the SBV viscosity at −25 ° C. is less than the above lower limit value, the sealing property becomes insufficient, and when it exceeds the above upper limit value, the low temperature viscosity characteristic becomes insufficient.
 また、本実施形態に係る潤滑油基油の40℃における動粘度は、好ましくは25~40mm/s、より好ましくは28~35mm/sである。 Further, the kinematic viscosity at 40 ° C. of the lubricating base oil according to this embodiment is preferably 25 to 40 mm 2 / s, more preferably 28 to 35 mm 2 / s.
 また、本実施形態に係る潤滑油基油の粘度指数は、155以上であり、好ましくは157以上、より好ましくは158~165である。なお、粘度指数が上記下限値未満であると省エネルギー性が低下し、上記上限値を超えると常温での流動性が低下し潤滑油基油として使用できなくなる傾向にある。 Further, the viscosity index of the lubricating base oil according to the present embodiment is 155 or more, preferably 157 or more, more preferably 158 to 165. When the viscosity index is less than the lower limit, energy saving performance is lowered. When the viscosity index is higher than the upper limit, the fluidity at normal temperature is lowered and the lubricating base oil tends not to be used.
 また、本実施形態に係る潤滑油基油の凝固点は、好ましくは-15~-5℃、より好ましくは-14~-7℃、さらに好ましくは-13~-8℃である。なお、凝固点が上記下限値未満であると省エネルギー性が低下することとなる傾向にあり、また、上記上限値を超えると常温での流動性が低下し潤滑基油として使用できなくなる傾向にある。 Further, the freezing point of the lubricating base oil according to this embodiment is preferably −15 to −5 ° C., more preferably −14 to −7 ° C., and further preferably −13 to −8 ° C. If the freezing point is less than the above lower limit value, the energy saving property tends to be lowered, and if it exceeds the above upper limit value, the fluidity at normal temperature is lowered and the lubricating base oil tends not to be used.
 さらに、本実施形態に係る潤滑油基油について13C-NMR分析を行った場合、潤滑油基油を構成する全炭素に占める、主鎖を構成するCH炭素の割合が20%以上であることが好ましく、18%以上であることがより好ましい。当該割合が上記下限値以上であると、潤滑油基油のトラクション係数を低くすること(すなわち低摩擦)ができ、省エネルギー性の点で好ましい。 Further, when the 13 C-NMR analysis is performed on the lubricating base oil according to the present embodiment, the proportion of CH 2 carbon constituting the main chain in the total carbon constituting the lubricating base oil is 20% or more. It is preferably 18% or more. When the ratio is not less than the above lower limit, the traction coefficient of the lubricating base oil can be lowered (that is, low friction), which is preferable in terms of energy saving.
 また、本実施形態に係る潤滑油基油についてFD-MS分析を行った場合、シクロパラフィン分が60%以下であることが好ましく、65%以下であることがより好ましい。シクロパラフィン分が上記上限値以下であると、潤滑油基油の耐摩耗性をさらに向上させることができる。 Further, when the FD-MS analysis is performed on the lubricating base oil according to the present embodiment, the cycloparaffin content is preferably 60% or less, and more preferably 65% or less. When the cycloparaffin content is not more than the above upper limit, the wear resistance of the lubricating base oil can be further improved.
 また、本実施形態に係る潤滑油基油の尿素アダクト値は、高温での粘度-温度特性を損なわずに低温粘度特性を改善する観点から、好ましくは4質量%以下、より好ましくは3.5質量%以下、さらに好ましくは3質量%以下、特に好ましくは2.5質量%以下である。また、潤滑油基油の尿素アダクト値は、0質量%でも良い。しかし、十分な低温粘度特性と、より粘度指数の高い潤滑油基油を得ることができ、また脱ろう条件を緩和して経済性にも優れる点で、好ましくは0.1質量%以上、より好ましくは0.5質量%以上、特に好ましくは0.8質量%以上である。 Further, the urea adduct value of the lubricating base oil according to the present embodiment is preferably 4% by mass or less, more preferably 3.5%, from the viewpoint of improving the low temperature viscosity characteristics without impairing the viscosity-temperature characteristics at high temperatures. It is not more than mass%, more preferably not more than 3 mass%, particularly preferably not more than 2.5 mass%. Further, the urea adduct value of the lubricating base oil may be 0% by mass. However, it is possible to obtain a lubricating base oil having sufficient low-temperature viscosity characteristics and a higher viscosity index, and more preferably 0.1% by mass or more in terms of excellent economic efficiency by relaxing dewaxing conditions. Preferably it is 0.5 mass% or more, Most preferably, it is 0.8 mass% or more.
 また、本実施形態に係る潤滑油基油における飽和分の含有量は、潤滑油基油全量を基準として、好ましくは90質量%以上、より好ましくは93質量%以上、さらに好ましくは95質量%以上、特に好ましくは99質量%以上である。飽和分の含有量が上記条件を満たすことにより、粘度-温度特性及び熱・酸化安定性を達成することができ、また、当該潤滑油基油に添加剤が配合された場合には、当該添加剤を潤滑油基油中に十分に安定的に溶解保持しつつ、当該添加剤の機能をより高水準で発現させることができる。更に、潤滑油基油自体の摩擦特性を改善することができ、その結果、摩擦低減効果の向上、ひいては省エネルギー性の向上を達成することができる。 In addition, the content of the saturated component in the lubricating base oil according to the present embodiment is preferably 90% by mass or more, more preferably 93% by mass or more, and still more preferably 95% by mass or more, based on the total amount of the lubricating oil base oil. Especially preferably, it is 99 mass% or more. When the content of the saturated component satisfies the above conditions, viscosity-temperature characteristics and thermal / oxidation stability can be achieved, and when an additive is blended in the lubricating base oil, the addition The function of the additive can be expressed at a higher level while the agent is sufficiently and stably dissolved and retained in the lubricant base oil. Furthermore, it is possible to improve the friction characteristics of the lubricating base oil itself, and as a result, it is possible to achieve an improvement in friction reduction effect and an improvement in energy saving.
 また、本実施形態に係る潤滑油基油における芳香族分は、潤滑油基油全量を基準として、好ましくは5質量%以下、より好ましくは0.05~3質量%、更に好ましくは0.1~1質量%、特に好ましくは0.1~0.5質量%である。芳香族分の含有量が上記上限値を超えると、粘度-温度特性、熱・酸化安定性及び摩擦特性、更には揮発防止性及び低温粘度特性が低下する傾向にあり、更に、潤滑油基油に添加剤が配合された場合に当該添加剤の効き目が低下する傾向にある。また、本実施形態に係る潤滑油基油は芳香族分を含有しないものであってもよいが、芳香族分の含有量を0.05質量%以上とすることにより、添加剤の溶解性を更に高めることができる。 The aromatic content in the lubricating base oil according to the present embodiment is preferably 5% by mass or less, more preferably 0.05 to 3% by mass, and still more preferably 0.1% based on the total amount of the lubricating base oil. To 1% by mass, particularly preferably 0.1 to 0.5% by mass. If the aromatic content exceeds the above upper limit, viscosity-temperature characteristics, thermal / oxidation stability, friction characteristics, volatilization prevention characteristics and low-temperature viscosity characteristics tend to be reduced. When an additive is blended with the additive, the effectiveness of the additive tends to decrease. Further, the lubricating base oil according to the present embodiment may not contain an aromatic component, but the solubility of the additive can be improved by setting the aromatic content to 0.05% by mass or more. It can be further increased.
 また、本実施形態に係る潤滑油基油における硫黄分の含有量は、その原料の硫黄分の含有量に依存する。例えば、フィッシャートロプシュ反応等により得られる合成ワックス成分のように実質的に硫黄を含まない原料を用いる場合には、実質的に硫黄を含まない潤滑油基油を得ることができる。また、潤滑油基油の精製過程で得られるスラックワックスや精ろう過程で得られるマイクロワックス等の硫黄を含む原料を用いる場合には、得られる潤滑油基油中の硫黄分は通常100質量ppm以上となる。本発明の潤滑油基油においては、熱・酸化安定性の更なる向上及び低硫黄化の点から、硫黄分の含有量が10質量ppm以下であることが好ましく、5質量ppm以下であることがより好ましく、3質量ppm以下であることが更に好ましく、1質量ppm以下であることが特に好ましい。 Further, the sulfur content in the lubricating base oil according to the present embodiment depends on the sulfur content of the raw material. For example, when a raw material that does not substantially contain sulfur such as a synthetic wax component obtained by a Fischer-Tropsch reaction or the like is used, a lubricating base oil that does not substantially contain sulfur can be obtained. In addition, when using raw materials containing sulfur such as slack wax obtained in the refining process of the lubricating base oil and microwax obtained in the refining process, the sulfur content in the obtained lubricating base oil is usually 100 mass ppm. That's it. In the lubricating base oil of the present invention, the sulfur content is preferably 10 mass ppm or less, from the viewpoint of further improving thermal and oxidation stability and reducing sulfur, and preferably 5 mass ppm or less. Is more preferably 3 ppm by mass or less, and particularly preferably 1 ppm by mass or less.
 また、コスト低減の点からは、原料としてスラックワックス等を使用することが好ましく、その場合、得られる潤滑油基油中の硫黄分は50質量ppm以下が好ましく、10質量ppm以下であることがより好ましい。 Further, from the viewpoint of cost reduction, it is preferable to use slack wax or the like as a raw material. In that case, the sulfur content in the obtained lubricating base oil is preferably 50 ppm by mass or less, and preferably 10 ppm by mass or less. More preferred.
 また、本実施形態に係る潤滑油基油の流動点は、好ましくは-5℃以下、より好ましくは-10℃以下、更に好ましくは-12.5℃以下である。流動点が前記上限値を超えると、その潤滑油基油を用いた潤滑油全体の低温流動性が低下する傾向にある。また、本実施形態に係る潤滑油基油の流動点は、好ましくは-20℃以上、より好ましくは-17.5℃以上、更に好ましくは-15℃以上である。流動点が-20℃未満であると、-20℃におけるSBV粘度を3,000~30,000mPa・sの範囲内とすることが困難となり、シール性が不十分となる傾向にある。 Further, the pour point of the lubricating base oil according to the present embodiment is preferably −5 ° C. or lower, more preferably −10 ° C. or lower, and further preferably −12.5 ° C. or lower. When the pour point exceeds the upper limit, the low temperature fluidity of the entire lubricating oil using the lubricating base oil tends to decrease. Further, the pour point of the lubricating base oil according to this embodiment is preferably −20 ° C. or higher, more preferably −17.5 ° C. or higher, and still more preferably −15 ° C. or higher. When the pour point is less than −20 ° C., it becomes difficult to make the SBV viscosity at −20 ° C. within the range of 3,000 to 30,000 mPa · s, and the sealing property tends to be insufficient.
 また、本実施形態に係る潤滑油基油の-30℃におけるCCS粘度は、好ましくは950mPa・s以下、より好ましくは900mPa・s以下である。さらに、潤滑油基油の-35℃におけるCCS粘度は、好ましくは1,600mPa・s以下、より好ましくは1,500mPa・s以下である。-30℃又は-35℃におけるCCS粘度が前記上限値を超えると、その潤滑油基油を用いた潤滑油全体の低温流動性が低下する傾向にある。 Further, the CCS viscosity at −30 ° C. of the lubricating base oil according to the present embodiment is preferably 950 mPa · s or less, more preferably 900 mPa · s or less. Further, the CCS viscosity of the lubricating base oil at −35 ° C. is preferably 1,600 mPa · s or less, more preferably 1,500 mPa · s or less. When the CCS viscosity at −30 ° C. or −35 ° C. exceeds the upper limit, the low temperature fluidity of the whole lubricating oil using the lubricating base oil tends to be lowered.
 また、本実施形態に係る潤滑油基油の15℃における密度(ρ15)は、下記式(1)で表されるρの値以下であること、すなわちρ15≦ρであることが好ましい。
ρ=0.0025×kv100+0.816  (1)
[式中、kv100は潤滑油基油の100℃における動粘度(mm/s)を示す。]
Further, the density (ρ 15 ) at 15 ° C. of the lubricating base oil according to the present embodiment is preferably not more than the value of ρ represented by the following formula (1), that is, ρ 15 ≦ ρ.
ρ = 0.0025 × kv100 + 0.816 (1)
[Wherein, kv100 represents the kinematic viscosity (mm 2 / s) of the lubricating base oil at 100 ° C. ]
 なお、ρ15>ρとなる場合、粘度-温度特性及び熱・酸化安定性、更には揮発防止性及び低温粘度特性が低下する傾向にあり、また、潤滑油基油に添加剤が配合された場合に当該添加剤の効き目が低下する傾向にある。 When ρ 15 > ρ, viscosity-temperature characteristics and thermal / oxidation stability, as well as volatilization prevention and low-temperature viscosity characteristics tend to decrease, and additives are added to the lubricating base oil. In some cases, the effectiveness of the additive tends to decrease.
 より具体的には、潤滑油基油のρ15は、好ましくは0.830以下、より好ましくは0.825以下である。 More specifically, ρ 15 of the lubricating base oil is preferably 0.830 or less, more preferably 0.825 or less.
[第3実施形態:(iii)の条件を満たす炭化水素油である潤滑油基油]
 本発明の第3実施形態に係る潤滑油基油は、100℃における動粘度が2.0~3.0mm/s、粘度指数が130以上且つ-30℃におけるSBV粘度が1,000~30,000mPa・sの炭化水素油である。
[Third Embodiment: Lubricating base oil that is a hydrocarbon oil that satisfies the condition (iii)]
The lubricating base oil according to the third embodiment of the present invention has a kinematic viscosity at 100 ° C. of 2.0 to 3.0 mm 2 / s, a viscosity index of 130 or more, and an SBV viscosity at −30 ° C. of 1,000 to 30. , 000 mPa · s hydrocarbon oil.
 なお、従来、潤滑油基油の低温粘度特性の指標として用いられている流動点は、流動のしやすさ、換言すればバルクの粘性を評価するものである。これに対して、本発明におけるSBV粘度は、バルクの粘度ではなく、基油の分子レベルでの動きやすさを評価できるものである。例えば、流動点よりも低い温度では、潤滑油基油は流動しないが、基油を構成する分子間のずれ等により、分子レベルでは動くことができ、SBV粘度を与え得る。本実施形態に係る潤滑油基油は、上記の本発明者の知見に基づきなされたものであり、100℃における動粘度2.0~3.0mm/s、粘度指数130以上の潤滑油基油において、該潤滑油基油の-30℃におけるSBV粘度を1,000~30,000mPa・sとすることによって、低温粘度特性を十分に維持しつつシール性を改善できるという、予想外の顕著な効果を有する。 Conventionally, the pour point used as an index of the low temperature viscosity characteristic of the lubricating base oil is to evaluate the ease of flow, in other words, the bulk viscosity. On the other hand, the SBV viscosity in the present invention is not a bulk viscosity but an evaluation of the ease of movement of the base oil at the molecular level. For example, at a temperature lower than the pour point, the lubricant base oil does not flow, but can move at the molecular level due to a shift between molecules constituting the base oil, etc., and can give an SBV viscosity. The lubricating base oil according to the present embodiment has been made based on the above-mentioned knowledge of the present inventor, and has a kinematic viscosity at 100 ° C. of 2.0 to 3.0 mm 2 / s and a lubricating oil base having a viscosity index of 130 or more. In the oil, by setting the SBV viscosity at −30 ° C. of the lubricating base oil to 1,000 to 30,000 mPa · s, it is possible to improve the sealing property while maintaining the low-temperature viscosity characteristics sufficiently. It has a great effect.
 本実施形態に係る潤滑油基油の100℃における動粘度は、2.0~3.0mm/sであり、好ましくは2.1~2.9mm/s、より好ましくは2.2~2.8mm/sである。 The kinematic viscosity at 100 ° C. of the lubricating base oil according to this embodiment is 2.0 to 3.0 mm 2 / s, preferably 2.1 to 2.9 mm 2 / s, more preferably 2.2 to 2.8 mm 2 / s.
 また、本実施形態に係る潤滑油基油の粘度指数は、130以上であり、好ましくは131以上、より好ましくは132~140である。粘度指数が上記下限値未満であると、限を下回ると省エネルギー性が低下し、上回ると常温での流動性が低下し潤滑油基油として使用できなくなる。 Further, the viscosity index of the lubricating base oil according to the present embodiment is 130 or more, preferably 131 or more, more preferably 132 to 140. When the viscosity index is less than the above lower limit, energy saving performance is lowered when the viscosity index is less than the lower limit, and when it exceeds the fluidity, the fluidity at normal temperature is lowered and the lubricating oil base oil cannot be used.
 また、本実施形態に係る潤滑油基油の-30℃におけるSBV粘度は、1,000~30,000mPa・sであり、好ましくは1,000~20,000mPa・s、より好ましくは1,000~15,000mPa・sである。-30℃におけるSBV粘度が上記下限値未満であるとシール性が不十分となり、また、上記上限値を超えると低温粘度特性が不十分となる。 Further, the SBV viscosity at −30 ° C. of the lubricating base oil according to the present embodiment is 1,000 to 30,000 mPa · s, preferably 1,000 to 20,000 mPa · s, more preferably 1,000. ~ 15,000 mPa · s. When the SBV viscosity at −30 ° C. is less than the above lower limit value, the sealing property is insufficient, and when the SBV viscosity exceeds the upper limit value, the low temperature viscosity characteristic becomes insufficient.
 また、本実施形態に係る潤滑油基油の-35℃におけるSBV粘度は、好ましくは3,000~500,000mPa・sであり、より好ましくは3,000~400,000mPa・s、さらに好ましくは3,000~300,000mPa・sである。-35℃におけるSBV粘度が上記下限値未満であるとシール性が不十分となり、また、上記上限値を超えると低温粘度特性が不十分となる。 In addition, the SBV viscosity at −35 ° C. of the lubricating base oil according to this embodiment is preferably 3,000 to 500,000 mPa · s, more preferably 3,000 to 400,000 mPa · s, and still more preferably. 3,000 to 300,000 mPa · s. When the SBV viscosity at −35 ° C. is less than the above lower limit value, the sealing property becomes insufficient, and when the SBV viscosity exceeds the above upper limit value, the low temperature viscosity characteristics become insufficient.
 また、本実施形態に係る潤滑油基油の-40℃におけるSBV粘度は、好ましくは5,000~750,000mPa・sであり、より好ましくは5,000~500,000mPa・s、さらに好ましくは5,000~400,000mPa・sである。-40℃におけるSBV粘度が上記下限値未満であるとシール性が不十分となり、また、上記上限値を超えると低温粘度特性が不十分となる。 Further, the SBV viscosity at −40 ° C. of the lubricating base oil according to the present embodiment is preferably 5,000 to 750,000 mPa · s, more preferably 5,000 to 500,000 mPa · s, and still more preferably. 5,000 to 400,000 mPa · s. When the SBV viscosity at −40 ° C. is less than the above lower limit, the sealing property is insufficient, and when it exceeds the upper limit, the low-temperature viscosity characteristics are insufficient.
 また、本実施形態に係る潤滑油基油の40℃における動粘度は、好ましくは7~12mm/s、より好ましくは8~10mm/sである。 The kinematic viscosity at 40 ° C. of the lubricating base oil according to the present embodiment is preferably 7 to 12 mm 2 / s, more preferably 8 to 10 mm 2 / s.
 また、本実施形態に係る潤滑油基油の凝固点は、好ましくは-30~-10℃、より好ましくは-29~-15℃、さらに好ましくは-28~-20℃である。なお、凝固点が上記下限値未満であると省エネルギー性が低下する傾向にあり、また、上記上限値を超えると常温での流動性が低下し潤滑基油として使用できなくなる傾向にある。 In addition, the freezing point of the lubricating base oil according to the present embodiment is preferably −30 to −10 ° C., more preferably −29 to −15 ° C., and further preferably −28 to −20 ° C. If the freezing point is less than the lower limit, the energy saving property tends to be lowered, and if the freezing point is exceeded, the fluidity at normal temperature is lowered and the lubricating base oil tends not to be used.
 さらに、本実施形態に係る潤滑油基油について13C-NMR分析を行った場合、潤滑油基油を構成する全炭素に占める、主鎖を構成するCH炭素の割合が15%以上であることが好ましく、15%以上であることがより好ましい。当該割合が上記下限値以上であると、潤滑油基油のトラクション係数を低くすること(すなわち低摩擦)ができ、省エネルギー性の点で好ましい。 Further, when 13 C-NMR analysis is performed on the lubricating base oil according to the present embodiment, the proportion of CH 2 carbon constituting the main chain in the total carbon constituting the lubricating base oil is 15% or more. It is preferably 15% or more. When the ratio is not less than the above lower limit, the traction coefficient of the lubricating base oil can be lowered (that is, low friction), which is preferable in terms of energy saving.
 また、本実施形態に係る潤滑油基油についてFD-MS分析を行った場合、シクロパラフィン分が30%以下であることが好ましく、25%以下であることがより好ましい。シクロパラフィン分が上記上限値以下であると、潤滑油基油の耐摩耗性をさらに向上させることができる。 Further, when the FD-MS analysis is performed on the lubricating base oil according to the present embodiment, the cycloparaffin content is preferably 30% or less, and more preferably 25% or less. When the cycloparaffin content is not more than the above upper limit, the wear resistance of the lubricating base oil can be further improved.
 また、本実施形態に係る潤滑油基油の尿素アダクト値は、高温での粘度-温度特性を損なわずに低温粘度特性を改善する観点から、好ましくは4質量%以下、より好ましくは3.5質量%以下、さらに好ましくは3質量%以下、特に好ましくは2.5質量%以下である。また、潤滑油基油の尿素アダクト値は、0質量%でも良い。しかし、十分な低温粘度特性と、より粘度指数の高い潤滑油基油を得ることができ、また脱ろう条件を緩和して経済性にも優れる点で、好ましくは0.1質量%以上、より好ましくは0.5質量%以上、特に好ましくは0.8質量%以上である。 Further, the urea adduct value of the lubricating base oil according to the present embodiment is preferably 4% by mass or less, more preferably 3.5%, from the viewpoint of improving the low temperature viscosity characteristics without impairing the viscosity-temperature characteristics at high temperatures. It is not more than mass%, more preferably not more than 3 mass%, particularly preferably not more than 2.5 mass%. Further, the urea adduct value of the lubricating base oil may be 0% by mass. However, it is possible to obtain a lubricating base oil having sufficient low-temperature viscosity characteristics and a higher viscosity index, and more preferably 0.1% by mass or more in terms of excellent economic efficiency by relaxing dewaxing conditions. Preferably it is 0.5 mass% or more, Most preferably, it is 0.8 mass% or more.
 また、本実施形態に係る潤滑油基油における飽和分の含有量は、潤滑油基油全量を基準として、好ましくは90質量%以上、より好ましくは93質量%以上、さらに好ましくは95質量%以上、特に好ましくは99質量%以上である。飽和分の含有量が上記条件を満たすことにより、粘度-温度特性及び熱・酸化安定性を達成することができ、また、当該潤滑油基油に添加剤が配合された場合には、当該添加剤を潤滑油基油中に十分に安定的に溶解保持しつつ、当該添加剤の機能をより高水準で発現させることができる。更に、潤滑油基油自体の摩擦特性を改善することができ、その結果、摩擦低減効果の向上、ひいては省エネルギー性の向上を達成することができる。 In addition, the content of the saturated component in the lubricating base oil according to the present embodiment is preferably 90% by mass or more, more preferably 93% by mass or more, and still more preferably 95% by mass or more, based on the total amount of the lubricating oil base oil. Especially preferably, it is 99 mass% or more. When the content of the saturated component satisfies the above conditions, viscosity-temperature characteristics and thermal / oxidation stability can be achieved, and when an additive is blended in the lubricating base oil, the addition The function of the additive can be expressed at a higher level while the agent is sufficiently and stably dissolved and retained in the lubricant base oil. Furthermore, it is possible to improve the friction characteristics of the lubricating base oil itself, and as a result, it is possible to achieve an improvement in friction reduction effect and an improvement in energy saving.
 また、本実施形態に係る潤滑油基油における芳香族分は、潤滑油基油全量を基準として、好ましくは5質量%以下、より好ましくは0.05~3質量%、更に好ましくは0.1~1質量%、特に好ましくは0.1~0.5質量%である。芳香族分の含有量が上記上限値を超えると、粘度-温度特性、熱・酸化安定性及び摩擦特性、更には揮発防止性及び低温粘度特性が低下する傾向にあり、更に、潤滑油基油に添加剤が配合された場合に当該添加剤の効き目が低下する傾向にある。また、本実施形態に係る潤滑油基油は芳香族分を含有しないものであってもよいが、芳香族分の含有量を0.05質量%以上とすることにより、添加剤の溶解性を更に高めることができる。 The aromatic content in the lubricating base oil according to the present embodiment is preferably 5% by mass or less, more preferably 0.05 to 3% by mass, and still more preferably 0.1% based on the total amount of the lubricating base oil. To 1% by mass, particularly preferably 0.1 to 0.5% by mass. If the aromatic content exceeds the above upper limit, viscosity-temperature characteristics, thermal / oxidation stability, friction characteristics, volatilization prevention characteristics and low-temperature viscosity characteristics tend to be reduced. When an additive is blended with the additive, the effectiveness of the additive tends to decrease. Further, the lubricating base oil according to the present embodiment may not contain an aromatic component, but the solubility of the additive can be improved by setting the aromatic content to 0.05% by mass or more. It can be further increased.
 また、本実施形態に係る潤滑油基油における硫黄分の含有量は、その原料の硫黄分の含有量に依存する。例えば、フィッシャートロプシュ反応等により得られる合成ワックス成分のように実質的に硫黄を含まない原料を用いる場合には、実質的に硫黄を含まない潤滑油基油を得ることができる。また、潤滑油基油の精製過程で得られるスラックワックスや精ろう過程で得られるマイクロワックス等の硫黄を含む原料を用いる場合には、得られる潤滑油基油中の硫黄分は通常100質量ppm以上となる。本発明の潤滑油基油においては、熱・酸化安定性の更なる向上及び低硫黄化の点から、硫黄分の含有量が10質量ppm以下であることが好ましく、5質量ppm以下であることがより好ましく、3質量ppm以下であることが更に好ましく、1質量ppm以下であることが特に好ましい。 Further, the sulfur content in the lubricating base oil according to the present embodiment depends on the sulfur content of the raw material. For example, when a raw material that does not substantially contain sulfur such as a synthetic wax component obtained by a Fischer-Tropsch reaction or the like is used, a lubricating base oil that does not substantially contain sulfur can be obtained. In addition, when using raw materials containing sulfur such as slack wax obtained in the refining process of the lubricating base oil and microwax obtained in the refining process, the sulfur content in the obtained lubricating base oil is usually 100 mass ppm. That's it. In the lubricating base oil of the present invention, the sulfur content is preferably 10 mass ppm or less, from the viewpoint of further improving thermal and oxidation stability and reducing sulfur, and preferably 5 mass ppm or less. Is more preferably 3 ppm by mass or less, and particularly preferably 1 ppm by mass or less.
 また、コスト低減の点からは、原料としてスラックワックス等を使用することが好ましく、その場合、得られる潤滑油基油中の硫黄分は50質量ppm以下が好ましく、10質量ppm以下であることがより好ましい。 Further, from the viewpoint of cost reduction, it is preferable to use slack wax or the like as a raw material. In that case, the sulfur content in the obtained lubricating base oil is preferably 50 ppm by mass or less, and preferably 10 ppm by mass or less. More preferred.
 また、本実施形態に係る潤滑油基油の流動点は、好ましくは-5℃以下、より好ましくは-12.5℃以下、更に好ましくは-15℃以下である。流動点が前記上限値を超えると、その潤滑油基油を用いた潤滑油全体の低温流動性が低下する傾向にある。また、本実施形態に係る潤滑油基油の流動点は、好ましくは-27.5℃以上、より好ましくは-25℃以上である。流動点が-27.5℃未満であると、-20℃におけるSBV粘度を3,000~60,000mPa・sの範囲内とすることが困難となり、シール性が不十分となる傾向にある。 The pour point of the lubricating base oil according to this embodiment is preferably −5 ° C. or lower, more preferably −12.5 ° C. or lower, and further preferably −15 ° C. or lower. When the pour point exceeds the upper limit, the low temperature fluidity of the entire lubricating oil using the lubricating base oil tends to decrease. The pour point of the lubricating base oil according to this embodiment is preferably −27.5 ° C. or higher, more preferably −25 ° C. or higher. When the pour point is less than −27.5 ° C., it becomes difficult to make the SBV viscosity at −20 ° C. within the range of 3,000 to 60,000 mPa · s, and the sealing property tends to be insufficient.
 また、本実施形態に係る潤滑油基油の-30℃におけるCCS粘度は、好ましくは1,000mPa・s以下、より好ましくは750mPa・s以下である。さらに、潤滑油基油の-35℃におけるCCS粘度は、好ましくは1,300mPa・s以下、より好ましくは1,000mPa・s以下である。-30℃又は-35℃におけるCCS粘度が前記上限値を超えると、その潤滑油基油を用いた潤滑油全体の低温流動性が低下する傾向にある。 Further, the CCS viscosity at −30 ° C. of the lubricating base oil according to the present embodiment is preferably 1,000 mPa · s or less, more preferably 750 mPa · s or less. Furthermore, the CCS viscosity of the lubricating base oil at −35 ° C. is preferably 1,300 mPa · s or less, more preferably 1,000 mPa · s or less. When the CCS viscosity at −30 ° C. or −35 ° C. exceeds the upper limit, the low temperature fluidity of the whole lubricating oil using the lubricating base oil tends to be lowered.
 また、本実施形態に係る潤滑油基油の15℃における密度(ρ15)は、下記式(1)で表されるρの値以下であること、すなわちρ15≦ρであることが好ましい。
ρ=0.0025×kv100+0.816  (1)
[式中、kv100は潤滑油基油の100℃における動粘度(mm/s)を示す。]
Further, the density (ρ 15 ) at 15 ° C. of the lubricating base oil according to the present embodiment is preferably not more than the value of ρ represented by the following formula (1), that is, ρ 15 ≦ ρ.
ρ = 0.0025 × kv100 + 0.816 (1)
[Wherein, kv100 represents the kinematic viscosity (mm 2 / s) of the lubricating base oil at 100 ° C. ]
 なお、ρ15>ρとなる場合、粘度-温度特性及び熱・酸化安定性、更には揮発防止性及び低温粘度特性が低下する傾向にあり、また、潤滑油基油に添加剤が配合された場合に当該添加剤の効き目が低下する傾向にある。 When ρ 15 > ρ, viscosity-temperature characteristics and thermal / oxidation stability, as well as volatilization prevention and low-temperature viscosity characteristics tend to decrease, and additives are added to the lubricating base oil. In some cases, the effectiveness of the additive tends to decrease.
 より具体的には、潤滑油基油のρ15は、好ましくは0.806以下、より好ましくは0.8058以下である。 More specifically, ρ 15 of the lubricating base oil is preferably 0.806 or less, more preferably 0.8058 or less.
 また、本実施形態に係る潤滑油基油のNOACK蒸発量は、好ましくは20質量%以上、より好ましくは25質量%以上、更に好ましくは30以上であり、また、好ましくは50質量%以下、より好ましくは48質量%以下、更に好ましくは46質量%以下である。NOACK蒸発量が前記下限値の場合、低温粘度特性の改善が困難となる傾向にある。また、NOACK蒸発量が前記上限値を超えると、潤滑油基油を内燃機関用潤滑油等に用いた場合に、潤滑油の蒸発損失量が多くなり、それに伴い触媒被毒が促進されるため好ましくない。 Further, the NOACK evaporation amount of the lubricating base oil according to the present embodiment is preferably 20% by mass or more, more preferably 25% by mass or more, still more preferably 30% or more, and preferably 50% by mass or less. Preferably it is 48 mass% or less, More preferably, it is 46 mass% or less. When the NOACK evaporation amount is the lower limit value, it tends to be difficult to improve the low temperature viscosity characteristics. Further, if the NOACK evaporation amount exceeds the upper limit value, when the lubricating base oil is used as a lubricating oil for an internal combustion engine, the amount of evaporation loss of the lubricating oil increases, and accordingly, catalyst poisoning is promoted. It is not preferable.
[第4実施形態:潤滑油基油の製造方法]
 本発明の第4実施形態に係る潤滑油基油の製造方法は、
 基油留分及び該基油留分よりも重質の重質留分を含有する炭化水素油から、前記基油留分と前記重質留分とをそれぞれ分留する第1の工程と、
 前記第1の工程で分留された重質留分を水素化分解し、得られる分解油を前記第1の工程に戻す第2の工程と、
 前記基油留分を水素化異性化脱ろうして脱ろう油を得る第3の工程と、
 前記脱ろう油を精製して精製油を得る第4の工程と、
 前記精製油の分留により、下記(i)、(ii)又は(iii):
(i)100℃における動粘度が3.0~5.0mm/s、粘度指数が145以上且つ-20℃におけるSBV粘度が3,000~60,000mPa・sの炭化水素油、
(ii)100℃における動粘度が5~9mm/s、粘度指数が155以上且つ-20℃におけるSBV粘度が3,000~30,000mPa・sの炭化水素油、
(iii)100℃における動粘度が2.0~3.0mm/s、粘度指数が130以上且つ-30℃におけるSBV粘度が1,000~30,000mPa・sの炭化水素油、
のいずれかの条件を満たす炭化水素油である潤滑油基油を得る第5の工程と、
を備える。
[Fourth Embodiment: Method for Producing Lubricating Base Oil]
The method for producing a lubricating base oil according to the fourth embodiment of the present invention,
A first step of fractionating the base oil fraction and the heavy fraction from a base oil fraction and a hydrocarbon oil containing a heavier fraction heavier than the base oil fraction,
A second step of hydrocracking the heavy fraction fractionated in the first step and returning the resulting cracked oil to the first step;
A third step of hydroisomerizing and dewaxing the base oil fraction to obtain a dewaxed oil;
A fourth step of refining the dewaxed oil to obtain a refined oil;
By fractional distillation of the refined oil, the following (i), (ii) or (iii):
(I) a hydrocarbon oil having a kinematic viscosity at 100 ° C. of 3.0 to 5.0 mm 2 / s, a viscosity index of 145 or more, and an SBV viscosity at −20 ° C. of 3,000 to 60,000 mPa · s;
(Ii) a hydrocarbon oil having a kinematic viscosity at 100 ° C. of 5 to 9 mm 2 / s, a viscosity index of 155 or more and an SBV viscosity at −20 ° C. of 3,000 to 30,000 mPa · s,
(Iii) a hydrocarbon oil having a kinematic viscosity at 100 ° C. of 2.0 to 3.0 mm 2 / s, a viscosity index of 130 or more and an SBV viscosity at −30 ° C. of 1,000 to 30,000 mPa · s,
A fifth step of obtaining a lubricating base oil that is a hydrocarbon oil that satisfies any of the following conditions:
Is provided.
 本実施形態に係る潤滑油基油の製造方法においては、原料である炭化水素油から基油留分と重質留分とが分留され(第1の工程)、重質留分の水素化分解により得られる分解油が第1の工程に戻される(第2の工程)。つまり、重質留分のみが水素化分解を経て後段の水素化異性化脱ろう(第3の工程)に供され、基油留分は水素化分解を経ずに水素化異性化脱ろうに供されるため、水素化異性化脱ろうに供される被処理油全体としては、従来の高度精製鉱油の製造方法と比較して、異性化が進みにくいものとなる。そして、このような被処理油について水素化異性化脱ろうを行い、得られる脱ろう油を精製して精製油を得(第4の工程)、さらに精製油を分留することによって(第5の工程)、所望の潤滑油基油を有効に得ることができる。 In the method for producing a lubricating base oil according to this embodiment, a base oil fraction and a heavy fraction are fractionated from a hydrocarbon oil as a raw material (first step), and hydrogenation of the heavy fraction is performed. The cracked oil obtained by cracking is returned to the first step (second step). That is, only the heavy fraction is subjected to hydroisomerization dewaxing (third step) through hydrocracking, and the base oil fraction is hydroisomerized and dewaxed without hydrocracking. Therefore, as a whole of the oil to be treated subjected to hydroisomerization dewaxing, isomerization is difficult to proceed as compared with the conventional method for producing highly refined mineral oil. Then, hydroisomerization dewaxing is performed on the oil to be treated, the resulting dewaxed oil is purified to obtain a refined oil (fourth step), and further, the refined oil is fractionated (5th step). Step), a desired lubricating base oil can be obtained effectively.
 なお、従来の高度精製鉱油の製造方法としては、原料油全体に水素化分解及び水素化異性化脱ろうを施すのが一般的であるが、この場合は100℃における動粘度及び-20℃におけるSBV粘度の双方が上記の条件を満たす潤滑油基油を得ることが困難となる。特に、従来の高度精製鉱油の場合、100℃における動粘度を上記(i)、(ii)又は(iii)のいずれかに示す範囲内とすると、-30℃におけるSBV粘度が各条件に示した下限値未満となり、シール性が不十分となる。 As a conventional method for producing highly refined mineral oil, hydrocracking and hydroisomerization dewaxing are generally performed on the entire raw material oil. In this case, the kinematic viscosity at 100 ° C. and the temperature at −20 ° C. It becomes difficult to obtain a lubricating base oil in which both SBV viscosities satisfy the above conditions. In particular, in the case of a conventional highly refined mineral oil, when the kinematic viscosity at 100 ° C. is within the range shown in any of the above (i), (ii), or (iii), the SBV viscosity at −30 ° C. is shown in each condition. It becomes less than the lower limit, resulting in insufficient sealability.
 基油留分は、脱蝋工程、水素化仕上げ工程及び第2蒸留工程を経て潤滑油基油を得るための留分であり、その沸点範囲は目的とする製品によって適宜変更できる。本実施形態における基油留分の好適な沸点範囲として、340~520℃を例示できる。 The base oil fraction is a fraction for obtaining a lubricating base oil through a dewaxing step, a hydrofinishing step and a second distillation step, and the boiling range thereof can be appropriately changed depending on the target product. A suitable boiling range of the base oil fraction in this embodiment is exemplified by 340 to 520 ° C.
 重質留分は、基油留分より沸点が高い重質の留分である。重質留分の沸点は520℃より高いことが好ましい。 The heavy fraction is a heavy fraction having a boiling point higher than that of the base oil fraction. The boiling point of the heavy fraction is preferably higher than 520 ° C.
 炭化水素油は、基油留分及び重質留分以外に、基油留分より沸点が低い軽質の留分(軽質分)を含有していてもよい。軽質分の沸点は340℃未満であることが好ましい。 The hydrocarbon oil may contain a light fraction (light fraction) having a boiling point lower than that of the base oil fraction in addition to the base oil fraction and the heavy fraction. The boiling point of the light component is preferably less than 340 ° C.
 炭化水素油としては、例えば、水素化処理又は水素化分解された軽油、重質軽油、減圧軽油、潤滑油ラフィネート、潤滑油原料、ブライトストック、スラックワックス(粗蝋)、蝋下油、脱油蝋、パラフィンワックス、マイクロクリスタリンワックス、ペトロラタム、合成油、フィッシャー・トロプシュ合成反応油(以下、「FT合成油」という。)、高流動点ポリオレフィン、直鎖αオレフィンワックスなどが挙げられる。これらは、一種を単独で又は二種以上を組み合わせて用いることができる。特に、炭化水素油としては、減圧軽油、減圧軽油水素化分解油、常圧残油、常圧残油水素化分解油、減圧残油、減圧残油水素化分解油、スラックワックス、脱蝋油、パラフィンワックス、マイクロクリタリンワックス、ペトラタム及びフィッシャー・トロプシュ合成ワックスからなる群より選択される少なくとも一種であることが好ましく、常圧残油、減圧残油、減圧軽油、スラックワックス、及びフィッシャー・トロプシュ合成ワックスからなる群より選択される少なくとも一種であることがさらに好ましい。 Examples of hydrocarbon oils include hydrotreated or hydrocracked diesel oil, heavy diesel oil, vacuum diesel oil, lubricating oil raffinate, lubricating oil raw material, bright stock, slack wax (crude wax), waxy oil, deoiled oil Examples thereof include wax, paraffin wax, microcrystalline wax, petrolatum, synthetic oil, Fischer-Tropsch synthetic reaction oil (hereinafter referred to as “FT synthetic oil”), high pour point polyolefin, and linear α-olefin wax. These can be used individually by 1 type or in combination of 2 or more types. In particular, hydrocarbon oils include vacuum gas oil, vacuum gas oil hydrocracked oil, atmospheric residue, atmospheric residue hydrocracked oil, vacuum residue, vacuum residue hydrocracked oil, slack wax, dewaxed oil. And at least one selected from the group consisting of paraffin wax, microcritalin wax, petratum and Fischer-Tropsch synthetic wax. More preferably, it is at least one selected from the group consisting of synthetic waxes.
 本発明の一態様において、炭化水素油としてはFT(フィッシャー・トロプシュ)合成油が好ましい。FT合成油は、FT合成反応により一酸化炭素及び水素から合成された炭化水素油であり、窒素分を含まない。そのため、炭化水素油がFT合成油であると、後述する水素化分解及び異性化脱蝋において硫黄被毒のおそれが無く、多様な触媒を用いることができる。 In one embodiment of the present invention, the hydrocarbon oil is preferably FT (Fischer-Tropsch) synthetic oil. The FT synthetic oil is a hydrocarbon oil synthesized from carbon monoxide and hydrogen by an FT synthesis reaction, and does not contain nitrogen. Therefore, when the hydrocarbon oil is an FT synthetic oil, there is no possibility of sulfur poisoning in hydrocracking and isomerization dewaxing described later, and various catalysts can be used.
 また、本発明の他の態様において、炭化水素油としては石油原料に由来する炭化水素を含有する石油系炭化水素油を用いることが好ましい。石油系炭化水素油としては、例えば、減圧軽油水素化分解油、常圧残油水素化分解油、減圧残油水素化分解油、スラックワックス、脱蝋油、パラフィンワックス、マイクロクリスタリンワックス、ペトラタムが挙げられる。 In another embodiment of the present invention, it is preferable to use a petroleum hydrocarbon oil containing a hydrocarbon derived from a petroleum raw material as the hydrocarbon oil. Examples of petroleum hydrocarbon oils include vacuum gas oil hydrocracked oil, atmospheric residue hydrocracked oil, vacuum residue hydrocracked oil, slack wax, dewaxed oil, paraffin wax, microcrystalline wax, and petratum. Can be mentioned.
 第1蒸留工程は、炭化水素油から基油留分及び重質留分をそれぞれ分留する工程である。分留工程は炭化水素油の組成によって適宜その条件を変更することができる。例えば、炭化水素油が軽質分を20容量%以上含有するとき、分留工程は、炭化水素油から軽質分を留去する常圧蒸留と、常圧蒸留のボトム油から基油留分及び重質留分をそれぞれ分留する減圧蒸留と、により行われることが好ましい。 The first distillation step is a step of fractionating the base oil fraction and the heavy fraction from the hydrocarbon oil. The conditions of the fractionation step can be appropriately changed depending on the composition of the hydrocarbon oil. For example, when the hydrocarbon oil contains 20% by volume or more of the light component, the fractionation step includes atmospheric distillation for distilling the light component from the hydrocarbon oil, and base oil fraction and heavy oil from the bottom oil of atmospheric distillation. The distillation is preferably performed by distillation under reduced pressure to fractionate the fractions.
 第1蒸留工程で分留した重質留分は、水素化分解工程に供される。水素化分解工程で得られる水素化分解油は第1蒸溜工程に戻される。 The heavy fraction fractionated in the first distillation step is subjected to a hydrocracking step. The hydrocracked oil obtained in the hydrocracking process is returned to the first distillation process.
 水素化分解工程に用いる反応器の形式は特に限定されず、水素化分解触媒が充填された固定床流通式反応器が好ましく用いられる。反応器は単一であってもよく、また、複数の反応器が直列又は並列に配置されたものであってもよい。また、反応器内の触媒床は単一であってもよく、複数であってもよい。 The type of the reactor used in the hydrocracking step is not particularly limited, and a fixed bed flow reactor filled with a hydrocracking catalyst is preferably used. A single reactor may be used, or a plurality of reactors may be arranged in series or in parallel. Further, the catalyst bed in the reactor may be single or plural.
 水素化分解触媒としては公知の水素化分解触媒が用いられ、固体酸性を有する無機担体に、水素化活性を有する元素の周期表第8~10族に属する金属が担持された触媒(以下、「水素化分解触媒A」という。)が好ましく使用される。特に、炭化水素油がFT合成油であるとき、硫黄分による触媒被毒のおそれがないため、水素化分解触媒Aが好適に用いられる。 As the hydrocracking catalyst, a known hydrocracking catalyst is used. A catalyst in which a metal belonging to Groups 8 to 10 of the periodic table of elements having hydrogenation activity is supported on an inorganic carrier having solid acidity (hereinafter, “ Hydrocracking catalyst A ")) is preferably used. In particular, when the hydrocarbon oil is an FT synthetic oil, the hydrocracking catalyst A is preferably used because there is no risk of catalyst poisoning due to sulfur.
 水素化分解触媒Aを構成する好適な固体酸性を有する無機担体としては、超安定Y型(USY)ゼオライト、Y型ゼオライト、モルデナイト及びβゼオライトなどのゼオライト、並びに、シリカアルミナ、シリカジルコニア、及びアルミナボリアなどの耐熱性を有する無定形複合金属酸化物の中から選ばれる1種類以上の無機化合物から構成されるものが挙げられる。更に、担体は、USYゼオライトと、シリカアルミナ、アルミナボリア及びシリカジルコニアの中から選ばれる1種以上の無定形複合金属酸化物とを含んで構成される組成物がより好ましく、USYゼオライトと、アルミナボリア及び/又はシリカアルミナとを含んで構成される組成物が更に好ましい。 Suitable inorganic supports having solid acidity constituting the hydrocracking catalyst A include zeolites such as ultrastable Y type (USY) zeolite, Y type zeolite, mordenite and β zeolite, and silica alumina, silica zirconia, and alumina. Examples thereof include those composed of one or more inorganic compounds selected from amorphous composite metal oxides having heat resistance such as boria. Further, the carrier is more preferably a composition comprising USY zeolite and one or more amorphous composite metal oxides selected from silica alumina, alumina boria and silica zirconia. USY zeolite, alumina More preferred is a composition comprising boria and / or silica alumina.
 USYゼオライトは、Y型ゼオライトを水熱処理及び/又は酸処理により超安定化したものであり、Y型ゼオライトが本来有する細孔径が2nm以下のミクロ細孔と呼ばれる微細細孔構造に加え、2~10nmの範囲に細孔径を有する新たな細孔が形成されている。USYゼオライトの平均粒子径に特に制限はないが、好ましくは1.0μm以下、より好ましくは0.5μm以下である。また、USYゼオライトにおいて、シリカ/アルミナのモル比(アルミナに対するシリカのモル比)は10~200であることが好ましく、15~100であることがより好ましく、20~60であることが更に好ましい。 USY zeolite is obtained by ultra-stabilizing Y-type zeolite by hydrothermal treatment and / or acid treatment, and in addition to a micropore structure called micropores having a pore size originally possessed by Y-type zeolite of 2 nm or less. New pores having a pore diameter in the range of 10 nm are formed. The average particle size of the USY zeolite is not particularly limited, but is preferably 1.0 μm or less, more preferably 0.5 μm or less. In the USY zeolite, the silica / alumina molar ratio (molar ratio of silica to alumina) is preferably 10 to 200, more preferably 15 to 100, and still more preferably 20 to 60.
 また、水素化分解触媒Aの担体は、結晶性ゼオライト0.1~80質量%と、耐熱性を有する無定形複合金属酸化物0.1~60質量%とを含んでいることが好ましい。 The support of the hydrocracking catalyst A preferably contains 0.1 to 80% by mass of crystalline zeolite and 0.1 to 60% by mass of amorphous composite metal oxide having heat resistance.
 水素化分解触媒Aの担体は、上記固体酸性を有する無機化合物とバインダーとを含む担体組成物を成形した後、焼成することにより製造できる。固体酸性を有する無機化合物の配合割合は、担体全体の質量を基準として1~70質量%であることが好ましく、2~60質量%であることがより好ましい。また、担体がUSYゼオライトを含んでいる場合、USYゼオライトの配合割合は、担体全体の質量を基準として0.1~10質量%であることが好ましく、0.5~5質量%であることがより好ましい。さらに、担体がUSYゼオライト及びアルミナボリアを含んでいる場合、USYゼオライトとアルミナボリアの配合比(USYゼオライト/アルミナボリア)は、質量比で0.03~1であることが好ましい。また、担体がUSYゼオライト及びシリカアルミナを含んでいる場合、USYゼオライトとシリカアルミナとの配合比(USYゼオライト/シリカアルミナ)は、質量比で0.03~1であることが好ましい。 The carrier of the hydrocracking catalyst A can be produced by molding a carrier composition containing the inorganic compound having solid acidity and a binder and then firing the carrier composition. The blending ratio of the inorganic compound having solid acidity is preferably 1 to 70% by mass, more preferably 2 to 60% by mass based on the mass of the whole carrier. When the carrier contains USY zeolite, the blending ratio of USY zeolite is preferably 0.1 to 10% by mass, and preferably 0.5 to 5% by mass based on the mass of the entire carrier. More preferred. Further, when the carrier contains USY zeolite and alumina boria, the mixing ratio of USY zeolite and alumina boria (USY zeolite / alumina boria) is preferably 0.03 to 1 in terms of mass ratio. When the carrier contains USY zeolite and silica alumina, the mixing ratio of USY zeolite and silica alumina (USY zeolite / silica alumina) is preferably 0.03 to 1 in terms of mass ratio.
 バインダーとしては、特に制限はないが、アルミナ、シリカ、チタニア、マグネシアが好ましく、アルミナがより好ましい。バインダーの配合量は、担体全体の質量を基準として20~98質量%であることが好ましく、30~96質量%であることがより好ましい。 The binder is not particularly limited, but alumina, silica, titania and magnesia are preferable, and alumina is more preferable. The blending amount of the binder is preferably 20 to 98% by mass, more preferably 30 to 96% by mass based on the mass of the whole carrier.
 担体組成物を焼成する際の温度は、400~550℃の範囲内にあることが好ましく、470~530℃の範囲内であることがより好ましく、490~530℃の範囲内であることが更に好ましい。このような温度で焼成することにより、担体に十分な固体酸性及び機械的強度を付与することができる。 The temperature at which the carrier composition is calcined is preferably in the range of 400 to 550 ° C., more preferably in the range of 470 to 530 ° C., and further in the range of 490 to 530 ° C. preferable. By baking at such a temperature, sufficient solid acidity and mechanical strength can be imparted to the carrier.
 担体に担持される水素化活性を有する周期表第8~10族の金属としては、具体的にはコバルト、ニッケル、ロジウム、パラジウム、イリジウム、白金などが挙げられる。これらのうち、ニッケル、パラジウム及び白金の中から選ばれる金属を1種単独又は2種以上組み合わせて用いることが好ましい。これらの金属は、含浸やイオン交換などの常法によって上述の担体に担持することができる。担持する金属量には特に制限はないが、金属の合計量が担体質量に対して0.1~3.0質量%であることが好ましい。なおここで元素の周期表とは、IUPAC(国際純正応用化学連合)の規定に基づく長周期型の元素の周期表をいう。 Specific examples of the metals in Groups 8 to 10 of the periodic table having hydrogenation activity supported on the carrier include cobalt, nickel, rhodium, palladium, iridium, and platinum. Among these, it is preferable to use the metal chosen from nickel, palladium, and platinum individually by 1 type or in combination of 2 or more types. These metals can be supported on the above-mentioned carrier by a conventional method such as impregnation or ion exchange. The amount of metal to be supported is not particularly limited, but the total amount of metal is preferably 0.1 to 3.0% by mass with respect to the mass of the carrier. Here, the periodic table of elements means a periodic table of long-period elements based on the provisions of IUPAC (International Pure Applied Chemistry Association).
 水素化分解触媒Aを用いるとき、水素の存在下で基油留分と水素化分解触媒Aとを接触させる際の条件は、特に限定されないが、次のような反応条件を選択することができる。すなわち、反応温度としては、180~400℃が挙げられるが、200~370℃が好ましく、250~350℃がより好ましく、280~350℃が特に好ましい。反応温度が400℃を越えると、軽質分への分解が進行して基油留分の収率が減少するだけでなく、生成物が着色し、燃料油基材としての使用が制限される傾向にある。一方、反応温度が180℃を下回ると、水素化分解反応が十分に進行せず、基油留分の収率が減少する。水素分圧としては0.5~12MPaが挙げられるが、1.0~5.0MPaが好ましい。水素分圧が0.5MPa未満の場合には水素化分解が十分に進行しない傾向にあり、一方、12MPaを超える場合は装置に高い耐圧性が要求され、設備コストが上昇する傾向にある。重質留分の液空間速度(LHSV)としては0.1~10.0h-1が挙げられるが、0.3~3.5h-1が好ましい。LHSVが0.1h-1未満の場合には水素化分解が過度に進行し、また生産性が低下する傾向にあり、一方、10.0h-1を超える場合には、水素化分解が十分に進行しない傾向にある。水素/油比としては50~1000NL/Lが挙げられるが、70~800NL/Lが好ましい。水素/油比が50NL/L未満の場合には水素化分解が十分に進行しない傾向にあり、一方、1000NL/Lを超える場合には、大規模な水素供給装置等が必要となる傾向にある。 When the hydrocracking catalyst A is used, the conditions for contacting the base oil fraction and the hydrocracking catalyst A in the presence of hydrogen are not particularly limited, but the following reaction conditions can be selected. . That is, examples of the reaction temperature include 180 to 400 ° C., preferably 200 to 370 ° C., more preferably 250 to 350 ° C., and particularly preferably 280 to 350 ° C. When the reaction temperature exceeds 400 ° C., decomposition to light components proceeds and not only the yield of the base oil fraction decreases, but also the product tends to be colored and its use as a fuel oil base material tends to be limited. It is in. On the other hand, when the reaction temperature is lower than 180 ° C., the hydrocracking reaction does not proceed sufficiently, and the yield of the base oil fraction decreases. Examples of the hydrogen partial pressure include 0.5 to 12 MPa, and 1.0 to 5.0 MPa is preferable. When the hydrogen partial pressure is less than 0.5 MPa, hydrocracking tends not to proceed sufficiently. On the other hand, when it exceeds 12 MPa, the apparatus is required to have high pressure resistance, and the equipment cost tends to increase. The liquid hourly space velocity of the heavy fraction (LHSV) include 0.1 ~ 10.0h -1 but is preferably 0.3 ~ 3.5 h -1. When LHSV is less than 0.1 h −1 , hydrocracking proceeds excessively and the productivity tends to decrease. On the other hand, when LHSV exceeds 10.0 h −1 , hydrocracking is sufficient. There is a tendency not to progress. Examples of the hydrogen / oil ratio include 50 to 1000 NL / L, with 70 to 800 NL / L being preferred. When the hydrogen / oil ratio is less than 50 NL / L, hydrocracking tends not to proceed sufficiently, whereas when it exceeds 1000 NL / L, a large-scale hydrogen supply device or the like tends to be required. .
 また、炭化水素油が石油系炭化水素油であるとき、基油留分に硫黄分が含まれる場合がある。このような場合には、水素化分解触媒として、アルミニウム、ケイ素、ジルコニウム、ホウ素、チタン及びマグネシウムから選ばれる2種以上の元素を含んで構成される多孔性無機酸化物並びに該多孔性無機酸化物に担持された周期表第6A族及び第8族の元素から選ばれる1種以上の金属とを有する触媒(以下、「水素化分解触媒B」という。)を用いることが好ましい。水素化分解触媒Bによれば、硫黄被毒による触媒活性の低下が十分に抑制される。 Also, when the hydrocarbon oil is a petroleum-based hydrocarbon oil, the base oil fraction may contain a sulfur content. In such a case, a porous inorganic oxide comprising two or more elements selected from aluminum, silicon, zirconium, boron, titanium and magnesium as the hydrocracking catalyst, and the porous inorganic oxide It is preferable to use a catalyst (hereinafter, referred to as “hydrocracking catalyst B”) having at least one metal selected from Group 6A and Group 8 elements supported on the periodic table. According to the hydrocracking catalyst B, a decrease in catalytic activity due to sulfur poisoning is sufficiently suppressed.
 水素化分解触媒Bの担体としては、上述のようにアルミニウム、ケイ素、ジルコニウム、ホウ素、チタン及びマグネシウムから選ばれる2種以上を含んで構成される多孔性無機酸化物が用いられる。かかる多孔性無機酸化物としては、水素化分解活性を一層向上できる点から、アルミニウム、ケイ素、ジルコニウム、ホウ素、チタン及びマグネシウムから選ばれる2種以上であることが好ましく、アルミニウムと他の元素とを含む無機酸化物(酸化アルミニウムと他の酸化物との複合酸化物)が更に好ましい。 As the carrier of the hydrocracking catalyst B, a porous inorganic oxide comprising two or more selected from aluminum, silicon, zirconium, boron, titanium and magnesium as described above is used. The porous inorganic oxide is preferably at least two selected from aluminum, silicon, zirconium, boron, titanium and magnesium from the viewpoint that the hydrocracking activity can be further improved. An inorganic oxide (a composite oxide of aluminum oxide and another oxide) is more preferable.
 多孔性無機酸化物が構成元素としてアルミニウムを含有する場合、アルミニウムの含有量は、多孔性無機酸化物全量を基準として、アルミナ換算で、好ましくは1~97質量%、より好ましくは10~97質量%、更に好ましくは20~95質量%である。アルミニウムの含有量がアルミナ換算で1質量%未満であると、担体酸性質などの物性が好適でなく、十分な水素化分解活性が発揮されない傾向にある。他方、アルミニウムの含有量がアルミナ換算で97質量%を超えると、触媒表面積が不十分となり、活性が低下する傾向にある。 When the porous inorganic oxide contains aluminum as a constituent element, the aluminum content is preferably 1 to 97% by mass, more preferably 10 to 97% by mass in terms of alumina, based on the total amount of the porous inorganic oxide. %, More preferably 20 to 95% by mass. When the aluminum content is less than 1% by mass in terms of alumina, physical properties such as carrier acid properties are not suitable, and sufficient hydrocracking activity tends not to be exhibited. On the other hand, when the aluminum content exceeds 97% by mass in terms of alumina, the catalyst surface area becomes insufficient and the activity tends to decrease.
 アルミニウム以外の担体構成元素である、ケイ素、ジルコニウム、ホウ素、チタン及びマグネシウムを担体に導入する方法は特に制限されず、これらの元素を含有する溶液などを原料として用いればよい。例えば、ケイ素については、ケイ素、水ガラス、シリカゾルなど、ホウ素についてはホウ酸など、リンについては、リン酸やリン酸のアルカリ金属塩など、チタンについては硫化チタン、四塩化チタンや各種アルコキサイド塩など、ジルコニウムについては硫酸ジルコニウムや各種アルコキサイド塩などを用いることができる。 The method for introducing silicon, zirconium, boron, titanium and magnesium, which are carrier constituent elements other than aluminum, is not particularly limited, and a solution containing these elements may be used as a raw material. For example, for silicon, silicon, water glass, silica sol, etc., for boron, boric acid, etc., for phosphorus, phosphoric acid and alkali metal salts of phosphoric acid, etc., for titanium, titanium sulfide, titanium tetrachloride and various alkoxide salts, etc. As for zirconium, zirconium sulfate and various alkoxide salts can be used.
 さらに、多孔性無機酸化物は、構成元素としてリンを含有することが好ましい。リンの含有量は、多孔性無機酸化物全量を基準として、好ましくは0.1~10質量%、より好ましくは0.5~7質量%、更に好ましくは2~6質量%である。リンの含有量が0.1質量%未満の場合には十分な水素化分解活性が発揮されない傾向にあり、また、10質量%を超えると過度の分解が進行する恐れがある。 Furthermore, the porous inorganic oxide preferably contains phosphorus as a constituent element. The phosphorus content is preferably 0.1 to 10% by mass, more preferably 0.5 to 7% by mass, and further preferably 2 to 6% by mass, based on the total amount of the porous inorganic oxide. When the phosphorus content is less than 0.1% by mass, sufficient hydrocracking activity tends not to be exhibited, and when it exceeds 10% by mass, excessive decomposition may proceed.
 上記の酸化アルミニウム以外の担体構成成分の原料は、担体の焼成より前の工程において添加することが好ましい。例えば、アルミニウム水溶液に予め上記原料を添加した後、これらの構成成分を含む水酸化アルミニウムゲルを調製してもよく、調合した水酸化アルミニウムゲルに対して上記原料を添加してもよい。あるいは、市販の酸化アルミニウム中間体やベーマイトパウダーに水もしくは酸性水溶液を添加して混練する工程において上記原料を添加してもよいが、水酸化アルミニウムゲルを調合する段階で共存させることがより好ましい。酸化アルミニウム以外の担体構成成分の効果発現機構は必ずしも解明されたわけではないが、アルミニウムと複合的な酸化物状態を形成していると推察され、このことが担体表面積の増加や活性金属との相互作用を生じることにより、活性に影響を及ぼしていると考えられる。 It is preferable to add the raw materials of the carrier constituents other than the above-described aluminum oxide in a step prior to the firing of the carrier. For example, after adding the said raw material previously to aluminum aqueous solution, the aluminum hydroxide gel containing these structural components may be prepared, and the said raw material may be added with respect to the prepared aluminum hydroxide gel. Alternatively, the above raw materials may be added in a step of adding water or an acidic aqueous solution to a commercially available aluminum oxide intermediate or boehmite powder and kneading them, but it is more preferable to coexist at the stage of preparing aluminum hydroxide gel. Although the mechanism of the effect of the carrier constituents other than aluminum oxide has not necessarily been elucidated, it is presumed that it forms a complex oxide state with aluminum, which increases the surface area of the carrier and the interaction with the active metal. It is considered that the activity is affected by producing the action.
 担体としての上記多孔性無機酸化物には、周期律表第6A族及び第8族の元素から選ばれる1種以上の金属が担持される。これらの金属の中でも、コバルト、モリブデン、ニッケル及びタングステンから選ばれる2種以上の金属を組み合わせて用いることが好ましい。好適な組み合せとしては、例えば、コバルト-モリブデン、ニッケル-モリブデン、ニッケル-コバルト-モリブデン、ニッケル-タングステンが挙げられる。これらのうち、ニッケル-モリブデン、ニッケル-コバルト-モリブデン及びニッケル-タングステンの組み合せがより好ましい。水素化分解に際しては、これらの金属を硫化物の状態に転換して使用する。 The porous inorganic oxide as the carrier carries one or more metals selected from Group 6A and Group 8 elements of the periodic table. Among these metals, it is preferable to use a combination of two or more metals selected from cobalt, molybdenum, nickel and tungsten. Examples of suitable combinations include cobalt-molybdenum, nickel-molybdenum, nickel-cobalt-molybdenum, and nickel-tungsten. Of these, combinations of nickel-molybdenum, nickel-cobalt-molybdenum and nickel-tungsten are more preferred. In hydrocracking, these metals are used after being converted to a sulfide state.
 触媒質量を基準とする活性金属の含有量としては、タングステン及びモリブデンの合計担持量の範囲は、酸化物換算で12~35質量%が好ましく、15~30質量%がより好ましい。タングステン及びモリブデンの合計担持量が12質量%未満であると、活性点が少なくなり、十分な活性が得られなくなる傾向がある。他方、35質量%を越えると、金属が効果的に分散せず、十分な活性が得られなくなる傾向がある。コバルト及びニッケルの合計担持量の範囲は、酸化物換算で1.0~15質量%が好ましく、1.5~12質量%がより好ましい。コバルト及びニッケルの合計担持量が1.0質量%未満であると、十分な助触媒効果が得られず、活性が低下する傾向がある。他方、15質量%を越えると、金属が効果的に分散せず、十分な活性が得られなくなる傾向がある。 As the content of the active metal based on the catalyst mass, the total supported amount of tungsten and molybdenum is preferably 12 to 35% by mass, more preferably 15 to 30% by mass in terms of oxide. If the total supported amount of tungsten and molybdenum is less than 12% by mass, the active sites tend to decrease and sufficient activity cannot be obtained. On the other hand, if it exceeds 35% by mass, the metal is not effectively dispersed and sufficient activity tends not to be obtained. The range of the total supported amount of cobalt and nickel is preferably 1.0 to 15% by mass, more preferably 1.5 to 12% by mass in terms of oxide. When the total supported amount of cobalt and nickel is less than 1.0% by mass, a sufficient promoter effect cannot be obtained and the activity tends to decrease. On the other hand, if it exceeds 15% by mass, the metal is not effectively dispersed and sufficient activity tends not to be obtained.
 これらの活性金属を触媒に含有させる方法は特に限定されず、通常の水素化分解触媒を製造する際に適用される公知の方法を用いることができる。通常、活性金属の塩を含む溶液を触媒担体に含浸する方法が好ましく採用される。また、平衡吸着法、Pore-filling法、Incipient-wetness法なども好ましく採用される。例えば、Pore-filling法は、担体の細孔容積を予め測定しておき、これと同じ容積の金属塩溶液を含浸する方法である。なお、含浸方法は特に限定されるものではなく、金属担持量や触媒担体の物性に応じて適当な方法で含浸することができる。 The method of incorporating these active metals into the catalyst is not particularly limited, and a known method applied when producing an ordinary hydrocracking catalyst can be used. Usually, a method of impregnating a catalyst carrier with a solution containing a salt of an active metal is preferably employed. Further, an equilibrium adsorption method, a pore-filling method, an incident-wetness method, and the like are also preferably employed. For example, the pore-filling method is a method in which the pore volume of a support is measured in advance and impregnated with a metal salt solution having the same volume. The impregnation method is not particularly limited, and it can be impregnated by an appropriate method according to the amount of metal supported and the physical properties of the catalyst carrier.
 本実施形態において、使用する水素化分解触媒Bの種類数は特に限定されない。例えば、一種類の触媒を単独で使用してもよく、活性金属種や担体構成成分の異なる触媒を複数使用してもよい。異なる触媒を複数使用する場合の好適な組み合せとしては、例えば、ニッケル-モリブデンを含有する触媒の後段にコバルト-モリブデンを含有する触媒、ニッケル-モリブデンを含有する触媒の後段にニッケル-コバルト-モリブデンを含有する触媒、ニッケル-タングステンを含有する触媒の後段にニッケル-コバルト-モリブデンを含有する触媒、ニッケル-コバルト-モリブデンを含有する触媒の後段にコバルト-モリブデンを含有する触媒を用いることが挙げられる。これらの組み合せの前段及び/又は後段にニッケル-モリブデン触媒を更に組み合せてもよい。 In the present embodiment, the number of types of hydrocracking catalyst B to be used is not particularly limited. For example, one type of catalyst may be used alone, or a plurality of catalysts having different active metal species and carrier components may be used. As a suitable combination in the case of using a plurality of different catalysts, for example, a catalyst containing cobalt-molybdenum after the catalyst containing nickel-molybdenum, and nickel-cobalt-molybdenum after the catalyst containing nickel-molybdenum are used. And a catalyst containing nickel-cobalt-molybdenum after the catalyst containing nickel-tungsten, and a catalyst containing cobalt-molybdenum after the catalyst containing nickel-cobalt-molybdenum. A nickel-molybdenum catalyst may be further combined before and / or after these combinations.
 担体成分が異なる複数の触媒を組み合せる場合には、例えば、担体の総質量を基準として酸化アルミニウムの含有量が30質量%以上であり且つ80質量%未満の触媒の後段に、酸化アルミニウムの含有量が80~99質量%の範囲にある触媒を用いればよい。 In the case of combining a plurality of catalysts having different support components, for example, the content of aluminum oxide is included in the subsequent stage of the catalyst having an aluminum oxide content of 30% by mass or more and less than 80% by mass based on the total mass of the support. A catalyst having an amount in the range of 80 to 99% by mass may be used.
 さらに、水素化分解触媒B以外に、必要に応じて基油留分に随伴して流入するスケール分をトラップしたり触媒床の区切り部分で水素化分解触媒Bを支持したりする目的でガード触媒、脱金属触媒、不活性充填物を用いてもよい。なお、これらは単独又は組み合せて用いることができる。 Further, in addition to the hydrocracking catalyst B, a guard catalyst is used for trapping the scale component flowing in along with the base oil fraction as needed, or for supporting the hydrocracking catalyst B at the separation part of the catalyst bed. A demetallizing catalyst or an inert packing may be used. In addition, these can be used individually or in combination.
 水素化分解触媒Bの窒素吸着BET法による細孔容積は、0.30~0.85ml/gであることが好ましく、0.45~0.80ml/gであることがより好ましい。当該細孔容積が0.30ml/gに満たない場合は担持される金属の分散性が不十分となり、活性点が検証する懸念がある。また、当該細孔容積が0.85ml/gを超えると、触媒強度が不十分となり、使用中に触媒が粉化、破砕するおそれがある。 The pore volume of the hydrocracking catalyst B by the nitrogen adsorption BET method is preferably 0.30 to 0.85 ml / g, more preferably 0.45 to 0.80 ml / g. When the pore volume is less than 0.30 ml / g, the dispersibility of the supported metal becomes insufficient, and there is a concern that the active site is verified. Moreover, when the pore volume exceeds 0.85 ml / g, the catalyst strength becomes insufficient, and the catalyst may be pulverized or crushed during use.
 また、窒素吸着BET法によって求められる触媒の平均細孔直径は、5~11nmであることが好ましく、6~9nmであることがより好ましい。平均細孔直径が5nm未満であると、反応基質が細孔内に十分に拡散せず、反応性が低下するおそれがある。また、平均細孔直径が11nmを超えると、細孔表面積が低下し、活性が不十分となるおそれがある。 Further, the average pore diameter of the catalyst determined by the nitrogen adsorption BET method is preferably 5 to 11 nm, and more preferably 6 to 9 nm. If the average pore diameter is less than 5 nm, the reaction substrate may not sufficiently diffuse into the pores, and the reactivity may be reduced. On the other hand, if the average pore diameter exceeds 11 nm, the pore surface area decreases, and the activity may be insufficient.
 さらに、水素化分解触媒Bにおいては、有効な触媒細孔を維持し、十分な活性を発揮させるために、全細孔容積に占める細孔直径3nm以下の細孔に由来する細孔容積の割合が35容量%以下であることが好ましい。 Furthermore, in the hydrocracking catalyst B, in order to maintain effective catalyst pores and exhibit sufficient activity, the proportion of the pore volume derived from pores having a pore diameter of 3 nm or less in the total pore volume Is preferably 35% by volume or less.
 水素化分解触媒Bを用いるとき、水素化分解の条件は、例えば、水素圧力2~13MPa、液空間速度(LHSV)0.1~3.0h-1、水素油比(水素/油比)150~1500NL/Lとすることができ、好ましくは、水素圧力4.5~12MPa、液空間速度0.3~1.5h-1、水素油比380~1200NL/Lであり、より好ましくは、水素圧力6~15MPa、空間速度0.3~1.5h-1、水素油比350~1000NL/Lである。これらの条件はいずれも反応活性を左右する因子であり、例えば水素圧力及び水素油比が上記の下限値に満たない場合には、反応性が低下したり活性が急速に低下したりする傾向がある。他方、水素圧力及び水素油比が上記の上限値を超える場合には、圧縮機等の過大な設備投資が必要となる傾向がある。また、液空間速度は低いほど反応に有利な傾向にあるが、上記の下限値未満の場合は、極めて大きな内容積の反応器が必要となり過大な設備投資が必要となる傾向があり、他方、液空間速度が上記の上限値を超える場合は、反応が十分に進行しなくなる傾向がある。また、反応温度としては、180~400℃が挙げられ、200~370℃が好ましく、250~350℃がより好ましく、280~350℃が特に好ましい。反応温度が400℃を越えると、軽質留分への分解が進行して基油留分の収率が減少するだけでなく、生成物が着色し、燃料油基材としての使用が制限される傾向にある。一方、反応温度が180℃を下回ると、水素化分解反応が十分に進行せず、基油留分の収率が減少する。 When using the hydrocracking catalyst B, the hydrocracking conditions are, for example, a hydrogen pressure of 2 to 13 MPa, a liquid space velocity (LHSV) of 0.1 to 3.0 h −1 , a hydrogen oil ratio (hydrogen / oil ratio) of 150. To 1500 NL / L, preferably hydrogen pressure 4.5 to 12 MPa, liquid space velocity 0.3 to 1.5 h −1 , hydrogen oil ratio 380 to 1200 NL / L, more preferably hydrogen The pressure is 6 to 15 MPa, the space velocity is 0.3 to 1.5 h −1 , and the hydrogen oil ratio is 350 to 1000 NL / L. These conditions are factors that influence the reaction activity. For example, when the hydrogen pressure and the hydrogen oil ratio are less than the above lower limit values, the reactivity tends to decrease or the activity rapidly decreases. is there. On the other hand, when the hydrogen pressure and the hydrogen oil ratio exceed the above upper limit values, there is a tendency that excessive equipment investment such as a compressor is required. Further, the lower the liquid space velocity tends to be advantageous for the reaction, but if the liquid space velocity is less than the above lower limit value, there is a tendency that an extremely large internal volume reactor is required and excessive equipment investment is required, When the liquid space velocity exceeds the above upper limit, the reaction tends not to proceed sufficiently. Examples of the reaction temperature include 180 to 400 ° C., preferably 200 to 370 ° C., more preferably 250 to 350 ° C., and particularly preferably 280 to 350 ° C. When the reaction temperature exceeds 400 ° C., decomposition into light fractions proceeds and not only the yield of the base oil fraction decreases, but also the product is colored and its use as a fuel oil base material is restricted. There is a tendency. On the other hand, when the reaction temperature is lower than 180 ° C., the hydrocracking reaction does not proceed sufficiently, and the yield of the base oil fraction decreases.
 水素化分解工程においては、重質留分が水素化分解により概ね沸点520℃以下の炭化水素に転化される。一方、重質留分の一部は十分に水素化分解を受けず、沸点520℃以上の未分解重質留分として残存する。 In the hydrocracking process, the heavy fraction is converted into hydrocarbons having a boiling point of approximately 520 ° C. or less by hydrocracking. On the other hand, a part of the heavy fraction is not sufficiently hydrocracked and remains as an undecomposed heavy fraction having a boiling point of 520 ° C. or higher.
 水素化分解油の組成は使用する水素化分解触媒及び水素化分解反応条件により決定される。なおここで「水素化分解油」とは、特に断らない限り、未分解重質留分を含む水素化分解全生成物を指す。水素化分解反応条件を必要以上に厳しくすると水素化分解油中の未分解重質留分の含有量は低下するが、沸点340℃以下の軽質分が増加して好適な基油留分(340~520℃留分)の収率が低下する。一方、水素化分解反応条件を必要以上に温和にすると、未分解重質留分が増加して基油留分収率が低下する。沸点が25℃以上の全分解生成物の質量M1に対する沸点が25~520℃の分解生成物の質量M2の比M2/M1を「分解率」とする場合、通常、この分解率M2/M1が5~70%、好ましくは10~60%、更に好ましくは20~50%となるように反応条件を選択することが好ましい。 The composition of hydrocracked oil is determined by the hydrocracking catalyst used and the hydrocracking reaction conditions. Here, the “hydrocracked oil” refers to the entire hydrocracked product containing an uncracked heavy fraction unless otherwise specified. If the hydrocracking reaction conditions are made stricter than necessary, the content of the undecomposed heavy fraction in the hydrocracked oil decreases, but the light fraction having a boiling point of 340 ° C. or less increases and a suitable base oil fraction (340 Yield of ˜520 ° C. fraction). On the other hand, when the hydrocracking reaction conditions are milder than necessary, the uncracked heavy fraction increases and the base oil fraction yield decreases. When the ratio M2 / M1 of the mass M2 of the decomposition product having a boiling point of 25 to 520 ° C. with respect to the mass M1 of the total decomposition product having a boiling point of 25 ° C. or higher is defined as “decomposition rate”, this decomposition rate M2 / M1 is usually The reaction conditions are preferably selected so as to be 5 to 70%, preferably 10 to 60%, more preferably 20 to 50%.
 次に、脱蝋工程について説明する。脱蝋工程では、水素(分子状水素)の存在下、第1蒸留工程で分留された基油留分を水素化触媒に接触させる。これにより、基油留分が水素化異性化により脱蝋され、脱蝋油が得られる。 Next, the dewaxing process will be described. In the dewaxing step, the base oil fraction fractionated in the first distillation step is brought into contact with the hydrogenation catalyst in the presence of hydrogen (molecular hydrogen). Thereby, a base oil fraction is dewaxed by hydroisomerization, and a dewaxed oil is obtained.
 脱蝋工程の反応塔としては、公知の固定床反応塔を用いることができる。より具体的には、例えば、水素化異性化触媒を固定床の流通式反応器に充填し、この反応器に水素(分子状水素)及び基油留分を流通させることにより水素化異性化を実施することができる。 As a reaction tower in the dewaxing step, a known fixed bed reaction tower can be used. More specifically, for example, a hydroisomerization catalyst is charged into a fixed bed flow reactor, and hydrogen (molecular hydrogen) and a base oil fraction are passed through the reactor to perform hydroisomerization. Can be implemented.
 水素化異性化触媒としては、水素化異性化に一般的に使用される触媒、すなわち無機担体に水素化活性を有する金属が担持された触媒を用いることができる。 As the hydroisomerization catalyst, a catalyst generally used for hydroisomerization, that is, a catalyst in which a metal having a hydrogenation activity is supported on an inorganic carrier can be used.
 水素化異性化触媒を構成する水素化活性を有する金属としては、元素の周期表第6族、第8族、第9族及び第10族の金属からなる群より選ばれる1種以上の金属が用いられる。これらの金属の具体的な例としては、白金、パラジウム、ロジウム、ルテニウム、イリジウム、オスミウム等の貴金属、あるいはコバルト、ニッケル、モリブデン、タングステン、鉄などが挙げられ、好ましくは、白金、パラジウム、ニッケル、コバルト、モリブデン、タングステンであり、更に好ましくは白金、パラジウムである。また、これらの金属は複数種を組み合わせて用いることも好ましく、その場合の好ましい組み合わせとしては、白金-パラジウム、コバルト-モリブデン、ニッケル-モリブデン、ニッケル-コバルト-モリブデン、ニッケル-タングステン等が挙げられる。 Examples of the metal having hydrogenation activity constituting the hydroisomerization catalyst include one or more metals selected from the group consisting of metals of Group 6, Group 8, Group 9 and Group 10 of the periodic table of elements. Used. Specific examples of these metals include noble metals such as platinum, palladium, rhodium, ruthenium, iridium and osmium, or cobalt, nickel, molybdenum, tungsten, iron, etc., preferably platinum, palladium, nickel, Cobalt, molybdenum and tungsten are preferable, and platinum and palladium are more preferable. These metals are also preferably used in combination of a plurality of types. In this case, preferable combinations include platinum-palladium, cobalt-molybdenum, nickel-molybdenum, nickel-cobalt-molybdenum, nickel-tungsten, and the like.
 水素化異性化触媒を構成する無機担体としては、例えば、アルミナ、シリカ、チタニア、ジルコニア、ボリア等の金属酸化物が挙げられる。これら金属酸化物は1種であってもよいし、2種以上の混合物あるいはシリカアルミナ、シリカジルコニア、アルミナジルコニア、アルミナボリア等の複合金属酸化物であってもよい。上記無機担体は、ノルマルパラフィンの水素化異性化を効率的に進行させる観点から、シリカアルミナ、シリカジルコニア、アルミナジルコニア、アルミナボリア等の固体酸性を有する複合金属酸化物であることが好ましい。また、無機担体には少量のゼオライトを含んでもよい。さらに無機担体は、担体の成型性及び機械的強度の向上を目的として、バインダーが配合されていてもよい。好ましいバインダーとしては、アルミナ、シリカ、マグネシア等が挙げられる。 Examples of the inorganic carrier constituting the hydroisomerization catalyst include metal oxides such as alumina, silica, titania, zirconia, and boria. These metal oxides may be one kind or a mixture of two or more kinds or a composite metal oxide such as silica alumina, silica zirconia, alumina zirconia, alumina boria and the like. The inorganic carrier is preferably a composite metal oxide having solid acidity such as silica alumina, silica zirconia, alumina zirconia, alumina boria, etc., from the viewpoint of efficiently proceeding hydroisomerization of normal paraffin. The inorganic carrier may contain a small amount of zeolite. Furthermore, the inorganic carrier may contain a binder for the purpose of improving the moldability and mechanical strength of the carrier. Preferred binders include alumina, silica, magnesia and the like.
 水素化異性化触媒における水素化活性を有する金属の含有量としては、当該金属が上記の貴金属である場合には、金属原子として担体の質量基準で0.1~3質量%程度であることが好ましい。また、当該金属が上記の貴金属以外の金属である場合には、金属酸化物として担体の質量基準で2~50質量%程度であることが好ましい。水素化活性を有する金属の含有量が前記下限値未満の場合には、水素化精製及び水素化異性化が充分に進行しない傾向にある。一方、水素化活性を有する金属の含有量が前記上限値を超える場合には、水素化活性を有する金属の分散が低下して触媒の活性が低下する傾向となり、また触媒コストが上昇する。 The content of the metal having hydrogenation activity in the hydroisomerization catalyst is about 0.1 to 3% by mass as a metal atom based on the mass of the support when the metal is the above-mentioned noble metal. preferable. Further, when the metal is a metal other than the noble metal, the metal oxide is preferably about 2 to 50% by mass based on the mass of the support. When the content of the metal having hydrogenation activity is less than the lower limit, hydrorefining and hydroisomerization tend not to proceed sufficiently. On the other hand, when the content of the metal having hydrogenation activity exceeds the upper limit, the dispersion of the metal having hydrogenation activity tends to be reduced, and the activity of the catalyst tends to be reduced, and the catalyst cost is increased.
 また、水素化異性化触媒は、アルミニウム、ケイ素、ジルコニウム、ホウ素、チタン、マグネシウム及びゼオライトから選ばれる物質より構成される多孔性の無機酸化物からなる担体に周期表第8族の元素から選ばれる金属を1種以上担持してなる触媒であってもよい。 The hydroisomerization catalyst is selected from elements of Group 8 of the periodic table on a support made of a porous inorganic oxide composed of a material selected from aluminum, silicon, zirconium, boron, titanium, magnesium and zeolite. A catalyst formed by supporting one or more metals may be used.
 このような水素化異性化触媒の担体として用いられる多孔性の無機酸化物としては、アルミナ、チタニア、ジルコニア、ボリア、シリカ、あるいはゼオライトが挙げられ、このうちチタニア、ジルコニア、ボリア、シリカおよびゼオライトのうち少なくとも1種類とアルミナによって構成されているものが好ましい。その製造法は特に限定されないが、各元素に対応した各種ゾル、塩化合物などの状態の原料を用いて任意の調製法を採用することができる。さらには一旦シリカアルミナ、シリカジルコニア、アルミナチタニア、シリカチタニア、アルミナボリアなどの複合水酸化物あるいは複合酸化物を調製した後に、アルミナゲルやその他水酸化物の状態あるいは適当な溶液の状態で調製工程の任意の工程で添加して調製してもよい。アルミナと他の酸化物との比率は担体に対して任意の割合を取り得るが、好ましくはアルミナが90質量%以下、さらに好ましくは60質量%以下、より好ましくは40質量%以下であり、好ましくは10質量%以上、より好ましくは20質量%以上である。 Examples of the porous inorganic oxide used as a carrier for such a hydroisomerization catalyst include alumina, titania, zirconia, boria, silica, and zeolite, and among these, titania, zirconia, boria, silica, and zeolite. Among these, those composed of at least one kind and alumina are preferable. The production method is not particularly limited, but any preparation method can be adopted using raw materials in a state of various sols, salt compounds, etc. corresponding to each element. Furthermore, after preparing a composite hydroxide or composite oxide such as silica alumina, silica zirconia, alumina titania, silica titania, alumina boria, etc., the preparation process in the state of alumina gel and other hydroxides or in a suitable solution state It may be prepared by adding at any step. The ratio of alumina to other oxides can be any ratio with respect to the support, but preferably alumina is 90% by mass or less, more preferably 60% by mass or less, more preferably 40% by mass or less, preferably Is 10% by mass or more, more preferably 20% by mass or more.
 ゼオライトは結晶性アルミノシリケートであり、フォージャサイト、ペンタシル、モルデナイト、TON、MTT、MREなどが挙げられ、所定の水熱処理および/または酸処理によって超安定化したもの、あるいはゼオライト中のアルミナ含有量を調整したものを用いることができる。好ましくはフォージャサイト、モルデナイト、特に好ましくはY型、ベータ型が用いられる。Y型は超安定化したものが好ましく、水熱処理により超安定化したゼオライトは本来の20Å以下のミクロ細孔と呼ばれる細孔構造に加え、20~100Åの範囲に新たな細孔が形成される。水熱処理条件は公知の条件を用いることができる。 Zeolites are crystalline aluminosilicates, such as faujasite, pentasil, mordenite, TON, MTT, MRE, etc., which are ultra-stabilized by the prescribed hydrothermal treatment and / or acid treatment, or the alumina content in the zeolite What adjusted can be used. Preferably, faujasite and mordenite, particularly preferably Y type and beta type are used. The Y type is preferably ultra-stabilized, and the zeolite that has been super-stabilized by hydrothermal treatment forms new pores in the range of 20 to 100 mm in addition to the original pore structure called micropores of 20 mm or less. . Known conditions can be used for the hydrothermal treatment conditions.
 このような水素化異性化触媒の活性金属としては、周期表第8族の元素から選ばれる1種以上の金属が用いられる。これらの金属の中でも、Pd、Pt、Rh、Ir、Au、Niから選ばれる1種以上の金属を用いることが好ましく、組み合わせて用いることがより好ましい。好適な組み合せとしては、例えば、Pd-Pt、Pd-Ir、Pd-Rh、Pd-Au、Pd-Ni、Pt-Rh、Pt-Ir、Pt-Au、Pt-Ni、Rh-Ir、Rh-Au、Rh-Ni、Ir-Au、Ir-Ni、Au-Ni、Pd-Pt-Rh、Pd-Pt-Ir、Pt-Pd-Niなどが挙げられる。このうち、Pd-Pt、Pd-Ni、Pt-Ni、Pd-Ir、Pt-Rh、Pt-Ir、Rh-Ir、Pd-Pt-Rh、Pd-Pt-Ni、Pd-Pt-Irの組み合わせがより好ましく、Pd-Pt、Pd-Ni、Pt-Ni、Pd-Ir、Pt-Ir、Pd-Pt-Ni、Pd-Pt-Irの組み合わせがさらにより好ましい。 As the active metal of such a hydroisomerization catalyst, one or more metals selected from Group 8 elements of the periodic table are used. Among these metals, it is preferable to use one or more metals selected from Pd, Pt, Rh, Ir, Au, and Ni, and it is more preferable to use them in combination. Suitable combinations include, for example, Pd—Pt, Pd—Ir, Pd—Rh, Pd—Au, Pd—Ni, Pt—Rh, Pt—Ir, Pt—Au, Pt—Ni, Rh—Ir, Rh— Examples thereof include Au, Rh—Ni, Ir—Au, Ir—Ni, Au—Ni, Pd—Pt—Rh, Pd—Pt—Ir, and Pt—Pd—Ni. Of these, combinations of Pd—Pt, Pd—Ni, Pt—Ni, Pd—Ir, Pt—Rh, Pt—Ir, Rh—Ir, Pd—Pt—Rh, Pd—Pt—Ni, Pd—Pt—Ir And a combination of Pd—Pt, Pd—Ni, Pt—Ni, Pd—Ir, Pt—Ir, Pd—Pt—Ni, and Pd—Pt—Ir is even more preferred.
 触媒質量を基準とする活性金属の合計含有量としては、金属として0.1~2質量%が好ましく、0.2~1.5質量%がより好ましく、0.5~1.3質量%がさらにより好ましい。金属の合計担持量が0.1質量%未満であると、活性点が少なくなり、十分な活性が得られなくなる傾向がある。他方、2質量%を超えると、金属が効果的に分散せず、十分な活性が得られなくなる傾向がある。 The total content of active metals based on the catalyst mass is preferably 0.1 to 2% by mass, more preferably 0.2 to 1.5% by mass, and 0.5 to 1.3% by mass as the metal. Even more preferred. If the total supported amount of the metal is less than 0.1% by mass, the active sites tend to decrease and sufficient activity cannot be obtained. On the other hand, if it exceeds 2% by mass, the metal is not effectively dispersed and sufficient activity tends not to be obtained.
 上記水素化異性化触媒のいずれの触媒においても、活性金属を担体に担持させる方法は特に限定されず、通常の水素化異性化触媒を製造する際に適用される公知の方法を用いることができる。通常は、活性金属の塩を含む溶液を触媒担体に含浸する方法が好ましく採用される。また平衡吸着法、Pore-filling法、Incipient-wetness法なども好ましく採用される。例えば、Pore-filling法は、担体の細孔容積を予め測定しておき、これと同じ容積の金属塩溶液を含浸する方法であるが、含浸方法は特に限定されるものではなく、金属担持量や触媒担体の物性に応じて適当な方法で含浸することができる。 In any of the above hydroisomerization catalysts, the method for supporting an active metal on a support is not particularly limited, and a known method applied when producing a normal hydroisomerization catalyst can be used. . Usually, a method of impregnating a catalyst carrier with a solution containing a salt of an active metal is preferably employed. Also, an equilibrium adsorption method, a pore-filling method, an incident-wetness method, and the like are preferably employed. For example, the pore-filling method is a method in which the pore volume of the support is measured in advance and impregnated with the same volume of the metal salt solution, but the impregnation method is not particularly limited, and the amount of metal supported Further, it can be impregnated by an appropriate method depending on the physical properties of the catalyst support.
 また、水素化異性化触媒としては、下記の触媒を用いることもできる。 Moreover, the following catalysts can also be used as the hydroisomerization catalyst.
<水素化異性化触媒の具体的な一態様>
 本態様の水素化異性化触媒は、特定の方法によって製造されることでその特徴が付与される。以下、本態様の水素化異性化触媒について、その好ましい製造の態様に沿って説明する。
<Specific Embodiment of Hydroisomerization Catalyst>
The characteristics of the hydroisomerization catalyst of this embodiment are imparted by being produced by a specific method. Hereinafter, the hydroisomerization catalyst of this aspect is demonstrated along the aspect of the preferable manufacture.
 本態様の水素化異性化触媒の製造方法は、有機テンプレートを含有し10員環一次元状細孔構造を有する有機テンプレート含有ゼオライトを、アンモニウムイオン及び/又はプロトンを含む溶液中でイオン交換して得られるイオン交換ゼオライトと、バインダーと、が含まれる混合物を、N雰囲気下、250~350℃の温度で加熱して担体前駆体を得る第1工程と、担体前駆体に白金塩及び/又はパラジウム塩を含ませた触媒前駆体を、分子状酸素を含む雰囲気下、350~400℃の温度で焼成して、ゼオライトを含む担体に白金及び/又はパラジウムが担持された水素化異性化触媒を得る第2工程とを備える。 In the method for producing a hydroisomerization catalyst of this embodiment, an organic template-containing zeolite containing an organic template and having a 10-membered ring one-dimensional pore structure is ion-exchanged in a solution containing ammonium ions and / or protons. A first step of obtaining a support precursor by heating a mixture containing the obtained ion-exchanged zeolite and a binder at a temperature of 250 to 350 ° C. in an N 2 atmosphere; and a platinum salt and / or A catalyst precursor containing a palladium salt is calcined at a temperature of 350 to 400 ° C. in an atmosphere containing molecular oxygen to obtain a hydroisomerization catalyst in which platinum and / or palladium is supported on a support containing zeolite. And obtaining a second step.
 本態様で用いられる有機テンプレート含有ゼオライトは、ノルマルパラフィンの水素化異性化反応における高い異性化活性と抑制された分解活性とを高水準で両立する観点から、10員環からなる一次元状細孔構造を有する。このようなゼオライトとしては、AEL、EUO、FER、HEU、MEL、MFI、NES、TON、MTT、WEI、MRE及びSSZ-32などが挙げられる。なお、上記の各アルファベット三文字は、分類分けされたモレキュラーシーブ型ゼオライトの各構造に対して、国際ゼオライト協会構造委員会(The Structure Commission of The International Zeolite Association)が与えている骨格構造コードを意味する。また、同一のトポロジーを有するゼオライトは包括的に同一のコードで呼称される。 The organic template-containing zeolite used in the present embodiment is a one-dimensional pore composed of a 10-membered ring from the viewpoint of achieving both high isomerization activity and suppressed decomposition activity in normal paraffin hydroisomerization reaction at a high level. It has a structure. Examples of such zeolite include AEL, EUO, FER, HEU, MEL, MFI, NES, TON, MTT, WEI, * MRE, and SSZ-32. The above three letters of the alphabet mean the skeletal structure code given by the Structure Committee of The International Zeolite Association for each classified structure of molecular sieve type zeolite. To do. In addition, zeolites having the same topology are collectively referred to by the same code.
 上記有機テンプレート含有ゼオライトとしては、上記の10員環一次元状細孔構造を有するゼオライトの中でも、高異性化活性及び低分解活性の点で、TON、MTT構造を有するゼオライト、MRE構造を有するゼオライトであるZSM-48ゼオライト、及びSSZ-32ゼオライトが好ましい。TON構造を有するゼオライトとしては、ZSM-22ゼオライトがより好ましく、また、MTT構造を有するゼオライトとしては、ZSM-23ゼオライトがより好ましい。 As the above-mentioned organic template-containing zeolite, among the zeolites having the above-mentioned 10-membered ring one-dimensional pore structure, zeolites having a TON or MTT structure, and * MRE structures in terms of high isomerization activity and low decomposition activity ZSM-48 zeolite and SSZ-32 zeolite which are zeolites are preferred. ZSM-22 zeolite is more preferred as the zeolite having the TON structure, and ZSM-23 zeolite is more preferred as the zeolite having the MTT structure.
 有機テンプレート含有ゼオライトは、シリカ源、アルミナ源及び上記所定の細孔構造を構築するために添加する有機テンプレートから、公知の方法によって水熱合成される。 The organic template-containing zeolite is hydrothermally synthesized by a known method from a silica source, an alumina source, and an organic template added to construct the predetermined pore structure.
 有機テンプレートは、アミノ基、アンモニウム基等を有する有機化合物であり、合成するゼオライトの構造に応じて選択されるものであるが、アミン誘導体であることが好ましい。具体的には、アルキルアミン、アルキルジアミン、アルキルトリアミン、アルキルテトラミン、ピロリジン、ピペラジン、アミノピペラジン、アルキルペンタミン、アルキルヘキサミン及びそれらの誘導体からなる群より選択される少なくとも一種であることがより好ましい。 The organic template is an organic compound having an amino group, an ammonium group or the like, and is selected according to the structure of the zeolite to be synthesized, but is preferably an amine derivative. Specifically, at least one selected from the group consisting of alkylamine, alkyldiamine, alkyltriamine, alkyltetramine, pyrrolidine, piperazine, aminopiperazine, alkylpentamine, alkylhexamine and derivatives thereof is more preferable.
 10員環一次元状細孔構造を有する有機テンプレート含有ゼオライトを構成する珪素とアルミニウム元素とのモル比([Si]/[Al])(以下、「Si/Al比」という。)は、10~400であることが好ましく、20~350であることがより好ましい。Si/Al比が10未満の場合には、ノルマルパラフィンの転換に対する活性は高くなるが、イソパラフィンへの異性化選択性が低下し、また反応温度の上昇に伴う分解反応の増加が急激となる傾向にあることから好ましくない。一方、Si/Al比が400を超える場合には、ノルマルパラフィンの転換に必要な触媒活性が得られにくくなり好ましくない。 The molar ratio ([Si] / [Al]) between silicon and aluminum constituting the organic template-containing zeolite having a 10-membered ring one-dimensional pore structure (hereinafter referred to as “Si / Al ratio”) is 10. Is preferably from 400 to 400, more preferably from 20 to 350. When the Si / Al ratio is less than 10, the activity for the conversion of normal paraffin increases, but the isomerization selectivity to isoparaffin tends to decrease, and the increase in decomposition reaction accompanying the increase in reaction temperature tends to become rapid. Therefore, it is not preferable. On the other hand, when the Si / Al ratio exceeds 400, it is difficult to obtain the catalyst activity necessary for the conversion of normal paraffin, which is not preferable.
 合成され、好ましくは洗浄、乾燥された上記有機テンプレート含有ゼオライトは、対カチオンとして通常アルカリ金属カチオンを有し、また有機テンプレートが細孔構造内に包含される。本発明に係る水素化異性化触媒を製造する際に用いる有機テンプレートを含むゼオライトとは、このような、合成された状態のもの、すなわち、ゼオライト内に包含される有機テンプレートを除去するための焼成処理がなされていないものであることが好ましい。 The organic template-containing zeolite synthesized, preferably washed and dried usually has an alkali metal cation as a counter cation, and the organic template is included in the pore structure. The zeolite containing an organic template used in producing the hydroisomerization catalyst according to the present invention is in such a synthesized state, that is, calcination for removing the organic template included in the zeolite. It is preferable that the treatment is not performed.
 上記有機テンプレート含有ゼオライトは、次に、アンモニウムイオン及び/又はプロトンを含む溶液中でイオン交換される。イオン交換処理により、有機テンプレート含有ゼオライト中に含まれる対カチオンは、アンモニウムイオン及び/又はプロトンに交換される。またそれと同時に、有機テンプレート含有ゼオライト中に包含される有機テンプレートの一部が除去される。 The organic template-containing zeolite is then ion-exchanged in a solution containing ammonium ions and / or protons. By the ion exchange treatment, the counter cation contained in the organic template-containing zeolite is exchanged with ammonium ions and / or protons. At the same time, a part of the organic template included in the organic template-containing zeolite is removed.
 上記イオン交換処理に使用する溶液は、水を少なくとも50容量%含有する溶媒を用いた溶液であることが好ましく、水溶液であることがより好ましい。また、アンモニウムイオンを溶液中に供給する化合物としては、塩化アンモニウム、硫酸アンモニウム、硝酸アンモニウム、リン酸アンモニウム、酢酸アンモニウム等の無機及び有機の各種のアンモニウム塩が挙げられる。一方、プロトンを溶液中に供給する化合物としては、通常、塩酸、硫酸、硝酸等の鉱酸が利用される。有機テンプレート含有ゼオライトをアンモニウムイオンの存在下でイオン交換することにより得られるイオン交換ゼオライト(ここでは、アンモニウム型ゼオライト)は、後の焼成の際にアンモニアを放出し、対カチオンがプロトンとなってブレンステッド酸点となる。イオン交換に用いるカチオン種としてはアンモニウムイオンが好ましい。溶液中に含まれるアンモニウムイオン及び/又はプロトンの含有量は、使用する有機テンプレート含有ゼオライトに含まれる対カチオン及び有機テンプレートの合計量に対して10~1000当量となるように設定されることが好ましい。 The solution used for the ion exchange treatment is preferably a solution using a solvent containing at least 50% by volume of water, and more preferably an aqueous solution. Examples of the compound that supplies ammonium ions into the solution include various inorganic and organic ammonium salts such as ammonium chloride, ammonium sulfate, ammonium nitrate, ammonium phosphate, and ammonium acetate. On the other hand, mineral acids such as hydrochloric acid, sulfuric acid and nitric acid are usually used as the compound for supplying protons into the solution. An ion-exchanged zeolite obtained by ion-exchange of an organic template-containing zeolite in the presence of ammonium ions (here, an ammonium-type zeolite) releases ammonia during subsequent calcination, and the counter cation serves as a proton as a brane. Stead acid point. As the cation species used for ion exchange, ammonium ions are preferred. The content of ammonium ions and / or protons contained in the solution is preferably set to be 10 to 1000 equivalents with respect to the total amount of counter cations and organic templates contained in the organic template-containing zeolite used. .
 上記イオン交換処理は、粉末状の有機テンプレート含有ゼオライト単体に対して行ってもよく、またイオン交換処理に先立って、有機テンプレート含有ゼオライトにバインダーである無機酸化物を配合し、成型を行い、得られる成型体に対して行ってもよい。但し、上記の成型体を焼成することなくイオン交換処理に供すると、当該成型体が崩壊、粉化する問題が生じやすくなることから、粉末状の有機テンプレート含有ゼオライトをイオン交換処理に供することが好ましい。 The above ion exchange treatment may be performed on the powdery organic template-containing zeolite alone, and prior to the ion exchange treatment, the organic template-containing zeolite is blended with an inorganic oxide as a binder, molded, and obtained. You may perform with respect to the molded object obtained. However, if the molded body is subjected to an ion exchange treatment without firing, the molded body is likely to collapse and pulverize, so the powdered organic template-containing zeolite can be subjected to an ion exchange treatment. preferable.
 イオン交換処理は、定法、すなわち、アンモニウムイオン及び/又はプロトンを含む溶液、好ましくは水溶液に有機テンプレートを含むゼオライトを浸漬し、これを攪拌又は流動する方法によって行うことが好ましい。また、上記の撹拌又は流動は、イオン交換の効率を高めるために加熱下に行うことが好ましい。本態様においては、上記水溶液を加熱し、沸騰、還流下でイオン交換する方法が特に好ましい。 The ion exchange treatment is preferably performed by an ordinary method, that is, a method of immersing zeolite containing an organic template in a solution containing ammonium ions and / or protons, preferably an aqueous solution, and stirring or flowing the zeolite. Moreover, it is preferable to perform said stirring or a flow under a heating in order to improve the efficiency of ion exchange. In this embodiment, a method in which the aqueous solution is heated and ion exchange is performed under boiling and reflux is particularly preferable.
 更に、イオン交換の効率を高める点から、溶液によってゼオライトをイオン交換する間に、溶液を一回又は二回以上新しいものに交換することが好ましく、溶液を一回又は二回新しいものに交換することがより好ましい。溶液を一回交換する場合、例えば、有機テンプレート含有ゼオライトをアンモニウムイオン及び/又はプロトンを含む溶液に浸漬し、これを1~6時間加熱還流し、次いで、溶液を新しいもの交換した後、更に6~12時間加熱還流することにより、イオン交換効率を高めることが可能となる。 Furthermore, from the viewpoint of increasing the efficiency of ion exchange, it is preferable to exchange the solution once or twice or more during the ion exchange of the zeolite with the solution, and exchange the solution once or twice. It is more preferable. In the case of changing the solution once, for example, the organic template-containing zeolite is immersed in a solution containing ammonium ions and / or protons and heated to reflux for 1 to 6 hours. By heating and refluxing for ˜12 hours, the ion exchange efficiency can be increased.
 イオン交換処理により、ゼオライト中のアルカリ金属等の対カチオンのほぼ全てをアンモニウムイオン及び/又はプロトンに交換することが可能である。一方、ゼオライト内に包含される有機テンプレートについては、上記のイオン交換処理によりその一部が除去されるが、同処理を繰り返し行っても、その全てを除去することは一般に困難であり、その一部がゼオライト内部に残留する。 It is possible to exchange almost all counter cations such as alkali metals in zeolite with ammonium ions and / or protons by ion exchange treatment. On the other hand, a part of the organic template included in the zeolite is removed by the above ion exchange treatment. However, it is generally difficult to remove all of the organic template even if the treatment is repeated. Part remains inside the zeolite.
 本態様では、イオン交換ゼオライトとバインダーとが含まれる混合物を窒素雰囲気下、250~350℃の温度で加熱して担体前駆体を得る。 In this embodiment, a carrier precursor is obtained by heating a mixture containing ion-exchanged zeolite and a binder at a temperature of 250 to 350 ° C. in a nitrogen atmosphere.
 イオン交換ゼオライトとバインダーとが含まれる混合物は、上記の方法にて得られたイオン交換ゼオライトに、バインダーである無機酸化物を配合し、得られる組成物を成型したものが好ましい。無機酸化物をイオン交換ゼオライトに配合する目的は、成型体の焼成によって得られる担体(特には、粒子状の担体)の機械的強度を、実用に耐えられる程度に向上することにあるが、本発明者は、無機酸化物種の選択が水素化異性化触媒の異性化選択性に影響を与えることを見出している。このような観点から、上記無機酸化物として、アルミナ、シリカ、チタニア、ボリア、ジルコニア、マグネシア、セリア、酸化亜鉛及び酸化リン並びにこれらの2種以上の組み合わせからなる複合酸化物から選択される少なくとも一種の無機酸化物が用いられる。中でも、水素化異性化触媒の異性化選択性が更に向上するとの観点から、シリカ、アルミナが好ましく、アルミナがより好ましい。また、上記「これらの2種以上の組み合わせからなる複合酸化物」とは、アルミナ、シリカ、チタニア、ボリア、ジルコニア、マグネシア、セリア、酸化亜鉛、及び酸化リンのうちの少なくとも2種の成分からなる複合酸化物であるが、複合酸化物を基準として50質量%以上のアルミナ成分を含有するアルミナを主成分とする複合酸化物が好ましく、中でもアルミナ-シリカがより好ましい。 The mixture containing the ion exchange zeolite and the binder is preferably a mixture of the ion exchange zeolite obtained by the above method and an inorganic oxide as a binder and molding the resulting composition. The purpose of blending the inorganic oxide with the ion-exchanged zeolite is to improve the mechanical strength of the carrier (particularly, the particulate carrier) obtained by firing the molded body to such an extent that it can be practically used. The inventor has found that the choice of the inorganic oxide species affects the isomerization selectivity of the hydroisomerization catalyst. From such a viewpoint, the inorganic oxide is at least one selected from a composite oxide composed of alumina, silica, titania, boria, zirconia, magnesia, ceria, zinc oxide, phosphorus oxide, and combinations of two or more thereof. Inorganic oxides are used. Among these, silica and alumina are preferable and alumina is more preferable from the viewpoint of further improving the isomerization selectivity of the hydroisomerization catalyst. The “composite oxide composed of a combination of two or more of these” is composed of at least two components of alumina, silica, titania, boria, zirconia, magnesia, ceria, zinc oxide, and phosphorus oxide. The composite oxide is preferably a composite oxide mainly composed of alumina containing 50% by mass or more of an alumina component based on the composite oxide, and more preferably alumina-silica.
 上記組成物におけるイオン交換ゼオライトと無機酸化物との配合比率は、イオン交換ゼオライトの質量:無機酸化物の質量の比として、好ましくは10:90~90:10、より好ましくは30:70~85:15である。この比が10:90よりも小さい場合には、水素化異性化触媒の活性が充分ではなくなる傾向にあるため好ましくない。一方、上記比が90:10を超える場合には、組成物を成型及び焼成して得られる担体の機械的強度が充分ではなくなる傾向にあるため好ましくない。 The mixing ratio of the ion exchange zeolite and the inorganic oxide in the above composition is preferably 10:90 to 90:10, more preferably 30:70 to 85 as a ratio of the mass of the ion exchange zeolite to the mass of the inorganic oxide. : 15. When this ratio is smaller than 10:90, it is not preferable because the activity of the hydroisomerization catalyst tends to be insufficient. On the other hand, when the ratio exceeds 90:10, the mechanical strength of the carrier obtained by molding and baking the composition tends to be insufficient, which is not preferable.
 イオン交換ゼオライトに上記の無機酸化物を配合する方法は特に限定されないが、例えば両者の粉末に適量の水等の液体を添加して粘ちょうな流体とし、これをニーダー等により混練する等の通常行われる方法を採用することができる。 The method of blending the above-mentioned inorganic oxide with the ion-exchanged zeolite is not particularly limited. The method performed can be adopted.
 上記イオン交換ゼオライトと上記無機酸化物とを含む組成物或いはそれを含む粘ちょうな流体は、押出成型等の方法により成型され、好ましくは乾燥されて粒子状の成型体となる。成型体の形状としては特に限定されないが、例えば、円筒状、ペレット状、球状、三つ葉・四つ葉形の断面を有する異形筒状等が挙げられる。成型体の大きさは特に限定されないが、取り扱いの容易さ、反応器への充填密度等の観点から、例えば長軸が1~30mm、短軸が1~20mm程度であることが好ましい。 The composition containing the ion-exchanged zeolite and the inorganic oxide or the viscous fluid containing the composition is molded by a method such as extrusion molding, and preferably dried to form a particulate molded body. The shape of the molded body is not particularly limited, and examples thereof include a cylindrical shape, a pellet shape, a spherical shape, and a modified cylindrical shape having a trefoil / four-leaf cross section. The size of the molded body is not particularly limited, but from the viewpoint of ease of handling, packing density in the reactor, etc., for example, the major axis is preferably about 1 to 30 mm and the minor axis is about 1 to 20 mm.
 本態様においては、上記のようにして得られた成型された成型体を、N雰囲気下、250~350℃の温度で加熱して担体前駆体とすることが好ましい。加熱時間については、0.5~10時間が好ましく、1~5時間がより好ましい。 In this embodiment, the molded body obtained as described above is preferably heated to a temperature of 250 to 350 ° C. in a N 2 atmosphere to form a carrier precursor. The heating time is preferably 0.5 to 10 hours, and more preferably 1 to 5 hours.
 本態様において、上記加熱温度が250℃より低い場合は、有機テンプレートが多量に残留し、残留したテンプレートによってゼオライト細孔が閉塞する。異性化活性点は細孔ポアマウス付近に存在すると考えられており、上記の場合、細孔閉塞によって反応基質が細孔内へ拡散できなくなり、活性点が被覆されて異性化反応が進行しにくくなり、ノルマルパラフィンの転化率が充分に得られにくくなる傾向にある。一方、加熱温度が350℃を超える場合には、得られる水素化異性化触媒の異性化選択性が充分に向上しない。 In this embodiment, when the heating temperature is lower than 250 ° C., a large amount of the organic template remains, and the pores are blocked by the remaining template. It is considered that the isomerization active site is present near the pore pore mouse. In the above case, the reaction substrate cannot diffuse into the pore due to the clogging of the pore, and the active site is covered and the isomerization reaction does not proceed easily. The conversion rate of normal paraffin tends to be insufficient. On the other hand, when the heating temperature exceeds 350 ° C., the isomerization selectivity of the resulting hydroisomerization catalyst is not sufficiently improved.
 成型体を加熱して担体前駆体とするときの下限温度は280℃以上が好ましい。また、上限温度は330℃以下が好ましい。 The lower limit temperature when the molded body is heated to form a carrier precursor is preferably 280 ° C or higher. The upper limit temperature is preferably 330 ° C. or lower.
 本態様では、上記成型体に含まれる有機テンプレートの一部が残留するように上記混合物を加熱することが好ましい。具体的には、後述の金属担持後の焼成を経て得られる水素化異性化触媒の単位質量当りのミクロ細孔容積が0.02~0.11cc/gであり、当該触媒に含有されるゼオライトの単位質量当りのミクロ細孔容積が0.04~0.12cc/gとなるように加熱条件を設定することが好ましい。 In this embodiment, it is preferable to heat the mixture so that a part of the organic template contained in the molded body remains. Specifically, the micropore volume per unit mass of the hydroisomerization catalyst obtained through calcination after metal support described later is 0.02 to 0.11 cc / g, and the zeolite contained in the catalyst It is preferable to set the heating conditions so that the micropore volume per unit mass is 0.04 to 0.12 cc / g.
 次に、上記担体前駆体に白金塩及び/又はパラジウム塩を含ませた触媒前駆体を、分子状酸素を含む雰囲気下、350~400℃、好ましくは380~400℃、より好ましくは400℃の温度で焼成して、ゼオライトを含む担体に白金及び/又はパラジウムが担持された水素化異性化触媒を得る。なお、「分子状酸素を含む雰囲気下」とは、酸素ガスを含む気体、中でも好ましくは空気と接触することを意味する。焼成の時間は、0.5~10時間であることが好ましく、1~5時間であることがより好ましい。 Next, a catalyst precursor in which a platinum salt and / or palladium salt is contained in the carrier precursor is heated to 350 to 400 ° C., preferably 380 to 400 ° C., more preferably 400 ° C. in an atmosphere containing molecular oxygen. By calcining at a temperature, a hydroisomerization catalyst in which platinum and / or palladium is supported on a support containing zeolite is obtained. Note that “under an atmosphere containing molecular oxygen” means that the gas is in contact with a gas containing oxygen gas, preferably air. The firing time is preferably 0.5 to 10 hours, and more preferably 1 to 5 hours.
 白金塩としては、例えば、塩化白金酸、テトラアンミンジニトロ白金、ジニトロアミノ白金、テトラアンミンジクロロ白金などが挙げられる。塩化物塩は反応時に塩酸が発生して装置腐食の恐れがあるため、塩化物塩以外で白金が高分散する白金塩であるテトラアンミンジニトロ白金が好ましい。 Examples of platinum salts include chloroplatinic acid, tetraamminedinitroplatinum, dinitroaminoplatinum, and tetraamminedichloroplatinum. Since the chloride salt generates hydrochloric acid during the reaction and may corrode the equipment, tetraamminedinitroplatinum, which is a platinum salt in which platinum is highly dispersed other than the chloride salt, is preferable.
 パラジウム塩としては、例えば、塩化パラジウム、テトラアンミンパラジウム硝酸塩、ジアミノパラジウム硝酸塩などが挙げられる。塩化物塩は反応時に塩酸が発生して装置腐食の恐れがあるため、塩化物塩以外でパラジウムが高分散するパラジウム塩であるテトラアンミンパラジウム硝酸塩が好ましい。 Examples of the palladium salt include palladium chloride, tetraamminepalladium nitrate, and diaminopalladium nitrate. Since the chloride salt generates hydrochloric acid during the reaction and may corrode the equipment, tetraamminepalladium nitrate, which is a palladium salt in which palladium is highly dispersed other than the chloride salt, is preferable.
 本態様に係るゼオライトを含む担体における活性金属の担持量は、担体の質量を基準として、0.001~20質量%が好ましく、0.01~5質量%がより好ましい。担持量が0.001質量%未満の場合には、所定の水素化/脱水素機能を付与することが困難となる。一方、担持量が20質量%を超える場合には、当該活性金属上での炭化水素の分解による軽質化が進行しやすくなり、目的とする留分の収率が低下する傾向にあり、さらには触媒コストの上昇を招く傾向にあるため好ましくない。 The amount of the active metal supported on the support containing zeolite according to this embodiment is preferably 0.001 to 20% by mass, more preferably 0.01 to 5% by mass based on the mass of the support. When the supported amount is less than 0.001% by mass, it is difficult to provide a predetermined hydrogenation / dehydrogenation function. On the other hand, when the supported amount exceeds 20% by mass, lightening by decomposition of hydrocarbons on the active metal tends to proceed, and the yield of the target fraction tends to decrease, This is not preferable because the catalyst cost tends to increase.
 また、本態様に係る水素化異性化触媒が含イオウ化合物及び/又は含窒素化合物を多く含む炭化水素油の水素化異性化に用いられる場合、触媒活性の持続性の観点から、活性金属として、ニッケル-コバルト、ニッケル-モリブデン、コバルト-モリブデン、ニッケル-モリブデン-コバルト、ニッケル-タングステン-コバルト等の組み合わせを含むことが好ましい。これらの金属の担持量は、担体の質量を基準として、0.001~50質量%が好ましく、0.01~30質量%がより好ましい。 Further, when the hydroisomerization catalyst according to this embodiment is used for hydroisomerization of a hydrocarbon oil containing a large amount of a sulfur-containing compound and / or a nitrogen-containing compound, from the viewpoint of sustainability of catalyst activity, as an active metal, It is preferable to include a combination of nickel-cobalt, nickel-molybdenum, cobalt-molybdenum, nickel-molybdenum-cobalt, nickel-tungsten-cobalt and the like. The amount of these metals supported is preferably 0.001 to 50 mass%, more preferably 0.01 to 30 mass%, based on the mass of the carrier.
 本態様では、上記担体前駆体に残留させた有機テンプレートが残留するように上記触媒前駆体を焼成することが好ましい。具体的には、得られる水素化異性化触媒の単位質量当りのミクロ細孔容積が0.02~0.11cc/gであり、当該触媒に含有されるゼオライトの単位質量当りのミクロ細孔容積が0.04~0.12cc/gとなるように加熱条件を設定することが好ましい。 In this embodiment, the catalyst precursor is preferably calcined so that the organic template left on the carrier precursor remains. Specifically, the micropore volume per unit mass of the resulting hydroisomerization catalyst is 0.02 to 0.11 cc / g, and the micropore volume per unit mass of zeolite contained in the catalyst It is preferable to set the heating conditions so that is 0.04 to 0.12 cc / g.
 水素化異性化触媒の単位質量当りのミクロ細孔容積は、窒素吸着測定と呼ばれる方法にて算出される。すなわち、触媒について、液体窒素温度(-196℃)で測定した窒素の物理吸着脱離等温線を解析、具体的には、液体窒素温度(-196℃)で測定した窒素の吸着等温線をt-plot法により解析することにより、触媒の単位質量当りのミクロ細孔容積が算出される。また、触媒に含有されるゼオライトの単位質量当りのミクロ細孔容積についても、上記の窒素吸着測定により算出される。 The micropore volume per unit mass of the hydroisomerization catalyst is calculated by a method called nitrogen adsorption measurement. That is, for the catalyst, the physical adsorption / desorption isotherm of nitrogen measured at the liquid nitrogen temperature (−196 ° C.) is analyzed. Specifically, the adsorption isotherm of nitrogen measured at the liquid nitrogen temperature (−196 ° C.) The micropore volume per unit mass of the catalyst is calculated by analyzing by the −plot method. The micropore volume per unit mass of zeolite contained in the catalyst is also calculated by the above nitrogen adsorption measurement.
 なお、本明細書においてミクロ細孔とは、国際純正・応用化学連合IUPAC(International Union of Pure and Applied Chemistry)で定義されている「直径が2nm以下の細孔」を指す。 In the present specification, the micropore refers to a “pore having a diameter of 2 nm or less” defined by the International Pure and Applied Chemistry Union IUPAC (International Union of Pure and Applied Chemistry).
 触媒に含有されるゼオライトの単位質量当りのミクロ細孔容積Vは、例えば、バインダーがミクロ細孔容積を有していない場合、水素化異性化触媒の単位質量当りのミクロ細孔容積の値Vと、触媒におけるゼオライトの含有割合M(質量%)から下記式に従って算出することができる。
 V=V/M×100
Micropore volume V Z per unit mass of zeolite contained in the catalyst, for example, if the binder does not have a micropore volume, the value of the micropore volume per unit mass of the hydroisomerization catalyst It can be calculated according to the following formula from V c and the content ratio M z (mass%) of the zeolite in the catalyst.
V Z = V c / M z × 100
 本態様の水素化異性化触媒は、上記の焼成処理に続いて、水素化異性化の反応を行う反応器に充填後に還元処理されたものであることが好ましい。具体的には、分子状水素を含む雰囲気下、好ましくは水素ガス流通下、好ましくは250~500℃、より好ましくは300~400℃にて、0.5~5時間程度の還元処理が施されたものであることが好ましい。このような工程により、炭化水素油の脱蝋に対する高い活性をより確実に触媒に付与することができる。 The hydroisomerization catalyst of this embodiment is preferably a catalyst that has been subjected to a reduction treatment after being charged into a reactor that performs a hydroisomerization reaction following the above-described calcination treatment. Specifically, reduction treatment is performed for about 0.5 to 5 hours in an atmosphere containing molecular hydrogen, preferably in a hydrogen gas flow, preferably at 250 to 500 ° C., more preferably at 300 to 400 ° C. It is preferable that By such a process, the high activity with respect to dewaxing of hydrocarbon oil can be more reliably imparted to the catalyst.
 本態様の水素化異性化触媒は、10員環一次元状細孔構造を有するゼオライト、及びバインダーを含む担体と、該担体に担持された白金及び/又はパラジウムと、を含有し、触媒の単位質量当りのミクロ細孔容積が0.02~0.11cc/gである水素化異性化触媒であって、上記ゼオライトは、有機テンプレートを含有し10員環一次元状細孔構造を有する有機テンプレート含有ゼオライトを、アンモニウムイオン及び/又はプロトンを含む溶液中でイオン交換して得られるイオン交換ゼオライトに由来するものであり、触媒に含有されるゼオライトの単位質量当りのミクロ細孔容積が0.04~0.12cc/gであるものであってもよい。 The hydroisomerization catalyst of this embodiment contains a zeolite having a 10-membered ring one-dimensional pore structure, a support containing a binder, and platinum and / or palladium supported on the support, and is a unit of catalyst. A hydroisomerization catalyst having a micropore volume per mass of 0.02 to 0.11 cc / g, wherein the zeolite contains an organic template and has a 10-membered ring one-dimensional pore structure The zeolite contained is derived from an ion exchange zeolite obtained by ion exchange in a solution containing ammonium ions and / or protons, and the micropore volume per unit mass of the zeolite contained in the catalyst is 0.04. It may be from 0.12 cc / g.
 上記の水素化異性化触媒は、上述した方法により製造することができる。触媒の単位質量当りのミクロ細孔容積及び触媒に含有されるゼオライトの単位質量当りのミクロ細孔容積は、イオン交換ゼオライトとバインダーとが含まれる混合物におけるイオン交換ゼオライトの配合量、当該混合物のN雰囲気下での加熱条件、触媒前駆体の分子状酸素を含む雰囲気下での加熱条件を適宜調整することより上記範囲内にすることができる。 Said hydroisomerization catalyst can be manufactured by the method mentioned above. The micropore volume per unit mass of the catalyst and the micropore volume per unit mass of the zeolite contained in the catalyst are the blending amount of the ion exchange zeolite in the mixture containing the ion exchange zeolite and the binder, and the N of the mixture. The heating conditions under the two atmospheres and the heating conditions under the atmosphere containing the molecular oxygen of the catalyst precursor can be appropriately adjusted to be within the above range.
 脱蝋工程における反応温度は、200~450℃が好ましく、220~400℃がより好ましい。反応温度が200℃を下回る場合、基油留分に含まれるノルマルパラフィンの異性化が進行しにくくなり、ワックス成分の低減、除去が不十分になる傾向にある。一方、反応温度が450℃を超える場合、基油留分の分解が顕著となり、潤滑油基油の収率が低下する傾向にある。 The reaction temperature in the dewaxing step is preferably 200 to 450 ° C, more preferably 220 to 400 ° C. When the reaction temperature is lower than 200 ° C., the isomerization of normal paraffin contained in the base oil fraction is difficult to proceed, and the wax component tends to be insufficiently reduced and removed. On the other hand, when the reaction temperature exceeds 450 ° C., the decomposition of the base oil fraction becomes remarkable, and the yield of the lubricating base oil tends to decrease.
 脱蝋工程における反応圧力は、0.1~20MPaが好ましく、0.5~15MPaが寄り好ましい。反応圧力が0.1MPaを下回る場合、コーク生成による触媒の劣化が早まる傾向にある。一方、反応圧力が20MPaを超える場合、装置建設コストが高くなるため経済的なプロセスを実現しにくくなる傾向にある。 The reaction pressure in the dewaxing step is preferably 0.1 to 20 MPa, more preferably 0.5 to 15 MPa. When the reaction pressure is less than 0.1 MPa, the deterioration of the catalyst due to coke generation tends to be accelerated. On the other hand, when the reaction pressure exceeds 20 MPa, the cost for constructing the apparatus tends to increase, and it tends to be difficult to realize an economical process.
 脱蝋工程において、基油留分の触媒に対する液空間速度は、0.01~100hr-1が好ましく、0.1~50hr-1がより好ましい。液空間速度が0.01hr-1未満の場合、基油留分の分解が過度に進行しやすくなり、生産効率が低下する傾向にある。一方、液空間速度が100hr-1を超える場合、基油留分中に含まれるノルマルパラフィンの異性化が進行しにくくなり、ワックス成分の低減、除去が不十分になる傾向にある。 In dewaxing step, the liquid hourly space velocity for the base oil fraction of the catalyst is preferably 0.01 ~ 100 hr -1, more preferably 0.1 ~ 50 hr -1. When the liquid space velocity is less than 0.01 hr −1 , decomposition of the base oil fraction tends to proceed excessively, and production efficiency tends to decrease. On the other hand, when the liquid space velocity exceeds 100 hr −1 , isomerization of normal paraffin contained in the base oil fraction does not proceed easily, and the wax component tends to be insufficiently reduced and removed.
 水素と基油留分との供給比率は、100~1000Nm/mが好ましく、200~800Nm/mがより好ましい。供給比率が100Nm/m未満の場合、例えば基油留分が硫黄分又は窒素分を含む場合、異性化反応と併発する脱硫、脱窒素反応により発生する硫化水素、アンモニアガスが触媒上の活性金属を吸着被毒するため、所定の触媒性能が得られにくくなる傾向にある。一方、供給比率が1000Nm/mを超える場合、大きな能力の水素供給設備を必要とするため経済的なプロセスを実現しにくくなる傾向にある。 Supply ratio of hydrogen to base oil fraction is preferably 100 ~ 1000Nm 3 / m 3, more preferably 200 ~ 800Nm 3 / m 3. When the supply ratio is less than 100 Nm 3 / m 3 , for example, when the base oil fraction contains a sulfur content or a nitrogen content, hydrogen sulfide and ammonia gas generated by desulfurization and denitrogenation combined with the isomerization reaction are on the catalyst. Since the active metal is adsorbed and poisoned, it tends to be difficult to obtain a predetermined catalyst performance. On the other hand, when the supply ratio exceeds 1000 Nm 3 / m 3 , a hydrogen supply facility with a large capacity is required, so that it is difficult to realize an economical process.
 脱蝋工程で得られた脱蝋油は、水素化仕上げ工程に供され、水素化仕上げ処理(水素化精製処理)が施される。 The dewaxed oil obtained in the dewaxing process is subjected to a hydrofinishing process and subjected to a hydrofinishing process (hydrorefining process).
 水素化仕上げ工程に用いる反応器は特に制限されず、所定の水素化精製触媒を固定床の流通式反応器に充填し、この反応器に分子状水素及び上記脱蝋油を流通させることにより水素化仕上げ処理(水素化精製処理)を好適に実施することができる。本発明でいう水素化仕上げ処理(水素化精製処理)とは、潤滑油の酸化安定性、色相を改善することを意味し、脱蝋油のオレフィン水素化、芳香族水素化が行われる。 The reactor used in the hydrofinishing process is not particularly limited, and a predetermined hydrorefining catalyst is charged into a fixed bed flow reactor, and molecular hydrogen and the dewaxed oil are circulated through the reactor. The hydrofinishing treatment (hydrorefining treatment) can be suitably carried out. The hydrofinishing treatment (hydrorefining treatment) in the present invention means to improve the oxidation stability and hue of the lubricating oil, and the olefin hydrogenation and aromatic hydrogenation of the dewaxed oil are performed.
 水素化精製触媒としては、例えば、アルミナ、シリカ、ジルコニア、チタニア、ボリア、マグネシア及びリンから選ばれる1種類以上の無機固体酸性物質を含んで構成される担体と、その担体上に担持された、白金、パラジウム、ニッケル-モリブデン、ニッケル-タングステン及びニッケル-コバルト-モリブデンからなる群より選ばれる1種以上の活性金属とを備えた触媒が挙げられる。 As the hydrorefining catalyst, for example, a support comprising one or more inorganic solid acidic substances selected from alumina, silica, zirconia, titania, boria, magnesia and phosphorus, and supported on the support, And a catalyst having at least one active metal selected from the group consisting of platinum, palladium, nickel-molybdenum, nickel-tungsten and nickel-cobalt-molybdenum.
 好適な担体としては、アルミナ、シリカ、ジルコニア、又はチタニアを少なくとも2種類以上含む無機固体酸性物質である。 A suitable carrier is an inorganic solid acidic substance containing at least two kinds of alumina, silica, zirconia, or titania.
 担体に上記活性金属を担持する方法としては、含浸やイオン交換等の常法を採用できる。 As a method for supporting the active metal on the carrier, conventional methods such as impregnation and ion exchange can be employed.
 水素化精製触媒における活性金属の担持量は、金属の合計量が担体に対して0.1~25質量%であることが好ましい。 The supported amount of active metal in the hydrotreating catalyst is preferably such that the total amount of metal is 0.1 to 25% by mass relative to the support.
 水素化精製触媒の平均細孔径は6~60nmであると好ましく、7~30nmであるとより好ましい。平均細孔径が6nmより小さいと十分な触媒活性が得られない傾向にあり、平均細孔径が60nmを越えると、活性金属の分散度が下がることにより触媒活性が低下する傾向にある。また水素化精製触媒の細孔容積は0.2mL/g以上であると好ましい。細孔容積が0.2mL/gより小さいと、触媒の活性劣化が早くなる傾向にある。さらに、水素化精製触媒の比表面積は200m/g以上であると好ましい。触媒の比表面積が200m/gを下回ると、活性金属の分散性が不十分となり活性が低下する傾向にある。これら触媒の細孔容積及び比表面積は、窒素吸着によるBET法と呼ばれる方法により測定、算出可能である。 The average pore diameter of the hydrorefining catalyst is preferably 6 to 60 nm, and more preferably 7 to 30 nm. When the average pore diameter is smaller than 6 nm, sufficient catalytic activity tends to be not obtained, and when the average pore diameter exceeds 60 nm, the catalytic activity tends to decrease due to a decrease in the degree of dispersion of the active metal. The pore volume of the hydrotreating catalyst is preferably 0.2 mL / g or more. When the pore volume is less than 0.2 mL / g, the catalyst activity tends to be rapidly deteriorated. Furthermore, the specific surface area of the hydrotreating catalyst is preferably 200 m 2 / g or more. When the specific surface area of the catalyst is less than 200 m 2 / g, the dispersibility of the active metal is insufficient and the activity tends to decrease. The pore volume and specific surface area of these catalysts can be measured and calculated by a method called the BET method based on nitrogen adsorption.
 水素化仕上げ工程における反応条件は、反応温度200~300℃、水素分圧3~20MPa、LHSV0.5~5h-1、水素/油比1000~5000scfbであると好ましく、反応温度200℃~300℃、水素分圧4~18MPa、LHSV0.5~4h-1、水素/油比2000~5000scfbであるとより好ましい。 The reaction conditions in the hydrofinishing step are preferably a reaction temperature of 200 to 300 ° C., a hydrogen partial pressure of 3 to 20 MPa, an LHSV of 0.5 to 5 h-1, and a hydrogen / oil ratio of 1000 to 5000 scfb, and a reaction temperature of 200 to 300 ° C. More preferably, the hydrogen partial pressure is 4 to 18 MPa, the LHSV is 0.5 to 4 h-1, and the hydrogen / oil ratio is 2000 to 5000 scfb.
 本実施形態においては、水素化精製油における硫黄分及び窒素分がそれぞれ、5質量ppm以下及び1質量ppm以下となるように反応条件を調整することが好ましい。 In this embodiment, it is preferable to adjust the reaction conditions so that the sulfur content and the nitrogen content in the hydrorefined oil are 5 mass ppm or less and 1 mass ppm or less, respectively.
 水素化仕上げ工程により得られる精製油は、第2分留工程に供される。そして、複数のカットポイントを設定し水素化精製油を減圧蒸留することにより、所望の潤滑油留分が得られる。 The refined oil obtained by the hydrofinishing process is subjected to the second fractionation process. Then, a desired lubricating oil fraction can be obtained by setting a plurality of cut points and distilling the hydrorefined oil under reduced pressure.
 なお、水素化精製油には、水素化異性化や水素化仕上げ処理(水素化精製処理)により副生したナフサや灯軽油などの軽質留分が含まれ得るが、これらの軽質粒分は、例えば、沸点350℃以下の留分として回収することができる。 The hydrorefined oil may contain light fractions such as naphtha and kerosene oil produced as a by-product of hydroisomerization or hydrofinishing treatment (hydrorefining treatment). For example, it can be recovered as a fraction having a boiling point of 350 ° C. or lower.
 本発明の潤滑油基油の製造方法は、上述した実施形態に限定されず、適宜変更することが可能である。例えば、本発明の潤滑油基油の製造方法は、上記脱蝋油の製造方法により得られた脱蝋油を分留して潤滑油留分を得る蒸留工程と、該蒸留工程で得られた潤滑油留分を水素化仕上げ処理(水素化精製処理)する水素化仕上げ工程と、を備えるものであってもよい。 The method for producing the lubricating base oil of the present invention is not limited to the above-described embodiment, and can be changed as appropriate. For example, the method for producing a lubricating base oil of the present invention includes a distillation step of fractionating the dewaxed oil obtained by the above dewaxed oil production method to obtain a lubricating oil fraction, and the distillation base step. And a hydrofinishing step of hydrofinishing (hydrorefining treatment) of the lubricating oil fraction.
 上記第1実施形態~第3実施形態に係る潤滑油基油、並びに第4実施形態に係る製造方法によって得られる潤滑油基油は、低温粘度特性及びシール性に優れるものであり、様々な用途の潤滑油基油として好ましく用いることができる。潤滑油基油の用途としては、具体的には、乗用車用ガソリンエンジン、二輪車用ガソリンエンジン、ディーゼルエンジン、ガスエンジン、ガスヒートポンプ用エンジン、船舶用エンジン、発電エンジンなどの内燃機関に用いられる潤滑油(内燃機関用潤滑油)、自動変速機、手動変速機、無断変速機、終減速機などの駆動伝達装置に用いられる潤滑油(駆動伝達装置用油)、緩衝器、建設機械等の油圧装置に用いられる油圧作動油、圧縮機油、タービン油、工業用ギヤ油、冷凍機油、さび止め油、熱媒体油、ガスホルダーシール油、軸受油、抄紙機用油、工作機械油、すべり案内面油、電気絶縁油、切削油、プレス油、圧延油、熱処理油などが挙げられ、これらの用途に本実施形態に係る潤滑油基油を用いることによって、低温粘度特性とシール性とを高水準で両立することができるようになる。 The lubricant base oil according to the first to third embodiments and the lubricant base oil obtained by the production method according to the fourth embodiment have excellent low-temperature viscosity characteristics and sealing properties, and are used in various applications. It can be preferably used as a lubricating base oil. Lubricating oil base oils are specifically used in internal combustion engines such as gasoline engines for passenger cars, gasoline engines for motorcycles, diesel engines, gas engines, gas heat pump engines, marine engines, and power generation engines. (Lubricating oil for internal combustion engines), automatic transmissions, manual transmissions, continuously variable transmissions, final reduction gears, etc. Lubricating oils (drive transmission device oils), shock absorbers, hydraulic equipment for construction machinery, etc. Hydraulic oil, compressor oil, turbine oil, industrial gear oil, refrigeration oil, rust prevention oil, heat medium oil, gas holder seal oil, bearing oil, paper machine oil, machine tool oil, slip guide surface oil , Electrical insulating oil, cutting oil, press oil, rolling oil, heat treatment oil, etc., and by using the lubricating base oil according to the present embodiment for these applications, It is possible at a high level both the Le resistance.
 上記の用途においてにおいては、各実施形態に係る潤滑油基油を単独で用いてもよく、また、各実施形態に係る潤滑油基油を他の基油の1種又は2種以上と併用してもよい。なお、各実施形態に係る潤滑油基油と他の基油とを併用する場合、それらの混合基油中に占める本発明の潤滑油基油の割合は、30質量%以上であることが好ましく、50質量%以上であることがより好ましく、70質量%以上であることが更に好ましい。 In the above applications, the lubricant base oil according to each embodiment may be used alone, and the lubricant base oil according to each embodiment is used in combination with one or more other base oils. May be. When the lubricating base oil according to each embodiment is used in combination with another base oil, the ratio of the lubricating base oil of the present invention in the mixed base oil is preferably 30% by mass or more. 50% by mass or more is more preferable, and 70% by mass or more is still more preferable.
 各実施形態に係る潤滑油基油と併用される他の基油としては、特に制限されないが、鉱油系基油としては、例えば100℃における動粘度が1~100mm/sの溶剤精製鉱油、水素化分解鉱油、水素化精製鉱油、溶剤脱ろう基油などが挙げられる。 The other base oil used in combination with the lubricating base oil according to each embodiment is not particularly limited. Examples of the mineral base oil include solvent refined mineral oil having a kinematic viscosity at 100 ° C. of 1 to 100 mm 2 / s, Examples include hydrocracked mineral oil, hydrorefined mineral oil, and solvent dewaxing base oil.
 また、合成系基油としては、ポリα-オレフィン又はその水素化物、イソブテンオリゴマー又はその水素化物、イソパラフィン、アルキルベンゼン、アルキルナフタレン、ジエステル(ジトリデシルグルタレート、ジ-2-エチルヘキシルアジペート、ジイソデシルアジペート、ジトリデシルアジペート、ジ-2-エチルヘキシルセバケート等)、ポリオールエステル(トリメチロールプロパンカプリレート、トリメチロールプロパンペラルゴネート、ペンタエリスリトール2-エチルヘキサノエート、ペンタエリスリトールペラルゴネート等)、ポリオキシアルキレングリコール、ジアルキルジフェニルエーテル、ポリフェニルエーテル等が挙げられ、中でも、ポリα-オレフィンが好ましい。ポリα-オレフィンとしては、典型的には、炭素数2~32、好ましくは6~16のα-オレフィンのオリゴマー又はコオリゴマー(1-オクテンオリゴマー、デセンオリゴマー、エチレン-プロピレンコオリゴマー等)及びそれらの水素化物が挙げられる。 Synthetic base oils include poly α-olefins or hydrides thereof, isobutene oligomers or hydrides thereof, isoparaffins, alkylbenzenes, alkylnaphthalenes, diesters (ditridecyl glutarate, di-2-ethylhexyl adipate, diisodecyl adipate, ditridec Decyl adipate, di-2-ethylhexyl sebacate, etc.), polyol esters (trimethylolpropane caprylate, trimethylolpropane pelargonate, pentaerythritol 2-ethylhexanoate, pentaerythritol pelargonate, etc.), polyoxyalkylene glycol, dialkyl Examples thereof include diphenyl ether and polyphenyl ether, and among them, poly α-olefin is preferable. As the poly α-olefin, typically, an α-olefin oligomer or co-oligomer (1-octene oligomer, decene oligomer, ethylene-propylene co-oligomer, etc.) having 2 to 32 carbon atoms, preferably 6 to 16 carbon atoms, and those Of the hydrides.
 ポリα-オレフィンの製法は特に制限されないが、例えば、三塩化アルミニウム又は三フッ化ホウ素と、水、アルコール(エタノール、プロパノール、ブタノール等)、カルボン酸またはエステルとの錯体を含むフリーデル・クラフツ触媒のような重合触媒の存在下、α-オレフィンを重合する方法が挙げられる。 The production method of poly α-olefin is not particularly limited. For example, Friedel-Crafts catalyst containing a complex of aluminum trichloride or boron trifluoride with water, alcohol (ethanol, propanol, butanol, etc.), carboxylic acid or ester. And a method of polymerizing α-olefin in the presence of a polymerization catalyst such as
 また、必要に応じて、各実施形態に係る潤滑油基油又は当該潤滑油基油と他の潤滑油基油との混合基油に、各種添加剤を配合することができる。かかる添加剤としては、特に制限されず、潤滑油の分野で従来使用される任意の添加剤を配合することができる。かかる潤滑油添加剤としては、具体的には、酸化防止剤、無灰分散剤、金属系清浄剤、極圧剤、摩耗防止剤、粘度指数向上剤、流動点降下剤、摩擦調整剤、油性剤、腐食防止剤、防錆剤、抗乳化剤、金属不活性化剤、シール膨潤剤、消泡剤、着色剤などが挙げられる。これらの添加剤は、1種を単独で用いてもよく、また、2種以上を組み合わせて用いてもよい。 Moreover, various additives can be blended in the lubricating base oil according to each embodiment or a mixed base oil of the lubricating base oil and other lubricating base oils as necessary. Such an additive is not particularly limited, and any additive conventionally used in the field of lubricating oils can be blended. Specific examples of such lubricating oil additives include antioxidants, ashless dispersants, metallic detergents, extreme pressure agents, antiwear agents, viscosity index improvers, pour point depressants, friction modifiers, oiliness agents. , Corrosion inhibitors, rust inhibitors, demulsifiers, metal deactivators, seal swelling agents, antifoaming agents, colorants and the like. These additives may be used individually by 1 type, and may be used in combination of 2 or more type.
 例えば、各実施形態に係る潤滑油基油は、流動点降下剤の添加効果を有効に発揮することができるものである。そのため、各実施形態に係る潤滑油基油又は当該潤滑油基油と他の潤滑油基油との混合基油に流動点降下剤を含有すると、優れた低温粘度特性(-40℃におけるMRV粘度が好ましくは20,000mPa・s以下、より好ましくは15,000mPa・s以下、更に好ましくは10,000mPa・s以下)を達成することができる。なお、本発明でいう-40℃におけるMRV粘度は、JPI-5S-42-93に準拠して測定された-40℃におけるMRV粘度を意味する。 For example, the lubricating base oil according to each embodiment can effectively exert the effect of adding a pour point depressant. Therefore, when the pour point depressant is contained in the lubricating base oil according to each embodiment or the mixed base oil of the lubricating base oil and other lubricating base oil, excellent low temperature viscosity characteristics (MRV viscosity at −40 ° C. Is preferably 20,000 mPa · s or less, more preferably 15,000 mPa · s or less, and still more preferably 10,000 mPa · s or less). In the present invention, the MRV viscosity at −40 ° C. means the MRV viscosity at −40 ° C. measured according to JPI-5S-42-93.
 さらに、第1実施形態に係る潤滑油基油又は第2実施形態に係る潤滑油基油に流動点降下剤を配合した場合、その-40℃におけるMRV粘度は、12,000mPa・s以下とすることができ、より好ましくは10,000mPa・s以下、更に好ましくは8,000mPa・s、特に好ましくは6500mPa・s以下の極めて優れた低温粘度特性を有する潤滑油組成物を得ることができる。この場合、流動点降下剤の配合量は、組成物全量基準で0.05~2質量%、好ましくは0.1~1.5質量%であるが、特にMRV粘度を低下させることができる点で0.15~0.8質量%の範囲が最も良く、流動点降下剤としては、その重量平均分子量は好ましくは1~30万、より好ましくは5~20万のものが特に好ましく、さらに流動点降下剤としては、ポリメタアクリレート系のものが特に好ましい。 Furthermore, when a pour point depressant is blended with the lubricant base oil according to the first embodiment or the lubricant base oil according to the second embodiment, the MRV viscosity at −40 ° C. is 12,000 mPa · s or less. More preferably, a lubricating oil composition having extremely excellent low-temperature viscosity characteristics of 10,000 mPa · s or less, more preferably 8,000 mPa · s, and particularly preferably 6500 mPa · s or less can be obtained. In this case, the blending amount of the pour point depressant is 0.05 to 2% by mass, preferably 0.1 to 1.5% by mass, based on the total amount of the composition. In particular, the MRV viscosity can be lowered. The pour point depressant has a weight average molecular weight of preferably 1 to 300,000, more preferably 50,000 to 200,000, and is particularly preferable. As the point depressant, polymethacrylates are particularly preferable.
 以下、実施例及び比較例に基づき本発明を更に具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。 Hereinafter, the present invention will be described more specifically based on examples and comparative examples, but the present invention is not limited to the following examples.
[実施例1-1~1-3、比較例1-1、1-2]
 実施例1-1~1-3及び比較例1-1、1-2においては、それぞれ表1に示す潤滑油基油を調製した。ここで、実施例1-1~1-3の潤滑油基油は、上記第4の実施形態に係る潤滑油基油の製造方法に準じて得られたものである。一方、比較例1-1、1-2の潤滑油基油は、従来の潤滑油基油の製造方法によって得られたものである。各基油の各種性状、並びに荷重50N(平均ヘルツ圧0.60GPa),試料油温度50℃,周速1m/s,すべり率3%,27.4mmの鋼球とスチールディスクを用いた条件下で測定したトラクション係数を表1に示す。
[Examples 1-1 to 1-3, Comparative Examples 1-1 and 1-2]
In Examples 1-1 to 1-3 and Comparative Examples 1-1 and 1-2, lubricating base oils shown in Table 1 were prepared. Here, the lubricating base oils of Examples 1-1 to 1-3 were obtained according to the manufacturing method of the lubricating base oil according to the fourth embodiment. On the other hand, the lubricating base oils of Comparative Examples 1-1 and 1-2 were obtained by a conventional method for producing a lubricating base oil. Various properties of each base oil and conditions using steel balls and steel disks with a load of 50 N (average Hertz pressure 0.60 GPa), sample oil temperature 50 ° C., peripheral speed 1 m / s, slip rate 3%, 27.4 mm Table 1 shows the traction coefficients measured in (1).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[実施例1-4~1-9、比較例1-3~1-5]
 実施例1-4、1-6、1-8及び比較例1-3、1-5においては、それぞれ実施例1-1~1-3又は比較例1-1、1-2の潤滑油基油をそのまま試料油とした。また、実施例1-5、1-7、1-9及び比較例1-4、1-6においては、それぞれ実施例1-1~1-3又は比較例1-1、1-2の各潤滑油基油に、パッケージ添加剤(内訳:無灰分散剤40質量%、金属系清浄剤40質量%、摩耗防止剤10質量%、酸化防止剤8質量%および金属不活性化剤2質量%)10質量%及び粘度指数向上剤(ポリメタクリレート系、Mw350,000、有効濃度50%)5質量%を添加して潤滑油組成物を調製し、試料油とした。また、比較例1-7として、市販の0W-20油を用意した。各潤滑油組成物の動粘度及び粘度指数を表2に示す。
[Examples 1-4 to 1-9, Comparative Examples 1-3 to 1-5]
In Examples 1-4, 1-6, 1-8 and Comparative Examples 1-3, 1-5, the lubricating oil bases of Examples 1-1 to 1-3 or Comparative Examples 1-1 and 1-2, respectively. The oil was directly used as the sample oil. In Examples 1-5, 1-7 and 1-9 and Comparative Examples 1-4 and 1-6, each of Examples 1-1 to 1-3 or Comparative Examples 1-1 and 1-2 was used. In addition to lubricating base oil, package additives (breakdown: ashless dispersant 40% by weight, metallic detergent 40% by weight, antiwear agent 10% by weight, antioxidant 8% by weight and metal deactivator 2% by weight) A lubricating oil composition was prepared by adding 10% by mass and 5% by mass of a viscosity index improver (polymethacrylate type, Mw 350,000, effective concentration 50%) to obtain a sample oil. As Comparative Example 1-7, a commercially available 0W-20 oil was prepared. Table 2 shows the kinematic viscosity and viscosity index of each lubricating oil composition.
[オイル漏洩試験]
 実施例1-4~1-9及び比較例1-3~1-6の試料油について、以下の手順により、オイル漏洩試験を実施した。
 200mlオートクレーブに試料油を100ml入れ、NBRのパッキンを用い、トルクレンチにより250N・mの締め付けトルクで組み上げる。上部には二方コックを用い、シール材にはテフロン(登録商標)パッキンを使用し、トルクレンチにより250N・mの締め付けトルクで組み上げる。組み上げ後、窒素ガスで200kPaに加圧しする。各資料油について同様の作業を実施し-30±1℃に制御された低温恒温槽に逆さまにセットする。結果は48時間後のNBRパッキンからの油の漏洩で評価し、漏洩のあったものは有、認められなかったものは無とした。
 得られた結果を表2、3に示す。
[Oil leak test]
For the sample oils of Examples 1-4 to 1-9 and Comparative Examples 1-3 to 1-6, an oil leakage test was performed according to the following procedure.
Put 100ml of sample oil in a 200ml autoclave and assemble it with NBR packing and tightening torque of 250N · m with torque wrench. A two-way cock is used for the upper part, Teflon (registered trademark) packing is used for the sealing material, and a torque wrench is used to assemble with a tightening torque of 250 N · m. After assembly, the pressure is increased to 200 kPa with nitrogen gas. Carry out the same operation for each sample oil and place it upside down in a low temperature thermostat controlled at -30 ± 1 ° C. The results were evaluated by oil leakage from the NBR packing after 48 hours. Some were leaked and some were not.
The obtained results are shown in Tables 2 and 3.
[JC08ホットモード燃費評価試験]
 実施例1-5、1-7、1-9及び比較例1-4、1-6の潤滑油組成物について、以下の手順により、JC08ホットモード燃費評価試験を実施した。
 JC08モードは国土交通省が定めた自動車の燃費消費を測定する方法である(詳細は国土交通省 道路運送車両の保安基準の細目を定める告示[2009.07.30]別添42 軽・中量車排出ガスの測定方法参照)。JC08はエンジンが冷えた状態でスタートするコールドモードとエンジンが暖まった状態で測定するホットモードに分けられる。試験には2.5L、FFのガソリンエンジン車(トヨタエスティマ)を選定し、試験開始前にエンジン洗浄および新たに調合された試料油を充填し、シャシダイナモメータ上で試験自動車を60±2km/hの定速で15分間以上暖機運転させた後、速やかにアイドリング状態に戻して所定の走行パターンで運転し排気ガスより消費燃料を計算して燃費を算出した。得られた結果を表2、3に示す。
[JC08 Hot Mode Fuel Efficiency Evaluation Test]
For the lubricating oil compositions of Examples 1-5, 1-7, 1-9 and Comparative Examples 1-4, 1-6, a JC08 hot mode fuel efficiency evaluation test was performed according to the following procedure.
The JC08 mode is a method for measuring the fuel consumption of automobiles set by the Ministry of Land, Infrastructure, Transport and Tourism (for details, see the Ministry of Land, Infrastructure, Transport and Tourism road safety vehicle detail specification [2009.07.30] Annex 42 Light / Medium Refer to the measurement method of car exhaust gas). JC08 is divided into a cold mode that starts when the engine is cold and a hot mode that measures when the engine is warm. A 2.5-liter, FF gasoline engine car (Toyota Estima) was selected for the test, the engine was cleaned and filled with newly prepared sample oil before the start of the test, and the test car was placed on the chassis dynamometer at 60 ± 2 km / After warming up for 15 minutes or more at a constant speed of h, the engine was quickly returned to the idling state and operated in a predetermined traveling pattern, and fuel consumption was calculated from exhaust gas to calculate fuel consumption. The obtained results are shown in Tables 2 and 3.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
[実施例2-1、2-2、比較例2-1~2-3]
 実施例2-1、2-2及び比較例2-1~2-3においては、それぞれ表4に示す潤滑油基油を調製した。ここで、実施例2-1、2-2の潤滑油基油は、上記第4実施形態に係る潤滑油基油の製造方法に準じて得られたものである。一方、比較例2-1~2-3の潤滑油基油は、従来の潤滑油基油の製造方法によって得られたものである。各基油の各種性状、並びに荷重50N(平均ヘルツ圧0.60GPa),試料油温度50℃,周速1m/s,すべり率3%,27.4mmの鋼球とスチールディスクを用いた条件下で測定したトラクション係数を表4に示す。
[Examples 2-1 and 2-2, Comparative Examples 2-1 and 2-3]
In Examples 2-1 and 2-2 and Comparative Examples 2-1 to 2-3, lubricating base oils shown in Table 4 were prepared. Here, the lubricating base oils of Examples 2-1 and 2-2 were obtained according to the manufacturing method of the lubricating base oil according to the fourth embodiment. On the other hand, the lubricating base oils of Comparative Examples 2-1 to 2-3 were obtained by a conventional method for producing a lubricating base oil. Various properties of each base oil and conditions using steel balls and steel disks with a load of 50 N (average Hertz pressure 0.60 GPa), sample oil temperature 50 ° C., peripheral speed 1 m / s, slip rate 3%, 27.4 mm Table 4 shows the traction coefficient measured in (4).
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
[実施例2-3~2-6、比較例2-4~2-9]
 実施例2-3、2-5及び比較例2-4、2-6、2-8においては、それぞれ実施例2-1、2-2又は比較例2-1~2-3の潤滑油基油をそのまま試料油とした。また、実施例2-4、2-6及び比較例2-5、2-7、2-9においては、それぞれ実施例2-1、2-2又は比較例2-1~2-3の各潤滑油基油に、パッケージ添加剤(内訳:摩耗防止剤60質量%、酸化防止剤25質量%、錆止め剤10質量%および金属不活性化剤5質量%)0.8質量%を添加して潤滑油組成物を調製し、試料油とした。
[Examples 2-3 to 2-6, Comparative Examples 2-4 to 2-9]
In Examples 2-3 and 2-5 and Comparative Examples 2-4, 2-6, and 2-8, the lubricating oil bases of Examples 2-1 and 2-2 or Comparative Examples 2-1 to 2-3 were used, respectively. The oil was directly used as the sample oil. In Examples 2-4 and 2-6 and Comparative Examples 2-5, 2-7, and 2-9, each of Examples 2-1 and 2-2 or Comparative Examples 2-1 to 2-3 was used. 0.8% by weight of package additives (breakdown: 60% by weight of antiwear agent, 25% by weight of antioxidant, 10% by weight of rust inhibitor and 5% by weight of metal deactivator) are added to the lubricating base oil. A lubricating oil composition was prepared and used as a sample oil.
[オイル漏洩試験]
 実施例2-3~2-6及び比較例2-4~2-9の試料油について、以下の手順により、オイル漏洩試験を実施した。
 200mlオートクレーブに試料油を100ml入れ、NBRのパッキンを用い、トルクレンチにより250N・mの締め付けトルクで組み上げる。上部には二方コックを用い、シール材にはテフロン(登録商標)パッキンを使用し、トルクレンチにより250N・mの締め付けトルクで組み上げる。組み上げ後、窒素ガスで300kPaに加圧しする。各資料油について同様の作業を実施し-30±1℃に制御された低温恒温槽に逆さまにセットする。結果は48時間後のNBRパッキンからの油の漏洩で評価し、漏洩のあったものは有、認められなかったものは無とした。
 得られた結果を表5、6に示す。
[Oil leak test]
For the sample oils of Examples 2-3 to 2-6 and Comparative Examples 2-4 to 2-9, an oil leakage test was performed according to the following procedure.
Put 100ml of sample oil in a 200ml autoclave and assemble it with NBR packing and tightening torque of 250N · m with torque wrench. A two-way cock is used for the upper part, Teflon (registered trademark) packing is used for the sealing material, and a torque wrench is used to assemble with a tightening torque of 250 N · m. After assembly, the pressure is increased to 300 kPa with nitrogen gas. Carry out the same operation for each sample oil and place it upside down in a low temperature thermostat controlled at -30 ± 1 ° C. The results were evaluated by oil leakage from the NBR packing after 48 hours. Some were leaked and some were not.
The results obtained are shown in Tables 5 and 6.
[貯蔵安定性試験]
 実施例2-3~2-6及び比較例2-4~2-9の試料油について、以下の手順により、貯蔵安定性試験を実施した。
 100mlのスクリュー管に2/3以上油をいれ、各々の試験管を0±1℃の冷蔵庫にいれ、48時間後の外観を確認する。外観に変化のない場合は変化無、曇りの生じたものは曇りと評価する。
[Storage stability test]
For the sample oils of Examples 2-3 to 2-6 and Comparative Examples 2-4 to 2-9, a storage stability test was performed according to the following procedure.
Add 2/3 or more oil into a 100 ml screw tube, put each test tube in a refrigerator at 0 ± 1 ° C., and check the appearance after 48 hours. When there is no change in the appearance, no change is observed.
[省エネルギー性評価試験]
 実施例2-4、2-6及び比較例2-5、2-7、2-9の潤滑油組成物について、以下の手順により、省エネルギー性評価試験を実施した。
 省エネルギー性は小型油圧ユニットを用いて評価した。小型油圧ユニットはポンプに可変容量型ピストンポンプを使用し、油量15L、油温80±2℃と低温始動時を考慮した0℃とし、市販の作動油(0W-20、40℃における動粘度:32.8mm/s、粘度指数:125)を用いて吐出圧力を0.8から2.4MPaまで変化させたときのモーターの入力電力を測定した。ついで、実施例3、4及び比較例4~6の各潤滑油組成物を試料油としてモーターの入力電力を測定し、比較例7の試料油との消費電力の差異から省エネルギー性を評価した。
 得られた結果を表5、6に示す。
[Energy saving evaluation test]
The lubricating oil compositions of Examples 2-4 and 2-6 and Comparative Examples 2-5, 2-7, and 2-9 were subjected to an energy saving evaluation test according to the following procedure.
Energy conservation was evaluated using a small hydraulic unit. The small hydraulic unit uses a variable displacement piston pump. The oil volume is 15 liters, the oil temperature is 80 ± 2 ° C, and 0 ° C is taken into account when starting at low temperatures. Commercial hydraulic oil (kinematic viscosity at 0W-20, 40 ° C) : 32.8 mm 2 / s, viscosity index: 125), and the input power of the motor was measured when the discharge pressure was changed from 0.8 to 2.4 MPa. Subsequently, the input power of the motor was measured using the lubricating oil compositions of Examples 3 and 4 and Comparative Examples 4 to 6 as sample oil, and the energy saving property was evaluated from the difference in power consumption with the sample oil of Comparative Example 7.
The results obtained are shown in Tables 5 and 6.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
[実施例3-1~3-3、比較例3-1~3-3]
 実施例3-1~3-3及び比較例3-1~3-3においては、それぞれ表7に示す潤滑油基油を調製した。ここで、実施例3-1~3-3の潤滑油基油は、上記第4実施形態に係る潤滑油基油の製造方法に準じて得られたものである。一方、比較例3-1~3-3の潤滑油基油は、従来の潤滑油基油の製造方法によって得られたものである。各基油の各種性状、並びに荷重50N(平均ヘルツ圧0.60GPa),試料油温度50℃,周速1m/s,すべり率3%,27.4mmの鋼球とスチールディスクを用いた条件下で測定したトラクション係数を表7に示す。
[Examples 3-1 to 3-3, Comparative Examples 3-1 to 3-3]
In Examples 3-1 to 3-3 and Comparative Examples 3-1 to 3-3, lubricating base oils shown in Table 7 were prepared. Here, the lubricating base oils of Examples 3-1 to 3-3 were obtained according to the manufacturing method of the lubricating base oil according to the fourth embodiment. On the other hand, the lubricating base oils of Comparative Examples 3-1 to 3-3 were obtained by a conventional method for producing a lubricating base oil. Various properties of each base oil and conditions using steel balls and steel disks with a load of 50 N (average Hertz pressure 0.60 GPa), sample oil temperature 50 ° C., peripheral speed 1 m / s, slip rate 3%, 27.4 mm Table 7 shows the traction coefficients measured in (1).
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
[実施例3-4~3-6、比較例3-4~3-6]
 実施例3-4~3-6及び比較例3-4~3-6においては、それぞれ実施例3-1~3-3又は比較例3-1~3-3の潤滑油基油に、パッケージ添加剤(内訳:摩耗防止剤:12質量%、無灰分散剤:50質量%、流動点降下剤:1質量%、酸化防止剤:12質量%、金属系清浄剤:25質量%)8質量%及び粘度指数向上剤(ポリメタクリレート系、Mw350,000、有効濃度50質量%)5質量%を添加し、潤滑油組成物を調製した。
[Examples 3-4 to 3-6, Comparative Examples 3-4 to 3-6]
In Examples 3-4 to 3-6 and Comparative Examples 3-4 to 3-6, the lubricant base oils of Examples 3-1 to 3-3 or Comparative Examples 3-1 to 3-3 were respectively packaged. Additives (Breakdown: antiwear: 12% by mass, ashless dispersant: 50% by mass, pour point depressant: 1% by mass, antioxidant: 12% by mass, metallic detergent: 25% by mass) 8% by mass And 5 mass% of viscosity index improvers (polymethacrylate type, Mw 350,000, effective concentration 50 mass%) were added to prepare a lubricating oil composition.
[オイル漏洩試験]
 実施例3-4~3-9及び比較例3-4~3-9の試料油について、以下の手順により、オイル漏洩試験を実施した。
 すなわち、低温漏洩性試験として、実際のミッションを用い、ミッションに試料油を封入し低温保管して油の漏れ(にじみ)を評価した。得られた結果を表8、9に示す。
[Oil leak test]
For the sample oils of Examples 3-4 to 3-9 and Comparative Examples 3-4 to 3-9, an oil leakage test was performed according to the following procedure.
That is, as a low-temperature leakage test, an actual mission was used, sample oil was enclosed in the mission and stored at a low temperature, and oil leakage (bleeding) was evaluated. The obtained results are shown in Tables 8 and 9.
[貯蔵安定性試験]
 実施例3-4~3-9及び比較例3-4~3-9の試料油について、以下の手順により、貯蔵安定性試験を実施した。
 100mlのスクリュー管に2/3以上油をいれ、各々の試験管を0±1℃の冷蔵庫にいれ、48時間後の外観を確認する。外観に変化のない場合は変化無、曇りの生じたものは曇りと評価する。
[Storage stability test]
For the sample oils of Examples 3-4 to 3-9 and Comparative Examples 3-4 to 3-9, a storage stability test was performed according to the following procedure.
Add 2/3 or more oil into a 100 ml screw tube, put each test tube in a refrigerator at 0 ± 1 ° C., and check the appearance after 48 hours. When there is no change in the appearance, no change is observed.
[低温転がり軸受け試験]
 実施例3-4、3-6、3-8及び比較例3-4、3-6、3-8の潤滑油について、高圧摩擦試験機を用いて低温転がり軸受け試験を実施した。すなわち、常圧条件下、冷却ジャケットにより測定部位を0℃に冷却し、4時間温度を保持する。試験片としては円筒転がり軸受を用い、摩擦係数を評価した。得られた結果を表8、9に示す。表7中の摩擦係数が小さいことは、特に転がり初期の摩擦係数の低減に優れることを意味し、実機での低温始動性と相関がある。
[Low temperature rolling bearing test]
The lubricating oils of Examples 3-4, 3-6, 3-8 and Comparative Examples 3-4, 3-6, 3-8 were subjected to a low temperature rolling bearing test using a high pressure friction tester. That is, the measurement site is cooled to 0 ° C. with a cooling jacket under normal pressure conditions, and the temperature is maintained for 4 hours. A cylindrical rolling bearing was used as a test piece, and the friction coefficient was evaluated. The obtained results are shown in Tables 8 and 9. A small friction coefficient in Table 7 means that it is particularly excellent in reducing the friction coefficient at the beginning of rolling, and has a correlation with low temperature startability in an actual machine.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 
Figure JPOXMLDOC01-appb-T000009
 

Claims (19)

  1.  下記(i)、(ii)又は(iii):
    (i)100℃における動粘度が3.0~5.0mm/s、粘度指数が145以上且つ-20℃におけるSBV粘度が3,000~60,000mPa・sの炭化水素油、
    (ii)100℃における動粘度が5~9mm/s、粘度指数が155以上且つ-20℃におけるSBV粘度が3,000~30,000mPa・sの炭化水素油、
    (iii)100℃における動粘度が2.0~3.0mm/s、粘度指数が130以上且つ-30℃におけるSBV粘度が1,000~30,000mPa・sの炭化水素油、
    のいずれかの条件を満たす炭化水素油である潤滑油基油。
    (I), (ii) or (iii) below:
    (I) a hydrocarbon oil having a kinematic viscosity at 100 ° C. of 3.0 to 5.0 mm 2 / s, a viscosity index of 145 or more, and an SBV viscosity at −20 ° C. of 3,000 to 60,000 mPa · s;
    (Ii) a hydrocarbon oil having a kinematic viscosity at 100 ° C. of 5 to 9 mm 2 / s, a viscosity index of 155 or more and an SBV viscosity at −20 ° C. of 3,000 to 30,000 mPa · s,
    (Iii) a hydrocarbon oil having a kinematic viscosity at 100 ° C. of 2.0 to 3.0 mm 2 / s, a viscosity index of 130 or more and an SBV viscosity at −30 ° C. of 1,000 to 30,000 mPa · s,
    A lubricating base oil that is a hydrocarbon oil that satisfies any of the following conditions.
  2.  前記炭化水素油が、前記(i)の条件を満たし、且つ、-30℃におけるSBV粘度が5,000~500,000mPa・sである、請求項1に記載の潤滑油基油。 The lubricating base oil according to claim 1, wherein the hydrocarbon oil satisfies the condition (i) and has an SBV viscosity at -30 ° C of 5,000 to 500,000 mPa · s.
  3.  前記炭化水素油が、前記(i)の条件を満たし、且つ、凝固点が-20~-5℃である、請求項1又は2に記載の潤滑油基油。 The lubricating base oil according to claim 1 or 2, wherein the hydrocarbon oil satisfies the condition (i) and has a freezing point of -20 to -5 ° C.
  4.  前記炭化水素油が、前記(i)の条件を満たし、且つ、13C-NMR分析において、潤滑油基油を構成する全炭素に占める、主鎖を構成するCH炭素の割合が15%以上である、請求項1~3のいずれか一項に記載の潤滑油基油。 The hydrocarbon oil satisfies the above condition (i), and in 13 C-NMR analysis, the proportion of CH 2 carbon constituting the main chain in the total carbon constituting the lubricating base oil is 15% or more. The lubricating base oil according to any one of claims 1 to 3, wherein
  5.  前記炭化水素油が、前記(i)の条件を満たし、且つ、FD-MS分析において、シクロパラフィン分が50%以下である、請求項1~4のいずれか一項に記載の潤滑油基油。 The lubricating base oil according to any one of claims 1 to 4, wherein the hydrocarbon oil satisfies the condition (i) and has a cycloparaffin content of 50% or less in FD-MS analysis. .
  6.  前記炭化水素油が、前記(ii)の条件を満たし、且つ、-25℃におけるSBV粘度が5,000~500,000mPa・sである、請求項1に記載の潤滑油基油。 The lubricating base oil according to claim 1, wherein the hydrocarbon oil satisfies the condition (ii) and has an SBV viscosity at -25 ° C of 5,000 to 500,000 mPa · s.
  7.  前記炭化水素油が、前記(ii)の条件を満たし、且つ、凝固点が-15~-5℃である、請求項1又は6に記載の潤滑油基油。 The lubricating base oil according to claim 1 or 6, wherein the hydrocarbon oil satisfies the condition (ii) and has a freezing point of -15 to -5 ° C.
  8.  前記炭化水素油が、前記(ii)の条件を満たし、且つ、13C-NMR分析において、潤滑油基油を構成する全炭素に占める、主鎖を構成するCH炭素の割合が20%以上である、請求項1、6、7のいずれか一項に記載の潤滑油基油。 The hydrocarbon oil satisfies the above condition (ii), and in 13 C-NMR analysis, the proportion of CH 2 carbon constituting the main chain in the total carbon constituting the lubricating base oil is 20% or more. The lubricating base oil according to any one of claims 1, 6, and 7, wherein
  9.  前記炭化水素油が、前記(ii)の条件を満たし、且つ、FD-MS分析において、シクロパラフィン分が60%以下である、請求項1、6、7、8のいずれか一項に記載の潤滑油基油。 9. The hydrocarbon oil according to claim 1, wherein the hydrocarbon oil satisfies the condition (ii) and has a cycloparaffin content of 60% or less in FD-MS analysis. Lubricating base oil.
  10.  前記炭化水素油が、前記(iii)の条件を満たし、且つ、-35℃におけるSBV粘度が3,000~500,000mPa・sである、請求項1に記載の潤滑油基油。 The lubricating base oil according to claim 1, wherein the hydrocarbon oil satisfies the condition (iii) and has an SBV viscosity at -35 ° C of 3,000 to 500,000 mPa · s.
  11.  前記炭化水素油が、前記(iii)の条件を満たし、且つ、凝固点が-30~-10℃である、請求項1又は10に記載の潤滑油基油。 The lubricating base oil according to claim 1 or 10, wherein the hydrocarbon oil satisfies the condition (iii) and has a freezing point of -30 to -10 ° C.
  12.  前記炭化水素油が、前記(iii)の条件を満たし、且つ、13C-NMR分析において、潤滑油基油を構成する全炭素に占める、主鎖を構成するCH炭素の割合が15%以上である、請求項1、10、11のいずれか一項に記載の潤滑油基油。 The hydrocarbon oil satisfies the above condition (iii), and in 13 C-NMR analysis, the proportion of CH 2 carbon constituting the main chain in the total carbon constituting the lubricating base oil is 15% or more. The lubricating base oil according to any one of claims 1, 10, and 11.
  13.  前記炭化水素油が、前記(iii)の条件を満たし、且つ、FD-MS分析において、シクロパラフィン分が30%以下である、請求項1、10、11、12のいずれか一項に記載の潤滑油基油。 The hydrocarbon oil according to any one of claims 1, 10, 11, and 12, wherein the hydrocarbon oil satisfies the condition (iii) and has a cycloparaffin content of 30% or less in an FD-MS analysis. Lubricating base oil.
  14.  基油留分及び該基油留分よりも重質の重質留分を含有する炭化水素油から、前記基油留分と前記重質留分とをそれぞれ分留する第1の工程と、
     前記第1の工程で分留された重質留分を水素化分解し、得られる分解油を前記第1の工程に戻す第2の工程と、
     前記基油留分を水素化異性化脱ろうして脱ろう油を得る第3の工程と、
     前記脱ろう油を精製して精製油を得る第4の工程と、
     前記精製油の分留により、下記(i)、(ii)又は(iii):
    (i)100℃における動粘度が3.0~5.0mm/s、粘度指数が145以上且つ-20℃におけるSBV粘度が3,000~60,000mPa・sの炭化水素油、
    (ii)100℃における動粘度が5~9mm/s、粘度指数が155以上且つ-20℃におけるSBV粘度が3,000~30,000mPa・sの炭化水素油、
    (iii)100℃における動粘度が2.0~3.0mm/s、粘度指数が130以上且つ-30℃におけるSBV粘度が1,000~30,000mPa・sの炭化水素油、
    のいずれかの条件を満たす炭化水素油である潤滑油基油を得る第5の工程と、
    を備える潤滑油基油の製造方法。
    A first step of fractionating the base oil fraction and the heavy fraction from a base oil fraction and a hydrocarbon oil containing a heavier fraction heavier than the base oil fraction,
    A second step of hydrocracking the heavy fraction fractionated in the first step and returning the resulting cracked oil to the first step;
    A third step of hydroisomerizing and dewaxing the base oil fraction to obtain a dewaxed oil;
    A fourth step of refining the dewaxed oil to obtain a refined oil;
    By fractional distillation of the refined oil, the following (i), (ii) or (iii):
    (I) a hydrocarbon oil having a kinematic viscosity at 100 ° C. of 3.0 to 5.0 mm 2 / s, a viscosity index of 145 or more, and an SBV viscosity at −20 ° C. of 3,000 to 60,000 mPa · s;
    (Ii) a hydrocarbon oil having a kinematic viscosity at 100 ° C. of 5 to 9 mm 2 / s, a viscosity index of 155 or more and an SBV viscosity at −20 ° C. of 3,000 to 30,000 mPa · s,
    (Iii) a hydrocarbon oil having a kinematic viscosity at 100 ° C. of 2.0 to 3.0 mm 2 / s, a viscosity index of 130 or more and an SBV viscosity at −30 ° C. of 1,000 to 30,000 mPa · s,
    A fifth step of obtaining a lubricating base oil that is a hydrocarbon oil that satisfies any of the following conditions:
    A method for producing a lubricating base oil comprising:
  15.  前記第3の工程において得られる潤滑油基油が、前記(i)の条件を満たし、且つ、凝固点が-20~-5℃である、請求項14に記載の潤滑油基油の製造方法。 15. The method for producing a lubricant base oil according to claim 14, wherein the lubricant base oil obtained in the third step satisfies the condition (i) and has a freezing point of −20 to −5 ° C.
  16.  前記第3の工程において得られる潤滑油基油が、前記(ii)の条件を満たし、且つ、凝固点が-15~-5℃である、請求項14に記載の潤滑油基油の製造方法。 The method for producing a lubricating base oil according to claim 14, wherein the lubricating base oil obtained in the third step satisfies the condition (ii) and has a freezing point of -15 to -5 ° C.
  17.  前記第3の工程において得られる潤滑油基油が、前記(iii)の条件を満たし、且つ、凝固点が-30~-10℃である、請求項14に記載の潤滑油基油の製造方法。 15. The method for producing a lubricating base oil according to claim 14, wherein the lubricating base oil obtained in the third step satisfies the condition (iii) and has a freezing point of −30 to −10 ° C.
  18.  前記第3の工程は、ZSM-22型ゼオライト、ZSM-23型ゼオライト、SSZ32及びZSM-48型ゼオライトからなる群より選択される少なくとも1種の結晶性固体酸性物質と、活性金属として白金および/またはパラジウムを含む水素化異性化触媒の存在下、前記基油留分を水素化異性化脱ろうする工程である、請求項14~17のいずれか一項に記載の潤滑油基油の製造方法。 The third step includes at least one crystalline solid acidic substance selected from the group consisting of ZSM-22 type zeolite, ZSM-23 type zeolite, SSZ32 and ZSM-48 type zeolite, and platinum and / or active metal. The method for producing a lubricant base oil according to any one of claims 14 to 17, which is a step of hydroisomerizing and dewaxing the base oil fraction in the presence of a hydroisomerization catalyst containing palladium. .
  19.  前記炭化水素油が、フィッシャートロプシュ合成から得られたGTLワックスあるいは、溶剤脱ろうによって得られたスラックワックスを原料として得られたものである、請求項14~18のいずれか一項に記載の潤滑油基油の製造方法。 The lubrication according to any one of claims 14 to 18, wherein the hydrocarbon oil is obtained by using GTL wax obtained from Fischer-Tropsch synthesis or slack wax obtained by solvent dewaxing as a raw material. A method for producing an oil base oil.
PCT/JP2013/059947 2012-03-30 2013-04-01 Lubricant base oil and method for producing same WO2013147302A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014508256A JP5957515B2 (en) 2012-03-30 2013-04-01 Lubricating base oil and method for producing the same
US14/388,986 US20150060328A1 (en) 2012-03-30 2013-04-01 Lubricant base oil and method for producing same
EP13769463.4A EP2835417B1 (en) 2012-03-30 2013-04-01 Lubricant base oil

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2012-082349 2012-03-30
JP2012082393 2012-03-30
JP2012082349 2012-03-30
JP2012-082446 2012-03-30
JP2012-082457 2012-03-30
JP2012-082393 2012-03-30
JP2012082446 2012-03-30
JP2012082406 2012-03-30
JP2012-082406 2012-03-30
JP2012-082354 2012-03-30
JP2012082354 2012-03-30
JP2012082457 2012-03-30

Publications (1)

Publication Number Publication Date
WO2013147302A1 true WO2013147302A1 (en) 2013-10-03

Family

ID=49260534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/059947 WO2013147302A1 (en) 2012-03-30 2013-04-01 Lubricant base oil and method for producing same

Country Status (4)

Country Link
US (1) US20150060328A1 (en)
EP (1) EP2835417B1 (en)
JP (1) JP5957515B2 (en)
WO (1) WO2013147302A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018117121A1 (en) * 2016-12-19 2018-06-28 出光興産株式会社 Mineral-oil base oil, lubricating oil composition, internal combustion engine, and lubricating method for internal combustion engine

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150060327A1 (en) * 2012-03-30 2015-03-05 Jx Nippon Oil & Energy Corporation Lubricant base oil and method for producing same
JP6049522B2 (en) * 2013-03-29 2016-12-21 Jxエネルギー株式会社 Lubricating oil base oil and manufacturing method thereof, electric insulating oil
US10557092B2 (en) 2016-08-03 2020-02-11 Exxonmobil Research And Engineering Company Raffinate hydroconversion for production of high performance base stocks
JP7146391B2 (en) 2017-12-08 2022-10-04 Eneos株式会社 Refrigerating machine oil and working fluid composition for refrigerating machines
KR102026330B1 (en) * 2018-09-27 2019-09-27 에스케이이노베이션 주식회사 Mineral based lubricant base oil with improved low temperature performance and method for preparing the same, and lubricant product containing the same
US11525100B2 (en) * 2020-07-01 2022-12-13 Petro-Canada Lubricants Inc. Biodegradable fluids

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0436391A (en) 1990-05-31 1992-02-06 Nippon Oil Co Ltd Lubricating oil composition for internal combustion engine
JPH0468082A (en) 1990-07-09 1992-03-03 Nippon Oil Co Ltd Hydraulic fluid composition
JPH04120193A (en) 1990-09-10 1992-04-21 Nippon Oil Co Ltd Lubricating oil composition for compressor
JP2002503754A (en) 1998-02-13 2002-02-05 エクソンモービル リサーチ アンド エンジニアリング カンパニー Improvement method of low temperature performance of base oil using combination catalyst system
JP2005154760A (en) 2003-11-04 2005-06-16 Idemitsu Kosan Co Ltd Lubricant base oil and method for producing the same, and lubricating oil composition containing the same
JP2006502298A (en) 2002-10-08 2006-01-19 エクソンモービル リサーチ アンド エンジニアリング カンパニー Production of fuels and lubricants from Fischer-Tropsch wax
JP2006509899A (en) * 2002-12-11 2006-03-23 エクソンモービル リサーチ アンド エンジニアリング カンパニー High viscosity index, fluid composition having functionality at a wide range of temperatures, its production method and its use
JP2006518395A (en) * 2002-12-11 2006-08-10 エクソンモービル リサーチ アンド エンジニアリング カンパニー Low volatile functional fluid useful under high thermal stress conditions, its production method and its use
JP2006521416A (en) * 2002-12-11 2006-09-21 エクソンモービル リサーチ アンド エンジニアリング カンパニー Functional fluid having low Brookfield viscosity using base oil, base oil, and lubricating oil composition with high viscosity index, and method for producing and using the same
JP2007516337A (en) * 2003-12-23 2007-06-21 シェブロン ユー.エス.エー. インコーポレイテッド Finished lubricants containing lubricating base oils with high monocycloparaffin content and low multicycloparaffin content
JP2011506677A (en) * 2007-12-10 2011-03-03 シェブロン ユー.エス.エー. インコーポレイテッド Lubricating oil composition

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2034274T3 (en) * 1987-12-18 1993-04-01 Exxon Research And Engineering Company A METHOD TO STABILIZE HYDROISOMERIZED.
US6569312B1 (en) * 1998-09-29 2003-05-27 Exxonmobil Research And Engineering Company Integrated lubricant upgrading process
US20070187291A1 (en) * 2001-10-19 2007-08-16 Miller Stephen J Highly paraffinic, moderately aromatic distillate fuel blend stocks prepared by low pressure hydroprocessing of fischer-tropsch products
US7473345B2 (en) * 2004-05-19 2009-01-06 Chevron U.S.A. Inc. Processes for making lubricant blends with low Brookfield viscosities
JP2008525607A (en) * 2004-12-28 2008-07-17 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Process for producing base oils from Fischer-Tropsch synthesis products
US20070062847A1 (en) * 2005-09-16 2007-03-22 Hyde Evan P Integrated lubricant upgrading process using once-through, hydrogen-containing treat gas
US7425524B2 (en) * 2006-04-07 2008-09-16 Chevron U.S.A. Inc. Gear lubricant with a base oil having a low traction coefficient
CN102239241B (en) * 2008-10-07 2013-09-18 吉坤日矿日石能源株式会社 Lubricant base oil and a process for producing the same, and lubricating oil composition
JP5303339B2 (en) * 2009-03-31 2013-10-02 Jx日鉱日石エネルギー株式会社 Method for producing lubricating base oil
JP5663765B2 (en) * 2010-09-08 2015-02-04 株式会社Moresco Dibasic acid ester compound and lubricating base oil composition containing the compound

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0436391A (en) 1990-05-31 1992-02-06 Nippon Oil Co Ltd Lubricating oil composition for internal combustion engine
JPH0468082A (en) 1990-07-09 1992-03-03 Nippon Oil Co Ltd Hydraulic fluid composition
JPH04120193A (en) 1990-09-10 1992-04-21 Nippon Oil Co Ltd Lubricating oil composition for compressor
JP2002503754A (en) 1998-02-13 2002-02-05 エクソンモービル リサーチ アンド エンジニアリング カンパニー Improvement method of low temperature performance of base oil using combination catalyst system
JP2006502298A (en) 2002-10-08 2006-01-19 エクソンモービル リサーチ アンド エンジニアリング カンパニー Production of fuels and lubricants from Fischer-Tropsch wax
JP2006509899A (en) * 2002-12-11 2006-03-23 エクソンモービル リサーチ アンド エンジニアリング カンパニー High viscosity index, fluid composition having functionality at a wide range of temperatures, its production method and its use
JP2006518395A (en) * 2002-12-11 2006-08-10 エクソンモービル リサーチ アンド エンジニアリング カンパニー Low volatile functional fluid useful under high thermal stress conditions, its production method and its use
JP2006521416A (en) * 2002-12-11 2006-09-21 エクソンモービル リサーチ アンド エンジニアリング カンパニー Functional fluid having low Brookfield viscosity using base oil, base oil, and lubricating oil composition with high viscosity index, and method for producing and using the same
JP2005154760A (en) 2003-11-04 2005-06-16 Idemitsu Kosan Co Ltd Lubricant base oil and method for producing the same, and lubricating oil composition containing the same
JP2007516337A (en) * 2003-12-23 2007-06-21 シェブロン ユー.エス.エー. インコーポレイテッド Finished lubricants containing lubricating base oils with high monocycloparaffin content and low multicycloparaffin content
JP2011506677A (en) * 2007-12-10 2011-03-03 シェブロン ユー.エス.エー. インコーポレイテッド Lubricating oil composition

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Ministry of Land, Infrastructure, Transport and Tourism, Announcement that Prescribes Details of Safety Standards for Road Trucking Vehicles", ATTACHMENT 42 MEASUREMENT METHOD OF EXHAUST GAS OF LIGHT AND MIDDLE VEHICLES, 30 July 2009 (2009-07-30)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018117121A1 (en) * 2016-12-19 2018-06-28 出光興産株式会社 Mineral-oil base oil, lubricating oil composition, internal combustion engine, and lubricating method for internal combustion engine
JP2018100329A (en) * 2016-12-19 2018-06-28 出光興産株式会社 Mineral oil-based base oil, lubricant composition, internal combustion, and method for lubricating internal combustion

Also Published As

Publication number Publication date
EP2835417A4 (en) 2015-04-29
JPWO2013147302A1 (en) 2015-12-14
EP2835417A1 (en) 2015-02-11
JP5957515B2 (en) 2016-07-27
US20150060328A1 (en) 2015-03-05
EP2835417B1 (en) 2018-10-17

Similar Documents

Publication Publication Date Title
JP5957515B2 (en) Lubricating base oil and method for producing the same
JP6513780B2 (en) Lubricating oil base oil, method for producing the same, and lubricating oil composition
JP5137314B2 (en) Lubricating base oil
CN101981166B (en) Lubricant base oil, method for production thereof, and lubricant oil composition
JP5633997B2 (en) Lubricating base oil and lubricating oil composition
JP5957516B2 (en) Lubricating base oil and method for producing the same
JP2007270062A (en) Lubricant base oil, lubricating oil composition and method for producing lubricant base oil
WO2010041591A1 (en) Lubricant base oil and a process for producing the same, and lubricating oil composition
WO2009119505A1 (en) Lubricant base oil, method for production thereof, and lubricant oil composition
KR20180132101A (en) Base stock and lubricant composition containing same
JP7223763B2 (en) Group III basestock and lubricant compositions
JP6026940B2 (en) Lubricating base oil and method for producing the same
EP2980190B1 (en) Lubricating-oil base oil, method for producing same, and electrically insulating oil
JP2010090257A (en) Lubricant base oil, method for producing the same, and lubricant composition
JP7225242B2 (en) Group III basestock and lubricant compositions
JP5552139B2 (en) Lubricating base oil, lubricating oil composition, and method for producing lubricating base oil
JP5805286B2 (en) Lubricating base oil and lubricating oil composition
CA3084989A1 (en) Lubricant compositions having improved low temperature performance
JP5433662B2 (en) Lubricating base oil
JP5735017B2 (en) Lubricating base oil and lubricating oil composition
TW201934734A (en) Lubricant compositions having improved oxidation performance
JP2014062271A (en) Lubricant base oil and production method of the same, and lubricant composition
JP2015155548A (en) lubricant base oil
JP2009227940A (en) Lubricant base oil, method for producing the same and lubricant composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13769463

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014508256

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14388986

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013769463

Country of ref document: EP