WO2013146838A1 - Separation membrane element having surface fastener, and membrane module - Google Patents

Separation membrane element having surface fastener, and membrane module Download PDF

Info

Publication number
WO2013146838A1
WO2013146838A1 PCT/JP2013/058914 JP2013058914W WO2013146838A1 WO 2013146838 A1 WO2013146838 A1 WO 2013146838A1 JP 2013058914 W JP2013058914 W JP 2013058914W WO 2013146838 A1 WO2013146838 A1 WO 2013146838A1
Authority
WO
WIPO (PCT)
Prior art keywords
separation membrane
separation
membrane
hook
water
Prior art date
Application number
PCT/JP2013/058914
Other languages
French (fr)
Japanese (ja)
Inventor
研司 小森
善文 尾高
修治 古野
健太 岩井
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Publication of WO2013146838A1 publication Critical patent/WO2013146838A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/08Flat membrane modules
    • B01D63/081Manufacturing thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/04Specific sealing means
    • B01D2313/041Gaskets or O-rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/04Specific sealing means
    • B01D2313/042Adhesives or glues
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/14Specific spacers

Definitions

  • the present invention relates to a separation membrane suitable for water treatment fields such as drinking water production, water purification treatment, waste water treatment, and food industry.
  • Separation membranes used in separation methods using membrane separation elements include microfiltration membranes, ultrafiltration membranes, nanofiltration membranes, reverse osmosis membranes, and forward osmosis membranes in terms of their pore size and separation function.
  • Membranes are used to obtain drinking water from, for example, seawater, brine, and water containing harmful substances, and are used for the production of industrial ultrapure water, wastewater treatment, recovery of valuable materials, etc. Depending on the separation performance.
  • Patent Document 1 proposes a bag-like flat membrane element in which the peripheral end surfaces of two flat membranes are sealed with a resin adhesive as a flat membrane element and a manufacturing method thereof.
  • Patent Document 2 discloses a filter including a first filtration membrane, a first adhesive net made of a thermoplastic polymer, a drainage woven fabric, a second adhesive net of a thermoplastic polymer, and a second filtration membrane. Composite materials are described. The first and second filtration membranes are bonded to the drainage woven fabric by the first and second adhesive nets.
  • Patent Document 1 there is a possibility that the amount of permeated water may be reduced due to contact between the permeation side surfaces of the separation membrane facing each other during filtration.
  • Patent Document 2 since the separation membrane and the woven fabric are fixed by the adhesive net, it is necessary to replace the element or the entire module when a part of the membrane is damaged.
  • the object of the present invention is to solve the above-mentioned problems of the prior art, improve the permeated water amount, and provide a technique capable of replacing only a membrane including a damaged portion with a new one.
  • the separation membrane element of the present invention is a separation membrane in which two separation membranes having a permeation side surface and a supply side surface are arranged so that the permeation side surfaces face each other.
  • a sealing portion for sealing is a sealing portion for sealing.
  • the permeate side is fixed by a hook-and-loop fastener at the time of filtration operation, and at the same time, a flow path is formed, and high permeation performance can be obtained.
  • the membrane is damaged due to long-term operation, it is possible to easily replace only the membrane including the damaged portion, thereby improving maintainability.
  • FIG. 1A is a cross-sectional view of a separation membrane pair whose peripheral portion is sealed with resin, and is a cross-sectional view in a plane parallel to the thickness direction of the separation membrane pair.
  • 1B is a cross-sectional view of the separation membrane pair of FIG. 1A in a plane parallel to the plane of the membrane and passing through the center of thickness of the separation membrane pair (that is, a cross-sectional view of the separation membrane pair of FIG. .
  • FIG. 2 is a cross-sectional view in a plane parallel to the thickness direction of another form of separation membrane pair.
  • FIG. 3A is a cross-sectional view schematically showing a separation membrane pair whose peripheral edge is sealed with a jig, and is a cross-sectional view in a plane parallel to the thickness direction of the separation membrane pair.
  • FIG. 3B is a plan view of the separation membrane pair of FIG. 3A.
  • FIG. 4 is a plan view showing an example of a fixing jig used for the membrane element.
  • FIG. 5 is a schematic diagram illustrating an example of a water treatment apparatus including a membrane module.
  • FIG. 6 is a plan view showing an example of an application pattern of an adhesive that bonds the surface fastener and the base material.
  • FIG. 7A is a cross-sectional view schematically showing a separation membrane pair whose peripheral portion is clipped, and is a cross-sectional view in a plane parallel to the thickness direction of the separation membrane pair.
  • FIG. 7B is a plan view of the separation membrane pair of FIG. 7A.
  • the separation membrane element 101 includes a separation membrane pair 1A, surface fasteners 6 and 7, and a resin layer 8 as a sealing portion.
  • the separation membrane pair 1A includes two separation membranes 2 and a resin layer 8 that are disposed so that the surfaces on the permeate side face each other.
  • the separation membrane 2 may be any of a nanofiltration membrane, an ultrafiltration membrane, and a microfiltration membrane.
  • the separation membrane 2 particularly includes a separation functional layer 4 and a base material 5.
  • the separation functional layer 4 is laminated on the base material 5, and the surface of the base material 5 opposite to the separation functional layer 4 is disposed on the permeation side surface of the separation membrane 2 and the surface fastener 6 or 7. It is the surface to be done.
  • the configuration of the separation membrane 2 is not limited to the illustrated example.
  • the separation membrane is not limited as long as it separates components in the fluid supplied to the surface of the separation membrane and obtains a permeated fluid that has permeated the separation membrane.
  • the separation membrane may include a porous support layer between the separation functional layer and the substrate.
  • the separation functional layer 4 is provided on the surface of the separation membrane 2 on the supply side, that is, the surface with which the liquid before being filtered contacts.
  • As the separation function layer a known configuration can be adopted.
  • the thickness of the separation functional layer of the separation membrane is too thin, defects such as cracks may occur and the filtration performance may deteriorate. If it is too thick, the water permeability may decrease. 1 ⁇ m to 500 ⁇ m), preferably 0.05 to 0.2 mm (50 ⁇ m to 200 ⁇ m).
  • a crosslinked polymer is preferably used in terms of pore size control and durability, and in terms of component separation performance, a separation functional layer formed by polycondensation of a polyfunctional amine and a polyfunctional acid halide and An organic-inorganic hybrid functional layer is preferred.
  • These separation functional layers are preferably formed on a porous support layer provided on a substrate.
  • the separation functional layer may be a porous support layer such as a cellulose membrane, a polyvinylidene fluoride membrane, a polyethersulfone membrane, or a polysulfone membrane, and may be a layer having both a separation function and a support function. . That is, the separation functional layer and the porous support layer may be realized as a single layer.
  • the separation membrane preferably includes a base material and a separation functional layer, and the separation functional layer is preferably made of a polyvinylidene fluoride resin.
  • a layer in which the resin constituting the separation functional layer and the base material are mixed is interposed between the base material and the separation functional layer.
  • the separation functional layer When the polyvinylidene fluoride-based blend resin enters from the surface of the base material into the inside, the separation functional layer is firmly fixed to the base material by a so-called anchor effect. As a result, separation of the separation functional layer from the substrate is suppressed.
  • the separation functional layer may exist only on one side of the base material, or may exist on both sides.
  • the separation functional layer may have a symmetric structure or an asymmetric structure with respect to the base material.
  • the separation functional layers on both sides may be continuous or discontinuous through the substrate.
  • the substrate has a function of supporting the separation functional layer and giving strength to the separation membrane.
  • the material constituting the base material is not particularly limited, such as an organic base material or an inorganic base material, but an organic base material is preferable from the viewpoint of easy weight reduction.
  • the organic substrate include woven and knitted fabrics and nonwoven fabrics made of organic fibers such as cellulose fibers, cellulose triacetate fibers, polyester fibers, polypropylene fibers, and polyethylene fibers. In particular, a nonwoven fabric whose density control is relatively easy is preferable.
  • a hook-and-loop fastener is a structure which is arrange
  • engagement is paraphrased as “sticking”, “engagement”, “locking”, “connection”, and the like. That is, the hook-and-loop fastener can fix the relative position of the other separation membrane with respect to one separation membrane between two separation membranes, and can release this fixation. It is a possible structure.
  • a hook-and-loop fastener is a member that can be attached to and detached from other hook-and-loop fasteners.
  • the hook-and-loop fastener is a member that is formed such that the surfaces facing each other and other hook-and-loop fasteners are engaged with each other, or is opposed. Examples include members each having a large number of male parts and female parts on the surface.
  • the hook-and-loop fastener may be rephrased as “an engagement portion” or the like.
  • the hook-and-loop fastener can include a sheet-like base material provided with an engaging surface on at least one side and an engaging element provided on the engaging surface of the base material. When the engagement surfaces of the two surface fasteners come into contact with each other, the surface fasteners are detachably engaged via the engagement elements.
  • the engaging element may be formed so that elements having different structures can be engaged with each other, or may be formed so that elements having the same structure can be engaged with each other.
  • a hook-and-loop fastener including a loop-hook type or snap type engaging element elements having different structures are engaged with each other.
  • a hook-and-loop fastener including a mushroom-type engagement element engagement elements having the same structure are engaged with each other.
  • other structures such as a structure in which irregularities mesh with each other may be adopted.
  • the surface fasteners 6 and 7 in FIG. 1A are an example of the form of the surface fastener provided on the separation membrane.
  • the surface fastener 6 or 7 is provided on the permeate side surface of the separation membrane 2.
  • the surface fastener 6 includes a base material 61 and a hook portion 9 that is an engaging element provided on one surface of the base material 61, and the surface fastener 7 is provided on the base material 71 and one surface of the base material 71. And a loop portion 10 which is an engaging element.
  • the hook-and-loop fastener 6 includes only a hook portion (hook-like fiber) 9 as an engaging element
  • the hook-and-loop fastener 7 includes only a loop portion (loop-like fiber) 10 as an engaging element.
  • the two facing surface fasteners may have the same configuration. That is, the separation membrane element 102 shown in FIG. 2 includes the separation membrane pair 1B, and the loop portion 9 and the hook portion 10 are provided on both permeation side surfaces of the separation membrane 2 facing each other in the separation membrane pair 1B. The hook-and-loop fastener 11 provided with both is provided.
  • the hook-and-loop fastener can detachably connect the opposing separation membranes.
  • the material constituting the surface fastener is not particularly limited, but plastic, particularly polyester, polyamide, polypropylene, and the like are preferably used.
  • plastic particularly polyester, polyamide, polypropylene, and the like are preferably used.
  • commercially available products such as Kuraray “Magic Tape (registered trademark)", YKK “Quicklon (registered trademark)”, “Power Hook (registered trademark)", and Sumitomo 3M "mechanical fastener” are used. It is possible.
  • a support plate provided with the hook-and-loop fastener is arranged between the opposing membranes and supported.
  • a support plate provided with the hook-and-loop fastener is arranged between the opposing membranes and supported.
  • the plate may be connected to the plate via a hook-and-loop fastener, a form in which the plate is connected only via the hook-and-loop fastener is preferable in terms of weight reduction and cost.
  • FIG. 1A includes a hook-like fiber 9 included in one hook-and-loop fastener in the hook-and-loop fastener facing the hook-and-loop fiber 9. It refers to being hooked on the looped fiber 10. That is, in the separation membrane pair, one separation membrane is fixed to the other separation membrane through hooks of hook-shaped resin of the hook-and-loop fastener and loop-shaped fibers. Such fixing is called engagement. Further, by applying a force in the direction in which the opposing separation membranes are separated from each other, the engagement is released and the fixation by the surface fastener is released. Thus, in the separation membrane pair 1A, the two separation membranes 2 can be repeatedly desorbed from each other on the opposing surfaces.
  • the ease of attaching and detaching the two opposing transmission-side surfaces can be adjusted by the material of the hook-and-loop fastener, the shape, size, fiber diameter, and number per unit area of the loop-like fibers and hook-like fibers. .
  • peel strength peel strength described in JIS-L-3416: 2000.
  • the range of the peel strength is preferably 0.1 N / cm or more, more preferably 0.5 N / cm or more, and further preferably 1.0 N / cm or more, from the viewpoint of suppressing membrane shaking and deflection during filtration.
  • two opposing transmission-side surfaces are connected by hook-and-loop fasteners 6 and 7, so that even if the above-described back pressure cleaning is performed, the pressure is applied to the sealed portion. Instead of concentrating, it is also distributed to the inner part. Therefore, the occurrence of separation between separation membranes is suppressed, and an effect that water leaks from the supply side to the permeation side hardly occurs.
  • the opposing surfaces can be detached by the hook-and-loop fastener, when a part of the separation membrane is damaged, it is easy to separate the corresponding membrane from the paired membrane and exchange it with another membrane. .
  • the ratio R1 of the area A2 of the hook-and-loop fastener portion to the internal area A1 excluding the peripheral portion (described later) of the separation membrane is 10% or more, 25% or more, or from the viewpoint of suppressing membrane shaking and deflection during filtration, or 50% or more is preferable. Further, the ratio R1 may be 100%, and from the viewpoint of securing a flow path of permeated water, the ratio R1 may be less than 100%, 80% or less, 70% or less, or It may be 60% or less.
  • the pattern of the surface fastener in a plan view is not particularly limited.
  • the shape of the hook-and-loop fastener include a stripe shape, a lattice shape, a mesh shape, a polka dot shape, and a tile shape.
  • the tile shape is a pattern in which polygonal surface fasteners such as triangles and quadrangles are arranged at intervals. The positions where the surface fasteners are provided are preferably uniformly distributed without being biased toward a part of the separation membrane.
  • the surface fastener and the substrate can be fixed by providing an adhesive resin.
  • Components that make up the resin layer between the hook-and-loop fastener and the base material are instantaneous, hot melt, two-component room temperature curable resin, thermosetting resin, elastomer, thermoplastic resin, elastic, emulsion, etc.
  • a hot melt system, a two-component room temperature curing resin system, a thermosetting resin system, an elastomer system, and a thermoplastic resin system are preferable, among which durability, From the viewpoint of productivity, a two-component room temperature solidified resin system such as urethane resin and epoxy resin is most preferably used.
  • the adhesive resin provided between the surface fastener and the base material is provided only on a part of the surface of the base material 6 in order to ensure water permeability from the base material 6 to the gap 3.
  • the ratio R1 occupied by the area of the portion A2 where the surface fastener is provided is less than 100%. If so, this condition is satisfied. Even if the ratio R1 is 100%, the ratio R2 of the area A3 of the region where the adhesive resin is provided in the area A1 may be less than 100%.
  • a specific example of the ratio R2 is the same as the ratio R1.
  • the application pattern of the adhesive resin can be changed to a stripe shape, a lattice shape, a mesh shape, a polka dot shape, a tile shape, and the like, and it is preferable that the adhesive resin is uniformly applied without being partially biased.
  • the hook-and-loop fastener may also serve as a base material.
  • the base material 71 of the surface fastener may also serve as the base material 5 of the separation membrane 2.
  • the permeation side surfaces of the facing separation membrane are sealed at the peripheral edge of the separation membrane.
  • the separation membrane element includes a sealing portion that is provided at the peripheral portion of the separation membrane and seals between the separation membranes. Sealing means that the supply water does not flow directly into the gap 3 by adhesion, pressure bonding, welding, fusion, folding, fixing by other members such as a clip, etc. (that is, if the supply water does not permeate the separation membrane) (So that it cannot flow into the gap 3).
  • the sealing portion is formed by an adhesive or can be separated from the separation membrane, and the separation membrane is fixed. It is preferable that it is a member to do.
  • the sealing part is an adhesive
  • it is bonded by heating only the peripheral part of the film provided with the sealing part to soften or plasticize the adhesive, or in contact with a solvent soluble in the adhesive
  • the agent By removing the agent, it is possible to remove the seal without damaging the inner separation functional layer from the peripheral edge.
  • FIGS. 1A and 1B show a resin layer 8 as a sealing portion, and as an example of fixing by other members, FIGS. 3A and 3B show a spacer 12 and a washer 13. And bolts 14 are described.
  • the resin layer 8 is disposed on the periphery of the separation membrane so as to surround the gap 3.
  • the resin layer 8 is bonded to both of the two permeation-side surfaces facing each other in the separation membrane pair, thereby sealing the gap between the separation membranes in the separation membrane pair.
  • a bag-like film is formed.
  • the components constituting the peripheral resin layer include, but are not particularly limited to, instantaneous systems, hot melt systems, two-component room temperature curing resin systems, thermosetting resin systems, elastomer systems, thermoplastic resin systems, elastic systems, and emulsion systems.
  • a hot melt system, a two-component room temperature curing resin system, a thermosetting resin system, an elastomer system, and a thermoplastic resin system are preferable.
  • Two-component room temperature solidified resin systems such as urethane resin and epoxy resin are preferable, and when it is assumed that the film is frequently replaced, a hot melt system or a thermoplastic resin system that can be easily removed is preferable. .
  • the spacer 12 for example, a metal or resin member is used.
  • the spacer 12 is a member having a shape along the peripheral edge of the separation membrane, and is disposed between the two separation membranes 2.
  • the spacer 12 is a rectangular frame member.
  • the bolt 14 and the nut 30 are made of metal or resin, for example.
  • the bolt 14 penetrates the two separation membranes 2 and the spacer 12.
  • the two separation membranes 2 are fixed by bolts 14 and nuts 30 with the spacer 12 interposed therebetween.
  • the bolt 14 can be pulled out from the separation membrane 2 by being loosened.
  • the bolt 14 fixes the spacer 12 between the separation membranes 2 and seals between the separation membranes 2.
  • a washer 13 may be disposed between the bolt 14 and the separation membrane 2 on the supply side surface of the separation membrane 2.
  • the washer 13 can further suppress damage to the separation membrane and enhance adhesion.
  • the washer 13 is a member made of, for example, metal or resin. As shown in FIG. 3B, the washer 13 is a member having a shape along the peripheral edge of the separation membrane 2, and more specifically, a rectangular frame member having substantially the same shape as the spacer 12.
  • the separation membrane may be secured by a clip instead of the bolt-nut structure.
  • the clip 31 holds the two separation membranes 2 at the peripheral edge of the separation membrane 2 so that the spacer 12 is sandwiched between the separation membranes.
  • a member whose opening degree can be changed or a member whose opening degree is fixed can be used as the clip 31, a member whose opening degree can be changed or a member whose opening degree is fixed can be used.
  • FIG. 7B a total of four clips 31 arranged so as to correspond to one side of the separation membrane 2 are provided for one separation membrane pair.
  • an L-shaped clip may be used. The L-shaped clip is arranged so as to correspond to two adjacent sides in the rectangular shape of the separation membrane 2.
  • Frame members 32 are arranged on both surfaces of the separation membrane pair 1D in FIG. 7A, that is, the surfaces on the supply side of the two separation membranes.
  • the frame member 32 is a rectangular frame-shaped member along the peripheral edge of the separation membrane 2, and is made of, for example, metal or resin.
  • the interval between the permeation side surfaces of the separation membrane is preferably 50 ⁇ m or more.
  • transmission side surface is 5000 micrometers or less. As a result, a relatively large membrane area per module can be secured.
  • the surface fastener (at least the base material of the surface fastener) reaches the sealing portion, that is, overlaps the resin layer 8 or the spacer 12.
  • the sealing portion only needs to be provided so as to surround at least a part of the hook-and-loop fastener.
  • the hook-and-loop fastener is arranged only in a region surrounded by the resin layer 8 or the spacer 12, that is, only inside the resin layer 8 or the spacer 12 so as not to overlap the resin layer 8 or the spacer 12. May be.
  • This separation membrane forms a separation functional layer by attaching a film-forming stock solution containing a polyvinylidene fluoride resin and a pore-opening agent to one or both surfaces of a base material and coagulating it in a coagulating liquid containing a non-solvent.
  • the means for attaching the film-forming stock solution to the surface of the substrate may be application of the film-forming stock solution or immersion of the substrate in the film-forming stock solution.
  • the film-forming stock solution may be applied to one side of the substrate, or the film-forming stock solution may be applied to both sides. Only the separation functional layer may be formed separately from the base material, and then both layers of the base material and the separation functional layer may be joined.
  • coagulating the membrane-forming stock solution only the film of the membrane-forming stock solution for forming the separation functional layer formed on the substrate may be brought into contact with the coagulation solution, or the substrate and its substrate Both the film of the membrane-forming stock solution for forming the separation functional layer formed on the material may be immersed in the coagulation liquid.
  • a base material is brought into contact with a smooth plate and attached so that the coagulation bath does not wrap around the base material side, and the base material having a film-forming solution film is immersed in the coagulation bath together with the plate.
  • the base material may be attached to the plate and then the film of the film forming stock solution may be formed, or the film of the film forming raw solution may be formed on the base material and then attached to the plate.
  • a pore-forming agent and a solvent for dissolving them may be added to the film-forming stock solution as necessary.
  • the pore-opening agent may be any one that can be extracted by the coagulation liquid, and is preferably highly soluble in the coagulation liquid.
  • polyoxyalkylenes such as polyethylene glycol and polypropylene glycol
  • aqueous polymer such as polyvinyl alcohol, polyvinyl butyral, and poracrylic acid, and glycerin can be used.
  • a surfactant containing a polyoxyalkylene structure, a fatty acid ester structure or a hydroxyl group can be used as the pore opening agent.
  • Use of a surfactant makes it easy to obtain the target pore structure.
  • polyoxyalkylene structure -(CH 2 CH 2 O) n -,-(CH 2 CH 2 (CH 3 ) O) n- , -(CH 2 CH 2 CH 2 O) n -,-(CH 2 CH 2 CH 2 CH 2 O) n- From the viewpoint of hydrophilicity in particular, -(CH 2 CH 2 O) n- So-called polyoxyethylene represented by
  • fatty acid ester structure examples include fatty acids having a long-chain aliphatic group.
  • the long-chain aliphatic group may be linear or branched, and examples of the fatty acid include stearic acid, oleic acid, lauric acid, and palmitic acid.
  • fatty acid ester derived from fats and oils such as beef tallow, palm oil, coconut oil, etc. are also mentioned.
  • surfactant having a hydroxyl group examples include ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, glycerin, sorbitol, glucose, and sucrose.
  • the surfactant used as a pore opening agent in the present invention preferably contains two or more of a polyoxyalkylene structure, a fatty acid ester structure and a hydroxyl group.
  • surfactants containing all of the polyoxyalkylene structure, fatty acid ester structure and hydroxyl group are particularly preferably used.
  • polyoxyethylene sorbitan fatty acid ester includes polyoxyethylene sorbitan monostearate, polyoxyethylene palm Oil fatty acid sorbitan, polyoxyethylene sorbitan monooleate, polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan monopalmitate, polyoxyethylene fatty acid ester, polyethylene glycol monostearate, polyethylene glycol monooleate, polyethylene glycol monolaurate Can be mentioned.
  • These surfactants are particularly preferable because they not only improve the dispersibility of the inorganic fine particles, but also have the characteristics that even if they remain in the porous layer and are dried, the water permeability and blocking properties are not lowered.
  • NMP N-methylpyrrolidone
  • DMAc Dimethylacetamide
  • DMF N-dimethylformamide
  • DMSO dimethylsulfoxide
  • acetone methyl ethyl ketone
  • NMP, DMAc, DMF, and DMSO which are highly soluble in polyvinylidene fluoride resins, can be preferably used.
  • a non-solvent can be added to the film forming stock solution.
  • the non-solvent does not dissolve the polyvinylidene fluoride resin or other organic resins, and acts to control the size of the pores by controlling the solidification rate of the polyvinylidene fluoride resin and other organic resins.
  • water and alcohols such as methanol and ethanol can be used. Of these, water and methanol are preferred from the viewpoint of ease of wastewater treatment and price. These may be mixed.
  • the polyvinylidene fluoride resin is 5% to 30% by weight, the pore-opening agent is 0.1% to 15% by weight, the solvent is 45% to 94.8% by weight, and the non-solvent is It is preferably in the range of 0.1% to 10% by weight.
  • the range of 8 wt% to 20 wt% is more preferable.
  • the amount of the pore-opening agent is too small, the water permeability may decrease, and if the amount is too large, the strength of the porous layer may decrease. In addition, if it is extremely large, it may remain excessively in the polyvinylidene fluoride resin and elute during use, and the quality of the permeated water may deteriorate or the water permeability may change. Therefore, a more preferable range is 0.5 to 10% by weight. Furthermore, when the amount of the solvent is too small, the stock solution is easily gelled, and when the amount is too large, the strength of the porous layer is lowered, so that the range of 60% by weight to 90% by weight is more preferable. If the amount of non-solvent is too large, gelation of the stock solution tends to occur, and if it is extremely small, control of the size of pores and macrovoids becomes difficult. Therefore, it is more preferably 0.5% by weight to 5% by weight.
  • the coagulation bath a non-solvent or a mixed solution containing a non-solvent and a solvent can be used.
  • the non-solvent in the coagulation bath is preferably at least 80% by weight of the coagulation bath. If the amount is too small, the coagulation rate of the polyvinylidene fluoride resin becomes slow, and the pore diameter becomes large. More preferably, it is in the range of 85% by weight to 100% by weight.
  • a non-solvent when a non-solvent is not used for the film-forming stock solution, it is preferable to reduce the content of the non-solvent in the coagulation bath, compared to the case where a non-solvent is also used for the film-forming stock solution. preferable.
  • rate of a polyvinylidene fluoride type resin will become quick, the surface of a porous layer may become dense, and water permeability may fall.
  • the range of 60% by weight to 99% by weight is more preferable.
  • the temperature of the coagulation bath is too high, the coagulation rate will be too fast. Conversely, if the temperature is too low, the coagulation rate will be too slow, so it is usually selected within the range of 15 ° C to 80 ° C. preferable. More preferably, it is in the range of 20 ° C to 60 ° C.
  • the membrane element can further include a water collection port.
  • the permeated water that is filtered by the separation membrane and flows through the gap 3 between the separation membranes is taken out of the membrane element through the water collection port.
  • the water collecting port of the membrane element may be arranged either at the peripheral edge or inside of the separation membrane pair.
  • a water collection port for allowing permeate to flow out from the peripheral portion of the separation membrane pair, and a fixing jig that supports the water collection port It is preferable that a separation membrane pair is attached to.
  • one of the separation membrane pairs 1A, 1B, 1C, or 1D shown in any of FIGS. 1A, 2, 3A, and 7A and the fixing jig 15 shown in FIG. 4 may be provided.
  • FIG. 4 shows a form in which the fixing jig 15 is applied to the separation membrane element 101 of FIG. 1A as a specific example.
  • the fixing jig 15 is disposed on the periphery of the separation membrane pair 1A (to be along one side of the separation membrane rectangle) so as to be sandwiched between the separation membranes 2 of the separation membrane pair.
  • a water collecting pipe 16 passes through the fixing jig 15, and an end portion of the water collecting pipe 16 functions as a water collecting port 161.
  • the permeated water is discharged from the gap 3 through the water collecting pipe 16 to the outside of the separation membrane pair 1A (or 1B or 1C).
  • this membrane element can be used as a part of a membrane module.
  • the membrane module includes a plurality of membrane elements and a housing that accommodates these membrane elements.
  • the membrane module 17 includes a housing 171 and a plurality of membrane elements 18 accommodated in the housing 171 so as to have a space between the adjacent membrane elements 18 in parallel with each other.
  • the plurality of membrane elements 18 are arranged in parallel.
  • the wastewater treatment apparatus includes a membrane module 17, a membrane immersion water tank 19, an air diffuser 20, a blower 21, and a suction pump 23.
  • the membrane immersion water tank 19 stores water to be treated such as organic waste water.
  • the membrane module 17 is immersed in the water to be treated.
  • the membrane module 17 is arranged so that the membrane surface direction of the membrane element 18 inside thereof is vertical.
  • the air diffuser 20 is provided below the membrane module 17.
  • the air diffuser 20 supplies the gas from the blower 21 to the membrane surface of the separation membrane.
  • the suction pump 23 sucks the permeated water 22 filtered by the membrane module 17 and collects it outside the membrane module 17.
  • a liquid to be treated such as waste water passes through a separation membrane by a suction force of a pump (not shown).
  • suspended substances such as microbial particles and inorganic particles contained in the liquid to be treated are filtered.
  • the permeated water that has passed through the separation membrane flows to the permeation side of the separation membrane, and is taken out of the membrane immersion water tank 19 through the water collection port.
  • the air diffuser 20 generates bubbles in parallel with the filtration, and an upward flow parallel to the membrane surface of the membrane element is generated by the air lift action of the bubbles. By this upward flow, the filtrate deposited on the membrane surface is separated.
  • the liquid to be treated is not limited to sewage wastewater, but can be used for water purification, clean water treatment, wastewater treatment, industrial water production, etc. in the water treatment field, river water, lake water, groundwater, seawater, sewage Waste water can be used as treated water.
  • PVDF Polyvinylidene fluoride
  • PEG 20,000 weight average molecular weight 20,000
  • DMF N, N-dimethylformamide
  • H 2 O was used as a non-solvent.
  • PVDF Polyvinylidene fluoride
  • PEG 20,000 Polyethylene glycol
  • DMF N-dimethylformamide
  • H 2 O 3.5% by weight
  • the film-forming stock solution was cooled to 30 ° C., and then applied to the base material.
  • the base material was cooled to 30 ° C., and then applied to the base material.
  • a separation membrane was produced by drying in a hot air dryer for 30 minutes.
  • a loop-shaped surface fastener 7 is provided on the permeation side of one separation membrane, and a hook-shaped surface fastener 6 is provided on the entire permeation side of the other separation membrane using an epoxy resin adhesive.
  • an adhesive 26 is applied in the form of dots between the surface fastener 6 and the separation membrane 2 and between the surface fastener 7 and the separation membrane 2, and the ratio of the adhesive portion to the area of the surface fastener.
  • An ethylene vinyl acetate copolymer resin having a width of about 5 mm and a height of about 3 mm was applied to the outer peripheral portion of the separation membrane, that is, the peripheral portion.
  • the gap on the permeate side of the separation membrane pair thus obtained was 0.5 mm (500 ⁇ m). Furthermore, when a separation membrane element was prepared by attaching a fixing jig for a water collecting port to the end, and the water permeability of the separation membrane was measured, 21.0 ⁇ 10 ⁇ 9 m 3 / (m 2 ⁇ s ⁇ Pa )Met.
  • Example 2 A separation membrane was prepared and evaluated in the same manner as in Example 1 except that the type of the hook-and-loop fastener was changed so that the gap on the permeation side of the separation membrane was 0.05 mm (50 ⁇ m). As a result, the water permeability of the separation membrane was 20.2 ⁇ 10 ⁇ 9 m 3 / (m 2 ⁇ s ⁇ Pa), which was almost the same value as in Example 1.
  • Example 3 A separation membrane element was prepared and evaluated in the same manner as in Example 1 except that the type of the hook-and-loop fastener was changed so that the gap on the permeation side of the separation membrane was 2 mm (2000 ⁇ m). 2 ⁇ 10 ⁇ 9 m 3 / (m 2 ⁇ s ⁇ Pa), which was substantially the same value as in Example 1.
  • Example 4 A separation membrane element was prepared and evaluated in the same manner as in Example 1 except that the type of the hook-and-loop fastener was changed so that the gap on the permeation side of the separation membrane was 5 mm (5000 ⁇ m). 1 ⁇ 10 ⁇ 9 m 3 / (m 2 ⁇ s ⁇ Pa), which was substantially the same value as in Example 1.
  • Example 5 A separation membrane element was prepared and evaluated in the same manner as in Example 1 except that a stainless steel spacer having a width of about 3 mm was disposed on the periphery of the separation membrane and fixed with bolts. It was 8 ⁇ 10 ⁇ 9 m 3 / (m 2 ⁇ s ⁇ Pa), which was almost the same value as in Example 1.
  • Example 1 A separation membrane element was produced and evaluated in the same manner as in Example 1 except that a surface fastener was not provided on the permeation side of the separation membrane and resin was applied only to the periphery.
  • the gap on the permeate side of the separation membrane is 0.4 mm or less (400 ⁇ m or less), and the water permeability of the separation membrane is 6.2 ⁇ 10 ⁇ 9 m 3 / (m 2 ⁇ s ⁇ Pa), which is 1 / of that of Example 1.
  • the value was about 4.
  • Comparative Example 2 Separation is performed in the same manner as in Example 1 except that the resin is applied only around the permeation side of the separation membrane and a flow path net (thickness: 700 ⁇ m, pitch: 5 mm ⁇ 5 mm, fiber diameter: 780 ⁇ m) is sandwiched.
  • the membrane element was produced and evaluated, the water permeability of the separation membrane was 16.4 ⁇ 10 ⁇ 9 m 3 / (m 2 ⁇ s ⁇ Pa), which was about 3/5 of that of Example 1.
  • Example 3 The drainage woven fabric for the flow path is sandwiched, the permeation side of the separation membrane and the drainage woven fabric are applied in a dot shape with the epoxy resin in the pattern shown in FIG. 25%. Otherwise, the separation membrane element was produced and evaluated in the same manner as in Example 1. As a result, the water permeability of the separation membrane was 18.7 ⁇ 10 ⁇ 9 m 3 / (m 2 ⁇ s ⁇ Pa). . After heating the adhesive part at the peripheral part of the separation membrane pair to 100 ° C. to soften the ethylene-vinyl acetate copolymer, the peripheral part and the drained woven cloth inside are peeled off, and then the drained woven cloth and the peripheral part are again separated. When the water permeability of the separation membrane pair obtained by bonding the parts was measured, it increased to 53.9 ⁇ 10 ⁇ 9 m 3 / (m 2 ⁇ s ⁇ Pa), indicating that the separation membrane was damaged. all right.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

This invention pertains to a separation membrane element comprising: a separation membrane pair in which two separation membranes having permeation-side surfaces and supply-side surfaces are arranged such that the permeation-side surfaces are mutually facing; surface fasteners arranged on the permeation-side surfaces of the separation membranes so as to detachably fasten facing separation membranes; and a sealing section provided in the rim sections of the separation membrane pair, that seal between the separation membrane pair.

Description

面ファスナーを有する分離膜エレメントおよび膜モジュールSeparation membrane element and membrane module having hook-and-loop fastener
 本発明は、飲料水製造、浄水処理、廃水処理などの水処理分野、食品工業分野に好適な分離膜に関する。 The present invention relates to a separation membrane suitable for water treatment fields such as drinking water production, water purification treatment, waste water treatment, and food industry.
 近年、下水や廃水の浄化に使われるようになってきている平膜状や中空糸膜状の分離膜は、分離膜を配設した膜分離エレメントや、複数の前記膜分離エレメントを配置した膜分離モジュールの装置で水浄化処理に使用されている。膜分離エレメントによる分離法に使用される分離膜には、その孔径や分離機能の点から、精密ろ過膜、限外ろ過膜、ナノろ過膜、逆浸透膜、正浸透膜などがあり、これらの膜は、例えば海水、かん水、有害物を含んだ水などから飲料水を得る場合や、工業用超純水の製造、排水処理、有価物の回収などに用いられており、目的とする分離成分及び分離性能によって使い分けられている。 In recent years, separation membranes in the form of flat membranes and hollow fiber membranes that have come to be used for purification of sewage and wastewater include membrane separation elements provided with a separation membrane, and membranes provided with a plurality of the above-mentioned membrane separation elements. It is used for water purification treatment in the equipment of the separation module. Separation membranes used in separation methods using membrane separation elements include microfiltration membranes, ultrafiltration membranes, nanofiltration membranes, reverse osmosis membranes, and forward osmosis membranes in terms of their pore size and separation function. Membranes are used to obtain drinking water from, for example, seawater, brine, and water containing harmful substances, and are used for the production of industrial ultrapure water, wastewater treatment, recovery of valuable materials, etc. Depending on the separation performance.
 特許文献1は、平膜エレメント及びその製造方法として、2枚の平膜の周縁端面が樹脂接着剤で封止された袋状の平膜エレメントを提案している。 Patent Document 1 proposes a bag-like flat membrane element in which the peripheral end surfaces of two flat membranes are sealed with a resin adhesive as a flat membrane element and a manufacturing method thereof.
 また、特許文献2には、第1濾過メンブラン、熱可塑性重合体からなる第1接着性ネット、排液織布、熱可塑性重合体の第2接着性ネット、および第2濾過メンブランを備えたフィルター複合材料が記載されている。第1および第2濾過メンブランは、排液織布に、第1および第2接着性ネットにより接着される。 Patent Document 2 discloses a filter including a first filtration membrane, a first adhesive net made of a thermoplastic polymer, a drainage woven fabric, a second adhesive net of a thermoplastic polymer, and a second filtration membrane. Composite materials are described. The first and second filtration membranes are bonded to the drainage woven fabric by the first and second adhesive nets.
日本国特開2000-117067Japanese Unexamined Patent Publication No. 2000-117067 日本国特表2011-519716Japan Special Table 2011-519716
 特許文献1の技術では、ろ過時に向かい合う分離膜の透過側の面が接触することで、透過水量が低下するおそれがある。また、特許文献2の技術では、分離膜と織布とが接着性ネットにより固定されているため、膜の一部が損傷した場合、エレメントあるいはモジュール全体を交換する必要があった。 In the technique of Patent Document 1, there is a possibility that the amount of permeated water may be reduced due to contact between the permeation side surfaces of the separation membrane facing each other during filtration. In the technique of Patent Document 2, since the separation membrane and the woven fabric are fixed by the adhesive net, it is necessary to replace the element or the entire module when a part of the membrane is damaged.
 本発明は、従来の技術の上述した問題点を解決し、透過水量を向上させるとともに、損傷部分を含む膜のみを新品に交換可能な技術を提供することを目的とする。 The object of the present invention is to solve the above-mentioned problems of the prior art, improve the permeated water amount, and provide a technique capable of replacing only a membrane including a damaged portion with a new one.
 上記目的を達成するために、本発明の分離膜エレメントは、透過側の面および供給側の面を有する2枚の分離膜が、前記透過側の面が互いに対向するように配置されてなる分離膜対と、前記分離膜の透過側の面に、対向する分離膜間を着脱可能に係着するように配置される面ファスナーと、前記分離膜対の周縁部に設けられ、前記分離膜間を封止する封止部と、を備える。 In order to achieve the above object, the separation membrane element of the present invention is a separation membrane in which two separation membranes having a permeation side surface and a supply side surface are arranged so that the permeation side surfaces face each other. A membrane fastener, a hook-and-loop fastener disposed on the permeation side surface of the separation membrane so as to detachably engage between the opposing separation membranes, and a peripheral edge of the separation membrane pair. And a sealing portion for sealing.
 本発明の分離膜を用いることによって、ろ過運転時には面ファスナーにより透過液側が固定されると同時に流路を形成し、高い透過性能を有することが可能となる。また、長期運転による膜が損傷した場合にも、損傷箇所を含む膜だけを容易に交換することが可能であり、メンテナンス性が向上する。 By using the separation membrane of the present invention, the permeate side is fixed by a hook-and-loop fastener at the time of filtration operation, and at the same time, a flow path is formed, and high permeation performance can be obtained. In addition, even when the membrane is damaged due to long-term operation, it is possible to easily replace only the membrane including the damaged portion, thereby improving maintainability.
図1Aは、周縁部を樹脂で封止された分離膜対の断面図であり、分離膜対の厚さ方向に平行な平面における断面図である。FIG. 1A is a cross-sectional view of a separation membrane pair whose peripheral portion is sealed with resin, and is a cross-sectional view in a plane parallel to the thickness direction of the separation membrane pair. 図1Bは、図1Aの分離膜対において、膜の面方面と平行かつ分離膜対の厚み中心を通る平面における断面図(つまり図1Aの分離膜対のX-X矢視断面図)である。1B is a cross-sectional view of the separation membrane pair of FIG. 1A in a plane parallel to the plane of the membrane and passing through the center of thickness of the separation membrane pair (that is, a cross-sectional view of the separation membrane pair of FIG. . 図2は、他の形態の分離膜対の厚さ方向に平行な平面における断面図である。FIG. 2 is a cross-sectional view in a plane parallel to the thickness direction of another form of separation membrane pair. 図3A周縁部が治具で封止された分離膜対を模式的に示す断面図であり、分離膜対の厚さ方向に平行な平面における断面図である。FIG. 3A is a cross-sectional view schematically showing a separation membrane pair whose peripheral edge is sealed with a jig, and is a cross-sectional view in a plane parallel to the thickness direction of the separation membrane pair. 図3Bは、図3Aの分離膜対の平面図である。FIG. 3B is a plan view of the separation membrane pair of FIG. 3A. 図4は、膜エレメントに用いられる固定治具の一例を示す平面図である。FIG. 4 is a plan view showing an example of a fixing jig used for the membrane element. 図5は、膜モジュールを備える水処理装置の一例を示す模式図である。FIG. 5 is a schematic diagram illustrating an example of a water treatment apparatus including a membrane module. 図6は、面ファスナーと基材とを接着する接着剤の塗布パターンの一例を示す平面図である。FIG. 6 is a plan view showing an example of an application pattern of an adhesive that bonds the surface fastener and the base material. 図7Aは、周縁部がクリップで留められた分離膜対を模式的に示す断面図であって、分離膜対の厚さ方向に平行な平面における断面図である。FIG. 7A is a cross-sectional view schematically showing a separation membrane pair whose peripheral portion is clipped, and is a cross-sectional view in a plane parallel to the thickness direction of the separation membrane pair. 図7Bは、図7Aの分離膜対の平面図である。FIG. 7B is a plan view of the separation membrane pair of FIG. 7A.
 1.分離膜エレメント
 図1Aに示すように、分離膜エレメント101は、分離膜対1Aと、面ファスナー6および7と、封止部としての樹脂層8とを備える。分離膜対1Aは、透過側の面が対向するように配置された2枚の分離膜2および樹脂層8を備える。分離膜2は、ナノろ過膜、限外ろ過膜、精密ろ過膜のいずれであってもよい。本実施形態では、分離膜2は特に、分離機能層4、基材5を備える。
1. Separation Membrane Element As shown in FIG. 1A, the separation membrane element 101 includes a separation membrane pair 1A, surface fasteners 6 and 7, and a resin layer 8 as a sealing portion. The separation membrane pair 1A includes two separation membranes 2 and a resin layer 8 that are disposed so that the surfaces on the permeate side face each other. The separation membrane 2 may be any of a nanofiltration membrane, an ultrafiltration membrane, and a microfiltration membrane. In the present embodiment, the separation membrane 2 particularly includes a separation functional layer 4 and a base material 5.
 分離機能層4は基材5に積層されており、基材5の表面のうち、分離機能層4とは反対側の表面が、分離膜2の透過側の面、面ファスナー6または7が配置される面である。なお本発明において分離膜2の構成は図示の例に限定されるものではない。分離膜とは、分離膜表面に供給される流体中の成分を分離し、分離膜を透過した透過流体を得るものであれば限定されない。分離膜は、分離機能層と基材との間に、多孔性支持層を備えてもよい。 The separation functional layer 4 is laminated on the base material 5, and the surface of the base material 5 opposite to the separation functional layer 4 is disposed on the permeation side surface of the separation membrane 2 and the surface fastener 6 or 7. It is the surface to be done. In the present invention, the configuration of the separation membrane 2 is not limited to the illustrated example. The separation membrane is not limited as long as it separates components in the fluid supplied to the surface of the separation membrane and obtains a permeated fluid that has permeated the separation membrane. The separation membrane may include a porous support layer between the separation functional layer and the substrate.
 分離機能層4は、分離膜2の供給側の面、つまりろ過される前の液が接触する面に設けられる。分離機能層としては、公知の構成が採用されうる。 The separation functional layer 4 is provided on the surface of the separation membrane 2 on the supply side, that is, the surface with which the liquid before being filtered contacts. As the separation function layer, a known configuration can be adopted.
 分離膜の分離機能層の厚みは、薄すぎるとひび割れなどの欠陥が生じ、ろ過性能が落ちる場合があり、厚すぎると透水量が低下することがあるので、通常0.001~0.5mm(1μm~500μm)、好ましくは0.05~0.2mm(50μm~200μm)の範囲で選定することが好ましい。 If the thickness of the separation functional layer of the separation membrane is too thin, defects such as cracks may occur and the filtration performance may deteriorate. If it is too thick, the water permeability may decrease. 1 μm to 500 μm), preferably 0.05 to 0.2 mm (50 μm to 200 μm).
 分離機能層としては、孔径制御、耐久性の点で架橋高分子が好ましく使用され、成分の分離性能の点で、多官能アミンと多官能酸ハロゲン化物とを重縮合させてなる分離機能層および有機無機ハイブリッド機能層などが好ましい。これらの分離機能層は、基材上に設けられた多孔性支持層の上に形成されることが好ましい。また、分離機能層は、セルロース膜、ポリフッ化ビニリデン膜、ポリエーテルスルホン膜、ポリスルホン膜のような多孔性支持層であって、分離機能と支持体機能との両方を有する層であってもよい。つまり、分離機能層と多孔性支持層とが、単一の層で実現されてもよい。特に、分離膜は、好ましくは基材と分離機能層とを備え、分離機能層はポリフッ化ビニリデン系樹脂からなることが好ましい。 As the separation functional layer, a crosslinked polymer is preferably used in terms of pore size control and durability, and in terms of component separation performance, a separation functional layer formed by polycondensation of a polyfunctional amine and a polyfunctional acid halide and An organic-inorganic hybrid functional layer is preferred. These separation functional layers are preferably formed on a porous support layer provided on a substrate. The separation functional layer may be a porous support layer such as a cellulose membrane, a polyvinylidene fluoride membrane, a polyethersulfone membrane, or a polysulfone membrane, and may be a layer having both a separation function and a support function. . That is, the separation functional layer and the porous support layer may be realized as a single layer. In particular, the separation membrane preferably includes a base material and a separation functional layer, and the separation functional layer is preferably made of a polyvinylidene fluoride resin.
 基材と分離機能層との間には、当該分離機能層を構成する樹脂と基材とが混在する層が介在していることが好ましい。基材表面から内部にポリフッ化ビニリデン系ブレンド樹脂が入り込むことで、いわゆるアンカー効果によって分離機能層が基材に堅固に定着される。その結果、分離機能層が基材から剥がれることが抑制される。分離機能層は、基材の片面のみに存在しても構わないし、また、両面に存在しても構わない。分離機能層は、基材に対して、対称構造であっても、非対称構造であっても構わない。また、分離機能層が基材の両面に存在している場合には、両側の分離機能層が、基材を介して連続的であっても構わないし、不連続であっても構わない。 It is preferable that a layer in which the resin constituting the separation functional layer and the base material are mixed is interposed between the base material and the separation functional layer. When the polyvinylidene fluoride-based blend resin enters from the surface of the base material into the inside, the separation functional layer is firmly fixed to the base material by a so-called anchor effect. As a result, separation of the separation functional layer from the substrate is suppressed. The separation functional layer may exist only on one side of the base material, or may exist on both sides. The separation functional layer may have a symmetric structure or an asymmetric structure with respect to the base material. Moreover, when the separation functional layer exists on both surfaces of the substrate, the separation functional layers on both sides may be continuous or discontinuous through the substrate.
 分離機能層と基材とを備える分離膜において、基材は、分離機能層を支持して分離膜に強度を与える機能をもつ。基材を構成する材質としては、有機基材、無機基材等、特に限定されないが、軽量化しやすい点から、有機基材が好ましい。有機基材としては、セルロース繊維、セルローストリアセテート繊維、ポリエステル繊維、ポリプロピレン繊維、ポリエチレン繊維などの有機繊維からなる織編物や不織布があげられる。特に、密度の制御が比較的容易な不織布が好ましい。 In a separation membrane comprising a separation functional layer and a substrate, the substrate has a function of supporting the separation functional layer and giving strength to the separation membrane. The material constituting the base material is not particularly limited, such as an organic base material or an inorganic base material, but an organic base material is preferable from the viewpoint of easy weight reduction. Examples of the organic substrate include woven and knitted fabrics and nonwoven fabrics made of organic fibers such as cellulose fibers, cellulose triacetate fibers, polyester fibers, polypropylene fibers, and polyethylene fibers. In particular, a nonwoven fabric whose density control is relatively easy is preferable.
 面ファスナーは、分離膜の透過側の面に配置され、かつ、対向する分離膜間を着脱可能に係着する構造である。「係着」とは、「貼り付け」、「係合」、「係止」、「接続」等と言い換えられる。すなわち、面ファスナーは、2枚の分離膜間で、一方の分離膜に対する他方の分離膜の相対的な位置を固定でき、かつこの固定を解除できるものであり、固定と解除とを繰り返すことができる構造である。具体的には、面ファスナーとは、他の面ファスナーと着脱可能な部材であり、例えば、他の面ファスナーとの間で対向する面が互いに噛み合うように形成されている部材か、または対向する面にそれぞれ多くの雄部と雌部が設けられた部材が挙げられる。面ファスナーは、「係着部」などと言い換えられてもよい。
 例えば面ファスナーは、少なくとも片方に係合面を備えるシート状の基材と、基材の係合面に設けられた係合素子とを備えることができる。2枚の面ファスナーの係合面が互いに接触すると、係合素子を介して面ファスナー間が着脱可能に係合される。具体的には、係合素子は、互いに異なる構造を有する素子同士が係合できるように形成されていてもよいし、同じ構造を有する素子同士が係合できるように形成されていてもよい。
 ループ‐フック型またはスナップ型の係合素子を備える面ファスナーでは、互いに異なる構造を有する素子同士が係合する。また、マッシュルーム型の係合素子を備える面ファスナーでは、同じ構造を有する係合素子が互いに係合する。ループ‐フック構造以外にも、凹凸が噛み合う構造等、他の構成が採用されてもよい。
A hook-and-loop fastener is a structure which is arrange | positioned on the permeation | transmission side surface of a separation membrane, and attaches | detaches between the separation membranes which oppose. The term “engagement” is paraphrased as “sticking”, “engagement”, “locking”, “connection”, and the like. That is, the hook-and-loop fastener can fix the relative position of the other separation membrane with respect to one separation membrane between two separation membranes, and can release this fixation. It is a possible structure. Specifically, a hook-and-loop fastener is a member that can be attached to and detached from other hook-and-loop fasteners. For example, the hook-and-loop fastener is a member that is formed such that the surfaces facing each other and other hook-and-loop fasteners are engaged with each other, or is opposed. Examples include members each having a large number of male parts and female parts on the surface. The hook-and-loop fastener may be rephrased as “an engagement portion” or the like.
For example, the hook-and-loop fastener can include a sheet-like base material provided with an engaging surface on at least one side and an engaging element provided on the engaging surface of the base material. When the engagement surfaces of the two surface fasteners come into contact with each other, the surface fasteners are detachably engaged via the engagement elements. Specifically, the engaging element may be formed so that elements having different structures can be engaged with each other, or may be formed so that elements having the same structure can be engaged with each other.
In a hook-and-loop fastener including a loop-hook type or snap type engaging element, elements having different structures are engaged with each other. Further, in a hook-and-loop fastener including a mushroom-type engagement element, engagement elements having the same structure are engaged with each other. In addition to the loop-hook structure, other structures such as a structure in which irregularities mesh with each other may be adopted.
 図1Aにおける面ファスナー6および7は、分離膜に設けられる面ファスナーの形態の一例である。面ファスナー6または7は、分離膜2の透過側の面に設けられる。面ファスナー6は、基材61と、基材61の片面に設けられた係合素子であるフック部9とを備え、面ファスナー7は、基材71と、基材71の片面に設けられた係合素子であるループ部10とを備える。図1Aの形態では、面ファスナー6は係合素子としてフック部(フック状繊維)9のみを備え、面ファスナー7は係合素子としてループ部(ループ状繊維)10のみを備える。 The surface fasteners 6 and 7 in FIG. 1A are an example of the form of the surface fastener provided on the separation membrane. The surface fastener 6 or 7 is provided on the permeate side surface of the separation membrane 2. The surface fastener 6 includes a base material 61 and a hook portion 9 that is an engaging element provided on one surface of the base material 61, and the surface fastener 7 is provided on the base material 71 and one surface of the base material 71. And a loop portion 10 which is an engaging element. In the form of FIG. 1A, the hook-and-loop fastener 6 includes only a hook portion (hook-like fiber) 9 as an engaging element, and the hook-and-loop fastener 7 includes only a loop portion (loop-like fiber) 10 as an engaging element.
 また、図2に示すように、対向する2枚の面ファスナーは同一構成を備えていてもよい。すなわち、図2に示す分離膜エレメント102は、分離膜対1Bを備えており、分離膜対1Bにおいて対向する分離膜2の両方の透過側の面上には、ループ部9とフック部10との両方を備える面ファスナー11が設けられる。 Further, as shown in FIG. 2, the two facing surface fasteners may have the same configuration. That is, the separation membrane element 102 shown in FIG. 2 includes the separation membrane pair 1B, and the loop portion 9 and the hook portion 10 are provided on both permeation side surfaces of the separation membrane 2 facing each other in the separation membrane pair 1B. The hook-and-loop fastener 11 provided with both is provided.
 こうして、面ファスナーは、対向する分離膜間を着脱可能に繋ぐことができる。面ファスナーを構成する材質としては特に限定されないが、プラスチック、特にポリエステル、ポリアミド、ポリプロピレン等が好ましく用いられる。これら面ファスナーとして、例えばクラレ社“マジックテープ(登録商標)”、YKK社“クイックロン(登録商標)”、“パワーフック(登録商標)”、住友スリーエム社“メカニカルファスナー”などの市販品を用いることが可能である。 Thus, the hook-and-loop fastener can detachably connect the opposing separation membranes. The material constituting the surface fastener is not particularly limited, but plastic, particularly polyester, polyamide, polypropylene, and the like are preferably used. As these hook-and-loop fasteners, commercially available products such as Kuraray "Magic Tape (registered trademark)", YKK "Quicklon (registered trademark)", "Power Hook (registered trademark)", and Sumitomo 3M "mechanical fastener" are used. It is possible.
 面ファスナーにより、分離膜の一部が繋がれる形態については、対向する分離膜が面ファスナーのみを介して繋がれていても、対向する膜間に面ファスナーを備えた支持板を配し、支持板と面ファスナーを介して繋がれていても良いが、軽量化およびコストの面から、面ファスナーのみを介して繋がれている形態が好ましい。 Regarding the form in which a part of the separation membrane is connected by the hook-and-loop fastener, even if the opposing separation membrane is connected only through the hook-and-loop fastener, a support plate provided with the hook-and-loop fastener is arranged between the opposing membranes and supported. Although it may be connected to the plate via a hook-and-loop fastener, a form in which the plate is connected only via the hook-and-loop fastener is preferable in terms of weight reduction and cost.
 封止部を除き、面ファスナーのみを介して分離膜対が繋がれている形態の一例として、図1Aには、一方の面ファスナーに含まれるフック状繊維9が、それに対向する面ファスナーに含まれるループ状繊維10に引っ掛かることを指す。すなわち、分離膜対において、一方の分離膜は他方の分離膜に、面ファスナーのフック状樹脂とループ状繊維の引っ掛かりを介して固定される。このような固定を係着と称する。また、対向する分離膜を互いに離れる方向に力を加えることにより、係着が外れて面ファスナーによる固定が外れることになる。これによって、分離膜対1Aにおいて、2枚の分離膜2は、対向する面において、互いに脱着を繰り返すことが可能である。 As an example of the form in which the separation membrane pair is connected only through the hook-and-loop fastener except for the sealing portion, FIG. 1A includes a hook-like fiber 9 included in one hook-and-loop fastener in the hook-and-loop fastener facing the hook-and-loop fiber 9. It refers to being hooked on the looped fiber 10. That is, in the separation membrane pair, one separation membrane is fixed to the other separation membrane through hooks of hook-shaped resin of the hook-and-loop fastener and loop-shaped fibers. Such fixing is called engagement. Further, by applying a force in the direction in which the opposing separation membranes are separated from each other, the engagement is released and the fixation by the surface fastener is released. Thus, in the separation membrane pair 1A, the two separation membranes 2 can be repeatedly desorbed from each other on the opposing surfaces.
 対向する2つの透過側の面の脱着のし易さは、面ファスナーの素材、ループ状繊維およびフック状繊維の形状、大きさ、繊維径、単位面積あたりの個数により調整することが可能である。 The ease of attaching and detaching the two opposing transmission-side surfaces can be adjusted by the material of the hook-and-loop fastener, the shape, size, fiber diameter, and number per unit area of the loop-like fibers and hook-like fibers. .
 面ファスナーの脱着のし易さは、JIS-L-3416:2000に記載の剥離強度(ピール強力)により評価することが出来る。剥離強度の範囲としては、ろ過時の膜の揺れおよびたわみを抑制する観点から、0.1N/cm以上が好ましく、0.5N/cm以上がより好ましく、1.0N/cm以上がさらに好ましい。 The ease of attaching and detaching the surface fastener can be evaluated by the peel strength (peel strength) described in JIS-L-3416: 2000. The range of the peel strength is preferably 0.1 N / cm or more, more preferably 0.5 N / cm or more, and further preferably 1.0 N / cm or more, from the viewpoint of suppressing membrane shaking and deflection during filtration.
 本実施形態では、図1Aに示すように、対向する2つの透過側の面が、面ファスナー6、7により繋がれているので、上述の逆圧洗浄を行っても、圧力は封止部分に集中するのではなく、内側の部分にも分散される。よって、分離膜間の剥離の発生が抑制され、供給側から透過側への水のリークが起こりにくいという効果が得られる。また、面ファスナーにより対向する面の脱着が可能であることから、分離膜の一部が破損した場合、該当する膜を対になる膜から引き離して、別の膜に交換することも容易となる。 In the present embodiment, as shown in FIG. 1A, two opposing transmission-side surfaces are connected by hook-and- loop fasteners 6 and 7, so that even if the above-described back pressure cleaning is performed, the pressure is applied to the sealed portion. Instead of concentrating, it is also distributed to the inner part. Therefore, the occurrence of separation between separation membranes is suppressed, and an effect that water leaks from the supply side to the permeation side hardly occurs. In addition, since the opposing surfaces can be detached by the hook-and-loop fastener, when a part of the separation membrane is damaged, it is easy to separate the corresponding membrane from the paired membrane and exchange it with another membrane. .
 分離膜の周縁部(後述する)を除く内部の面積A1に対する面ファスナー部の面積A2の比率R1は、ろ過時の膜の揺れおよびたわみを抑制する観点から、10%以上、25%以上、または50%以上が好ましい。また、上記比率R1は100%であってもよいし、透過水の流路を確保するという観点からは、上記比率R1は100%未満であってもよく、80%以下、70%以下、または60%以下であってもよい。 The ratio R1 of the area A2 of the hook-and-loop fastener portion to the internal area A1 excluding the peripheral portion (described later) of the separation membrane is 10% or more, 25% or more, or from the viewpoint of suppressing membrane shaking and deflection during filtration, or 50% or more is preferable. Further, the ratio R1 may be 100%, and from the viewpoint of securing a flow path of permeated water, the ratio R1 may be less than 100%, 80% or less, 70% or less, or It may be 60% or less.
 上記比率R1が100%未満の場合、面ファスナーの平面視におけるパターン(つまり、分離膜の面方向に平行な平面における形状)には特に制限はない。面ファスナーの形状としては、例えば、縞状、格子状、網目状、水玉状、タイル状などが挙げられる。タイル状とは、三角形、四角形等の多角形状の面ファスナーが、間をおいて並べられたパターンである。面ファスナーの設けられる位置は、分離膜の一部に偏ることなく、均一に分布していることが好ましい。 When the ratio R1 is less than 100%, the pattern of the surface fastener in a plan view (that is, a shape in a plane parallel to the surface direction of the separation membrane) is not particularly limited. Examples of the shape of the hook-and-loop fastener include a stripe shape, a lattice shape, a mesh shape, a polka dot shape, and a tile shape. The tile shape is a pattern in which polygonal surface fasteners such as triangles and quadrangles are arranged at intervals. The positions where the surface fasteners are provided are preferably uniformly distributed without being biased toward a part of the separation membrane.
 面ファスナーと基材との間は、接着性を有する樹脂を設けることにより固定されることが出来る。面ファスナーと基材との間の樹脂層を構成する成分としては瞬間系、ホットメルト系、2液常温硬化樹脂系、熱硬化樹脂系、エラストマー系、熱可塑性樹脂系、弾性系、エマルジョン系などが挙げられ、特に限定されないが、耐久性、硬化速度、コストの観点から、ホットメルト系、2液常温硬化樹脂系、熱硬化樹脂系、エラストマー系、熱可塑性樹脂系が好ましく、中でも耐久性、生産性の面からウレタン樹脂、エポキシ樹脂などの2液常温固化樹脂系が最も好ましく用いられる。 The surface fastener and the substrate can be fixed by providing an adhesive resin. Components that make up the resin layer between the hook-and-loop fastener and the base material are instantaneous, hot melt, two-component room temperature curable resin, thermosetting resin, elastomer, thermoplastic resin, elastic, emulsion, etc. Although not particularly limited, from the viewpoint of durability, curing speed, and cost, a hot melt system, a two-component room temperature curing resin system, a thermosetting resin system, an elastomer system, and a thermoplastic resin system are preferable, among which durability, From the viewpoint of productivity, a two-component room temperature solidified resin system such as urethane resin and epoxy resin is most preferably used.
 面ファスナーと基材との間に設けられる接着性樹脂は、基材6から間隙3への透水性を確保するために、基材6の表面の一部のみに設けられる。上述のとおり、周縁部(分離膜同士の固定のために通水できない部分)を除いた基材6の表面の面積A1において、面ファスナーの設けられる部分A2の面積が占める割合R1が100%未満であれば、この条件は満たされる。また、割合R1が100%であっても、面積A1において接着性樹脂が設けられる領域の面積A3の割合R2が100%未満であればよい。比率R2の具体例は比率R1と同様である。また、接着性樹脂の塗布パターンについても、縞状、格子状、網目状、水玉状、タイル状などに変更可能であり、一部に偏ることなく均一に塗布されていることが好ましい。 The adhesive resin provided between the surface fastener and the base material is provided only on a part of the surface of the base material 6 in order to ensure water permeability from the base material 6 to the gap 3. As described above, in the area A1 of the surface of the base material 6 excluding the peripheral edge portion (portion where water cannot be passed for fixing separation membranes), the ratio R1 occupied by the area of the portion A2 where the surface fastener is provided is less than 100%. If so, this condition is satisfied. Even if the ratio R1 is 100%, the ratio R2 of the area A3 of the region where the adhesive resin is provided in the area A1 may be less than 100%. A specific example of the ratio R2 is the same as the ratio R1. Also, the application pattern of the adhesive resin can be changed to a stripe shape, a lattice shape, a mesh shape, a polka dot shape, a tile shape, and the like, and it is preferable that the adhesive resin is uniformly applied without being partially biased.
 面ファスナーは、基材を兼ねていてもよい。例えば、図1Aにおいて、面ファスナーの基材71が分離膜2の基材5をかねていてもよい。
 向かい合う分離膜の透過側の面の間は、分離膜の周縁部において封止されていることが好ましい。つまり、分離膜エレメントは、分離膜の周縁部に設けられ、前記分離膜間を封止する封止部を備える。封止とは、接着、圧着、溶着、融着、折り畳み、クリップなどの他部材による固定等によって、供給水が間隙3に直接には流入しないように(つまり供給水が分離膜を透過しないと間隙3に流入できないように)することである。
The hook-and-loop fastener may also serve as a base material. For example, in FIG. 1A, the base material 71 of the surface fastener may also serve as the base material 5 of the separation membrane 2.
It is preferable that the permeation side surfaces of the facing separation membrane are sealed at the peripheral edge of the separation membrane. That is, the separation membrane element includes a sealing portion that is provided at the peripheral portion of the separation membrane and seals between the separation membranes. Sealing means that the supply water does not flow directly into the gap 3 by adhesion, pressure bonding, welding, fusion, folding, fixing by other members such as a clip, etc. (that is, if the supply water does not permeate the separation membrane) (So that it cannot flow into the gap 3).
 特に、膜の交換の為に封止を外すことが容易に出来るという観点から、封止部は、接着剤によって形成されるか、あるいは分離膜とは分離可能であって、分離膜間を固定する部材であることが好ましい。 In particular, from the viewpoint that it is possible to easily remove the seal for replacement of the membrane, the sealing portion is formed by an adhesive or can be separated from the separation membrane, and the separation membrane is fixed. It is preferable that it is a member to do.
 封止部が接着剤である場合、封止部の設けられた膜の周縁部のみを加熱して接着剤を軟化あるいは可塑化させることで、または接着剤に可溶な溶剤に接触させて接着剤を除去することで、周縁部より内部の分離機能層を傷つけることなく、封止を外すことが可能である。 When the sealing part is an adhesive, it is bonded by heating only the peripheral part of the film provided with the sealing part to soften or plasticize the adhesive, or in contact with a solvent soluble in the adhesive By removing the agent, it is possible to remove the seal without damaging the inner separation functional layer from the peripheral edge.
 分離膜とは分離可能な封止部としては、例えばクリップ、またはスペーサおよびボルトなどの部材が挙げられる。この場合は、封止部である部材を分離膜から外すことにより、封止を外すことが可能である。 Examples of the sealing portion that can be separated from the separation membrane include a clip or a member such as a spacer and a bolt. In this case, the sealing can be removed by removing the member that is the sealing portion from the separation membrane.
 接着による封止構造の例として、図1Aおよび図1Bには、封止部として樹脂層8が記載されており、他部材による固定の例として図3Aおよび図3Bには、スペーサ12、座金13およびボルト14が記載されている。 As an example of the sealing structure by bonding, FIGS. 1A and 1B show a resin layer 8 as a sealing portion, and as an example of fixing by other members, FIGS. 3A and 3B show a spacer 12 and a washer 13. And bolts 14 are described.
 樹脂層8は、分離膜の周縁に、間隙3を囲むように配置される。樹脂層8は、分離膜対において向かい合う2つの透過側の面の両方に接着することで、分離膜対における分離膜の間隙を封止する。こうして、袋状膜が形成される。 The resin layer 8 is disposed on the periphery of the separation membrane so as to surround the gap 3. The resin layer 8 is bonded to both of the two permeation-side surfaces facing each other in the separation membrane pair, thereby sealing the gap between the separation membranes in the separation membrane pair. Thus, a bag-like film is formed.
 周縁の樹脂層を構成する成分としては瞬間系、ホットメルト系、2液常温硬化樹脂系、熱硬化樹脂系、エラストマー系、熱可塑性樹脂系、弾性系、エマルジョン系などが挙げられ、特に限定されないが、耐久性、硬化速度、コストの観点から、ホットメルト系、2液常温硬化樹脂系、熱硬化樹脂系、エラストマー系、熱可塑性樹脂系が好ましく、中でも耐久性、生産性を重視する場合はウレタン樹脂、エポキシ樹脂などの2液常温固化樹脂系が好ましく、頻繁に膜を交換することが想定される場合には、封止を外すことが容易であるホットメルト系あるいは熱可塑性樹脂系が好ましい。 The components constituting the peripheral resin layer include, but are not particularly limited to, instantaneous systems, hot melt systems, two-component room temperature curing resin systems, thermosetting resin systems, elastomer systems, thermoplastic resin systems, elastic systems, and emulsion systems. However, from the viewpoint of durability, curing speed, and cost, a hot melt system, a two-component room temperature curing resin system, a thermosetting resin system, an elastomer system, and a thermoplastic resin system are preferable. Especially, when durability and productivity are important Two-component room temperature solidified resin systems such as urethane resin and epoxy resin are preferable, and when it is assumed that the film is frequently replaced, a hot melt system or a thermoplastic resin system that can be easily removed is preferable. .
 図3Aおよび図3Bに示す構成では、樹脂層8に代えて、スペーサ12、座金13、ボルト14およびナット30が設けられる。 3A and 3B, a spacer 12, a washer 13, a bolt 14, and a nut 30 are provided in place of the resin layer 8.
 スペーサ12としては、例えば、金属製または樹脂製の部材が用いられる。スペーサ12は、分離膜の周縁部に沿う形状の部材であり、2枚の分離膜2の間に配置される。具体的には、スペーサ12は矩形の枠状の部材である。 As the spacer 12, for example, a metal or resin member is used. The spacer 12 is a member having a shape along the peripheral edge of the separation membrane, and is disposed between the two separation membranes 2. Specifically, the spacer 12 is a rectangular frame member.
 ボルト14およびナット30は、例えば金属製または樹脂製である。ボルト14は、2枚の分離膜2およびスペーサ12を貫く。2枚の分離膜2は、スペーサ12を間に挟んでボルト14とナット30とによって固定される。なお、ボルト14は、緩められることで、分離膜2から引き抜き可能である。こうして、ボルト14は、スペーサ12を分離膜2間に固定し、分離膜2間を封止する。 The bolt 14 and the nut 30 are made of metal or resin, for example. The bolt 14 penetrates the two separation membranes 2 and the spacer 12. The two separation membranes 2 are fixed by bolts 14 and nuts 30 with the spacer 12 interposed therebetween. The bolt 14 can be pulled out from the separation membrane 2 by being loosened. Thus, the bolt 14 fixes the spacer 12 between the separation membranes 2 and seals between the separation membranes 2.
 この場合、分離膜2の供給側面上で、ボルト14と分離膜2との間に、座金13が配置されていてもよい。座金13によって、分離膜の損傷をさらに抑制し、密着性を高めることが可能である。座金13は、例えば金属製または樹脂製の部材である。図3Bに示すように、座金13は、分離膜2の周縁部に沿う形状の部材であって、より具体的には、スペーサ12とほぼ同形状を有する矩形の枠状の部材である。 In this case, a washer 13 may be disposed between the bolt 14 and the separation membrane 2 on the supply side surface of the separation membrane 2. The washer 13 can further suppress damage to the separation membrane and enhance adhesion. The washer 13 is a member made of, for example, metal or resin. As shown in FIG. 3B, the washer 13 is a member having a shape along the peripheral edge of the separation membrane 2, and more specifically, a rectangular frame member having substantially the same shape as the spacer 12.
 また、分離膜間は、ボルト-ナット構造に代えて、クリップによって留められてもよい。図7A,図7Bに示すように、クリップ31は、分離膜2の周縁部において、2枚の分離膜2を、分離膜間にスペーサ12を挟むように留める。クリップ31としては、開度が変更可能な部材、または開度が固定された部材が使用可能である。図7Bでは1つの分離膜対に対して、分離膜2の一辺に対応するように配置された合計4つのクリップ31を備える。これ以外にも、例えばL字型のクリップが用いられてもよい。L字型のクリップは、分離膜2の矩形状における隣り合う2辺に対応するように配置される。 Further, the separation membrane may be secured by a clip instead of the bolt-nut structure. As shown in FIGS. 7A and 7B, the clip 31 holds the two separation membranes 2 at the peripheral edge of the separation membrane 2 so that the spacer 12 is sandwiched between the separation membranes. As the clip 31, a member whose opening degree can be changed or a member whose opening degree is fixed can be used. In FIG. 7B, a total of four clips 31 arranged so as to correspond to one side of the separation membrane 2 are provided for one separation membrane pair. In addition to this, for example, an L-shaped clip may be used. The L-shaped clip is arranged so as to correspond to two adjacent sides in the rectangular shape of the separation membrane 2.
 図7Aの分離膜対1Dの両面、つまり2枚の分離膜の供給側の面には、枠部材32が配置される。枠部材32は、分離膜2の周縁部に沿う矩形の枠状の部材であって、例えば金属製または樹脂製である。 7A. Frame members 32 are arranged on both surfaces of the separation membrane pair 1D in FIG. 7A, that is, the surfaces on the supply side of the two separation membranes. The frame member 32 is a rectangular frame-shaped member along the peripheral edge of the separation membrane 2, and is made of, for example, metal or resin.
 上述したいずれの形態においても、分離膜対において、分離膜の透過側面の間隔(図1Aに矢印で示す距離)は、50μm以上であることが好ましい。これによって、透過側流路が確保でき、流動抵抗が低減される。また、透過側面の間隔は、5000μm以下であることが好ましい。これによって、1つのモジュール当たりの膜面積を比較的大きく確保することができる。 In any of the forms described above, in the separation membrane pair, the interval between the permeation side surfaces of the separation membrane (the distance indicated by the arrow in FIG. 1A) is preferably 50 μm or more. As a result, a permeate-side flow path can be secured and the flow resistance is reduced. Moreover, it is preferable that the space | interval of a permeation | transmission side surface is 5000 micrometers or less. As a result, a relatively large membrane area per module can be secured.
 なお、図1Aおよび図3A等、本明細書で参照する図面では、面ファスナーは(少なくとも面ファスナーの基材は)、封止部まで至るように、つまり樹脂層8またはスペーサ12に重なるように、配置されている。ただし、本発明はこれらの構成に限定されるものでは無く、封止部は、面ファスナーの少なくとも一部を囲むように設けられていればよい。例えば、面ファスナーは、樹脂層8またはスペーサ12で囲まれた領域内にのみに、つまり、樹脂層8またはスペーサ12よりも内側のみに、樹脂層8またはスペーサ12に重ならないように配置されていてもよい。 In the drawings referred to in this specification such as FIG. 1A and FIG. 3A, the surface fastener (at least the base material of the surface fastener) reaches the sealing portion, that is, overlaps the resin layer 8 or the spacer 12. Have been placed. However, the present invention is not limited to these configurations, and the sealing portion only needs to be provided so as to surround at least a part of the hook-and-loop fastener. For example, the hook-and-loop fastener is arranged only in a region surrounded by the resin layer 8 or the spacer 12, that is, only inside the resin layer 8 or the spacer 12 so as not to overlap the resin layer 8 or the spacer 12. May be.
 2.分離膜の製造方法
 次に、本発明において用いる分離膜を製造する方法について説明する。この分離膜は、ポリフッ化ビニリデン系樹脂及び開孔剤などを含む製膜原液を、基材の片表面若しくは両表面に付着させ、非溶媒を含む凝固液中で凝固させ分離機能層を形成することにより製造することができる。このとき、基材の表面に製膜原液を付着させる手段は、製膜原液の塗布でもよく、また、基材の製膜原液への浸漬でもよい。基材に製膜原液を塗布する場合には、基材の片面に製膜原液を塗布してもよいし、両面に製膜原液を塗布してもよい。基材とは別に分離機能層のみを形成し、その後に、基材と分離機能層とを両層を接合してもよい。
2. Next, a method for producing a separation membrane used in the present invention will be described. This separation membrane forms a separation functional layer by attaching a film-forming stock solution containing a polyvinylidene fluoride resin and a pore-opening agent to one or both surfaces of a base material and coagulating it in a coagulating liquid containing a non-solvent. Can be manufactured. At this time, the means for attaching the film-forming stock solution to the surface of the substrate may be application of the film-forming stock solution or immersion of the substrate in the film-forming stock solution. When applying the film-forming stock solution to the substrate, the film-forming stock solution may be applied to one side of the substrate, or the film-forming stock solution may be applied to both sides. Only the separation functional layer may be formed separately from the base material, and then both layers of the base material and the separation functional layer may be joined.
 そして、製膜原液を凝固させるにあたっては、基材上に形成された分離機能層形成用の製膜原液の被膜のみを、凝固液に接触させてもよいし、また、基材と、その基材上に形成された分離機能層形成用の製膜原液の被膜との両方を凝固液に浸漬してもよい。製膜原液の被膜のみを凝固液に接触させるためには、例えば、基材上に形成された被膜が下側に来るようにして凝固浴表面と接触させる方法や、ガラス板、金属板などの平滑な板の上に基材を接触させて、凝固浴が基材側に回り込まないように貼り付け、製膜原液被膜を有する基材を板ごと凝固浴に浸漬する方法などがある。後者の方法では、基材を板に貼り付けてから製膜原液の被膜を形成しても構わないし、基材に製膜原液の被膜を形成してから板に貼り付けても構わない。 In coagulating the membrane-forming stock solution, only the film of the membrane-forming stock solution for forming the separation functional layer formed on the substrate may be brought into contact with the coagulation solution, or the substrate and its substrate Both the film of the membrane-forming stock solution for forming the separation functional layer formed on the material may be immersed in the coagulation liquid. In order to bring only the film of the film-forming solution into contact with the coagulation liquid, for example, a method of bringing the film formed on the substrate into contact with the surface of the coagulation bath so that it is on the lower side, a glass plate, a metal plate, etc. There is a method in which a base material is brought into contact with a smooth plate and attached so that the coagulation bath does not wrap around the base material side, and the base material having a film-forming solution film is immersed in the coagulation bath together with the plate. In the latter method, the base material may be attached to the plate and then the film of the film forming stock solution may be formed, or the film of the film forming raw solution may be formed on the base material and then attached to the plate.
 そして、製膜原液には、前記したポリフッ化ビニリデン系樹脂の他に、必要に応じて開孔剤やそれらを溶解する溶媒等を添加してもよい。 In addition to the above-described polyvinylidene fluoride resin, a pore-forming agent and a solvent for dissolving them may be added to the film-forming stock solution as necessary.
 製膜原液に多孔質形成を促進する作用を持つ開孔剤を加える場合、その開孔剤は、凝固液によって抽出可能なものであればよく、凝固液への溶解性の高いものが好ましい。たとえば、ポリエチレングリコール、ポリプロピレングリコールなどのポリオキシアルキレン類や、ポリビニールアルコール、ポリビニールブチラール、ポルアクリル酸などの水溶液高分子やグリセリンを用いることもできる。 In the case of adding a pore-opening agent having an action of promoting porous formation to the film-forming stock solution, the pore-opening agent may be any one that can be extracted by the coagulation liquid, and is preferably highly soluble in the coagulation liquid. For example, polyoxyalkylenes such as polyethylene glycol and polypropylene glycol, aqueous polymer such as polyvinyl alcohol, polyvinyl butyral, and poracrylic acid, and glycerin can be used.
 また、本発明において、開孔剤としては、ポリオキシアルキレン構造又は、脂肪酸エステル構造又は水酸基を含有している界面活性剤を用いることができる。界面活性剤の使用により、目的とする細孔構造を得ることが容易になる。 In the present invention, a surfactant containing a polyoxyalkylene structure, a fatty acid ester structure or a hydroxyl group can be used as the pore opening agent. Use of a surfactant makes it easy to obtain the target pore structure.
 ポリオキシアルキレン構造としては、
-(CHCHO)-、-(CHCH(CH)O)-、
-(CHCHCHO)-、-(CHCHCHCHO)
などを挙げることができるが、特に親水性の観点から、
-(CHCHO)
で表されるいわゆるポリオキシエチレンが好ましい。
As polyoxyalkylene structure,
-(CH 2 CH 2 O) n -,-(CH 2 CH 2 (CH 3 ) O) n- ,
-(CH 2 CH 2 CH 2 O) n -,-(CH 2 CH 2 CH 2 CH 2 O) n-
From the viewpoint of hydrophilicity in particular,
-(CH 2 CH 2 O) n-
So-called polyoxyethylene represented by
 脂肪酸エステル構造としては、長鎖脂肪族基を有する脂肪酸が挙げられる。長鎖脂肪族基としては、直鎖状、分岐状いずれでも良いが、脂肪酸としては、ステアリン酸、オレイン酸、ラウリン酸、パルミチン酸などが挙げられる。また、油脂由来の脂肪酸エステル、例えば牛脂、パーム油、ヤシ油等も挙げられる。 Examples of the fatty acid ester structure include fatty acids having a long-chain aliphatic group. The long-chain aliphatic group may be linear or branched, and examples of the fatty acid include stearic acid, oleic acid, lauric acid, and palmitic acid. Moreover, fatty acid ester derived from fats and oils, such as beef tallow, palm oil, coconut oil, etc. are also mentioned.
 水酸基を有する界面活性剤としては、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、グリセリン、ソルビトール、ブドウ糖、ショ糖などを挙げることができる。 Examples of the surfactant having a hydroxyl group include ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, glycerin, sorbitol, glucose, and sucrose.
 本発明において開孔剤として用いる界面活性剤は、ポリオキシアルキレン構造、脂肪酸エステル構造、水酸基のうち2つ以上を含むものが好ましい。 The surfactant used as a pore opening agent in the present invention preferably contains two or more of a polyoxyalkylene structure, a fatty acid ester structure and a hydroxyl group.
 中でも、ポリオキシアルキレン構造、脂肪酸エステル構造及び水酸基の全てを含有している界面活性剤が特に好ましく用いられ、たとえば、ポリオキシエチレンソルビタン脂肪酸エステルとして、モノステアリン酸ポリオキシエチレンソルビタン、ポリオキシエチレンヤシ油脂肪酸ソルビタン、モノオレイン酸ポリオキシエチレンソルビタン、モノラウリン酸ポリオキシエチレンソルビタン、モノパルミチン酸ポリオキシエチレンソルビタン、ポリオキシエチレン脂肪酸エステルとして、モノステアリン酸ポリエチレングリコール、モノオレイン酸ポリエチレングリコール、モノラウリン酸ポリエチレングリコールを挙げることができる。これらの界面活性剤は特に無機微粒子の分散性をよくするだけでなく、多孔質層に残存し乾燥させても透水性、阻止性が低下しないという特徴を併せ持つので好ましい。 Of these, surfactants containing all of the polyoxyalkylene structure, fatty acid ester structure and hydroxyl group are particularly preferably used. For example, polyoxyethylene sorbitan fatty acid ester includes polyoxyethylene sorbitan monostearate, polyoxyethylene palm Oil fatty acid sorbitan, polyoxyethylene sorbitan monooleate, polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan monopalmitate, polyoxyethylene fatty acid ester, polyethylene glycol monostearate, polyethylene glycol monooleate, polyethylene glycol monolaurate Can be mentioned. These surfactants are particularly preferable because they not only improve the dispersibility of the inorganic fine particles, but also have the characteristics that even if they remain in the porous layer and are dried, the water permeability and blocking properties are not lowered.
 また、製膜原液中に、ポリフッ化ビニリデン系樹脂、他の有機樹脂及び開孔剤などを溶解させるための溶媒を用いる場合、その溶媒としては、N-メチルピロリドン(NMP)、N,N-ジメチルアセトアミド(DMAc)、N,N-ジメチルホルムアミド(DMF)、ジメチルスルホキシド(DMSO)、アセトン、メチルエチルケトンなどを用いる事ができる。中でもポリフッ化ビニリデン系樹脂に対する溶解性の高いNMP、DMAc、DMF、DMSOを好ましく用いることができる。 When a solvent for dissolving polyvinylidene fluoride resin, other organic resin, pore-opening agent and the like is used in the film forming stock solution, N-methylpyrrolidone (NMP), N, N— Dimethylacetamide (DMAc), N, N-dimethylformamide (DMF), dimethylsulfoxide (DMSO), acetone, methyl ethyl ketone, and the like can be used. Of these, NMP, DMAc, DMF, and DMSO, which are highly soluble in polyvinylidene fluoride resins, can be preferably used.
 製膜原液には、その他、非溶媒を添加することもできる。非溶媒は、ポリフッ化ビニリデン系樹脂や他の有機樹脂を溶解しないものであり、ポリフッ化ビニリデン系樹脂及び他の有機樹脂の凝固の速度を制御して細孔の大きさを制御するように作用する。非溶媒としては、水や、メタノール、エタノールなどのアルコール類を用いることができる。なかでも廃水処理の容易さや価格の点から水、メタノールが好ましい。これらの混合であってもよい。 In addition, a non-solvent can be added to the film forming stock solution. The non-solvent does not dissolve the polyvinylidene fluoride resin or other organic resins, and acts to control the size of the pores by controlling the solidification rate of the polyvinylidene fluoride resin and other organic resins. To do. As the non-solvent, water and alcohols such as methanol and ethanol can be used. Of these, water and methanol are preferred from the viewpoint of ease of wastewater treatment and price. These may be mixed.
 製膜原液の組成において、ポリフッ化ビニリデン系樹脂は5重量%~30重量%、開孔剤は0.1重量%~15重量%、溶媒は45重量%~94.8重量%、非溶媒は0.1重量%~10重量%範囲内であることが好ましい。中でも、ポリフッ化ビニリデン系樹脂は、極端に少ないと多孔質層の強度が低くなり、多すぎると透水性が低下することがあるので、8重量%~20重量%の範囲がより好ましい。開孔剤は、少なすぎると透水性が低下し、多すぎると多孔質層の強度が低下することがある。また、極端に多いとポリフッ化ビニリデン系樹脂中に過剰に残存して使用中に溶出し、透過水の水質が悪化したり、透水性変動をしたりすることがある。したがって、より好ましい範囲は、0.5重量%~10重量%である。さらに、溶媒は少なすぎると原液がゲル化しやすくなり、多すぎると多孔質層の強度が低下することので、より好ましくは60重量%~90重量%の範囲である。また、非溶媒は、あまり多いと原液のゲル化が起こりやすくなり、極端に少ないと細孔やマクロボイドの大きさの制御が難しくなる。したがって、より好ましくは0.5重量%~5重量%である。 In the composition of the film forming stock solution, the polyvinylidene fluoride resin is 5% to 30% by weight, the pore-opening agent is 0.1% to 15% by weight, the solvent is 45% to 94.8% by weight, and the non-solvent is It is preferably in the range of 0.1% to 10% by weight. In particular, when the amount of the polyvinylidene fluoride resin is extremely small, the strength of the porous layer is lowered, and when the amount is too large, the water permeability may be lowered. Therefore, the range of 8 wt% to 20 wt% is more preferable. If the amount of the pore-opening agent is too small, the water permeability may decrease, and if the amount is too large, the strength of the porous layer may decrease. In addition, if it is extremely large, it may remain excessively in the polyvinylidene fluoride resin and elute during use, and the quality of the permeated water may deteriorate or the water permeability may change. Therefore, a more preferable range is 0.5 to 10% by weight. Furthermore, when the amount of the solvent is too small, the stock solution is easily gelled, and when the amount is too large, the strength of the porous layer is lowered, so that the range of 60% by weight to 90% by weight is more preferable. If the amount of non-solvent is too large, gelation of the stock solution tends to occur, and if it is extremely small, control of the size of pores and macrovoids becomes difficult. Therefore, it is more preferably 0.5% by weight to 5% by weight.
 一方、凝固浴としては、非溶媒、または非溶媒と溶媒とを含む混合溶液を用いることができる。製膜原液にも非溶媒を用いる場合、凝固浴における非溶媒は、凝固浴の少なくとも80重量%とするのが好ましい。少なすぎるとポリフッ化ビニリデン系樹脂の凝固速度が遅くなり細孔径が大きくなったりする。より好ましくは、85重量%~100重量%の範囲である。一方、製膜原液に非溶媒を用いない場合、製膜原液にも非溶媒を用いる場合よりも、凝固浴における非溶媒の含有量を少なくすることが好ましいが、少なくとも60重量%とするのが好ましい。非溶媒が多いと、ポリフッ化ビニリデン系樹脂の凝固速度が速くなって多孔質層の表面は緻密となり透水性が低下することがある。より好ましくは60重量%~99重量%の範囲がよい。凝固浴中の非溶媒の含有量を調整することにより、多孔質層表面の孔径やマクロボイドの大きさを制御することができる。なお、凝固浴の温度は、あまり高いと凝固速度が速すぎるようになり、逆に、あまり低いと凝固速度が遅すぎるようになるので、通常、15℃~80℃の範囲で選定するのが好ましい。より好ましくは20℃~60℃の範囲である。 On the other hand, as the coagulation bath, a non-solvent or a mixed solution containing a non-solvent and a solvent can be used. When a non-solvent is used for the film-forming stock solution, the non-solvent in the coagulation bath is preferably at least 80% by weight of the coagulation bath. If the amount is too small, the coagulation rate of the polyvinylidene fluoride resin becomes slow, and the pore diameter becomes large. More preferably, it is in the range of 85% by weight to 100% by weight. On the other hand, when a non-solvent is not used for the film-forming stock solution, it is preferable to reduce the content of the non-solvent in the coagulation bath, compared to the case where a non-solvent is also used for the film-forming stock solution. preferable. When there are many nonsolvents, the coagulation | solidification speed | rate of a polyvinylidene fluoride type resin will become quick, the surface of a porous layer may become dense, and water permeability may fall. The range of 60% by weight to 99% by weight is more preferable. By adjusting the content of the non-solvent in the coagulation bath, the pore size on the surface of the porous layer and the size of the macrovoids can be controlled. If the temperature of the coagulation bath is too high, the coagulation rate will be too fast. Conversely, if the temperature is too low, the coagulation rate will be too slow, so it is usually selected within the range of 15 ° C to 80 ° C. preferable. More preferably, it is in the range of 20 ° C to 60 ° C.
 膜エレメントは、集水口をさらに備えることができる。分離膜によってろ過され、分離膜間の間隙3を流れる透過水は、集水口を介して膜エレメント外部に取り出される。 The membrane element can further include a water collection port. The permeated water that is filtered by the separation membrane and flows through the gap 3 between the separation membranes is taken out of the membrane element through the water collection port.
 膜エレメントの集水口は、分離膜対の周縁部または内側のいずれに配置されていてもよい。例えば、下廃水処理用途に好適に用いることができる膜エレメントの形態の一例としては、分離膜対の周縁部から透過水を流出させる集水口を備えることが好ましく、集水口をサポートする固定治具に分離膜対が取り付けられていることが好ましい。 The water collecting port of the membrane element may be arranged either at the peripheral edge or inside of the separation membrane pair. For example, as an example of the form of the membrane element that can be suitably used for the treatment of sewage wastewater, it is preferable to include a water collection port for allowing permeate to flow out from the peripheral portion of the separation membrane pair, and a fixing jig that supports the water collection port It is preferable that a separation membrane pair is attached to.
 例えば、図1A、図2、図3A、図7Aのいずれかに示す分離膜対1A、1B、1C、または1Dのいずれかと図4に示す固定治具15とを備えてもよい。 For example, one of the separation membrane pairs 1A, 1B, 1C, or 1D shown in any of FIGS. 1A, 2, 3A, and 7A and the fixing jig 15 shown in FIG. 4 may be provided.
 図4には、具体例として、図1Aの分離膜エレメント101に固定治具15を適用した形態を示す。固定治具15は、分離膜対1Aの周縁に(分離膜の矩形の一辺に沿うように)、分離膜対の分離膜2の間に挟まれるように配置される。固定治具15には集水管16が通っており、集水管16の端部が集水口161として機能する。透過水は間隙3から集水管16を通って、分離膜対1A(または1B、1Cのいずれか)の外部へと排出される。 FIG. 4 shows a form in which the fixing jig 15 is applied to the separation membrane element 101 of FIG. 1A as a specific example. The fixing jig 15 is disposed on the periphery of the separation membrane pair 1A (to be along one side of the separation membrane rectangle) so as to be sandwiched between the separation membranes 2 of the separation membrane pair. A water collecting pipe 16 passes through the fixing jig 15, and an end portion of the water collecting pipe 16 functions as a water collecting port 161. The permeated water is discharged from the gap 3 through the water collecting pipe 16 to the outside of the separation membrane pair 1A (or 1B or 1C).
 また、この膜エレメントは膜モジュールの一部として使用することができる。膜モジュールは、複数の膜エレメントと、これらの膜エレメントを収容するハウジングとを備える。 Also, this membrane element can be used as a part of a membrane module. The membrane module includes a plurality of membrane elements and a housing that accommodates these membrane elements.
 3.膜モジュールおよび下廃水処理装置
 膜モジュールおよびその使用について、図5に例示した下廃水処理装置説明する。図5において、膜モジュール17は、ハウジング171と、互いに平行に、かつ、隣接する膜エレメント18の間に空間ができるようにハウジング171内に収納された複数の膜エレメント18とを備える。複数の膜エレメント18は並列に配置されている。
3. Membrane module and sewage wastewater treatment apparatus The sewage wastewater treatment apparatus illustrated in FIG. In FIG. 5, the membrane module 17 includes a housing 171 and a plurality of membrane elements 18 accommodated in the housing 171 so as to have a space between the adjacent membrane elements 18 in parallel with each other. The plurality of membrane elements 18 are arranged in parallel.
 下廃水処理装置は、膜モジュール17と、膜浸漬水槽19と、散気装置20と、ブロア21と、吸引ポンプ23とを備える。 The wastewater treatment apparatus includes a membrane module 17, a membrane immersion water tank 19, an air diffuser 20, a blower 21, and a suction pump 23.
 膜浸漬水槽19は、有機性廃水などの被処理水を蓄える。この被処理水内に、膜モジュール17が浸漬される。膜モジュール17は、その内部の膜エレメント18の膜面方向が鉛直になるように配置される。 The membrane immersion water tank 19 stores water to be treated such as organic waste water. The membrane module 17 is immersed in the water to be treated. The membrane module 17 is arranged so that the membrane surface direction of the membrane element 18 inside thereof is vertical.
 散気装置20は、膜モジュール17の下方に設けられている。散気装置20はブロア21からの気体を分離膜の膜面に供給する。 The air diffuser 20 is provided below the membrane module 17. The air diffuser 20 supplies the gas from the blower 21 to the membrane surface of the separation membrane.
 吸引ポンプ23は、膜モジュール17により濾過された透過水22を吸引し、膜モジュール17外に回収する。 The suction pump 23 sucks the permeated water 22 filtered by the membrane module 17 and collects it outside the membrane module 17.
 このように構成された下廃水処理装置において、廃水などの被処理液は、図示しないポンプの吸引力により分離膜を通過する。この際、被処理液中に含まれる微生物粒子、無機物粒子などの懸濁物質がろ過される。そして、分離膜を通過した透過水は、分離膜の透過側に流れ、上述の集水口を通って膜浸漬水槽19の外部に取り出される。 In the sewage treatment apparatus configured as described above, a liquid to be treated such as waste water passes through a separation membrane by a suction force of a pump (not shown). At this time, suspended substances such as microbial particles and inorganic particles contained in the liquid to be treated are filtered. Then, the permeated water that has passed through the separation membrane flows to the permeation side of the separation membrane, and is taken out of the membrane immersion water tank 19 through the water collection port.
 一方、ろ過と並行して散気装置20が気泡を発生させ、その気泡のエアリフト作用によって、膜エレメントの膜面に平行な上昇流が発生する。この上昇流によって、膜面に堆積したろ過物が離脱する。 On the other hand, the air diffuser 20 generates bubbles in parallel with the filtration, and an upward flow parallel to the membrane surface of the membrane element is generated by the air lift action of the bubbles. By this upward flow, the filtrate deposited on the membrane surface is separated.
 被処理液としては、下廃水に限られるのではなく、水処理分野であれば浄水処理、上水処理、排水処理、工業用水製造などで利用でき、河川水、湖沼水、地下水、海水、下水、排水などを被処理水とすることができる。 The liquid to be treated is not limited to sewage wastewater, but can be used for water purification, clean water treatment, wastewater treatment, industrial water production, etc. in the water treatment field, river water, lake water, groundwater, seawater, sewage Waste water can be used as treated water.
 実施例、比較例における分離膜の透水量と、透過側の間隙は、次のように測定した。 The water permeability of the separation membrane and the gap on the permeation side in Examples and Comparative Examples were measured as follows.
 [分離膜エレメントの作製]
 後述の方法で作製した分離膜を12cm角で2枚切り出し、各実施例、比較例に記載された方法で分離膜対を作製すると共に、集水口のついた固定治具(図4)を取り付けることにより、分離膜エレメントを作製した。
[Production of separation membrane element]
Two separation membranes produced by the method described later are cut out at 12 cm square, and a separation membrane pair is produced by the method described in each example and comparative example, and a fixing jig (FIG. 4) with a water collecting port is attached. Thus, a separation membrane element was produced.
 [分離膜の透水量]
 こうして得られた分離膜エレメントを、高さ20cm、幅20cm、奥行き20cm水槽に浸漬させた。水頭高さ1mで蒸留水を25℃、5分間予備透過させた後、続けて蒸留水を透過させることで、透過水を5分間採取した。こうして5分間で得られた透過水の水量に基づいて、透水量[m/(m・s・Pa)]を算出した。
[Water permeability of separation membrane]
The separation membrane element thus obtained was immersed in a water tank having a height of 20 cm, a width of 20 cm, and a depth of 20 cm. Distilled water was preliminarily permeated at 25 ° C. for 5 minutes at a head height of 1 m, and then permeated water was collected for 5 minutes by permeating distilled water. Based on the amount of permeated water thus obtained in 5 minutes, the amount of permeated water [m 3 / (m 2 · s · Pa)] was calculated.
 [透過側の間隙]
 分離膜エレメントを厚さ方向に切断し、その断面において、分離膜の間隙をマイクロスコープ(キーエンス社製 型式:VHX-1000)で測定した。
[Gap on the transmission side]
The separation membrane element was cut in the thickness direction, and the gap of the separation membrane was measured with a microscope (Model: VHX-1000 manufactured by Keyence Corporation) in the cross section.
 (実施例1)
 製膜原液用の樹脂成分としてポリフッ化ビニリデン(PVDF、重量平均分子量28万)を用いた。また、開孔剤としてポリエチレングリコール(PEG20,000、重量平均分子量20,000)、溶媒としてN,N-ジメチルホルムアミド(DMF)、非溶媒としてHOをそれぞれ用いた。これらを95℃の温度下で十分に攪拌し、次の組成を有する製膜原液を作製した。
Example 1
Polyvinylidene fluoride (PVDF, weight average molecular weight 280,000) was used as a resin component for the film-forming stock solution. Further, polyethylene glycol (PEG 20,000, weight average molecular weight 20,000) was used as a pore-opening agent, N, N-dimethylformamide (DMF) was used as a solvent, and H 2 O was used as a non-solvent. These were sufficiently stirred at a temperature of 95 ° C. to prepare a film-forming stock solution having the following composition.
 ポリフッ化ビニリデン(PVDF)       :13.0重量%
 ポリエチレングリコール(PEG20,000) : 5.5重量%
 N,N-ジメチルホルムアミド(DMF)    :78.0重量%
 HO                    : 3.5重量%
Polyvinylidene fluoride (PVDF): 13.0% by weight
Polyethylene glycol (PEG 20,000): 5.5% by weight
N, N-dimethylformamide (DMF): 78.0% by weight
H 2 O: 3.5% by weight
 基材として、密度0.42g/cm、サイズ50cm幅×150cm長の長方形のポリエステル繊維製不織布を用いて、上記製膜原液を30℃に冷却した後、基材に塗布し、塗布後、直ちに20℃の純水中に5分間浸漬し、さらに90℃の熱水に2分間浸漬して溶媒であるN,N-ジメチルホルムアミドおよび開孔剤であるポリエチレングリコールを洗い流し、さらに、75℃の熱風乾燥機にて30分間乾燥して分離膜を製造した。 Using a non-woven fabric made of rectangular polyester fiber having a density of 0.42 g / cm 3 and a size of 50 cm width × 150 cm length as the base material, the film-forming stock solution was cooled to 30 ° C., and then applied to the base material. Immediately immersed in pure water at 20 ° C. for 5 minutes and further immersed in hot water at 90 ° C. for 2 minutes to wash away N, N-dimethylformamide as a solvent and polyethylene glycol as a pore opening agent, A separation membrane was produced by drying in a hot air dryer for 30 minutes.
 次に、得られた分離膜から12cm角で2枚の切片を切り出した。このうち、1枚の分離膜の透過側には、ループ状の面ファスナー7を、もう1枚の分離膜の透過側にはフック状の面ファスナー6を、エポキシ樹脂接着剤を用いて全面に貼り付けた。図6に示すように、面ファスナー6と分離膜2との間、および面ファスナー7と分離膜2との間には接着剤26をドット状に塗布し、面ファスナーの面積に対する接着部の割合は25%であった。分離膜の外周部分、つまり周縁部には、幅5mm、高さ3mm程度の大きさで、エチレン酢酸ビニル共重合樹脂を塗布した。 Next, two pieces were cut out at 12 cm square from the obtained separation membrane. Of these, a loop-shaped surface fastener 7 is provided on the permeation side of one separation membrane, and a hook-shaped surface fastener 6 is provided on the entire permeation side of the other separation membrane using an epoxy resin adhesive. Pasted. As shown in FIG. 6, an adhesive 26 is applied in the form of dots between the surface fastener 6 and the separation membrane 2 and between the surface fastener 7 and the separation membrane 2, and the ratio of the adhesive portion to the area of the surface fastener. Was 25%. An ethylene vinyl acetate copolymer resin having a width of about 5 mm and a height of about 3 mm was applied to the outer peripheral portion of the separation membrane, that is, the peripheral portion.
 こうして得られた分離膜対の透過側の間隙は、0.5mm(500μm)であった。さらに、端部に集水口用の固定治具を取り付けることで分離膜エレメントを作製し、分離膜の透水量を測定したところ、21.0×10-9/(m・s・Pa)であった。 The gap on the permeate side of the separation membrane pair thus obtained was 0.5 mm (500 μm). Furthermore, when a separation membrane element was prepared by attaching a fixing jig for a water collecting port to the end, and the water permeability of the separation membrane was measured, 21.0 × 10 −9 m 3 / (m 2 · s · Pa )Met.
 その後、分離膜対の周縁部の接着部分を100℃に加熱して、エチレン酢酸ビニル共重合を軟化させたのち、周縁部およびその内部の面ファスナー部分を剥離した後、再度周縁部を接着して得られた分離膜対の透水量を測定したところ、21.1×10-9/(m・s・Pa)であり、剥離前と殆ど変わらない値であった。 Then, after heating the adhesive part at the peripheral part of the pair of separation membranes to 100 ° C. to soften the ethylene vinyl acetate copolymer, the peripheral part and the surface fastener part inside thereof are peeled off, and then the peripheral part is adhered again. When the water permeability of the separation membrane pair obtained was measured, it was 21.1 × 10 −9 m 3 / (m 2 · s · Pa), which was almost the same as that before peeling.
 (実施例2)
 分離膜の透過側の間隙を0.05mm(50μm)となるように、面ファスナーの種類を変更した以外は、実施例1と同様に分離膜を作製および評価した。その結果、分離膜の透水性能は20.2×10-9/(m・s・Pa)であり、実施例1とほぼ同等の値であった。
(Example 2)
A separation membrane was prepared and evaluated in the same manner as in Example 1 except that the type of the hook-and-loop fastener was changed so that the gap on the permeation side of the separation membrane was 0.05 mm (50 μm). As a result, the water permeability of the separation membrane was 20.2 × 10 −9 m 3 / (m 2 · s · Pa), which was almost the same value as in Example 1.
 その後、分離膜対の周縁部の接着部分を100℃に加熱して、エチレン酢酸ビニル共重合を軟化させたのち、周縁部およびその内部の面ファスナー部分を剥離した後、再度周縁部を接着して得られた分離膜対の透水量を測定したところ、20.1×10-9/(m・s・Pa)であり、剥離前と殆ど変わらない値であった。 Then, after heating the adhesive part at the peripheral part of the pair of separation membranes to 100 ° C. to soften the ethylene vinyl acetate copolymer, the peripheral part and the surface fastener part inside thereof are peeled off, and then the peripheral part is adhered again. When the water permeability of the separation membrane pair obtained was measured, it was 20.1 × 10 −9 m 3 / (m 2 · s · Pa), which was almost the same as that before peeling.
 (実施例3)
 分離膜の透過側の間隙を2mm(2000μm)となるように、面ファスナーの種類を変更した以外は、実施例1と同様に分離膜エレメントを作製および評価したところ、分離膜の透水性能は23.2×10-9/(m・s・Pa)であり、実施例1とほぼ同等の値であった。
(Example 3)
A separation membrane element was prepared and evaluated in the same manner as in Example 1 except that the type of the hook-and-loop fastener was changed so that the gap on the permeation side of the separation membrane was 2 mm (2000 μm). 2 × 10 −9 m 3 / (m 2 · s · Pa), which was substantially the same value as in Example 1.
 その後、分離膜対の周縁部の接着部分を100℃に加熱して、エチレン酢酸ビニル共重合を軟化させたのち、周縁部およびその内部の面ファスナー部分を剥離した後、再度周縁部を接着して得られた分離膜対の透水量を測定したところ、23.3×10-9/(m・s・Pa)であり、剥離前と殆ど変わらない値であった。 Then, after heating the adhesive part at the peripheral part of the pair of separation membranes to 100 ° C. to soften the ethylene vinyl acetate copolymer, the peripheral part and the surface fastener part inside thereof are peeled off, and then the peripheral part is adhered again. When the water permeability of the separation membrane pair obtained was measured, it was 23.3 × 10 −9 m 3 / (m 2 · s · Pa), which was almost the same as that before peeling.
 (実施例4)
 分離膜の透過側の間隙を5mm(5000μm)となるように、面ファスナーの種類を変更した以外は、実施例1と同様に分離膜エレメントを作製および評価したところ、分離膜の透水性能は26.1×10-9/(m・s・Pa)であり、実施例1とほぼ同等の値であった。
(Example 4)
A separation membrane element was prepared and evaluated in the same manner as in Example 1 except that the type of the hook-and-loop fastener was changed so that the gap on the permeation side of the separation membrane was 5 mm (5000 μm). 1 × 10 −9 m 3 / (m 2 · s · Pa), which was substantially the same value as in Example 1.
 その後、分離膜対の周縁部の接着部分を100℃に加熱して、エチレン酢酸ビニル共重合を軟化させたのち、周縁部およびその内部の面ファスナー部分を剥離した後、再度周縁部を接着して得られた分離膜対の透水量を測定したところ、25.9×10-9/(m・s・Pa)であり、剥離前と殆ど変わらない値であった。 Then, after heating the adhesive part at the peripheral part of the pair of separation membranes to 100 ° C. to soften the ethylene vinyl acetate copolymer, the peripheral part and the surface fastener part inside thereof are peeled off, and then the peripheral part is adhered again. When the water permeability of the separation membrane pair obtained was measured, it was 25.9 × 10 −9 m 3 / (m 2 · s · Pa), which was a value almost unchanged from that before peeling.
 (実施例5)
 分離膜の周縁部に、幅3mm程度のステンレス製のスペーサを配置し、ボルトで固定した以外は、実施例1と同様に分離膜エレメントを作製および評価したところ、分離膜の透水性能は25.8×10-9/(m・s・Pa)であり、実施例1とほぼ同等の値であった。
(Example 5)
A separation membrane element was prepared and evaluated in the same manner as in Example 1 except that a stainless steel spacer having a width of about 3 mm was disposed on the periphery of the separation membrane and fixed with bolts. It was 8 × 10 −9 m 3 / (m 2 · s · Pa), which was almost the same value as in Example 1.
 その後、分離膜対の周縁部の固定を外し、その内部の面ファスナー部分を剥離した後、再度周縁部をスペーサとボルトで固定して得られた分離膜対の透水量を測定したところ、25.8×10-9/(m・s・Pa)であり、剥離前と殆ど変わらない値であった。 Then, after fixing the peripheral part of the separation membrane pair, peeling the hook-and-loop fastener part inside, and measuring the water permeability of the separation membrane pair obtained by fixing the peripheral part again with a spacer and a bolt, 25 .8 × 10 −9 m 3 / (m 2 · s · Pa), which is almost the same as that before peeling.
 (比較例1)
 分離膜の透過側に面ファスナーを設けず、周囲のみに樹脂を塗布した以外は、実施例1と同様に分離膜エレメントを作製および評価した。分離膜の透過側の間隙は0.4mm以下(400μm以下)であり、分離膜の透水性能は6.2×10-9/(m・s・Pa)と実施例1の1/4程度の値であった。
(Comparative Example 1)
A separation membrane element was produced and evaluated in the same manner as in Example 1 except that a surface fastener was not provided on the permeation side of the separation membrane and resin was applied only to the periphery. The gap on the permeate side of the separation membrane is 0.4 mm or less (400 μm or less), and the water permeability of the separation membrane is 6.2 × 10 −9 m 3 / (m 2 · s · Pa), which is 1 / of that of Example 1. The value was about 4.
 (比較例2)
 分離膜の透過側の周囲のみに樹脂を塗布し、さらに流路用のネット(厚み:700μm、ピッチ:5mm×5mm、繊維径:780μm)を挟み込んだこと以外は、実施例1と同様に分離膜エレメントを作製および評価をしたところ、分離膜の透水性能は16.4×10-9/(m・s・Pa)と実施例1の3/5程度の値であった。
(Comparative Example 2)
Separation is performed in the same manner as in Example 1 except that the resin is applied only around the permeation side of the separation membrane and a flow path net (thickness: 700 μm, pitch: 5 mm × 5 mm, fiber diameter: 780 μm) is sandwiched. When the membrane element was produced and evaluated, the water permeability of the separation membrane was 16.4 × 10 −9 m 3 / (m 2 · s · Pa), which was about 3/5 of that of Example 1.
 (比較例3)
 流路用の排液織布を挟み込み、分離膜の透過側と排液織布をエポキシ樹脂で図6に示すパターンでドット状に塗布を行い、排液織布部面積に対する接着部の割合は25%であった。それ以外は、実施例1と同様にして、分離膜エレメントを作製および評価をしたところ、分離膜の透水性能は18.7×10-9/(m・s・Pa)であった。分離膜対の周縁部の接着部分を100℃に加熱して、エチレン酢酸ビニル共重合を軟化させたのち、周縁部およびその内部の排液織布を剥離した後、再度排液織布と周縁部を接着して得られた分離膜対の透水量を測定したところ、53.9×10-9/(m・s・Pa)に増加し、分離膜が損傷を受けたことがわかった。
(Comparative Example 3)
The drainage woven fabric for the flow path is sandwiched, the permeation side of the separation membrane and the drainage woven fabric are applied in a dot shape with the epoxy resin in the pattern shown in FIG. 25%. Otherwise, the separation membrane element was produced and evaluated in the same manner as in Example 1. As a result, the water permeability of the separation membrane was 18.7 × 10 −9 m 3 / (m 2 · s · Pa). . After heating the adhesive part at the peripheral part of the separation membrane pair to 100 ° C. to soften the ethylene-vinyl acetate copolymer, the peripheral part and the drained woven cloth inside are peeled off, and then the drained woven cloth and the peripheral part are again separated. When the water permeability of the separation membrane pair obtained by bonding the parts was measured, it increased to 53.9 × 10 −9 m 3 / (m 2 · s · Pa), indicating that the separation membrane was damaged. all right.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは、当業者にとって明らかである。
 本出願は、2012年3月30日出願の日本特許出願2012-079366に基づくものであり、その内容はここに参照として取り込まれる。
Although the invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on Japanese Patent Application No. 2012-079366 filed on Mar. 30, 2012, the contents of which are incorporated herein by reference.
 1A、1B、1C  分離膜対
 2  分離膜
 3  間隙
 4  分離機能層
 5  基材
 6  面ファスナー(フック)
 7  面ファスナー(ループ)     
 8  周縁の樹脂層
 9  フック部(フック状繊維)
10  ループ部(ループ状繊維)
11  面ファスナー(ループ部およびフック部)
12  スペーサ
13  座金
14  ボルト
15  固定治具
16  集水管
17  膜モジュール
18  膜エレメント
19  膜浸漬水槽
20  散気装置
21  ブロア
22  透過水
23  吸引ポンプ
24  被処理水入口
25  被処理水出口
26  面ファスナーと基材とを接着する接着剤
1A, 1B, 1C Separation membrane pair 2 Separation membrane 3 Gap 4 Separation function layer 5 Base material 6 Surface fastener (hook)
7 Loop fastener (loop)
8 Perimeter resin layer 9 Hook (hook-like fiber)
10 Loop part (loop fiber)
11 hook-and-loop fastener (loop part and hook part)
12 Spacer 13 Washer 14 Bolt 15 Fixing jig 16 Water collecting pipe 17 Membrane module 18 Membrane element 19 Membrane immersion water tank 20 Air diffuser 21 Blower 22 Permeated water 23 Suction pump 24 Water to be treated 25 Water outlet 26 Surface fastener and base Adhesive for bonding materials

Claims (5)

  1.  透過側の面および供給側の面を有する2枚の分離膜が、前記透過側の面が互いに対向するように配置されてなる分離膜対と、
     前記分離膜の透過側の面に、対向する分離膜間を着脱可能に係着するように配置される面ファスナーと、
     前記分離膜対の周縁部に設けられ、前記分離膜間を封止する封止部と、
    を備える分離膜エレメント。
    Two separation membranes having a permeation side surface and a supply side surface, a separation membrane pair in which the permeation side surfaces are arranged to face each other;
    A hook-and-loop fastener that is arranged so as to detachably engage between opposing separation membranes on the permeation side surface of the separation membrane;
    A sealing portion that is provided at a peripheral portion of the separation membrane pair and seals between the separation membranes;
    A separation membrane element comprising:
  2.  前記面ファスナーは、ループ‐フック構造を備える請求項1に記載の分離膜エレメント。 The separation membrane element according to claim 1, wherein the hook-and-loop fastener has a loop-hook structure.
  3.  前記分離膜は、
     供給側の面に設けられた分離機能層と、
     前記分離機能層と前記面ファスナーとの間に設けられた基材と、
    を備える請求項1または2に記載の分離膜エレメント。
    The separation membrane is
    A separation functional layer provided on the supply side surface;
    A base material provided between the separation functional layer and the surface fastener;
    A separation membrane element according to claim 1 or 2.
  4.  前記分離膜対において、前記分離膜の間隙が50μm以上5000μm以下である請求項1~3のいずれか一項に記載の分離膜エレメント。 4. The separation membrane element according to claim 1, wherein in the separation membrane pair, a gap between the separation membranes is 50 μm or more and 5000 μm or less.
  5.  ハウジングと、
     前記ハウジング内に収容された請求項1~4のいずれか一項に記載の複数の分離膜エレメントと、
    を備える膜モジュール。
    A housing;
    A plurality of separation membrane elements according to any one of claims 1 to 4 housed in the housing;
    A membrane module comprising:
PCT/JP2013/058914 2012-03-30 2013-03-27 Separation membrane element having surface fastener, and membrane module WO2013146838A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-079366 2012-03-30
JP2012079366 2012-03-30

Publications (1)

Publication Number Publication Date
WO2013146838A1 true WO2013146838A1 (en) 2013-10-03

Family

ID=49260087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/058914 WO2013146838A1 (en) 2012-03-30 2013-03-27 Separation membrane element having surface fastener, and membrane module

Country Status (2)

Country Link
JP (1) JPWO2013146838A1 (en)
WO (1) WO2013146838A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019131493A1 (en) * 2017-12-28 2019-07-04 株式会社クボタ Membrane element and membrane separation equipment
EP3613495A1 (en) * 2018-08-23 2020-02-26 MMM Innovations BVBA Porous composite structures with touch fastener
CN114514064A (en) * 2019-09-26 2022-05-17 东洋纺株式会社 Immersion type flat membrane element and method for manufacturing same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10216485A (en) * 1997-02-10 1998-08-18 Toto Ltd Membrane module
JP2000312815A (en) * 1999-04-30 2000-11-14 Nitto Denko Corp Immersible membrane separation device
JP2005028231A (en) * 2003-07-09 2005-02-03 Ajinomoto Co Inc Filter cloth structure for filter press
JP2006223975A (en) * 2005-02-17 2006-08-31 Daicen Membrane Systems Ltd Hollow fiber membrane module
WO2009004962A1 (en) * 2007-07-03 2009-01-08 Sumitomo Electric Fine Polymer, Inc. Flat-membrane element for filtration and flat-membrane filtration module
JP2011519716A (en) * 2008-04-15 2011-07-14 マイクロダイン‐ナディア、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング FILTER COMPOSITE MATERIAL, ITS MANUFACTURING METHOD, AND FLAT FILTER MEMBER PRODUCED FROM FILTER COMPOSITE MATERIAL

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10216485A (en) * 1997-02-10 1998-08-18 Toto Ltd Membrane module
JP2000312815A (en) * 1999-04-30 2000-11-14 Nitto Denko Corp Immersible membrane separation device
JP2005028231A (en) * 2003-07-09 2005-02-03 Ajinomoto Co Inc Filter cloth structure for filter press
JP2006223975A (en) * 2005-02-17 2006-08-31 Daicen Membrane Systems Ltd Hollow fiber membrane module
WO2009004962A1 (en) * 2007-07-03 2009-01-08 Sumitomo Electric Fine Polymer, Inc. Flat-membrane element for filtration and flat-membrane filtration module
JP2011519716A (en) * 2008-04-15 2011-07-14 マイクロダイン‐ナディア、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング FILTER COMPOSITE MATERIAL, ITS MANUFACTURING METHOD, AND FLAT FILTER MEMBER PRODUCED FROM FILTER COMPOSITE MATERIAL

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019131493A1 (en) * 2017-12-28 2019-07-04 株式会社クボタ Membrane element and membrane separation equipment
JP2019118840A (en) * 2017-12-28 2019-07-22 株式会社クボタ Membrane element and membrane separator
US11413585B2 (en) 2017-12-28 2022-08-16 Kubota Corporation Membrane element and membrane separation device
EP3613495A1 (en) * 2018-08-23 2020-02-26 MMM Innovations BVBA Porous composite structures with touch fastener
WO2020039066A1 (en) 2018-08-23 2020-02-27 Mmm Innovations Bvba Porous composite structures
CN114514064A (en) * 2019-09-26 2022-05-17 东洋纺株式会社 Immersion type flat membrane element and method for manufacturing same
CN114514064B (en) * 2019-09-26 2023-09-05 东洋纺Mc 株式会社 Impregnated flat membrane element and method for manufacturing same

Also Published As

Publication number Publication date
JPWO2013146838A1 (en) 2015-12-14

Similar Documents

Publication Publication Date Title
JP6064902B2 (en) Separation membrane element and separation membrane module
JP5615802B2 (en) FILTER COMPOSITE MATERIAL, ITS MANUFACTURING METHOD, AND FLAT FILTER MEMBER PRODUCED FROM FILTER COMPOSITE MATERIAL
JP5966733B2 (en) Separation membrane element and membrane module
US5275725A (en) Flat separation membrane leaf and rotary separation apparatus containing flat membranes
US8038880B2 (en) Membrane bags with seamless membrane substance, uses thereof, filtration units therewith and manufacturing processes
JP6164216B2 (en) Element unit, separation membrane module, and separation membrane element attachment / detachment method
AU2005270675A1 (en) Integrated permeate channel membrane
WO2013146838A1 (en) Separation membrane element having surface fastener, and membrane module
JP4784522B2 (en) Polyvinylidene fluoride based porous separation membrane
JP2012148240A (en) Membrane separator and method of separation utilizing flat membrane
WO2009135529A1 (en) Membrane bags with seamless membrane substance, uses thereof, filtration units therewith and manufacturing processes.
JP2007283287A5 (en)
KR100711834B1 (en) Submerged separation membrane module
JP2013208519A (en) Separation membrane element, and membrane module
WO2017150531A1 (en) Flat-sheet separation membrane element, element unit, flat-sheet separation membrane module, and operation method for flat-sheet separation membrane module
JPH0731857A (en) Plane membrane structure
KR20140101664A (en) Two-layer membrane
JP2023080452A (en) Flat membrane-type separation membrane element unit and flat membrane-type separation membrane module
JP2008119680A (en) Membrane separation element and membrane separation module
JP4853454B2 (en) Removal method of filtration membrane element
JP2017080688A (en) Separation membrane element and separation membrane module
JP2020131159A (en) Separation membrane element and separation membrane module
JP2020131160A (en) Separation membrane element and separation membrane module
CN117101429A (en) Enhanced tubular composite ultrafiltration membrane with network-shaped pore structure and preparation method thereof
JP4853453B2 (en) Removal method of filtration membrane element

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013527199

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13767276

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 13767276

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE