JP2007283287A5 - - Google Patents

Download PDF

Info

Publication number
JP2007283287A5
JP2007283287A5 JP2007017496A JP2007017496A JP2007283287A5 JP 2007283287 A5 JP2007283287 A5 JP 2007283287A5 JP 2007017496 A JP2007017496 A JP 2007017496A JP 2007017496 A JP2007017496 A JP 2007017496A JP 2007283287 A5 JP2007283287 A5 JP 2007283287A5
Authority
JP
Japan
Prior art keywords
membrane
separation membrane
resin
separation
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007017496A
Other languages
Japanese (ja)
Other versions
JP4784522B2 (en
JP2007283287A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2007017496A priority Critical patent/JP4784522B2/en
Priority claimed from JP2007017496A external-priority patent/JP4784522B2/en
Publication of JP2007283287A publication Critical patent/JP2007283287A/en
Publication of JP2007283287A5 publication Critical patent/JP2007283287A5/ja
Application granted granted Critical
Publication of JP4784522B2 publication Critical patent/JP4784522B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

この分離膜において、多孔質ポリフッ化ビニリデン樹脂層は分離機能層として作用するが、そのような平膜においては、他の形態の分離膜、たとえば中空糸膜にくらべて単体体積あたりの有効膜面積を大きくとることが困難であるため、ろ過対象に応じた細孔径を保ちつつ透水量を多くすることが要求されている。しかるに、透水量を大きくしようとすると、細孔径が大きくなりすぎたり、表面に亀裂が入ったりして阻止率が低下する。一方、阻止率を上げようとして細孔径を小さくすると、今度は透水性が低下してしまう。すなわち、阻止率の向上と透水性の向上とは相反する関係にあり、両者のバランスよく整えることはなかなか難しい。
In this separation membrane, the porous polyvinylidene fluoride resin layer acts as a separation functional layer, but in such a flat membrane, the effective membrane area per unit volume compared to other forms of separation membrane, for example, hollow fiber membranes Therefore, it is required to increase the water permeation amount while maintaining the pore diameter corresponding to the filtration target. However, if you try to increase the amount of water permeation, or too large pore size, the blocking rate or cracked on the surface decreases. On the other hand, if the pore diameter is reduced in order to increase the blocking rate, the water permeability will be lowered. In other words, the improvement in the rejection rate and the improvement in water permeability are in a contradictory relationship, and it is difficult to make a good balance between the two.

さらに、特許文献3には、分離膜と支持基材枠との物理的接合方法として、重ね合わせた各樹脂材料の接合部に対して局部加熱や超音波又は高周波数の光の照射を行い、各樹脂部材の界面を溶融させて溶着させる方法が提案されている。この物理的接合方法で採用している局部加熱や超音波又は高周波の照射は、その加熱や照射により生じる熱や振動によって膜シートやフィルタへの損傷が拡大し易いという不利益があり、その上、溶着による斑が生じるため、接合部からリークが起こる可能性が高いという問題点もある。
Further, Patent Document 3, as a physical method of joining the separation membrane and the supporting substrate frame performs irradiation of local heating or an ultrasonic or high frequency of light to the junction of each resin material superimposed A method of melting and welding the interfaces of the resin members has been proposed. The local heating and ultrasonic or high-frequency irradiation employed in this physical bonding method has the disadvantage that damage to the membrane sheet and filter is likely to be expanded by the heat and vibration generated by the heating and irradiation. Further, since spots due to welding occur, there is also a problem that there is a high possibility of leakage from the joint.

製膜原液に多孔質形成を促進する作用を持つ開孔剤を加える場合、その開孔剤は、凝固液によって抽出可能なものであればよく、凝固液への溶解性の高いものが好ましい。たとえば、ポリエチレングリコール、ポリプロピレングリコールなどのポリオキシアルキレン類や、ポリビニールアルコール、ポリビニールブチラール、ポルアクリル酸などの水溶性高分子やグリセリンを用いることもできる。
In the case of adding a pore-opening agent having an action of promoting porous formation to the film-forming stock solution, the pore-opening agent may be any one that can be extracted by the coagulation liquid, and preferably has high solubility in the coagulation liquid. For example, polyethylene glycol, or polyoxyalkylenes, such as polypropylene glycol, polyvinyl alcohol, polyvinyl butyral, also possible to use water-soluble high molecules and glycerol such as Pol acrylic acid.

中でも、ポリオキシアルキレン構造、脂肪酸エステル構造及び水酸基の全てを含有している界面活性剤が特に好ましく用いられ、たとえば、ポリオキシエチレンソルビタン脂肪酸エステルとして、モノステアリン酸ポリオキシエチレンソルビタン、ポリオキシエチレンヤシ油脂肪酸ソルビタン、モノオレイン酸ポリオキシエチレンソルビタン、モノラウリン酸ポリオキシエチレンソルビタン、モノパルミチン酸ポリオキシエチレンソルビタン、ポリオキシエチレン脂肪酸エステルとして、モノステアリン酸ポリエチレングリコール、モノオレイン酸ポリエチレングリコール、モノラウリン酸ポリエチレングリコールを挙げることができる。これらの界面活性剤は、多孔質層に残存し乾燥させても透水性、阻止性が低下しないという特徴を併せ持つので好ましい。
Of these, surfactants containing all of the polyoxyalkylene structure, fatty acid ester structure and hydroxyl group are particularly preferably used. For example, polyoxyethylene sorbitan fatty acid ester includes polyoxyethylene sorbitan monostearate, polyoxyethylene palm Oil fatty acid sorbitan, polyoxyethylene sorbitan monooleate, polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan monopalmitate, polyoxyethylene fatty acid ester, polyethylene glycol monostearate, polyethylene glycol monooleate, polyethylene glycol monolaurate Can be mentioned. These surfactants, water permeability also be remaining in the porous layer dried, blocking resistance is preferred because both the feature that does not decrease.

製膜原液の組成において、ポリフッ化ビニリデン系と他の有機樹脂からなるブレンド樹脂は5重量%〜30重量%、開孔剤は0.1重量%〜15重量%、溶媒は45重量%〜94.8重量%、非溶媒は0.1重量%〜10重量%範囲内であることが好ましい。中でも、ポリフッ化ビニリデン系ブレンド樹脂は、極端に少ないと多孔質層の強度が低くなり、多すぎると透水性が低下することがあるので、8重量%〜20重量%の範囲がより好ましい。開孔剤は、少なすぎると透水性が低下し、多すぎると多孔質層の強度が低下することがある。また、極端に多いとポリフッ化ビニリデン系ブレンド樹脂中に過剰に残存して使用中に溶出し、透過水の水質が悪化したり、透水性が変動したりすることがある。したがって、より好ましい範囲は、0.5重量%〜10重量%である。さらに、溶媒は少なすぎると原液がゲル化しやすくなり、多すぎると多孔質層の強度が低下することので、より好ましくは60重量%〜90重量%の範囲である。また、非溶媒は、あまり多いと原液のゲル化が起こりやすくなり、極端に少ないと細孔やマクロボイドの大きさの制御が難しくなる。したがって、より好ましくは0.5重量%〜5重量%である。
In the composition of the film forming stock solution, the blended resin composed of polyvinylidene fluoride and other organic resins is 5 to 30% by weight, the pore-opening agent is 0.1 to 15% by weight, and the solvent is 45 to 94% by weight. It is preferable that the non-solvent is in the range of 0.1% by weight to 10% by weight. Among these, the polyvinylidene fluoride-based blend resin has a lower porous layer strength when it is extremely small, and the water permeability may be lowered when it is too large, so the range of 8% by weight to 20% by weight is more preferable. If the amount of the pore-opening agent is too small, the water permeability may decrease, and if the amount is too large, the strength of the porous layer may decrease. On the other hand, if the amount is extremely large, it may remain excessively in the polyvinylidene fluoride-based blend resin and elute during use, and the quality of the permeated water may deteriorate or the water permeability may fluctuate . Therefore, a more preferable range is 0.5 wt% to 10 wt%. Furthermore, if the amount of the solvent is too small, the stock solution is likely to be gelled, and if the amount is too large, the strength of the porous layer is lowered, and therefore the range is preferably 60% to 90% by weight. If the amount of non-solvent is too large, gelation of the stock solution tends to occur, and if it is extremely small, control of the size of pores and macrovoids becomes difficult. Therefore, it is more preferably 0.5 wt% to 5 wt%.

また、本発明の分離膜は、ナノろ過膜、限外ろ過膜、精密ろ過膜とのいずれであってもよく、分離対象物質の大きさに応じて適当な一種以上の膜を選択、組み合わせればよいが、下廃水処理用としては特に限外ろ過膜、精密ろ過膜が好ましい。そして、平均粒径0.088μmの微粒子の阻止率が90%以上であることがさらに好ましい。この阻止率を満足しないときは、下廃水処理にあたって、菌体や汚泥などがリークしたり菌体や汚泥による目詰まりが起こったり、ろ過差圧の急激な上昇が起こったり、寿命が極端に短くなったりする。
Moreover, the separation membrane of the present invention, nanofiltration membrane, ultrafiltration membrane, may be any of the microfiltration membrane, select the appropriate one or more film according to the size of the separation subject substance, a combination However, an ultrafiltration membrane and a microfiltration membrane are particularly preferable for treating sewage wastewater. Further, it is more preferable that the rejection of fine particles having an average particle size of 0.088 μm is 90% or more. If not satisfied this rejection, when wastewater treatment, is or occurred clogging due bacteria and sludge or the like bacteria or sludge leaks, or occurred sudden upward rise of the filtration differential pressure, the life is extremely It becomes shorter.

また、本発明における接着方法は、分離膜とABS樹脂のエレメント支持板をホットメルト型接着剤を用いて、熱プレス法にて接着を行うことを特徴とする平膜への接着方法であり、ホットメルト型接着剤の発現し得るアンカー効果を最大限に引き出し、接着剤は分離膜の奥深くまで浸透させ分離膜の支持基材でも固定するものである。
The adhesive method of definitive to the present invention, the element support plate of the separation membrane and the ABS resin by using a hot-melt adhesive, be a method of bonding the flat membrane which is characterized in that an adhesive by hot press method The anchor effect that can be exhibited by the hot-melt adhesive is maximized, and the adhesive penetrates deep into the separation membrane and is fixed on the support substrate of the separation membrane.

また、本発明において分離膜とABS樹脂のエレメント支持板とを接着する場合は、電子天秤の計量皿(株式会社タニタ製/TLC−500)の上に、ABS樹脂製のエレメント支持板を置き、その上にホットメルト接着材を乗せ、その上から分離膜を置き、分離膜の上から熱プレスやアイロン等により165℃の熱を加え0.13MPaの圧力で20秒間押さえつけ接着させることが好ましい。ここで、ホットメルト接着材の形状はホットメルト接着ガンを用いた場合はガット形状でもよくペレット形状でもよく、ホットメルト接着ガンを使用しない場合はシート状でもよく、またはフィルム状であってもよい。
In the present invention, when the separation membrane and the ABS resin element support plate are bonded, an ABS resin element support plate is placed on a weighing pan of an electronic balance (TANITA Corporation / TLC-500). It is preferable to place a hot melt adhesive thereon, place a separation membrane thereon, apply heat at 165 ° C. with a hot press, iron, or the like from above the separation membrane, and press and adhere for 20 seconds at a pressure of 0.13 MPa. Here, the shape of hot-melt adhesive may be a good pellet shape in GATT shape when using a hot melt adhesive gun, even when not using the hot melt adhesive gun is a may be in sheet form or fill beam shape, Good.

そして、分離膜とエレメント支持板の接着強度は、JIS K6854 180度剥離試験に準じて、“テンシロン”(TENSILON(登録商標)/UTM-4L TOYO MEASURING INSTRUMENTS CO., LTD)を用いて測定する。エレメント支持板にホットメルト接着剤で分離膜を張り合わせた幅25mmの分離膜サンプルとし、引っ張り速度200mm/minの速度で剥離強度の測定を行なう。
The adhesive strength between the separation membrane and the element support plate is measured using “Tensilon” ( TENSILON (registered trademark) / UTM-4L TOYO MEASURING INSTRUMENTS CO., LTD) according to JIS K6854 180 degree peel test. A separation membrane sample having a width 25mm was laminated separation membrane with a hot-melt adhesive element support plate, to measure the peel strength at a rate of pulling speed 200 mm / min.

支持板1は、板状体の両面に複数の凹凸を有した構造であれば特に限定されるものではないが、透過水取出口までの距離、流路抵抗を均一化して被処理水が膜面に対して均等に流れるように、凹部は一定間隔で並列配置された複数個の溝を形成するように設けることが好ましい。このとき、各凹部5の幅は、透過水量を高く保ちつつ厳しい曝気条件下での流路材2、分離膜3の落ち込みを防止するために、1〜20mmの範囲内、さらに1.5〜5mmの範囲内とするのが好ましい。凹部5の深さは、エレメントとしての厚みを抑えつつ透過水流路を確保するために1〜10mm程度の範囲内で選択するのが好ましい。さらに、支持板の強度を保ちつつ、透過水流路を十分に確保し透過水が流動する際の流動抵抗を抑えるために、凹部による支持板の空隙率は15〜85%の範囲内であることが好ましい。これは、直方体の支持板を100%としたときに凹部によって形成される空隙の容積比率を示すもので、空隙率が15%を下回ると流動抵抗が大きくなり透過水を効率よく取水できず、85%を上回ると支持板の強度が著しく低下する。
The support plate 1 is not particularly limited as long as it has a structure having a plurality of projections and depressions on both surfaces of the plate-like body. The recesses are preferably provided so as to form a plurality of grooves arranged in parallel at regular intervals so as to flow evenly with respect to the surface. At this time, the width of each recess 5 is within a range of 1 to 20 mm, and further 1.5 to 5 in order to prevent the passage material 2 and the separation membrane 3 from falling down under severe aeration conditions while keeping the permeated water amount high. It is preferable to be within a range of 5 mm. The depth of the recess 5 is preferably selected within a range of about 1 to 10 mm in order to secure the permeate flow path while suppressing the thickness as the element. Furthermore, the porosity of the support plate due to the recesses is in the range of 15 to 85% in order to sufficiently secure the permeate flow path and suppress the flow resistance when the permeate flows, while maintaining the strength of the support plate. Is preferred. This indicates the volume percentage of voids formed by the recesses when the support plate straight rectangular parallelepiped of 100%, can be efficiently intake flow resistance increases permeate the porosity is below 15% However, if it exceeds 85%, the strength of the support plate is significantly reduced.

また、本発明のエレメントにおいては、図1に示すように支持板1の周縁部に枠体6を設置することも好ましい。この場合、分離膜3は支持板1と枠体6の間に嵌挿してもよく、また、枠体6の外部表面に接着させてもよい。ここで、「接着」とは、接触させた状態で固定することをいい、別途樹脂など用いて接着しても、分離膜そのものを溶着しても、さらにはその他種々の方法で接着してもいい。樹脂の押出成形などの安価な製法で製作された支持板1の周縁部に、射出成形、押出成形などで製作した枠体6を嵌めこむようにすることで、コストを削減できる。支持板1を嵌めこみやすくするため、枠体6は、断面がコ型状になるように形成することが好ましい。
Moreover, in the element of this invention, it is also preferable to install the frame 6 in the peripheral part of the support plate 1 as shown in FIG. In this case, the separation membrane 3 may be fitted between the support plate 1 and the frame body 6 or may be adhered to the outer surface of the frame body 6. Here, "adhesion" refers to the fixed child being in contact, be bonded with such separately resin, also by welding the separation membrane itself, further adhered in other various ways Also good. Costs can be reduced by fitting the frame body 6 manufactured by injection molding, extrusion molding, or the like into the periphery of the support plate 1 manufactured by an inexpensive manufacturing method such as resin extrusion molding. In order to make it easy to fit the support plate 1, the frame body 6 is preferably formed so that the cross-section is a U-shape.

このように構成された下廃水処理装置において、廃水などの被処理水は、ポンプ14の吸引力により分離膜3を通過する。この際、被処理水中に含まれる汚泥、無機物粒子などの懸濁物質がろ過される。そして、分離膜3を通過した透過水は、流路材2によって形成されている透過水流路を経て、支持板1の凹部5から枠体6内に形成された集水部8を通り、透過水取出口7を通って被処理水槽11の外部に取り出される。一方、ろ過と並行して散気装置12が気泡を発生し、その気泡のエアリフト作用によって生じる、エレメント9の膜面に平行な上昇流が、膜面に堆積したろ過物を離脱させる。
In the sewage wastewater treatment apparatus configured as described above, water to be treated such as wastewater passes through the separation membrane 3 by the suction force of the pump 14. At this time, sludge that is part of water to be treated, the suspended solids such as inorganic particles are filtered. Then, the permeated water that has passed through the separation membrane 3 passes through the water collecting section 8 formed in the frame body 6 from the concave portion 5 of the support plate 1 through the permeated water flow path formed by the flow path material 2 and permeated. The water is taken out from the water tank 11 through the water outlet 7. On the other hand, the air diffuser 12 generates bubbles in parallel with the filtration, and the upward flow parallel to the membrane surface of the element 9 generated by the air lift action of the bubbles separates the filtrate deposited on the membrane surface.

また、分離膜の接着試験は“テンシロン”(TENSILON(登録商標)/UTM-4L TOYO MEASURING INSTRUMENTS CO., LTD)を用いて、JIS K6854 180度剥離試験に準じて、引っ張り速度200mm/min、分離膜のサンプル幅は25mmの条件で剥離試験を行い、接着強度を求めた。
Further, the adhesion test of the separation membrane "Tensilon" (TENSILON (TM) / UTM-4L TOYO MEASURING INSTRUMENTS CO., LTD) by using, in accordance with JIS K6854 180 degree peel test, tensile speed 200 mm / min, A separation test was performed under the condition that the sample width of the separation membrane was 25 mm, and the adhesive strength was obtained.

次に、上記分離膜について、平均粒径0.088μmラテックス微粒子の阻止率を測定したところ、99.1%と高い値であった。また、透水量は40.2×10−9/m・s・Paであった。
分離膜とABS樹脂製のエレメント支持板にホットメルト接着剤で張り付け、接着強度の剥離試験を行ったところ、90.8N/25mmと所望水準を満足するものであった。なお、結果を表1に示す。
Next, when the blocking rate of latex fine particles having an average particle size of 0.088 μm was measured for the separation membrane, it was a high value of 99.1%. Moreover, the water permeability was 40.2 × 10 −9 m 3 / m 2 · s · Pa.
When a peel test of adhesive strength was performed by attaching the separation membrane and an ABS resin element support plate with a hot melt adhesive, a desired level of 90.8 N / 25 mm was satisfied. Incidentally, showing the results in Table 1.

次に、上記製膜原液を30℃に冷却した後、密度0.48g/cm、厚み220μmのポリエステル繊維製不織布に塗布し、塗布後、直ちに20℃の純水中に5分間浸漬し、さらに90℃の熱水に2分間浸漬してN,N−ジメチルホルムアミドおよびポリエチレングリコールを洗い流し、分離膜を得た。
Next, after cooling the film-forming stock solution to 30 ° C., it was applied to a non-woven fabric made of polyester fiber having a density of 0.48 g / cm 3 and a thickness of 220 μm, and after application, immediately immersed in pure water at 20 ° C. for 5 minutes, washed out N, N- dimethylformamide and polyethylene glycol was further immersed for 2 minutes in 90 ° C. hot water, to obtain a separation membrane.

次に、上記製膜原液を30℃に冷却した後、密度0.48g/cm、厚み220μmのポリエステル繊維製不織布に塗布し、塗布後、直ちに20℃の純水中に5分間浸漬し、さらに90℃の熱水に2分間浸漬してN,N−ジメチルホルムアミドおよびポリエチレングリコールを洗い流し、分離膜を得た。
Next, after cooling the film-forming stock solution to 30 ° C., it was applied to a non-woven fabric made of polyester fiber having a density of 0.48 g / cm 3 and a thickness of 220 μm, and after application, immediately immersed in pure water at 20 ° C. for 5 minutes, washed out N, N- dimethylformamide and polyethylene glycol was further immersed for 2 minutes in 90 ° C. hot water, to obtain a separation membrane.

次に、上記製膜原液を30℃に冷却した後、密度0.48g/cm、厚み220μmのポリエステル繊維製不織布に塗布し、塗布後、直ちに20℃の純水中に5分間浸漬し、さらに90℃の熱水に2分間浸漬してN,N−ジメチルホルムアミドおよびポリエチレングリコールを洗い流し、分離膜を得た。
Next, after cooling the film-forming stock solution to 30 ° C., it was applied to a non-woven fabric made of polyester fiber having a density of 0.48 g / cm 3 and a thickness of 220 μm, and after application, immediately immersed in pure water at 20 ° C. for 5 minutes, washed out N, N- dimethylformamide and polyethylene glycol was further immersed for 2 minutes in 90 ° C. hot water, to obtain a separation membrane.

次に、上記製膜原液を30℃に冷却した後、密度0.48g/cm、厚み220μmのポリエステル繊維製不織布に塗布し、塗布後、直ちに20℃の純水中に5分間浸漬し、さらに90℃の熱水に2分間浸漬してN,N−ジメチルホルムアミドおよびポリエチレングリコールを洗い流し、分離膜を得た。
Next, after cooling the film-forming stock solution to 30 ° C., it was applied to a non-woven fabric made of polyester fiber having a density of 0.48 g / cm 3 and a thickness of 220 μm, and after application, immediately immersed in pure water at 20 ° C. for 5 minutes, washed out N, N- dimethylformamide and polyethylene glycol was further immersed for 2 minutes in 90 ° C. hot water, to obtain a separation membrane.

次に、上記製膜原液を30℃に冷却した後、密度0.48g/cm、厚み220μmのポリエステル繊維製不織布に塗布し、塗布後、直ちに20℃の純水中に5分間浸漬し、さらに90℃の熱水に2分間浸漬してN,N−ジメチルホルムアミドおよびポリエチレングリコールを洗い流し、分離膜を得た。
Next, after cooling the film-forming stock solution to 30 ° C., it was applied to a non-woven fabric made of polyester fiber having a density of 0.48 g / cm 3 and a thickness of 220 μm, and after application, immediately immersed in pure water at 20 ° C. for 5 minutes, washed out N, N- dimethylformamide and polyethylene glycol was further immersed for 2 minutes in 90 ° C. hot water, to obtain a separation membrane.

次に、上記製膜原液を30℃に冷却した後、密度0.48g/cm、厚み220μmのポリエステル繊維製不織布に塗布し、塗布後、直ちに20℃の純水中に5分間浸漬し、さらに90℃の熱水に2分間浸漬してN,N−ジメチルホルムアミドおよびポリエチレングリコールを洗い流し、分離膜を得た。
Next, after cooling the film-forming stock solution to 30 ° C., it was applied to a non-woven fabric made of polyester fiber having a density of 0.48 g / cm 3 and a thickness of 220 μm, and after application, immediately immersed in pure water at 20 ° C. for 5 minutes, washed out N, N- dimethylformamide and polyethylene glycol was further immersed for 2 minutes in 90 ° C. hot water, to obtain a separation membrane.

ポリフッ化ビニリデン(PVDF) : 1.7重量%
ポリスルホン(PS) :15.3重量%
モノステアリン酸ポリオキシエチレンソルビタン : 8.0重量%
N,N−ジメチルホルムアミド(DMF) :72.0重量%
O : 3.0重量%
Polyvinylidene fluoride (PVDF): 1.7 by weight%
Polysulfone (PS): 15.3% by weight
Polyoxyethylene sorbitan monostearate: 8.0% by weight
N, N-dimethylformamide (DMF): 72.0% by weight
H 2 O: 3.0% by weight

<比較例5>
実施例4においての主成分樹脂であるポリフッ化ビニリデン樹脂のみで、副成分樹脂であるポリスルホン樹脂を用いず、開孔剤としてポリエチレングリコール(PEG20,000)、溶媒としてN,N−ジメチルホルムアミド(DMF)、非溶媒としてHOをそれぞれ用い、次の組成を有する原液で製膜した以外は実施例4と同様にして得られた分離膜を評価した。
<Comparative Example 5>
In Example 4, only the polyvinylidene fluoride resin, which is the main component resin, without using the polysulfone resin, which is the subcomponent resin, polyethylene glycol (PEG 20,000) as the pore opening agent, and N, N-dimethylformamide (DMF) as the solvent ), A separation membrane obtained in the same manner as in Example 4 was evaluated except that H 2 O was used as a non-solvent and a membrane was prepared with a stock solution having the following composition.

<比較例6>
実施例4においての主成分樹脂であるポリフッ化ビニリデン樹脂を用いず、副成分樹脂であるポリスルホン樹脂のみで、次の組成を有する原液で製膜した以外は実施例4と同様にして得られた分離膜を評価した。
<Comparative Example 6>
Without using the polyvinylidene fluoride resin is a main component resin of Oite in Example 4, only a polysulfone resin is a subcomponent resin, except that a film was formed by a stock solution having the following composition in the same manner as in Example 4 to give The obtained separation membrane was evaluated.

Figure 2007283287
Figure 2007283287

Claims (7)

基材層と多孔質分離機能層とからなる分離膜において、多孔質分離機能層が、ポリフッ化ビニリデン系樹脂51重量%〜95重量%と、ポリスルホン系樹脂、ポリアクリロニトリル系樹脂、ポリエーテルスルホン系樹脂から選ばれた少なくとも一種である有機樹脂5重量%〜49重量%とのブレンド樹脂から構成されることを特徴とするポリフッ化ビニリデン系多孔質分離膜。 In a separation membrane composed of a base material layer and a porous separation functional layer, the porous separation functional layer comprises 51% to 95% by weight of a polyvinylidene fluoride resin , a polysulfone resin, a polyacrylonitrile resin, and a polyether sulfone resin. polyvinylidene fluoride-based porous separation membrane characterized in that it is composed of at least one type of organic resin 5 wt% to 49 wt% with a blend resin selected from resins. 分離膜が、多孔質分離機能層を構成する樹脂の一部が基材層中に入り込み、多孔質分離機能層と基材層とが複合化した層が存在する平膜である請求項1に記載のポリフッ化ビニリデン系多孔質分離膜。 Separation membrane, a portion of the resin constituting the porous separation function layer enters the substrate layer, to claim 1 and a porous separation function layer and the substrate layer is a flat membrane that there is a layer complexed The polyvinylidene fluoride-based porous separation membrane described. 平均粒径が0.9μmの微粒子の排除率が少なくとも90%である請求項1又は2のいずれかに記載のポリフッ化ビニリデン系多孔質分離膜。 3. The polyvinylidene fluoride porous separation membrane according to claim 1 , wherein the rejection rate of fine particles having an average particle size of 0.9 μm is at least 90%. 多孔質基材の密度が0.7g/cm以下である請求項1〜3のいずれかに記載のポリフッ化ビニリデン系多孔質分離膜。 The polyvinylidene fluoride porous separation membrane according to any one of claims 1 to 3, wherein the density of the porous substrate is 0.7 g / cm 3 or less. 多孔質基材が不織布または織編物である請求項1〜4のいずれかに記載のポリフッ化ビニリデン系多孔質分離膜。 The polyvinylidene fluoride porous separation membrane according to any one of claims 1 to 4, wherein the porous substrate is a nonwoven fabric or a woven or knitted fabric. 請求項1〜5のいずれかに記載の平膜状の分離膜と流路材と透過液の集液部材とを有している膜分離エレメント。 A membrane separation element comprising the flat membrane-like separation membrane according to any one of claims 1 to 5, a flow path material, and a permeate collecting member. 請求項6記載の膜分離エレメントの複数個をハウジングに収容した膜分離モジュール。 A membrane separation module in which a plurality of membrane separation elements according to claim 6 are accommodated in a housing.
JP2007017496A 2006-03-24 2007-01-29 Polyvinylidene fluoride based porous separation membrane Expired - Fee Related JP4784522B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007017496A JP4784522B2 (en) 2006-03-24 2007-01-29 Polyvinylidene fluoride based porous separation membrane

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006082546 2006-03-24
JP2006082546 2006-03-24
JP2007017496A JP4784522B2 (en) 2006-03-24 2007-01-29 Polyvinylidene fluoride based porous separation membrane

Publications (3)

Publication Number Publication Date
JP2007283287A JP2007283287A (en) 2007-11-01
JP2007283287A5 true JP2007283287A5 (en) 2010-03-04
JP4784522B2 JP4784522B2 (en) 2011-10-05

Family

ID=38755541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007017496A Expired - Fee Related JP4784522B2 (en) 2006-03-24 2007-01-29 Polyvinylidene fluoride based porous separation membrane

Country Status (1)

Country Link
JP (1) JP4784522B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101150285B1 (en) * 2008-06-05 2012-05-25 허준혁 Water purification membranes with enhanced antifouling property and manufacturing method thereof
KR101134348B1 (en) * 2009-12-08 2012-04-09 허준혁 Hydrophilic pvdf membrane and manufacturing method thereof
KR101184212B1 (en) 2009-12-31 2012-09-19 허준혁 Manufaturing method of hallow fiber membrane for water treatment and hallow fiber membrane thereby
KR101810708B1 (en) 2010-03-23 2017-12-19 도레이 카부시키가이샤 Separation membrane and method for producing same
JP7086069B2 (en) 2017-06-15 2022-06-17 株式会社カネカ Porous membrane for water treatment
US11218262B2 (en) 2017-06-15 2022-01-04 Ntt Docomo, Inc. User terminal and wireless communication method
EP4349461A1 (en) * 2021-05-27 2024-04-10 Toray Industries, Inc. Separation membrane and method for producing same
CN115282789B (en) * 2022-01-24 2023-09-29 浙江师范大学 ABS-Ni composite separation membrane and preparation method and application thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3206258B2 (en) * 1993-10-22 2001-09-10 エヌオーケー株式会社 Manufacturing method of porous polysulfone blend membrane
JP2001029755A (en) * 1999-07-22 2001-02-06 Kuraray Co Ltd Washing method of hollow fiber membrane module
JP2003135939A (en) * 2001-10-31 2003-05-13 Toray Ind Inc Separation membrane and manufacturing method therefor
JP4572531B2 (en) * 2003-11-20 2010-11-04 東レ株式会社 Membrane stock solution for separation membrane and separation membrane

Similar Documents

Publication Publication Date Title
JP5127107B2 (en) Manufacturing method of separation membrane
JP2007283287A5 (en)
JP6064902B2 (en) Separation membrane element and separation membrane module
JP4784522B2 (en) Polyvinylidene fluoride based porous separation membrane
JPWO2012105397A1 (en) Separation membrane for water treatment and method for producing the same
JP2006205067A (en) Porous membrane
JP5966733B2 (en) Separation membrane element and membrane module
JP5796235B2 (en) Membrane containing fibers of multiple sizes
JP2015160185A (en) membrane bioreactor
JP2003135939A (en) Separation membrane and manufacturing method therefor
WO2017150531A1 (en) Flat-sheet separation membrane element, element unit, flat-sheet separation membrane module, and operation method for flat-sheet separation membrane module
JP2008119680A (en) Membrane separation element and membrane separation module
JP2010075851A (en) Porous film and method for manufacturing the same
JP2014144441A (en) Composite semipermeable membrane
JP2008062119A (en) Filter medium, its manufacturing method, filtration treatment device, and filtration treatment method
TW200819190A (en) Filtration media, filter, and filtering module for solid-liquid separation type membrane biological treatment
JP2013208519A (en) Separation membrane element, and membrane module
JP2007007490A (en) Porous membrane, its manufacturing method, and repairing method of porous membrane
JP2009090223A (en) Manufacturing method of filter membrane element, filter membrane element and membrane filtration module
JP2002273177A (en) Filter film element and water making method
WO2015064495A1 (en) Flat membrane cartridge for waste water processing
JP4513371B2 (en) Manufacturing method of separation membrane
JP2023080452A (en) Flat membrane-type separation membrane element unit and flat membrane-type separation membrane module
JPS6360742A (en) Manufacture of laminated article
JP2003190746A (en) Film element and fresh water generation method