JP4513371B2 - Manufacturing method of separation membrane - Google Patents

Manufacturing method of separation membrane Download PDF

Info

Publication number
JP4513371B2
JP4513371B2 JP2004084303A JP2004084303A JP4513371B2 JP 4513371 B2 JP4513371 B2 JP 4513371B2 JP 2004084303 A JP2004084303 A JP 2004084303A JP 2004084303 A JP2004084303 A JP 2004084303A JP 4513371 B2 JP4513371 B2 JP 4513371B2
Authority
JP
Japan
Prior art keywords
separation membrane
weight
fine particles
test
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004084303A
Other languages
Japanese (ja)
Other versions
JP2005270707A (en
Inventor
修治 古野
昌弘 辺見
忠廣 植村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2004084303A priority Critical patent/JP4513371B2/en
Publication of JP2005270707A publication Critical patent/JP2005270707A/en
Application granted granted Critical
Publication of JP4513371B2 publication Critical patent/JP4513371B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、下水(炊事、洗濯、風呂、トイレ、その他の生活環境から生ずる生活排水)や生産工場、レストラン、水産加工工場、食品加工場などから生ずる廃水の浄化に特に適した分離膜に関する。   The present invention relates to a separation membrane particularly suitable for purifying sewage (domestic wastewater generated from cooking, washing, baths, toilets, other living environments) and wastewater generated from production factories, restaurants, fishery processing factories, food processing plants, and the like.

近年、下水や廃水の浄化に分離膜が使われるようになってきている。そのような分離膜には、いろいろな種類、形態のものがあるが、界面活性剤を含む有機重合体溶液を、織布や不織布のような多孔質基材の表面に塗布したり多孔質基材に含浸した後、有機重合体を凝固させ、多孔質基材の表面に多孔質有機重合体層を形成してなる、いわゆる精密ろ過膜と称される平膜が注目されている。多孔質有機重合体層は分離機能層として作用するが、そのような平膜においては、他の形態の分離膜、たとえば中空糸膜にくらべて単体体積あたりの有効膜面積を大きくとることが困難であるため、ろ過対象に応じた細孔径を保ちつつ透水量を多くすることが要求されている。しかるに、透水量を大きくしようとして空隙率を高くすると、細孔径が大きくなりすぎたり、表面に亀裂が入ったりして阻止率が低下する。一方、阻止率を上げようとして細孔を小さくすると、今度は透水性が低下してしまう。すなわち、阻止率の向上と透水性の向上とは相反する関係にあり、両者のバランスよく整えることはなかなか難しい。加えて、下廃水用分離膜においては、使用中に砂のような無機物や汚泥、その他の固形物が激しく衝突したり、活性汚泥への酸素の供給や目詰まり防止のために行うエアレーション操作による気泡が膜面に激しく衝突したりするので、そのような衝撃にも十分に耐える強度を備えていることが要求される。この強度は主として多孔質基材が担っているが、従来の分離膜では、著しい衝撃が加わるような環境下で使用すると、ろ過操作中に多孔質有機重合体の表面が削られてしまうこともある。   In recent years, separation membranes have been used to purify sewage and wastewater. There are various types and forms of such separation membranes, and an organic polymer solution containing a surfactant is applied to the surface of a porous substrate such as a woven fabric or a non-woven fabric. A so-called microfiltration membrane called a microfiltration membrane, in which an organic polymer is solidified after impregnation into a material and a porous organic polymer layer is formed on the surface of a porous substrate, has attracted attention. Although the porous organic polymer layer acts as a separation functional layer, it is difficult for such a flat membrane to have a larger effective membrane area per unit volume than other types of separation membranes, such as hollow fiber membranes. Therefore, it is required to increase the water permeation amount while maintaining the pore diameter according to the object to be filtered. However, if the porosity is increased to increase the water permeation amount, the pore size becomes too large or the surface cracks and the blocking rate decreases. On the other hand, if the pores are made small in order to increase the blocking rate, the water permeability will be lowered this time. In other words, the improvement in the rejection rate and the improvement in water permeability are in a contradictory relationship, and it is difficult to make a good balance between the two. In addition, in the separation membrane for sewage wastewater, by using an aeration operation to prevent minerals such as sand, sludge and other solids from colliding violently during use, or to supply oxygen to activated sludge and prevent clogging. Since the bubbles violently collide with the film surface, it is required to have strength enough to withstand such an impact. This strength is mainly borne by the porous base material, but when used in an environment where a significant impact is applied to the conventional separation membrane, the surface of the porous organic polymer may be scraped during the filtration operation. is there.

特許文献1には、バインダーポリマーとしてのポリビニルアルコールOKS7158G(日本合成化学工業(株)製)水溶液に、無機粒子であるゼオライトA−4粒子(和光純薬工業製、200メッシュ)と架橋剤を添加した溶液を、フェルト不織布に塗布して乾燥架橋し、ゼオライト粒子を不織布の繊維の表面及び/又は繊維間に固定化した分離膜が提案されている。しかしながら、無機微粒子であるゼオライトの粒子径が10〜50μmと大きいため、得られた分離膜では細孔径が大きい上、溶液中での分散性が悪く、その結果、均一に分離膜の表面および内部まで無機微粒子が分散できず斑になったり、膜性能にバラツキが見られるという問題があった。   In Patent Document 1, zeolite A-4 particles (made by Wako Pure Chemical Industries, 200 mesh) as inorganic particles and a crosslinking agent are added to an aqueous solution of polyvinyl alcohol OKS7158G (made by Nippon Synthetic Chemical Industry Co., Ltd.) as a binder polymer. A separation membrane has been proposed in which the solution is applied to a felted nonwoven fabric and dried and crosslinked to immobilize zeolite particles on the surface of the nonwoven fabric fibers and / or between the fibers. However, since the particle size of zeolite, which is an inorganic fine particle, is as large as 10 to 50 μm, the obtained separation membrane has a large pore size and poor dispersibility in the solution. As a result, the surface and the inside of the separation membrane are uniformly distributed. The inorganic fine particles cannot be dispersed until they become uneven, and there are problems that the film performance varies.

また、特許文献2には、光照射により有機物の分解を促進する粒径30〜40nm程度の微細なアナターゼ型酸化チタン粒子の表面を、多孔質の燐酸カルシウムによって被覆した安定化アナターゼ型酸化チタン粒子の光触媒物質を保持してなる中空糸分離膜が開示されている。しかしながら、この分離膜は、無機微粒子である嵩密度0.55g/mlのアナターゼ型酸化チタン粒子を、水又は適宜の溶媒に懸濁させ、この懸濁液を中空糸膜の外側から内側に向かって流通させることにより、中空糸膜の外表面と中空内表面に保持させただけであるので、使用中にアナターゼ型酸化チタン粒子が欠落しまうおそれがあり、多孔質層の削れを抑制できる分離膜とは言い難い。
Patent Document 2 discloses stabilized anatase-type titanium oxide particles in which the surface of fine anatase-type titanium oxide particles having a particle size of about 30 to 40 nm that promotes decomposition of organic substances by light irradiation is coated with porous calcium phosphate. A hollow fiber separation membrane that holds the photocatalytic substance is disclosed. However, in this separation membrane, anatase-type titanium oxide particles having a bulk density of 0.55 g / ml, which are inorganic fine particles, are suspended in water or an appropriate solvent, and this suspension is passed from the outside to the inside of the hollow fiber membrane. Since it is only held on the outer surface and the hollow inner surface of the hollow fiber membrane by circulating toward the surface, there is a possibility that the anatase-type titanium oxide particles may be lost during use, and the separation that can suppress the scraping of the porous layer It is hard to call it a membrane.

本発明は、従来の技術の上述した問題点を解決し、阻止率と透水性とをバランス良く満足しつつ、しかも多孔質有機重合体の削れ抑制することができる分離膜を提供することを目的とするものである。   An object of the present invention is to solve the above-mentioned problems of the prior art, and to provide a separation membrane that can satisfy the blocking rate and the water permeability in a well-balanced manner and can suppress the scraping of the porous organic polymer. It is what.

上記課題を解決するための本発明は、次の(1)〜(4)に述べる構成からなる。
(1)有機重合体5〜30重量%、平均粒子径が5〜5000nmの範囲でかさ密度が0.05〜0.5g/mlである無機微粒子0.1〜30重量%、開孔剤としてポリオキシエチレンソルビタン脂肪酸エステルまたはポリオキシエチレン脂肪酸エステル0.1〜15重量%、溶媒40〜95重量%、非溶媒0.1〜10重量%を含む製膜原液を、基材の上に塗布し、少なくとも80重量%の非溶媒を含む凝固液に接触させる分離膜の製造方法。
(2)無機微粒子が、炭素系微粒子、または、ケイ素、アルミニウム、マグネシウムおよびカルシウムからなる群から選ばれた少なくとも一種類の酸化物微粒子である、上記(1)に記載の分離膜の製造方法。
(3)有機重合体が、ポリフッ化ビニリデン系樹脂、ポリスルホン系樹脂、ポリアクリロニトリル系樹脂およびポリエーテルスルホン系樹脂からなる群から選ばれた少なくとも一種類である、上記(1)または(2)に記載の分離膜の製造方法。
(4)落砂式摩耗試験前後の平均粒径0.088μmのラテックス微粒子の阻止率に関し、試験前の阻止率をA、試験後の阻止率をBとしたとき、不等式A−B≦50の関係を満足する、上記(1)〜(3)のいずれかに記載の分離膜の製造方法。
The present invention for solving the above-described problems has the configurations described in the following (1) to (4) .
(1) 5-30% by weight of organic polymer, 0.1-30% by weight of inorganic fine particles having an average particle size in the range of 5-5000 nm and a bulk density of 0.05-0.5 g / ml, poly as a pore-opening agent A film-forming stock solution containing 0.1 to 15% by weight of oxyethylene sorbitan fatty acid ester or polyoxyethylene fatty acid ester, 40 to 95% by weight of solvent, and 0.1 to 10% by weight of non-solvent is applied on the substrate, A method for producing a separation membrane, which is brought into contact with a coagulation liquid containing at least 80% by weight of a non-solvent.
(2) The method for producing a separation membrane according to (1), wherein the inorganic fine particles are carbon-based fine particles or at least one kind of oxide fine particles selected from the group consisting of silicon, aluminum, magnesium and calcium .
(3) In the above (1) or (2), the organic polymer is at least one selected from the group consisting of a polyvinylidene fluoride resin, a polysulfone resin, a polyacrylonitrile resin, and a polyethersulfone resin. The manufacturing method of the separation membrane of description .
(4) Concerning the rejection rate of latex fine particles having an average particle size of 0.088 μm before and after the sandfall wear test, when the rejection rate before the test is A and the rejection rate after the test is B , the inequality AB−50 ≦ 50 The method for producing a separation membrane according to any one of (1) to (3) , wherein the relationship is satisfied .

本発明に係る分離膜は、有機重合体とともに、平均粒子径が5〜5000nmの範囲で、かつ、かさ密度が0.05〜0.5g/mlである無機微粒子を含むので、阻止率と透水性とをバランス良く満足するうえに、膜面に、被処理水に含まれる砂のような無機物や汚泥、その他の固形物が激しく衝突したり、活性汚泥への酸素の供給や目詰まり防止のために行うエアレーション操作による気泡が激しく衝突しても、十分に耐え膜表面の削れが少ない。したがって、分離膜の耐久性が向上され、長期運転が図れる。
Min separation membrane is according to the onset bright, with an organic polymer, in the range the average particle diameter of 5 to 5000 nm, and a bulk density of 0.05 to 0. Inorganic fine particles of 5 g / ml are included, so that the blocking rate and water permeability are well balanced, and the membrane surface is violently collided with inorganic substances such as sand, sludge, and other solid substances contained in the water to be treated. Even if air bubbles are violently collided by aeration operation to prevent oxygen clogging or supply of oxygen to activated sludge, the film surface is sufficiently durable. Therefore, the durability of the separation membrane is improved and long-term operation can be achieved.

本発明に係る分離膜は、ポリフッ化ビニリデン系樹脂などの有機重合体と、平均粒子径が5〜5000nmの範囲で、かつ、かさ密度が0.05〜0.5g/mlである無機微粒子とを含むものであり、たとえば基材と多孔質層を備えた分離膜の場合、多孔質層の表面や内部に無機微粒子が含まれている。このような特定の無機微粒子を含むことで分離膜の表面の削れを抑制することができる。
The separation membrane according to the present invention has an organic polymer such as polyvinylidene fluoride resin, an average particle diameter in the range of 5 to 5000 nm, and a bulk density of 0.05 to 0.00. It is those containing an inorganic fine particle is 5 g / ml, for example, in the case of separation membranes with the base and the porous layer includes a surface or inside the inorganic fine particles of the porous layer. By including such specific inorganic fine particles, the surface of the separation membrane can be prevented from being scraped.

多孔質層は分離機能を有するもので、なかでも、多孔質層を構成する有機重合体は、溶液による製膜が容易で、物理的耐久性や耐薬品性にも優れているポリ塩化ビニル系樹脂、ポリフッ化ビニリデン系樹脂、ポリスルホン系樹脂、ポリアクリルニトリル系樹脂、ポリエーテルスルホン系樹脂、またはこれらを主成分とすることが好ましく、ポリフッ化ビニリデン、またはそれを主成分とすることが最も好ましい。なお、主成分とは、50重量%以上含有することをいう。   The porous layer has a separation function. Among them, the organic polymer constituting the porous layer is a polyvinyl chloride type that is easy to form a film with a solution and has excellent physical durability and chemical resistance. Resin, polyvinylidene fluoride resin, polysulfone resin, polyacrylonitrile resin, polyethersulfone resin, or a main component thereof is preferable, and polyvinylidene fluoride or a main component thereof is most preferable. . In addition, a main component means containing 50 weight% or more.

ここで、ポリフッ化ビニリデン系樹脂とはフッ化ビニリデンホモポリマーまたはフッ化ビニリデン共重合体を含有する有機重合体のことである。複数種類のフッ化ビニリデン共重合体を含有していてもかまわない。フッ化ビニリデン共重合体として、フッ化ビニリデンと四フッ化エチレン、六フッ化プロピレンおよび三フッ化塩化エチレンからなる群から選ばれた1種類以上との共重合体が上げられる。   Here, the polyvinylidene fluoride resin is an organic polymer containing a vinylidene fluoride homopolymer or a vinylidene fluoride copolymer. A plurality of types of vinylidene fluoride copolymers may be contained. Examples of the vinylidene fluoride copolymer include a copolymer of vinylidene fluoride and one or more selected from the group consisting of ethylene tetrafluoride, propylene hexafluoride, and ethylene trifluoride chloride.

また、ポリフッ化ビニリデン系樹脂の重量平均分子量は、分離膜への加工性を考慮すると、5万から100万、さらに10万から75万の範囲内であることが好ましい。重量平均分子量がこの範囲より大きくなると、有機重合体溶液の粘度が高くなりすぎ、またこの範囲より小さくなると、有機重合体の粘度が低くなりすぎ、いずれも分離膜を形成することが困難になる。分離膜に含まれる無機微粒子は、平均粒子径が大きすぎると膜表面の細孔を減らしてしまうことや、製膜原液の調製過程で無機微粒子が均一に分散できなくなってしまう。したがって分離膜表面や内部に無機微粒子を均一に分散するために、平均粒子径が5nmから5000nmの範囲のものが好ましい。   The weight average molecular weight of the polyvinylidene fluoride resin is preferably in the range of 50,000 to 1,000,000, more preferably 100,000 to 750,000, considering the processability to the separation membrane. When the weight average molecular weight is larger than this range, the viscosity of the organic polymer solution becomes too high. When the weight average molecular weight is smaller than this range, the viscosity of the organic polymer becomes too low, and it becomes difficult to form a separation membrane in either case. . If the average particle size of the inorganic fine particles contained in the separation membrane is too large, the pores on the membrane surface will be reduced, or the inorganic fine particles will not be uniformly dispersed during the preparation of the membrane-forming stock solution. Accordingly, in order to uniformly disperse the inorganic fine particles on the surface and inside of the separation membrane, those having an average particle diameter in the range of 5 nm to 5000 nm are preferable.

また、本発明において分離膜に含まれる無機微粒子は、かさ密度が高すぎると原液中で分散しにくく沈降し固まりとなってしまい、得られた膜において細孔を不均一にしたり、欠落し易くなることから、0.05〜0.5g/mlとする必要がある。
In addition, the inorganic fine particles contained in the separation membrane in the present invention, when the bulk density is too high, are difficult to disperse in the stock solution and settle and become hardened, making the pores uneven in the obtained membrane and easily missing. Therefore, 0.05-0. Need to be 5 g / ml .

かかる無機微粒子としては、例えば、炭素系微粒子として、球状炭素微粒子のカーボンビーズ、種々のカーボンブラック、ケッチェンブラック(高導電性カーボンブラック)、黒鉛などが挙げられる。ケイ素、アルミニウム、マグネシウム、カルシウム、バリウム、亜鉛、ジルコニウム、マンガン、ハフニウムなどの単独または複数の金属元素の酸化物などを例示することができる。なかでも、有機重合体と馴染みが良く、有機重合体と混ぜることにより耐久性や耐摩耗の向上が見込まれる観点から、炭素系微粒子や、ケイ素、アルミニウム、マグネシウムおよびカルシウムから選ばれた少なくとも一種類の酸化物が好ましい。その中でも、製膜原液中での分散性や分離膜の重量を抑える点からみて炭素微粒子、ケイ素酸化物(シリカ)が特に好ましい。   Examples of such inorganic fine particles include carbon fine particles, spherical carbon fine particle carbon beads, various carbon blacks, ketjen black (highly conductive carbon black), graphite, and the like. Examples thereof include oxides of single or plural metal elements such as silicon, aluminum, magnesium, calcium, barium, zinc, zirconium, manganese, and hafnium. Among them, at least one kind selected from carbon-based fine particles, silicon, aluminum, magnesium and calcium from the viewpoint of being familiar with the organic polymer and expected to improve durability and wear resistance by mixing with the organic polymer. The oxide is preferred. Among these, carbon fine particles and silicon oxide (silica) are particularly preferable from the viewpoint of suppressing the dispersibility in the membrane-forming stock solution and the weight of the separation membrane.

なお、本発明において、無機微粒子の平均粒子径は、インターセプト法でサンプル抽出を行い、そのサンプルの無機微粒子を走査型電子顕微鏡((株)日立製作所、走査型電子顕微鏡S-800など)で観察し、数平均を算出することで求める。   In the present invention, the average particle size of the inorganic fine particles is sampled by the intercept method, and the inorganic fine particles of the sample are observed with a scanning electron microscope (Hitachi, Ltd., scanning electron microscope S-800, etc.). And by calculating the number average.

また、かさ密度は、あらかじめ漏斗に入れてある無機微粒子試料を、径28±2mm、高さ180±5mmの100mlの注ぎ口なしのシリンダーに5cmの高さより注ぎ入れ、充填された無機微粒子の質量を秤量し、1mlあたりのg重量に換算表示したものである。   The bulk density of the inorganic fine particle sample previously placed in the funnel was poured from a height of 5 cm into a 100 ml cylinder without spout having a diameter of 28 ± 2 mm and a height of 180 ± 5 mm. Are weighed and converted to g weight per ml.

そして、多孔質層を基材の上に形成する場合、基材は、多孔質層を支持して分離膜に強度を与えるものである。材質としては有機基材、無機基材等、特に限定されないが、軽量化しやすい点から、有機基材が好ましい。有機基材としては、セルロース繊維、セルローストリアセテート繊維、ポリエステル繊維、ポリプロピレン繊維、ポリエチレン繊維などの有機繊維からなる織編物や不織布があげられる。なかでも、密度の制御が比較的容易な不織布が特に好ましい。   And when forming a porous layer on a base material, a base material supports a porous layer and gives intensity | strength to a separation membrane. Although it does not specifically limit as a material, such as an organic base material and an inorganic base material, From the point which is easy to reduce in weight, an organic base material is preferable. Examples of the organic substrate include woven and knitted fabrics and nonwoven fabrics made of organic fibers such as cellulose fibers, cellulose triacetate fibers, polyester fibers, polypropylene fibers, and polyethylene fibers. Among these, a nonwoven fabric whose density is relatively easy to control is particularly preferable.

基材の厚みは、薄すぎると分離膜としての強度を保ちにくくなり、また、極端に厚いと透水性が低下するので、0.01mmから1mmの範囲が好ましい。最も好ましくは0.05mm〜0.5mmで範囲である。   If the thickness of the substrate is too thin, it will be difficult to maintain the strength as a separation membrane, and if it is extremely thick, the water permeability will be reduced, so the range of 0.01 mm to 1 mm is preferable. Most preferably, the range is 0.05 mm to 0.5 mm.

また、基材の密度は、 0.7g/cm3以下、好ましくは0.6g/cm3以下である。この密度の範囲は後述する製造工程において、製膜原液を受け入れ、基材と多孔質層との複合層を形成するのに適している。しかしながら、極端に低密度になると分離膜としての強度が低下するので、0.3g/cm3以上であるのが好ましい。ここでいう密度とは、見かけ密度であり、基材の面積、厚さと重量から密度=重量/(基材の面積×厚さ)の式で求める事ができる。 The density of the substrate is 0.7 g / cm 3 or less, preferably 0.6 g / cm 3 or less. This density range is suitable for accepting a film-forming stock solution and forming a composite layer of a substrate and a porous layer in the production process described later. However, when the density is extremely low, the strength as a separation membrane is lowered, and thus it is preferably 0.3 g / cm 3 or more. The density here is the apparent density, and can be determined from the area, thickness and weight of the substrate by the equation density = weight / (area of substrate × thickness).

一方、多孔質層の厚みは、薄すぎるとひび割れなどの欠陥が生じ、ろ過性能が落ちる場合があり、厚すぎると透水量が低下することがあるので、通常0.001〜0.5mm、好ましくは0.05〜0.2mmの範囲で選定することが好ましい。   On the other hand, if the thickness of the porous layer is too thin, defects such as cracks may occur, and the filtration performance may deteriorate. If the thickness is too thick, the water permeability may decrease. Is preferably selected in the range of 0.05 to 0.2 mm.

さらに、多孔質層を基材の上に形成する場合、多孔質層を構成する有機重合体の一部が基材に入り込み複合層が形成されていることが好ましい。基材に有機重合体が入り込むことで、いわゆるアンカー効果によって多孔質層が基材に堅固に定着され、多孔質層が基材から剥がれるのを防止できるようになる。多孔質層は、基材に対して、片面に偏って存在しても構わないし、また、両面に存在しても構わない。多孔質層は、基材に対して、対称構造であっても、非対称構造であっても構わない。また、多孔質層が基材に対して両面に存在している場合には、両側の多孔質層が、基材を介して連続的であっても構わないし、不連続であっても構わない。   Furthermore, when forming a porous layer on a base material, it is preferable that a part of organic polymer which comprises a porous layer enters a base material, and the composite layer is formed. By entering the organic polymer into the base material, the porous layer is firmly fixed to the base material by a so-called anchor effect, and the porous layer can be prevented from peeling off from the base material. The porous layer may exist on one side with respect to the base material, or may exist on both sides. The porous layer may have a symmetric structure or an asymmetric structure with respect to the substrate. Further, when the porous layer is present on both sides with respect to the base material, the porous layers on both sides may be continuous through the base material or may be discontinuous. .

次に、本発明の分離膜の製造方法について説明する。本発明の分離膜は、たとえば、有機重合体、無機微粒子および開孔剤などを含む製膜原液を、非溶媒を含む凝固液中で凝固させ多孔質層を形成することで得られ、この多孔質層に無機微粒子を含ませることで得られる。   Next, the manufacturing method of the separation membrane of this invention is demonstrated. The separation membrane of the present invention can be obtained, for example, by coagulating a membrane-forming stock solution containing an organic polymer, inorganic fine particles and a pore-opening agent in a coagulating solution containing a non-solvent to form a porous layer. It can be obtained by including inorganic fine particles in the material layer.

このとき、基材の表面に製膜原液を塗布して多孔質層を形成してもよく、基材を製膜原液に浸漬して多孔質層を形成してもよい。基材に製膜原液を塗布する場合には、基材の片面に塗布しても構わないし、両面に塗布しても構わない。もちろん基材を用いずに多孔質層を形成してもよい。   At this time, a film-forming stock solution may be applied to the surface of the substrate to form a porous layer, or the substrate may be immersed in the film-forming stock solution to form a porous layer. When applying the film-forming stock solution to the substrate, it may be applied on one side of the substrate or on both sides. Of course, you may form a porous layer, without using a base material.

そして、製膜原液を凝固させるにあたっては、基材上に形成された多孔質層のみを凝固液に接触させたり、多孔質層を基材ごと凝固液に浸漬すればよい。多孔質層のみを凝固液に接触するためには、例えば基材上に形成された多孔質層が下側に来るようにして凝固浴表面と接触させる方法やガラス板、金属板などの平滑な板の上に基材を接触させて、凝固浴が基材側に回り込まないように貼り付け、多孔質層を有する基材を板ごと凝固浴に浸漬する方法などがある。後者の方法では、基材を板に貼り付けてから製膜原液の被膜を形成しても構わないし、基材に原液の被膜を形成してから板に貼り付けても構わない。   In coagulating the film-forming stock solution, only the porous layer formed on the substrate may be brought into contact with the coagulating solution, or the porous layer may be immersed in the coagulating solution together with the substrate. In order to bring only the porous layer into contact with the coagulation liquid, for example, a method of bringing the porous layer formed on the substrate into contact with the coagulation bath surface so that the porous layer is on the lower side, or a smooth surface such as a glass plate or a metal plate There is a method in which a base material is brought into contact with a plate and attached so that the coagulation bath does not wrap around the substrate side, and the base material having a porous layer is immersed in the coagulation bath together with the plate. In the latter method, the base material may be attached to the plate and then the film of the film-forming stock solution may be formed, or the stock solution film may be formed on the base material and then attached to the plate.

そして、製膜原液には、有機重合体や開孔剤などを溶解する溶媒を添加してもよい。   Then, a solvent that dissolves an organic polymer, a pore opening agent, or the like may be added to the film forming stock solution.

製膜原液に多孔質形成を促進する作用を持つ開孔剤を加える場合、その開孔剤は、凝固液によって抽出されるものであればよく、凝固液への溶解性の高いものが好ましい。たとえば、ポリエチレングリコール、ポリプロピレングリコールなどのポリオキシアルキレン類や、ポリビニールアルコール、ポリビニールブチラール、ポルアクリル酸などの水溶液高分子やグリセリンを用いることもできる。   In the case of adding a pore-opening agent having an action of promoting porous formation to the film-forming stock solution, the pore-opening agent only needs to be extracted by the coagulating liquid, and is preferably highly soluble in the coagulating liquid. For example, polyoxyalkylenes such as polyethylene glycol and polypropylene glycol, aqueous polymer such as polyvinyl alcohol, polyvinyl butyral, and poracrylic acid, and glycerin can be used.

また、本発明において、開孔剤としては、ポリオキシアルキレン構造、脂肪酸エステル構造および水酸基を含有している界面活性剤を用いる。界面活性剤の使用により、製膜原液中における無機微粒子の分散性がよくなり、目的とする細孔構造を得ることが容易になる。
Further, in the present invention, the apertures include polyoxyalkylene structure, a surfactant containing a fatty acid ester structure and water group Ru used. By the use of surfactants, distributed inorganic particles becomes good in film-forming solution in, it is easy to obtain a pore structure of interest.

ポリオキシアルキレン構造としては、−(CH2CH2O)n−、−(CH2CH2(CH3)O)n−、−(CH2CH2CH2O)n−、−(CH2CH2CH2CH2O)n− などを挙げることができるが、特に親水性の観点から −(CH2CH2O)n−、いわゆるポリオキシエチレンが好ましい。   Examples of the polyoxyalkylene structure include-(CH2CH2O) n-,-(CH2CH2 (CH3) O) n-,-(CH2CH2CH2O) n-,-(CH2CH2CH2CH2O) n-, and the like. From the viewpoint,-(CH2CH2O) n-, so-called polyoxyethylene is preferable.

脂肪酸エステル構造としては、長鎖脂肪族基を有する脂肪酸が挙げられる。長鎖脂肪族基としては、直鎖状、分岐状いずれでも良いが、脂肪酸としては、ステアリン酸、オレイン酸、ラウリン酸、パルミチン酸などが挙げられる。また、油脂由来の脂肪酸エステル、例えば牛脂、パーム油、ヤシ油等も挙げられる。   Examples of the fatty acid ester structure include fatty acids having a long-chain aliphatic group. The long-chain aliphatic group may be linear or branched, and examples of the fatty acid include stearic acid, oleic acid, lauric acid, and palmitic acid. Moreover, fatty acid ester derived from fats and oils, such as beef tallow, palm oil, coconut oil, etc. are also mentioned.

水酸基を有するものとしては、エチレングリコール、プロピレングリコール、1,3−プロパンジオール、1,4−ブタンジオール、グリセリン、ソルビトール、ブドウ糖、ショ糖などを挙げることができる。   Examples of those having a hydroxyl group include ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, glycerin, sorbitol, glucose, and sucrose.

そして、ポリオキシアルキレン構造、脂肪酸エステル構造及び水酸基の全てを含有している界面活性剤が特に好ましく用いられ、たとえば、ポリオキシエチレンソルビタン脂肪酸エステルとして、モノステアリン酸ポリオキシエチレンソルビタン、ポリオキシエチレンヤシ油脂肪酸ソルビタン、モノオレイン酸ポリオキシエチレンソルビタン、モノラウリン酸ポリオキシエチレンソルビタン、モノパルミチン酸ポリオキシエチレンソルビタン、ポリオキシエチレン脂肪酸エステルとして、モノステアリン酸ポリエチレングリコール、モノオレイン酸ポリエチレングリコール、モノラウリン酸ポリエチレングリコールを挙げることができる。これらの界面活性剤は特に無機微粒子の分散性をよくするだけでなく、多孔質層に残存し乾燥させても透水性、阻止性が低下しないという特徴を併せ持つので好ましい。   A surfactant containing all of a polyoxyalkylene structure, a fatty acid ester structure and a hydroxyl group is particularly preferably used. For example, polyoxyethylene sorbitan fatty acid ester includes polyoxyethylene sorbitan monostearate, polyoxyethylene palm Oil fatty acid sorbitan, polyoxyethylene sorbitan monooleate, polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan monopalmitate, polyoxyethylene fatty acid ester, polyethylene glycol monostearate, polyethylene glycol monooleate, polyethylene glycol monolaurate Can be mentioned. These surfactants are particularly preferable because they not only improve the dispersibility of the inorganic fine particles, but also have the characteristics that even if they remain in the porous layer and are dried, the water permeability and blocking properties are not lowered.

また、製膜原液に有機重合体や開孔剤などの多孔質層形成剤を溶解する溶媒を用いる場合、
その溶媒としては、N−メチルピロリドン(NMP)、N,N−ジメチルアセトアミド(DMAc)、N,N−ジメチルホルムアミド(DMF)、ジメチルスルホキシド(DMSO)、アセトン、メチルエチルケトンなどを用いる事ができる。中でも有機重合体の溶解性の高いNMP、DMAc、DMF、DMSOを好ましく用いることができる。
In addition, when using a solvent that dissolves a porous layer forming agent such as an organic polymer or a pore opening agent in the film forming stock solution,
As the solvent, N-methylpyrrolidone (NMP), N, N-dimethylacetamide (DMAc), N, N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), acetone, methyl ethyl ketone and the like can be used. Among them, NMP, DMAc, DMF and DMSO, which have high solubility of organic polymers, can be preferably used.

製膜原液には、その他、非溶媒を添加することもできる。非溶媒は、有機重合体を溶解しないものであり、有機重合体などの多孔質層形成剤の凝固の速度を制御して細孔の大きさを制御するように作用する。非溶媒としては、水やメタノール、エタノール、などのアルコール類を用いることができる。なかでも廃水処理の容易さや価格の点から水メタノールが好ましい。これらの混合であってもよい。   In addition, a non-solvent can also be added to the film-forming stock solution. The non-solvent does not dissolve the organic polymer, and acts to control the size of the pores by controlling the solidification rate of the porous layer forming agent such as the organic polymer. As the non-solvent, water, alcohols such as methanol and ethanol can be used. Of these, water methanol is preferred from the viewpoint of ease of wastewater treatment and price. These may be mixed.

製膜原液において、有機重合体は5重量%〜30重量%、無機微粒子は0.1重量%〜30重量%、開孔剤は0.1重量%〜15重量%、溶媒は40重量%〜95重量%、非溶媒は0.1重量%〜10重量%範囲内が好ましい。中でも、有機重合体は、極端に少ないと多孔質層の強度が低くなり、多すぎると透水性が低下することがあるので8重量%〜20重量%の範囲がより好ましい。また、無機微粒子は極端に少なすぎると分離膜の表面の削れを抑制する効果が低くなり、多すぎると多孔質層の強度が低下することがある。したがって、より好ましくは0.5重量%〜15重量%の範囲がよい。開孔剤は、少なすぎると透水性が低下し、多すぎると多孔質層の強度が低下することがある。また、極端に多いと多孔質有機重合体中に過剰に残存して使用中に溶出し、透過水の水質が悪化したり、透水性変動をしたりすることがある。したがって、より好ましい範囲は、0.5重量%〜10重量%である。さらに、溶媒は少なすぎると原液がゲル化しやすくなり、多すぎると多孔質層の強度が低下することので、より好ましくは60重量%〜90重量%の範囲である。また、非溶媒は、あまり多いと原液のゲル化が起こりやすくなり、極端に少ないと細孔やマクロボイドの大きさの制御が難しくなる。したがって、より好ましくは0.5重量%〜15重量%である。   In the film forming stock solution, the organic polymer is 5 wt% to 30 wt%, the inorganic fine particles are 0.1 wt% to 30 wt%, the pore-opening agent is 0.1 wt% to 15 wt%, and the solvent is 40 wt% to 95 wt%, non-solvent is preferably in the range of 0.1 wt% to 10 wt%. Among them, when the amount of the organic polymer is extremely small, the strength of the porous layer is lowered, and when the amount is too large, the water permeability may be lowered, so that the range of 8% by weight to 20% by weight is more preferable. If the amount of inorganic fine particles is too small, the effect of suppressing the surface of the separation membrane will be reduced, and if it is too large, the strength of the porous layer may be lowered. Therefore, the range of 0.5 wt% to 15 wt% is more preferable. If the amount of the pore-opening agent is too small, the water permeability may decrease, and if the amount is too large, the strength of the porous layer may decrease. On the other hand, if the amount is extremely large, it may remain excessively in the porous organic polymer and elute during use, and the quality of the permeated water may deteriorate or the water permeability may change. Therefore, a more preferable range is 0.5 wt% to 10 wt%. Furthermore, if the amount of the solvent is too small, the stock solution is likely to be gelled, and if the amount is too large, the strength of the porous layer is lowered, and therefore the range is preferably 60% to 90% by weight. If the amount of non-solvent is too large, gelation of the stock solution tends to occur, and if it is extremely small, control of the size of pores and macrovoids becomes difficult. Therefore, it is more preferably 0.5 to 15% by weight.

一方、凝固浴としては、非溶媒、または非溶媒と溶媒とを含む混合溶液を用いることができる。製膜原液にも非溶媒を用いる場合、凝固浴における非溶媒は、凝固浴の少なくとも80重量%とするのが好ましい。少なすぎると有機重合体の凝固速度が遅くなり細孔径が大きくなったりする。より好ましくは、85重量%〜100重量%の範囲である。一方、製膜原液に非溶媒を用いない場合、製膜原液にも非溶媒を用いる場合よりも、凝固浴における非溶媒の含有量を少なくすることが好ましいが、少なくとも60重量%とするのが好ましい。非溶媒が多いと、有機重合体の凝固速度が速くなって多孔質層の表面は緻密となり透水性が低下することがある。より好ましくは60重量%〜99重量%の範囲がよい。凝固浴中の非溶媒の含有量を調整することにより、多孔質層表面の孔径やマクロボイドの大きさを制御することができる。なお、凝固浴の温度は、あまり高いと凝固速度が速すぎるようになり、逆に、あまり低いと凝固速度が遅すぎるようになるので、通常、15℃〜80℃の範囲で選定するのが好ましい。より好ましくは20℃〜60℃の範囲である。   On the other hand, as the coagulation bath, a non-solvent or a mixed solution containing a non-solvent and a solvent can be used. When a non-solvent is used for the film-forming stock solution, the non-solvent in the coagulation bath is preferably at least 80% by weight of the coagulation bath. If the amount is too small, the solidification rate of the organic polymer is slowed and the pore diameter is increased. More preferably, it is in the range of 85% by weight to 100% by weight. On the other hand, when a non-solvent is not used for the film-forming stock solution, it is preferable to reduce the content of the non-solvent in the coagulation bath, compared to the case where a non-solvent is also used for the film-forming stock solution. preferable. When the amount of non-solvent is large, the solidification rate of the organic polymer is increased, and the surface of the porous layer becomes dense and water permeability may be lowered. More preferably, the range is from 60% to 99% by weight. By adjusting the content of the non-solvent in the coagulation bath, the pore size on the surface of the porous layer and the size of the macrovoids can be controlled. If the temperature of the coagulation bath is too high, the coagulation rate will be too fast. Conversely, if the temperature is too low, the coagulation rate will be too slow, so it is usually selected in the range of 15 ° C to 80 ° C. preferable. More preferably, it is the range of 20 to 60 degreeC.

上述のような本発明によれば次のような分離膜とすることが可能になる。すなわち、平均粒径0.088μmのラテックス微粒子の阻止率に関し、落砂式摩耗試験の前の阻止率をA、試験の後の阻止率をBとしたとき、A−B≦50、より好ましくはA−B≦10を満足する分離膜とすることが可能になる。試験前後での阻止率の変化が小さいということは、強い衝撃にも十分に耐えることができ膜表面の削れを抑制することができることを意味する。したがって、被処理水に砂のような無機物や汚泥、その他の固形物が含まれ、それらが激しく衝突したり、活性汚泥への酸素の供給や目詰まり防止のために行うエアレーション操作による気泡が膜面に激しく衝突する下廃水処理においても、菌体や汚泥などのリークが少なく、菌体や汚泥などによる膜の目づまり、ろ過差圧の上昇を防ぐことができ、膜の長寿命化が可能になり好適である。そして、下廃水処理で得られた透過水は再利用水として使用することもできる。   According to the present invention as described above, the following separation membrane can be obtained. That is, regarding the rejection rate of latex fine particles having an average particle size of 0.088 μm, A−B ≦ 50, more preferably, where A is the rejection rate before the falling sand wear test and B is the rejection rate after the test. A separation membrane satisfying A−B ≦ 10 can be obtained. A small change in the blocking rate before and after the test means that it can sufficiently withstand a strong impact and suppress the abrasion of the film surface. Therefore, the water to be treated contains inorganic substances such as sand, sludge, and other solids, and they collide violently, and bubbles are formed by aeration operations to prevent oxygen supply to the activated sludge and clogging. Even in the treatment of sewage wastewater that collides violently with the surface, there are few leaks of bacterial cells and sludge, etc., membrane clogging by bacterial cells and sludge, etc., and prevention of increase in filtration differential pressure can be made, and the life of the membrane can be extended It is suitable. And the permeated water obtained by the wastewater treatment can also be used as reused water.

また、本発明の分離膜は、ナノろ過膜、限外ろ過膜、精密ろ過膜とのいずれであってもよく、分離対象物質の大きさに応じて適当な一種以上の膜を選択、組み合わせればよいが、下廃水処理用としては特に限外ろ過膜、精密ろ過膜が好ましい。そして、平均粒径0.088μmの微粒子の阻止率が90%以上であることがさらに好ましい。この阻止率を満足しないときは、下廃水処理にあたって、菌体や汚泥などがリークしたり菌体や汚泥による目詰まりが起こったり、ろ過差圧の上昇が起こったり、寿命が極端に短くなったりする。   Further, the separation membrane of the present invention may be any of a nanofiltration membrane, an ultrafiltration membrane, and a microfiltration membrane, and one or more appropriate membranes can be selected and combined depending on the size of the substance to be separated. However, ultrafiltration membranes and microfiltration membranes are particularly preferred for treating sewage wastewater. Further, it is more preferable that the rejection of fine particles having an average particle size of 0.088 μm is 90% or more. If this rejection rate is not satisfied, microbial cells and sludge may leak during clogging of sewage water, clogging may occur due to microbial cells and sludge, filtration differential pressure may increase, and the service life may become extremely short. To do.

ここで、阻止率は、逆浸透膜透過水にセラダイン社製ポリスチレンラテックス微粒子(公称粒径0.088μm、標準偏差0.0062μm)を10ppmの濃度になるように分散させた原水を、温度25℃、圧力10kPaの条件下で分離膜を透過させ、原水と透過水についてそれぞれ求めた波長202nmの紫外線の吸光度から、次式によって求める。   Here, the blocking rate is the temperature of 25 ° C. of raw water in which polystyrene latex fine particles (nominal particle size 0.088 μm, standard deviation 0.0062 μm) manufactured by Ceradyne are dispersed in reverse osmosis membrane permeated water to a concentration of 10 ppm. From the absorbance of ultraviolet light having a wavelength of 202 nm obtained by allowing the separation membrane to permeate under a pressure of 10 kPa and obtaining the raw water and the permeated water, respectively, the following equation is used.

阻止率(%)=[(原液の吸光度−透過水の吸光度)/原水の吸光度]×100
そして、本発明の分離膜の使用に際しては、分離膜が平膜状の場合、分離膜(または分離膜および流路材)と、透過液の集液部材とを有しているエレメントとすることや、このエレメントを複数個ハウジングに収容してモジュールとすることが好ましい。また、分離膜が中空糸状の場合は、その複数本の中空糸膜を一方向に引き揃えて、原液流入口および透過液流出口を有するハウジングに収容するとともに、少なくとも一方の端部を端面が開口状態となるようにケースに固定し、モジュールとすることが好ましい。エレメントやモジュールには、原液を分離膜に供給する手段と、分離膜を透過した透過液を集液する集液手段とを設けることで、液体処理装置として下廃水の処理等に好ましく用いることができる。
Blocking rate (%) = [(absorbance of stock solution−absorbance of permeated water) / absorbance of raw water] × 100
When the separation membrane of the present invention is used, if the separation membrane is a flat membrane, an element having a separation membrane (or a separation membrane and a channel material) and a permeate collecting member is used. Alternatively, it is preferable that a plurality of these elements are housed in a housing to form a module. In the case where the separation membrane is in the form of a hollow fiber, the plurality of hollow fiber membranes are aligned in one direction and accommodated in a housing having a stock solution inlet and a permeate outlet, and at least one end thereof is an end surface. The module is preferably fixed to the case so as to be in an open state. The element or module is preferably used for the treatment of sewage wastewater as a liquid processing apparatus by providing a means for supplying the stock solution to the separation membrane and a liquid collecting means for collecting the permeated liquid that has passed through the separation membrane. it can.

エレメントの形態は特に限定されないが、下廃水処理用途に好適に用いることができるエレメントの形態の一つを図1、2を用いて説明する。   Although the form of an element is not specifically limited, One of the forms of the element which can be used suitably for a waste-water-treatment process is demonstrated using FIG.

図1、2に示すエレメントは、剛性を有する支持板1の両面に、流路材2と本発明の分離膜3とをこの順序で配してなる。この形態のエレメントは、膜面積を大きくすることが困難なので、透水量を大きくするために、支持板1の両面に分離膜3を配している。支持板1は、両面に凸部4と凹部5とを有している。分離膜3は、液体中の不純物をろ過する。流路材2は、分離膜3でろ過された透過水を効率よく支持板1に流すためものである。支持板1に流れた透過水は、支持板1の凹部を通って外部に取り出される。   The elements shown in FIGS. 1 and 2 are formed by arranging the flow path material 2 and the separation membrane 3 of the present invention in this order on both sides of a rigid support plate 1. Since it is difficult to increase the membrane area of the element of this form, the separation membranes 3 are arranged on both surfaces of the support plate 1 in order to increase the water permeability. The support plate 1 has convex portions 4 and concave portions 5 on both sides. The separation membrane 3 filters impurities in the liquid. The flow path member 2 is for efficiently flowing the permeated water filtered by the separation membrane 3 to the support plate 1. The permeated water that has flowed to the support plate 1 is taken out through the recesses of the support plate 1.

支持板1は、板状体の両面に複数の凹凸を有した構造であれば特に限定されるものではないが、透過水取出口までの距離、流路抵抗を均一化して被処理水が膜面に対して均等に流れるように、凹部は一定間隔で並列配置された複数個の溝を形成するように設けることが好ましい。このとき、各凹部5の幅は、透過水量を高く保ちつつ厳しい曝気条件化での流路材2、分離膜3の落ち込みを防止するために、1〜20mmの範囲内、さらに1.5〜5mmの範囲内とするのが好ましい。凹部5の深さは、エレメントとしての厚みを抑えつつ透過水流路を確保するために1〜10mm程度の範囲内で選択するのが好ましい。さらに、支持板の強度を保ちつつ、透過水流路を十分に確保し透過水が流動する際の流動抵抗を抑えるために、凹部による支持板の空隙率は15〜85%の範囲内であることが好ましい。これは、中実の直方体の支持板を100%としたときに凹部によって形成される空隙の容積比率を示すもので、空隙率が15%を下回ると流動抵抗が大きくなり透過水を効率よく取水できず、85%を上回ると支持板の強度が著しく低下する。   The support plate 1 is not particularly limited as long as it has a structure having a plurality of projections and depressions on both sides of the plate-like body. However, the distance to the permeate outlet and the flow path resistance are made uniform so that the water to be treated is a film. The recesses are preferably provided so as to form a plurality of grooves arranged in parallel at regular intervals so as to flow evenly with respect to the surface. At this time, the width of each recess 5 is within a range of 1 to 20 mm, and further 1.5 to 5 in order to prevent the passage material 2 and the separation membrane 3 from falling down under severe aeration conditions while keeping the permeated water amount high. It is preferable to be within a range of 5 mm. The depth of the recess 5 is preferably selected within a range of about 1 to 10 mm in order to secure the permeate flow path while suppressing the thickness as the element. Furthermore, the porosity of the support plate due to the recesses is in the range of 15 to 85% in order to sufficiently secure the permeate flow path and suppress the flow resistance when the permeate flows, while maintaining the strength of the support plate. Is preferred. This indicates the volume ratio of the voids formed by the recesses when the solid rectangular parallelepiped support plate is 100%. When the porosity is below 15%, the flow resistance increases and the permeate is efficiently taken. If it exceeds 85%, the strength of the support plate is significantly reduced.

また、支持板1の材質としては、ASTM試験法のD638における引張り強さが15MPa程度以上の剛性を持つ材質が好ましい。ステンレスなどの金属類、アクリロニトリル−ブタジエン−スチレン共重合体(ABS樹脂)、ポリエチレン、ポリプロピレン、塩化ビニルなどの樹脂、繊維強化樹脂(FRP)などの複合材料、その他の材質などを好ましく使用することができる。   The material of the support plate 1 is preferably a material having a rigidity with a tensile strength of about 15 MPa or more in accordance with ASTM test method D638. Metals such as stainless steel, acrylonitrile-butadiene-styrene copolymer (ABS resin), resins such as polyethylene, polypropylene and vinyl chloride, composite materials such as fiber reinforced resin (FRP), and other materials are preferably used. it can.

流路を確保しつつエレメントとしての厚みを薄くするために、流路材の厚みは0.1〜5mmの範囲内にあるものが好ましい。また、圧損を低減するためにプラスチックネットなど空隙率の高い素材を使用することが好ましい。空隙率が40%〜96%の範囲の流路材が特に好ましい。   In order to reduce the thickness of the element while securing the flow path, the thickness of the flow path material is preferably in the range of 0.1 to 5 mm. In order to reduce pressure loss, it is preferable to use a material having a high porosity such as a plastic net. A channel material having a porosity in the range of 40% to 96% is particularly preferable.

また、本発明のエレメントにおいては、図2に示すように支持板1の周縁部に枠体6を設置することも好ましい。この場合、分離膜3は支持板1と枠体6の間に嵌挿してもよく、また、枠体6の外部表面に接着させてもよい。ここで、「接着」とは、接触させた状態で着けることをいい、別途樹脂など用いて接着しても、分離膜そのものを溶着しても、さらにはその他種々の方法で接着してもいい。押出成形などの安価な製法で製作された支持板1の周縁部に、射出成形、押出成形などで製作した枠体6を嵌めこむようにすることで、コストを削減できる。支持板1を嵌めこみやすくするため、枠体6は、断面がコ型状になるように形成することが好ましい。   Moreover, in the element of this invention, it is also preferable to install the frame 6 in the peripheral part of the support plate 1 as shown in FIG. In this case, the separation membrane 3 may be fitted between the support plate 1 and the frame body 6 or may be adhered to the outer surface of the frame body 6. Here, “adhesion” means to attach in a contact state, and may be adhered using a separate resin, the separation membrane itself may be welded, or may be adhered by various other methods. . Costs can be reduced by fitting the frame body 6 manufactured by injection molding, extrusion molding or the like into the peripheral edge portion of the support plate 1 manufactured by an inexpensive manufacturing method such as extrusion molding. In order to make it easy to fit the support plate 1, the frame body 6 is preferably formed so that the cross-section is a U-shape.

上述のように構成されたエレメントにおいては、分離膜3によってろ過された透過水が、流路材2、支持板1の凹部5へと流動し、最終的に透過水取出口7からエレメント外部へと排出
される。
In the element configured as described above, the permeated water filtered by the separation membrane 3 flows to the flow path member 2 and the concave portion 5 of the support plate 1 and finally from the permeated water outlet 7 to the outside of the element. And discharged.

続いて、上記エレメントを複数枚ハウジングに収容したモジュールおよびその使用方法を図1〜3に基づいて説明する。図3は、複数枚のエレメント9が、互いに並行に、かつ、分離膜3の膜面間に空間ができるようにハウジング内に収納された分離膜モジュール10を示している。この分離膜モジュール10は、被処理水槽11に貯えた有機性廃水などの被処理水に浸漬するようにして使用される。分離膜モジュール10の内部には鉛直方向に装填された複数枚のエレメント9と、その下方にブロア13からの気体を分離膜の膜面に供給する散気装置12とを設け、また、分離膜モジュール10よりも下流側には透過水を吸引するポンプ14を設けている。   Then, the module which accommodated the said element in multiple sheets housing, and its usage method are demonstrated based on FIGS. FIG. 3 shows a separation membrane module 10 in which a plurality of elements 9 are housed in a housing so that a space is formed in parallel with each other and between the membrane surfaces of the separation membrane 3. The separation membrane module 10 is used so as to be immersed in water to be treated such as organic waste water stored in the water tank 11 to be treated. Inside the separation membrane module 10 are provided a plurality of elements 9 loaded in the vertical direction, and an air diffuser 12 for supplying the gas from the blower 13 to the membrane surface of the separation membrane below it, and the separation membrane A pump 14 for sucking permeate is provided downstream of the module 10.

このように構成された下廃水処理装置において、廃水などの被処理水は、ポンプ14の吸引力により分離膜3を通過する。この際、被処理水中に含まれる微生物粒子、無機物粒子などの懸濁物質がろ過される。そして、分離膜3を通過した透過水は、流路材2によって形成されている透過水流路を経て、支持板1の凹部5から枠体6内に形成された集水部8を通り、透過水取出口7を通って被処理水槽11の外部に取り出される。一方、ろ過と平行して散気装置12が気泡を発生し、その気泡のエアリフト作用によって生じる、エレメント9の膜面に平行な上昇流が、膜面に堆積したろ過物を離脱させる。   In the sewage wastewater treatment apparatus configured as described above, water to be treated such as wastewater passes through the separation membrane 3 by the suction force of the pump 14. At this time, suspended substances such as microbial particles and inorganic particles contained in the water to be treated are filtered. Then, the permeated water that has passed through the separation membrane 3 passes through the water collecting section 8 formed in the frame body 6 from the concave portion 5 of the support plate 1 through the permeated water flow path formed by the flow path material 2 and permeated. The water is taken out from the water tank 11 through the water outlet 7. On the other hand, in parallel with the filtration, the air diffuser 12 generates bubbles, and the upward flow parallel to the membrane surface of the element 9 generated by the air lift action of the bubbles separates the filtrate deposited on the membrane surface.

もちろん、被処理液としては、下廃水に限られるのではなく、水処理分野であれば浄水処理、上水処理、排水処理、工業用水製造などで利用でき、河川水、湖沼水、地下水、海水、下水、排水などを被処理水とすることができる。   Of course, the liquid to be treated is not limited to sewage wastewater, but can be used for water purification, clean water treatment, wastewater treatment, industrial water production, etc. in the water treatment field. River water, lake water, groundwater, seawater In addition, sewage, drainage, etc. can be treated water.

実施例、比較例における分離膜の透水量と阻止率は、次のように測定した。   The water permeability and blocking rate of the separation membranes in the examples and comparative examples were measured as follows.

分離膜の透水量の測定は、分離膜を直径50mmの円形に切り出し、円筒型のろ過ホルダーにセットし、逆浸透膜透過水を25℃で、水頭高さ1mで5分間予備透過させた後、続けて透過させて透過水を5分間採取して求めた。   To measure the water permeability of the separation membrane, cut the separation membrane into a circle with a diameter of 50 mm, set it in a cylindrical filter holder, and pre-permeate the reverse osmosis membrane permeate at 25 ° C. for 5 minutes at a head height of 1 m. Then, the permeated water was sampled for 5 minutes after permeation.

阻止率は、ラテックス粒子(セラダイン社製ポリスチレンラテックス微粒子、公称粒径0.088μm、標準偏差0.0062μm)を用いて濃度の検量線を求めた。すなわち、微粒子阻止率測定用のホルダー(UHP−43K、アドバンテック東洋(株)製)に分離膜(直径43mm)をセットし、ラテックス粒子濃度約10ppmに調製した原水を入れ、評価圧力10kPaの窒素圧で、原水を攪拌しながら、25cc予備透過をした後、25ccの透過水を採取して、原水と透過水のラテックス粒子濃度を分光光度計(日立製作所製、U−3200)で波長202nmの紫外線の吸光度で測定して、その濃度比から次の式により阻止率を求めた。   For the rejection, a calibration curve of the concentration was obtained using latex particles (polystyrene latex fine particles manufactured by Ceradyne, nominal particle size 0.088 μm, standard deviation 0.0062 μm). That is, a separation membrane (diameter: 43 mm) was set in a holder for measuring a fine particle rejection rate (UHP-43K, manufactured by Advantech Toyo Co., Ltd.), raw water prepared to a latex particle concentration of about 10 ppm was added, and a nitrogen pressure with an evaluation pressure of 10 kPa was added. Then, 25 cc of permeated water was collected while stirring the raw water, and 25 cc of permeated water was collected, and the latex particle concentration of the raw water and the permeated water was measured with an ultraviolet ray having a wavelength of 202 nm using a spectrophotometer (manufactured by Hitachi, U-3200). The blocking rate was determined from the concentration ratio by the following formula.

阻止率(%)=[(原液の吸光度−透過水の吸光度)/原水の吸光度]×100
また、分離膜の落砂式摩耗試験は、落砂式摩耗試験装置(ASTMD673#80、東洋精機製作所製)を用いて、直径44mmの円に切り出した分離膜サンプルを、水平面と45°の角度に保持した受台に分離膜サンプルの表面が表に出るように膜の両端を押さえ板で動かないように固定して、直径2mmの穴が中心に1箇所、周りに6箇所あいている補給タンクに400gのSiC(45#)を入れ、補給タンクを回転しながら、高さ650mmから直径(内径)23mmの筒を介して400gのSiC(45#)がセットした分離膜の中心に落ちるようにして、落下させて行った。その後、水平面と45°の角度に保持した分離膜の膜表面に付着したSiCを除き、上述の阻止率の測定を行った。
<実施例1>
有機重合体としてポリフッ化ビニリデン(PVDF)樹脂、無機微粒子として平均粒子径18nm、かさ密度0.13g/mlのカーボンブラック(三菱化成工業(株)製、カーボンブラック#650)、開孔剤としてモノステアリン酸ポリオキシエチレンソルビタン、溶媒としてN,N−ジメチルホルムアミド(DMF)、非溶媒としてH2Oをそれぞれ用い、これらを95℃の温度下で十分に攪拌し、次の組成を有する製膜原液を得た。
Blocking rate (%) = [(absorbance of stock solution−absorbance of permeated water) / absorbance of raw water] × 100
In addition, the sand fall type abrasion test of the separation membrane was performed by using a sand fall type wear test apparatus (ASTM D673 # 80, manufactured by Toyo Seiki Seisakusho Co., Ltd.), separating the separation membrane sample cut into a circle with a diameter of 44 mm at an angle of 45 ° with the horizontal plane. Fix the both ends of the membrane with a holding plate so that the surface of the separation membrane sample appears on the surface of the pedestal held in place, and replenish it with a hole with a diameter of 2 mm in the center and six places around it. Put 400 g of SiC (45 #) into the tank and rotate the replenishing tank so that it falls to the center of the separation membrane where 400 g of SiC (45 #) is set from a height of 650 mm through a cylinder with a diameter (inner diameter) of 23 mm. There was Tsu line is dropped. Thereafter, the above-described blocking rate was measured except for the SiC adhering to the membrane surface of the separation membrane held at an angle of 45 ° with the horizontal plane.
<Example 1>
Polyvinylidene fluoride (PVDF) resin as an organic polymer , carbon black with an average particle size of 18 nm and a bulk density of 0.13 g / ml as inorganic fine particles (manufactured by Mitsubishi Chemical Industries, Ltd., carbon black # 650), as a pore-opening agent Using polyoxyethylene sorbitan monostearate, N, N-dimethylformamide (DMF) as a solvent, and H 2 O as a non-solvent, these were sufficiently stirred at a temperature of 95 ° C. to prepare a film-forming stock solution having the following composition: Obtained.

ポリフッ化ビニリデン(PVDF) :13.0重量%
モノステアリン酸ポリオキシエチレンソルビタン : 6.5重量%
N,N−ジメチルホルムアミド(DMF) :72.5重量%
カーボンブラック : 5.0重量%
H2O : 3.0重量%
次に、上記製膜原液を30℃に冷却した後、密度0.48g/cm3、厚み220μmのポリエステル繊維製不織布に塗布し、塗布後、直ちに20℃の純水中に5分間浸漬しさらに90℃の熱水に2分間浸漬して溶媒であるN,N−ジメチルホルムアミドおよび開孔剤であるモノステアリン酸ポリオキシエチレンソルビタンを洗い流し、分離膜を得た。
Polyvinylidene fluoride (PVDF): 13.0% by weight
Polyoxyethylene sorbitan monostearate: 6.5% by weight
N, N-dimethylformamide (DMF): 72.5% by weight
Carbon black: 5.0% by weight
H2O: 3.0% by weight
Next, after the film-forming stock solution is cooled to 30 ° C., it is applied to a non-woven fabric made of polyester fiber having a density of 0.48 g / cm 3 and a thickness of 220 μm, and after application, immediately immersed in pure water at 20 ° C. for 5 minutes. It was immersed in hot water at 90 ° C. for 2 minutes to wash away N, N-dimethylformamide as a solvent and polyoxyethylene sorbitan monostearate as a pore opening agent to obtain a separation membrane.

次に、上記分離膜について、平均粒径0.088μmラテックス微粒子の初期阻止率を測定したところ、98.5%であった。また、初期透水量は70×10-93/m2・s・Paであった。次に、上記分離膜に対して落砂式摩耗試験を行い、平均粒径0.088μmのラテックス微粒子の阻止率を測定したところ98.0%で、透水量は75×10-93/m2・s・Paとなった。すなわち、落砂式摩耗試験による分離膜の性能低下は認められず、落砂式摩耗試験前後の平均平均粒子径0.088μmラテックス微粒子の阻止率A(試験前)、B(試験後)について、A−B=0.5でありA−B≦10を満足するものであった。なお、結果を表1に示す。 Next, when the initial rejection of the latex fine particles having an average particle size of 0.088 μm was measured for the separation membrane, it was 98.5%. The initial water permeability was 70 × 10 −9 m 3 / m 2 · s · Pa. Next, a sandfall type abrasion test was performed on the separation membrane, and the rejection rate of latex fine particles having an average particle size of 0.088 μm was measured. As a result, it was 98.0% and the water permeability was 75 × 10 −9 m 3 / m 2 · s · Pa. That is, the performance of the separation membrane was not deteriorated by the sandfall wear test, and the average average particle size 0.088 μm before and after the sandfall wear test was inhibited by A (before the test) and B (after the test). A−B = 0.5, and A−B ≦ 10 was satisfied. The results are shown in Table 1.

さらに、落砂式摩耗試験後の分離膜の表面には、図4に示す通り、走査型電子顕微鏡観察によっても擦過傷が観察されなかった。
<実施例2>
有機重合体としてポリフッ化ビニリデン(PVDF)樹脂、無機微粒子として平均粒子径1300nm、かさ密度0.08g/mlの微粉シリカ(東ソ・シリカ(株)製、微粉末シリカAZ−204)、開孔剤としてモノステアリン酸ポリオキシエチレンソルビタン、溶媒としてN,N−ジメチルホルムアミド(DMF)、非溶媒としてH2Oをそれぞれ用い、これらを95℃の温度下で十分に攪拌し、次の組成を有する製膜原液を得た。
Further, as shown in FIG. 4, no scratches were observed on the surface of the separation membrane after the sand-sand-type wear test even by observation with a scanning electron microscope.
<Example 2>
Polyvinylidene fluoride (PVDF) resin as the organic polymer , finely divided silica having an average particle diameter of 1300 nm and a bulk density of 0.08 g / ml as inorganic fine particles (manufactured by Tosoh Silica Co., Ltd., finely divided silica AZ-204), open Using polyoxyethylene sorbitan monostearate as a pore agent, N, N-dimethylformamide (DMF) as a solvent, and H 2 O as a non-solvent, these were sufficiently stirred at a temperature of 95 ° C., and had the following composition: A membrane stock solution was obtained.

ポリフッ化ビニリデン(PVDF) :13.0重量%
モノステアリン酸ポリオキシエチレンソルビタン : 6.5重量%
N,N−ジメチルホルムアミド(DMF) :72.5重量%
シリカ : 5.0重量%
H2O : 3.0重量%
次に、上記製膜原液を30℃に冷却した後、密度0.48g/cm3、厚み220μmのポリエステル繊維製不織布に塗布し、塗布後、直ちに20℃の純水中に5分間浸漬し、さらに90℃の熱水に2分間浸漬してN,N−ジメチルホルムアミドおよびモノステアリン酸ポリオキシエチレンソルビタンを洗い流し、分離膜を得た。
Polyvinylidene fluoride (PVDF): 13.0% by weight
Polyoxyethylene sorbitan monostearate: 6.5% by weight
N, N-dimethylformamide (DMF): 72.5% by weight
Silica: 5.0% by weight
H2O: 3.0% by weight
Next, after cooling the film-forming stock solution to 30 ° C., it was applied to a non-woven fabric made of polyester fiber having a density of 0.48 g / cm 3 and a thickness of 220 μm, and immediately after application, immersed in pure water at 20 ° C. for 5 minutes, Further, it was immersed in hot water at 90 ° C. for 2 minutes to wash away N, N-dimethylformamide and polyoxyethylene sorbitan monostearate to obtain a separation membrane.

次に、上記分離膜について、平均平均粒子径0.088μmラテックス微粒子の初期阻止率を測定したところ、98.4%であった。また、初期透水量は68×10-93/m2・s・Paであった。次に、上記分離膜に対して落砂式摩耗試験を行い、平均平均粒子径0.088μmのラテックス微粒子の阻止率を測定したところ97.8%で、透水量は74×10-93/m2・s・Paとなった。すなわち、落砂式摩耗試験による分離膜の性能低下は認められず、落砂式摩耗試験前後の平均平均粒子径0.088μmラテックス微粒子の阻止率A(試験前)、B(試験後)について、A−B=0.6でありA−B≦10を満足するものであった。なお、結果を表1に示す。 Next, when the initial rejection of latex particles having an average average particle size of 0.088 μm was measured for the separation membrane, it was 98.4%. The initial water permeability was 68 × 10 −9 m 3 / m 2 · s · Pa. Next, a sandfall type abrasion test was performed on the separation membrane, and the blocking rate of latex fine particles having an average average particle size of 0.088 μm was measured. As a result, it was 97.8% and the water permeability was 74 × 10 −9 m 3. / M 2 · s · Pa. That is, the performance of the separation membrane was not deteriorated by the sandfall wear test, and the average average particle size 0.088 μm before and after the sandfall wear test was inhibited by A (before the test) and B (after the test). A−B = 0.6 and A−B ≦ 10 was satisfied. The results are shown in Table 1.

さらに、落砂式摩耗試験後の分離膜の表面には、図5に示す通り、走査型電子顕微鏡観察によっても擦過傷が観察されなかった。
<実施例3>
有機重合体としてポリスルホン(PS)樹脂、無機微粒子として平均粒子径18nmのカーボンブラック(三菱化成工業(株)製、カーボンブラック#650)、開孔剤としてモノステアリン酸ポリオキシエチレンソルビタン、溶媒としてN,N−ジメチルホルムアミド(DMF)、非溶媒としてH2Oをそれぞれ用い、これらを95℃の温度下で十分に攪拌し、次の組成を有する製膜原液を得た。
Further, as shown in FIG. 5, no scratches were observed on the surface of the separation membrane after the sand-sand-type wear test even by observation with a scanning electron microscope.
<Example 3>
Polysulfone (PS) resin as the organic polymer, carbon black with an average particle size of 18 nm as inorganic fine particles (carbon black # 650, manufactured by Mitsubishi Kasei Kogyo Co., Ltd.), polyoxyethylene sorbitan monostearate as the pore-opening agent, and N as the solvent , N-dimethylformamide (DMF), and H2O as a non-solvent, respectively, were sufficiently stirred at a temperature of 95 ° C. to obtain a film-forming stock solution having the following composition.

ポリスルホン(PS) :13.0重量%
モノステアリン酸ポリオキシエチレンソルビタン : 6.5重量%
N,N−ジメチルホルムアミド(DMF) :72.5重量%
カーボンブラック : 5.0重量%
H2O : 3.0重量%
次に、上記製膜原液を30℃に冷却した後、密度0.48g/cm3、厚み220μmのポリエステル繊維製不織布に塗布し、塗布後、直ちに20℃の純水中に5分間浸漬し、さらに90℃の熱水に2分間浸漬してN,N−ジメチルホルムアミドおよびモノステアリン酸ポリオキシエチレンソルビタンを洗い流し、分離膜を得た。
Polysulfone (PS): 13.0% by weight
Polyoxyethylene sorbitan monostearate: 6.5% by weight
N, N-dimethylformamide (DMF): 72.5% by weight
Carbon black: 5.0% by weight
H2O: 3.0% by weight
Next, after cooling the film-forming stock solution to 30 ° C., it was applied to a non-woven fabric made of polyester fiber having a density of 0.48 g / cm 3 and a thickness of 220 μm, and immediately after application, immersed in pure water at 20 ° C. for 5 minutes, Further, it was immersed in hot water at 90 ° C. for 2 minutes to wash away N, N-dimethylformamide and polyoxyethylene sorbitan monostearate to obtain a separation membrane.

次に、上記分離膜について、平均平均粒子径0.088μmラテックス微粒子の初期阻止率を測定したところ、98.9%であった。また、初期透水量は48×10-93/m2・s・Paであった。次に、上記分離膜に対して落砂式摩耗試験を行い、平均平均粒子径0.088μmのラテックス微粒子の阻止率を測定したところ97.6%で、透水量は56×10-93/m2・s・Paとなった。すなわち、落砂式摩耗試験による分離膜の性能低下は認められず、落砂式摩耗試験前後の平均平均粒子径0.088μmラテックス微粒子の阻止率A(試験前)、B(試験後)について、A−B=1.3でありA−B≦10を満足するものであった。なお、結果を表1に示す。 Next, with respect to the separation membrane, the initial blocking ratio of latex fine particles having an average average particle size of 0.088 μm was measured and found to be 98.9%. The initial water permeability was 48 × 10 −9 m 3 / m 2 · s · Pa. Next, a sandfall type abrasion test was performed on the separation membrane, and the blocking rate of latex fine particles having an average average particle size of 0.088 μm was measured. As a result, it was 97.6% and the water permeability was 56 × 10 −9 m 3. / M 2 · s · Pa. That is, the performance of the separation membrane was not deteriorated by the sandfall wear test, and the average average particle size 0.088 μm before and after the sandfall wear test was inhibited by A (before the test) and B (after the test). A−B = 1.3 and A−B ≦ 10 was satisfied. The results are shown in Table 1.

さらに、落砂式摩耗試験後の分離膜の表面には、図6に示す通り、走査型電子顕微鏡観察によっても擦過傷が観察されなかった
Further, as shown in FIG. 6, no scratches were observed on the surface of the separation membrane after the sandfall type abrasion test even by observation with a scanning electron microscope .

実施例4>
有機重合体としてポリフッ化ビニリデン(PVDF)樹脂、無機微粒子として平均粒子径18nmのカーボンブラック(三菱化成工業(株)製、カーボンブラック#650)、溶媒としてN,N−ジメチルホルムアミド(DMF)をそれぞれ用い、これらを95℃の温度下に十分に攪拌し、次の組成を有する製膜原液を得た。
< Example 4>
Polyvinylidene fluoride (PVDF) resin as the organic polymer, carbon black having an average particle size of 18 nm as inorganic fine particles (carbon black # 650, manufactured by Mitsubishi Chemical Industries, Ltd.), and N, N-dimethylformamide (DMF) as the solvent, respectively. These were sufficiently stirred at a temperature of 95 ° C. to obtain a film-forming stock solution having the following composition.

ポリフッ化ビニリデン(PVDF) :13.0重量%
N,N−ジメチルホルムアミド(DMF) :82.0重量%
カーボンブラック : 5.0重量%
次に、上記製膜原液を30℃に冷却した後、密度0.48g/cm3、厚み220μmのポリエステル繊維製不織布に塗布し、塗布後、直ちに20℃の純水中に5分間浸漬し、さらに90℃の熱水に2分間浸漬してN,N−ジメチルホルムアミドを洗い流し、分離膜を得た。
Polyvinylidene fluoride (PVDF): 13.0% by weight
N, N-dimethylformamide (DMF): 82.0% by weight
Carbon black: 5.0% by weight
Next, after cooling the film-forming stock solution to 30 ° C., it was applied to a non-woven fabric made of polyester fiber having a density of 0.48 g / cm 3 and a thickness of 220 μm, and immediately after application, immersed in pure water at 20 ° C. for 5 minutes, Furthermore, it was immersed in 90 degreeC hot water for 2 minutes, N, N- dimethylformamide was washed away, and the separation membrane was obtained.

次に、上記分離膜について、平均平均粒子径0.088μmラテックス微粒子の初期阻止率を測定したところ、99.0%であった。また、初期透水量は5.0×10-9m3/m2・s・Paであった。次に、上記分離膜に対して落砂式摩耗試験を行い、平均平均粒子径0.088μmのラテックス微粒子の阻止率を測定したところ99.0%で、透水量は4.8×10-9m3/m2・s・Paとなった。すなわち、落砂式摩耗試験による分離膜の性能低下は認められず、落砂式摩耗試験前後の平均平均粒子径0.088μmラテックス微粒子の阻止率A(試験前)、B(試験後)についても、A−B=0でありA−B≦10を満足するものであった。なお、結果を表1に示す。
<実施例5>
有機重合体としてポリフッ化ビニリデン(PVDF)樹脂、無機微粒子として平均粒子径4000nm、かさ密度0.35g/mlの人造黒鉛((株)エスイーシー製、人造黒鉛SGB)、開孔剤としてモノステアリン酸ポリオキシエチレンソルビタン、溶媒としてN,N−ジメチルホルムアミド(DMF)、非溶媒としてH2Oをそれぞれ用い、これらを95℃の温度下で十分に攪拌し、次の組成を有する製膜原液を得た。
Next, when the initial rejection of latex particles having an average average particle diameter of 0.088 μm was measured for the separation membrane, it was 99.0%. The initial water permeability was 5.0 × 10 −9 m 3 / m 2 · s · Pa. Next, a sandfall type abrasion test was conducted on the separation membrane, and the blocking rate of latex fine particles having an average average particle size of 0.088 .mu.m was measured. As a result, it was 99.0% and the water permeability was 4.8.times.10@-9 m @ 3. / M 2 · s · Pa. That is, the performance of the separation membrane was not deteriorated by the sandfall wear test, and the average average particle size before and after the sandfall wear test was 0.088 μm. Latex fine particles rejection rate A (before test) and B (after test) A−B = 0 and A−B ≦ 10 was satisfied. The results are shown in Table 1.
< Example 5>
Polyvinylidene fluoride (PVDF) resin as an organic polymer , artificial graphite having an average particle size of 4000 nm and a bulk density of 0.35 g / ml as inorganic fine particles (manufactured graphite SGB, manufactured by ESC Corporation), and monostearic acid as a pore-opening agent Using polyoxyethylene sorbitan, N, N-dimethylformamide (DMF) as a solvent, and H 2 O as a non-solvent, these were sufficiently stirred at a temperature of 95 ° C. to obtain a film-forming stock solution having the following composition.

ポリフッ化ビニリデン(PVDF) :13.0重量%
モノステアリン酸ポリオキシエチレンソルビタン : 6.5重量%
N,N−ジメチルホルムアミド(DMF) :72.5重量%
人造黒鉛 : 5.0重量%
H2O : 3.0重量%
次に、上記製膜原液を30℃に冷却した後、密度0.48g/cm3、厚み220μmのポリエステル繊維製不織布に塗布し、塗布後、直ちに20℃の純水中に5分間浸漬し、さらに90℃の熱水に2分間浸漬してN,N−ジメチルホルムアミドおよびモノステアリン酸ポリオキシエチレンソルビタンを洗い流し、分離膜を得た。
Polyvinylidene fluoride (PVDF): 13.0% by weight
Polyoxyethylene sorbitan monostearate: 6.5% by weight
N, N-dimethylformamide (DMF): 72.5% by weight
Artificial graphite: 5.0% by weight
H2O: 3.0% by weight
Next, after the film-forming stock solution is cooled to 30 ° C., it is applied to a non-woven fabric made of polyester fiber having a density of 0.48 g / cm 3 and a thickness of 220 μm, and after application, immediately immersed in pure water at 20 ° C. for 5 minutes, It was immersed in hot water at 90 ° C. for 2 minutes to wash away N, N-dimethylformamide and polyoxyethylene sorbitan monostearate to obtain a separation membrane.

次に、上記分離膜について、平均平均粒子径0.088μmラテックス微粒子の初期阻止率を測定したところ、92.8%であった。また、初期透水量は69×10-9m3/m2・s・Paであった。次に、上記分離膜に対して落砂式摩耗試験を行い、平均平均粒子径0.088μmのラテックス微粒子の阻止率を測定したところ90.6%で、透水量は76×10-9m3/m2・s・Paとなった。すなわち、落砂式摩耗試験による分離膜の性能低下は認められず、落砂式摩耗試験前後の平均平均粒子径0.088μmラテックス微粒子の阻止率A(試験前)、B(試験後)についても、A−B=2.2でありA−B≦10を満足するものであった。なお、結果を表1に示す。
<実施例6>
有機重合体としてポリフッ化ビニリデン(PVDF)樹脂、無機微粒子として平均粒子径16nm、かさ密度0.05g/mlのカーボンブラック(三菱化成工業(株)製、カーボンブラック#3950)、開孔剤としてモノステアリン酸ポリオキシエチレンソルビタン、溶媒としてN,N−ジメチルホルムアミド(DMF)、非溶媒としてH2Oをそれぞれ用い、これらを95℃の温度下で十分に攪拌し、次の組成を有する製膜原液を得た。
Next, with respect to the separation membrane, the initial average rejection of latex fine particles having an average average particle size of 0.088 μm was measured and found to be 92.8%. The initial water permeability was 69 × 10 −9 m 3 / m 2 · s · Pa. Next, a sandfall type abrasion test was performed on the separation membrane, and the blocking rate of latex fine particles having an average average particle size of 0.088 μm was measured. As a result, it was 90.6% and the water permeability was 76 × 10 −9 m 3 / m 2.・ It became s ・ Pa. That is, the performance of the separation membrane was not deteriorated by the sandfall wear test, and the average average particle size before and after the sandfall wear test was 0.088 μm. Latex fine particles rejection rate A (before test) and B (after test) A−B = 2.2 and A−B ≦ 10 was satisfied. The results are shown in Table 1.
< Example 6>
Polyvinylidene fluoride (PVDF) resin as an organic polymer , carbon black having an average particle diameter of 16 nm and a bulk density of 0.05 g / ml as inorganic fine particles (manufactured by Mitsubishi Chemical Industries, Ltd., carbon black # 3950), as a pore opening agent Using polyoxyethylene sorbitan monostearate, N, N-dimethylformamide (DMF) as a solvent, and H 2 O as a non-solvent, these were sufficiently stirred at a temperature of 95 ° C. to prepare a film-forming stock solution having the following composition: Obtained.

ポリフッ化ビニリデン(PVDF) :13.0重量%
モノステアリン酸ポリオキシエチレンソルビタン : 6.5重量%
N,N−ジメチルホルムアミド(DMF) :72.5重量%
カーボンブラック : 5.0重量%
H2O : 3.0重量%
次に、上記製膜原液を30℃に冷却した後、密度0.48g/cm3、厚み220μmのポリエステル繊維製不織布に塗布し、塗布後、直ちに20℃の純水中に5分間浸漬し、さらに90℃の熱水に2分間浸漬してN,N−ジメチルホルムアミドおよびモノステアリン酸ポリオキシエチレンソルビタンを洗い流し、分離膜を得た。
Polyvinylidene fluoride (PVDF): 13.0% by weight
Polyoxyethylene sorbitan monostearate: 6.5% by weight
N, N-dimethylformamide (DMF): 72.5% by weight
Carbon black: 5.0% by weight
H2O: 3.0% by weight
Next, after cooling the film-forming stock solution to 30 ° C., it was applied to a non-woven fabric made of polyester fiber having a density of 0.48 g / cm 3 and a thickness of 220 μm, and immediately after application, immersed in pure water at 20 ° C. for 5 minutes, Further, it was immersed in hot water at 90 ° C. for 2 minutes to wash away N, N-dimethylformamide and polyoxyethylene sorbitan monostearate to obtain a separation membrane.

次に、上記分離膜について、平均平均粒子径0.088μmラテックス微粒子の初期阻止率を測定したところ、93.1%であった。また、初期透水量は63×10-93/m2・s・Paであった。次に、上記分離膜に対して落砂式摩耗試験を行い、平均平均粒子径0.088μmのラテックス微粒子の阻止率を測定したところ90.1%で、透水量は65×10-93/m2・s・Paとなった。すなわち、落砂式摩耗試験による分離膜の性能低下は認められず、落砂式摩耗試験前後の平均平均粒子径0.088μmラテックス微粒子の阻止率A(試験前)、B(試験後)についても、A−B=2でありA−B≦10を満足するものであった。なお、結果を表1に示す。
<比較例1>
無機微粒子であるカーボンブラックもしくはシリカを用いず、次の組成を有する原液で製膜した以外は実施例1と同様にして得られた分離膜を評価した。
Next, when the initial rejection of the latex fine particles having an average average particle size of 0.088 μm was measured for the separation membrane, it was 93.1%. The initial water permeability was 63 × 10 −9 m 3 / m 2 · s · Pa. Next, a sandfall type abrasion test was performed on the separation membrane, and the blocking rate of latex fine particles having an average average particle size of 0.088 μm was measured. As a result, it was 90.1% and the water permeability was 65 × 10 −9 m 3. / M 2 · s · Pa. That is, the performance of the separation membrane was not deteriorated by the sandfall wear test, and the average average particle size before and after the sandfall wear test was 0.088 μm. Latex fine particles rejection rate A (before test) and B (after test) A−B = 2 and A−B ≦ 10 was satisfied. The results are shown in Table 1.
<Comparative Example 1>
A separation membrane obtained in the same manner as in Example 1 was evaluated except that carbon black or silica, which is an inorganic fine particle, was not used, and a membrane was formed with a stock solution having the following composition.

ポリフッ化ビニリデン(PVDF) :13.0重量%
モノステアリン酸ポリオキシエチレンソルビタン : 6.5重量%
N,N−ジメチルホルムアミド(DMF) :77.5重量%
H2O : 3.0重量%
得られた分離膜について、平均平均粒子径0.088μmラテックス微粒子の初期阻止率を測定したところ、98.0%であった。また、初期透水量は85×10-93/m2・s・Paであった。次に、上記分離膜に対して落砂式摩耗試験を行い、平均平均粒子径0.088μmのラテックス微粒子の阻止率を測定したところ47.2%で、透水量は103×10-93/m2・s・Paとなった。すなわち、落砂式摩耗試験により分離膜の性能は低下し、阻止率が90%以下になった。また、落砂式摩耗試験前後の平均平均粒子径0.088μmラテックス微粒子の阻止率A(試験前)、B(試験後)についても、A−B=50.8でありA−B≦50を満足できないものであった。なお、結果を表1に示す。
Polyvinylidene fluoride (PVDF): 13.0% by weight
Polyoxyethylene sorbitan monostearate: 6.5% by weight
N, N-dimethylformamide (DMF): 77.5% by weight
H2O: 3.0% by weight
With respect to the obtained separation membrane, the initial blocking rate of latex fine particles having an average average particle size of 0.088 μm was measured and found to be 98.0%. The initial water permeability was 85 × 10 −9 m 3 / m 2 · s · Pa. Next, a falling sand abrasion test was performed on the separation membrane, and the rejection rate of latex fine particles having an average average particle size of 0.088 μm was measured. As a result, it was 47.2% and the water permeability was 103 × 10 −9 m 3. / M 2 · s · Pa. That is, the performance of the separation membrane was lowered by the falling sand type abrasion test, and the rejection rate was 90% or less. Further, the blocking ratios A (before the test) and B (after the test) of the latex fine particles having an average average particle size of 0.088 μm before and after the falling sand wear test are AB = 50.8 and AB ≦ 50. It was not satisfactory. The results are shown in Table 1.

さらに、落砂式摩耗試験後の分離膜の表面には、図7に示す通り、走査型電子顕微鏡観察によって擦過傷が観察された。
<比較例2>
無機微粒子であるカーボンブラックを用いず、次の組成を有する原液で製膜した以外は実施例3と同様にして得られた分離膜を評価した。
Further, as shown in FIG. 7, scratches were observed on the surface of the separation membrane after the falling sand type abrasion test by observation with a scanning electron microscope.
<Comparative Example 2>
A separation membrane obtained in the same manner as in Example 3 was evaluated except that carbon black, which is an inorganic fine particle, was not used, and a membrane was formed with a stock solution having the following composition.

ポリスルホン(PS) :13.0重量%
モノステアリン酸ポリオキシエチレンソルビタン : 6.5重量%
N,N−ジメチルホルムアミド(DMF) :77.5重量%
H2O : 3.0重量%
得られた分離膜について、平均平均粒子径0.088μmラテックス微粒子の初期阻止率を測定したところ、97.8%であった。また、初期透水量は56×10-93/m2・s・Paであった。次に、上記分離膜に対して落砂式摩耗試験を行い、平均平均粒子径0.088μmのラテックス微粒子の阻止率を測定したところ46.5%で、透水量は120×10-93/m2・s・Paとなった。すなわち、落砂式摩耗試験により分離膜の性能は低下した。また、落砂式摩耗試験前後の平均平均粒子径0.088μmラテックス微粒子の阻止率A(試験前)、B(試験後)についても、A−B=51.3でありA−B≦50を満足できないものであった。なお、結果を表1に示す。
Polysulfone (PS): 13.0% by weight
Polyoxyethylene sorbitan monostearate: 6.5% by weight
N, N-dimethylformamide (DMF): 77.5% by weight
H2O: 3.0% by weight
With respect to the obtained separation membrane, the initial average rejection of latex fine particles having an average average particle diameter of 0.088 μm was measured and found to be 97.8%. The initial water permeability was 56 × 10 −9 m 3 / m 2 · s · Pa. Next, a sandfall type abrasion test was performed on the separation membrane, and the blocking rate of latex fine particles having an average average particle size of 0.088 μm was measured. As a result, it was 46.5% and the water permeability was 120 × 10 −9 m 3. / M 2 · s · Pa. That is, the performance of the separation membrane was lowered by the sand-drop type abrasion test. Further, the blocking ratios A (before the test) and B (after the test) of the latex fine particles having an average average particle size of 0.088 μm before and after the sandfall wear test are AB−51.3 and AB ≦ 50. It was not satisfactory. The results are shown in Table 1.

さらに、落砂式摩耗試験後の分離膜の表面には、図8に示す通り、走査型電子顕微鏡観察によって擦過傷が観察された。
<比較例3>
無機微粒子として粒子径20000nm、かさ密度0.1g/mlの黒鉛((株)エスイシー社製、人造黒鉛SGL)を用い、次の組成を有する原液で製膜した以外は実施例1と同様にして得られた分離膜を評価した。
Further, as shown in FIG. 8, scratches were observed on the surface of the separation membrane after the falling sand type abrasion test by observation with a scanning electron microscope.
<Comparative Example 3>
As inorganic fine particles, a particle diameter of 20000 nm, a bulk density of 0. A separation membrane obtained in the same manner as in Example 1 was evaluated except that 1 g / ml of graphite (manufactured by SCI Co., Ltd., artificial graphite SGL) was used to form a membrane with a stock solution having the following composition.

ポリフッ化ビニリデン(PVDF) :13.0重量%
モノステアリン酸ポリオキシエチレンソルビタン : 6.5重量%
N,N−ジメチルホルムアミド(DMF) :72.5重量%
黒鉛 : 5.0重量%
H2O : 3.0重量%
得られた分離膜について、平均平均粒子径0.088μmラテックス微粒子の初期阻止率を測定したところ、96.8%であった。また、初期透水量は46×10-93/m2・s・Paであった。次に、上記分離膜に対して落砂式摩耗試験を行い、平均平均粒子径0.088μmのラテックス微粒子の阻止率を測定したところ26.5%で、透水量は68×10-93/m2・s・Paとなった。すなわち、落砂式摩耗試験により分離膜の性能は低下した。また、落砂式摩耗試験前後の平均平均粒子径0.088μmラテックス微粒子の阻止率A(試験前)、B(試験後)についても、A−B=70.3でありA−B≦50を満足できないものであった。なお、結果を表1に示す。
Polyvinylidene fluoride (PVDF): 13.0% by weight
Polyoxyethylene sorbitan monostearate: 6.5% by weight
N, N-dimethylformamide (DMF): 72.5% by weight
Graphite: 5.0% by weight
H2O: 3.0% by weight
With respect to the obtained separation membrane, the initial blocking rate of latex fine particles having an average average particle diameter of 0.088 μm was measured and found to be 96.8%. The initial water permeability was 46 × 10 −9 m 3 / m 2 · s · Pa. Next, a sandfall type abrasion test was performed on the separation membrane, and the blocking rate of latex fine particles having an average average particle size of 0.088 μm was measured. As a result, it was 26.5% and the water permeability was 68 × 10 −9 m 3. / M 2 · s · Pa. That is, the performance of the separation membrane was lowered by the sand-drop type abrasion test. In addition, regarding the blocking rate A (before the test) and B (after the test) of the latex fine particles having an average average particle size of 0.088 μm before and after the sandfall type abrasion test, AB = 70.3 and AB ≦ 50 is satisfied. It was not satisfactory. The results are shown in Table 1.

さらに、落砂式摩耗試験後の分離膜の表面には、図9に示す通り、走査型電子顕微鏡観察によって擦過傷が観察された。
<比較例4>
無機微粒子であるカーボンブラックを用いず、次の組成を有する原液で製膜した以外は実施例4と同様にして得られた分離膜を評価した。
Further, as shown in FIG. 9, scratches were observed on the surface of the separation membrane after the falling sand type abrasion test by observation with a scanning electron microscope.
<Comparative example 4>
A separation membrane obtained in the same manner as in Example 4 was evaluated except that carbon black, which is an inorganic fine particle, was not used and a membrane was formed with a stock solution having the following composition.

ポリフッ化ビニリデン(PVDF) :13.0重量%
ポリエチレングリコール(PEG20,000) : 6.5重量%
N,N−ジメチルホルムアミド(DMF) :77.5重量%
H2O : 3.0重量%
得られた分離膜について、平均平均粒子径0.088μmラテックス微粒子の初期阻止率を測定したところ、98.3%であった。また、初期透水量は44×10-93/m2・s・Paであった。次に、上記分離膜に対して落砂式摩耗試験を行い、平均平均粒子径0.088μmのラテックス微粒子の阻止率を測定したところ30.4%で、透水量は73×10-93/m2・s・Paとなった。すなわち、落砂式摩耗試験により分離膜の性能は低下した。また、落砂式摩耗試験前後の平均平均粒子径0.088μmラテックス微粒子の阻止率A(試験前)、B(試験後)についても、A−B=67.9でありA−B≦50を満足できないものであった。なお、結果を表1に示す。
<比較例5>
無機微粒子であるカーボンブラックを用いず、次の組成を有する原液で製膜した以外は実施例5と同様にして得られた分離膜を評価した。
Polyvinylidene fluoride (PVDF): 13.0% by weight
Polyethylene glycol (PEG 20,000): 6.5% by weight
N, N-dimethylformamide (DMF): 77.5% by weight
H2O: 3.0% by weight
With respect to the obtained separation membrane, the initial blocking ratio of latex fine particles having an average average particle diameter of 0.088 μm was measured and found to be 98.3%. The initial water permeability was 44 × 10 −9 m 3 / m 2 · s · Pa. Next, a sandfall type abrasion test was performed on the separation membrane, and the blocking rate of latex fine particles having an average average particle size of 0.088 μm was measured. As a result, it was 30.4% and the water permeability was 73 × 10 −9 m 3. / M 2 · s · Pa. That is, the performance of the separation membrane was lowered by the sand-drop type abrasion test. Further, the blocking ratios A (before the test) and B (after the test) of the latex fine particles having an average average particle diameter of 0.088 μm before and after the sandfall wear test are AB−67.9 and AB ≦ 50. It was not satisfactory. The results are shown in Table 1.
<Comparative Example 5>
A separation membrane obtained in the same manner as in Example 5 was evaluated except that carbon black, which is an inorganic fine particle, was not used, and a membrane was formed with a stock solution having the following composition.

ポリフッ化ビニリデン(PVDF) :13.0重量%
N,N−ジメチルホルムアミド(DMF) :87.0重量%
得られた分離膜について、平均平均粒子径0.088μmラテックス微粒子の初期阻止率を測定したところ、99.2%であった。また、初期透水量は3×10-9m3/m2・s・Paであった。次に、上記分離膜に対して落砂式摩耗試験を行い、平均平均粒子径0.088μmのラテックス微粒子の阻止率を測定したところ46.3%で、透水量は20×10-9m3/m2・s・Paとなった。すなわち、落砂式摩耗試験により分離膜の性能は低下した。また、落砂式摩耗試験前後の平均平均粒子径0.088μmラテックス微粒子の阻止率A(試験前)、B(試験後)についても、A−B=52.9でありA−B≦50を満足できないものであった。なお、結果を表1に示す。
<比較例6>
無機微粒子であるカーボンブラックのかわりに、粒子径50μm、かさ密度0.55g/mlのゼオライト粒子(和光純薬工業製、ゼオライトA−4、200メッシュ)を用い、次の組成を有する原液で製膜した以外は実施例1と同様にして得られた分離膜を評価した。
Polyvinylidene fluoride (PVDF): 13.0% by weight
N, N-dimethylformamide (DMF): 87.0% by weight
With respect to the obtained separation membrane, the initial blocking rate of latex fine particles having an average average particle diameter of 0.088 μm was measured and found to be 99.2%. The initial water permeability was 3 × 10 −9 m 3 / m 2 · s · Pa. Next, a falling sand type abrasion test was performed on the separation membrane, and the rejection rate of latex fine particles having an average average particle size of 0.088 μm was measured. As a result, it was 46.3% and the water permeability was 20 × 10 −9 m 3 / m 2.・ It became s ・ Pa. That is, the performance of the separation membrane was lowered by the sand-drop type abrasion test. Further, the blocking ratios A (before the test) and B (after the test) of the latex fine particles having an average average particle size of 0.088 μm before and after the sandfall wear test are AB−52.9 and AB ≦ 50. It was not satisfactory. The results are shown in Table 1.
<Comparative Example 6>
In place of carbon black, which is an inorganic fine particle, zeolite particles having a particle diameter of 50 μm and a bulk density of 0.55 g / ml (manufactured by Wako Pure Chemical Industries, zeolite A-4, 200 mesh) are used. A separation membrane obtained in the same manner as in Example 1 was evaluated except that the membrane was formed.

ポリフッ化ビニリデン(PVDF) :13.0重量%
モノステアリン酸ポリオキシエチレンソルビタン : 6.5重量%
N,N−ジメチルホルムアミド(DMF) :72.5重量%
ゼオライト : 5.0重量%
H2O : 3.0重量%
得られた分離膜について、平均平均粒子径0.088μmラテックス微粒子の初期阻止率を測定したところ、93.0%であった。また、初期透水量は52×10-9m3/m2・s・Paであった。次に、上記分離膜に対して落砂式摩耗試験を行い、平均平均粒子径0.088μmのラテックス微粒子の阻止率を測定したところ40.0%で、透水量は70×10-9m3/m2・s・Paとなった。すなわち、落砂式摩耗試験により分離膜の性能は低下した。また、落砂式摩耗試験前後の平均平均粒子径0.088μmラテックス微粒子の阻止率A(試験前)、B(試験後)についても、A−B=53でありA−B≦50を満足できないものであった。なお、結果を表1に示す。
<比較例7>
無機微粒子として粒子径6000nm、かさ密度0.6g/mlのメソカーボンマイクロビーズ(大阪ガス(株)製、メソカーボンマイクロビーズ6−28)を用い、次の組成を有する原液で製膜した以外は実施例1と同様にして得られた分離膜を評価した。
Polyvinylidene fluoride (PVDF): 13.0% by weight
Polyoxyethylene sorbitan monostearate: 6.5% by weight
N, N-dimethylformamide (DMF): 72.5% by weight
Zeolite: 5.0% by weight
H2O: 3.0% by weight
With respect to the obtained separation membrane, the initial average rejection of latex fine particles having an average average particle diameter of 0.088 μm was measured and found to be 93.0%. The initial water permeability was 52 × 10 −9 m 3 / m 2 · s · Pa. Next, a sandfall type abrasion test was performed on the separation membrane, and the blocking rate of latex fine particles having an average average particle size of 0.088 μm was measured. As a result, it was 40.0% and the water permeability was 70 × 10 −9 m 3 / m 2.・ It became s ・ Pa. That is, the performance of the separation membrane was lowered by the sand-drop type abrasion test. Further, the blocking ratios A (before the test) and B (after the test) of the latex fine particles having an average average particle size of 0.088 μm before and after the sandfall type abrasion test are AB = 53 and AB ≦ 50 cannot be satisfied. It was a thing. The results are shown in Table 1.
<Comparative Example 7>
As inorganic fine particles, the particle diameter is 6000 nm, the bulk density is 0. Separation obtained in the same manner as in Example 1 except that 6 g / ml mesocarbon microbeads (manufactured by Osaka Gas Co., Ltd., mesocarbon microbeads 6-28) were used to form a film with a stock solution having the following composition: The membrane was evaluated.

ポリフッ化ビニリデン(PVDF) :13.0重量%
モノステアリン酸ポリオキシエチレンソルビタン : 6.5重量%
N,N−ジメチルホルムアミド(DMF) :72.5重量%
メソカーボンマイクロビーズ : 5.0重量%
H2O : 3.0重量%
得られた分離膜について、平均平均粒子径0.088μmラテックス微粒子の初期阻止率を測定したところ、28.0%であった。また、初期透水量は77×10-9m3/m2・s・Paであった。次に、上記分離膜に対して落砂式摩耗試験を行い、平均平均粒子径0.088μmのラテックス微粒子の阻止率を測定したところ26.0%で、透水量は79×10-9m3/m2・s・Paとなった。落砂式摩耗試験による分離膜の性能変化はA−B=2と大きくなかったが、試験前の分離膜のラテックス阻止率自体が低い性能であった。なお、結果を表1に示す。
<比較例8>
無機微粒子として、粒子径が1500nm、かさ密度0.04g/mlの天然黒鉛((株)エスイーシー、天然黒鉛SNO)を用い、次の組成を有する原液で製膜した以外は実施例1と同様にして得られた分離膜を評価した。
Polyvinylidene fluoride (PVDF): 13.0% by weight
Polyoxyethylene sorbitan monostearate: 6.5% by weight
N, N-dimethylformamide (DMF): 72.5% by weight
Mesocarbon microbeads: 5.0% by weight
H2O: 3.0% by weight
With respect to the obtained separation membrane, the initial blocking rate of latex fine particles having an average average particle diameter of 0.088 μm was measured and found to be 28.0%. The initial water permeability was 77 × 10 −9 m 3 / m 2 · s · Pa. Next, a sandfall type abrasion test was performed on the separation membrane, and the blocking rate of latex fine particles having an average average particle size of 0.088 μm was measured. As a result, it was 26.0% and the water permeability was 79 × 10 −9 m 3 / m 2.・ It became s ・ Pa. Although the change in the performance of the separation membrane by the falling sand type abrasion test was not as large as AB = 2, the latex rejection rate itself of the separation membrane before the test was low. The results are shown in Table 1.
<Comparative Example 8>
As Inorganic Fine Particles, natural graphite having a particle diameter of 1500 nm and a bulk density of 0.04 g / ml (SS Co., Ltd., natural graphite SNO) was used, and film formation was performed using a stock solution having the following composition. The separation membrane thus obtained was evaluated.

ポリフッ化ビニリデン(PVDF) :13.0重量%
モノステアリン酸ポリオキシエチレンソルビタン : 6.5重量%
N,N−ジメチルホルムアミド(DMF) :72.5重量%
天然黒鉛 : 5.0重量%
H2O : 3.0重量%
得られた分離膜について、平均平均粒子径0.088μmラテックス微粒子の初期阻止率を測定したところ、98.7%であった。また、初期透水量は61×10-93/m2・s・Paであった。次に、上記分離膜に対して落砂式摩耗試験を行い、平均平均粒子径0.088μmのラテックス微粒子の阻止率を測定したところ48.5%で、透水量は73×10-93/m2・s・Paとなった。すなわち、落砂式摩耗試験により分離膜の性能は低下した。また、落砂式摩耗試験前後の平均平均粒子径0.088μmラテックス微粒子の阻止率A(試験前)、B(試験後)についても、A−B=50.2でありA−B≦50を満足できないものであった。なお、結果を表1に示す。
Polyvinylidene fluoride (PVDF): 13.0% by weight
Polyoxyethylene sorbitan monostearate: 6.5% by weight
N, N-dimethylformamide (DMF): 72.5% by weight
Natural graphite: 5.0% by weight
H2O: 3.0% by weight
With respect to the obtained separation membrane, the initial average rejection of latex fine particles having an average average particle diameter of 0.088 μm was measured and found to be 98.7%. The initial water permeability was 61 × 10 −9 m 3 / m 2 · s · Pa. Next, a sandfall type abrasion test was performed on the separation membrane, and the rejection rate of latex fine particles having an average average particle size of 0.088 μm was measured. As a result, it was 48.5% and the water permeability was 73 × 10 −9 m 3. / M 2 · s · Pa. That is, the performance of the separation membrane was lowered by the sand-drop type abrasion test. Further, the blocking ratios A (before the test) and B (after the test) of the latex fine particles having an average average particle diameter of 0.088 μm before and after the sandfall wear test are AB = 50.2 and AB ≦ 50. It was not satisfactory. The results are shown in Table 1.

Figure 0004513371
Figure 0004513371

本発明に係る分離膜を用いたエレメントの概略横断図面である(図2のエレメントのA−A断面)。It is a general | schematic cross-sectional drawing of the element using the separation membrane which concerns on this invention (AA cross section of the element of FIG. 2). 本発明に係る分離膜を用いたエレメントの概略展開斜視図である。It is a general | schematic expansion | deployment perspective view of the element using the separation membrane which concerns on this invention. 本発明に係る分離膜モジュールを用いた液体処理方法の概略フロー図である。It is a schematic flowchart of the liquid processing method using the separation membrane module which concerns on this invention. 実施例1に係る本発明の分離膜の摩耗試験後の表面の走査型電子顕微鏡写真である。2 is a scanning electron micrograph of the surface of the separation membrane of the present invention according to Example 1 after a wear test. 実施例2に係る本発明の分離膜の摩耗試験後の表面の走査型電子顕微鏡写真である。6 is a scanning electron micrograph of the surface of the separation membrane of the present invention according to Example 2 after a wear test. 実施例3に係る本発明の分離膜の摩耗試験後の表面の走査型電子顕微鏡写真である。It is a scanning electron micrograph of the surface after the abrasion test of the separation membrane of the present invention concerning Example 3. 比較例1に係る本発明の分離膜の摩耗試験後の表面の走査型電子顕微鏡写真である。4 is a scanning electron micrograph of the surface of the separation membrane of the present invention according to Comparative Example 1 after a wear test. 比較例2に係る本発明の分離膜の摩耗試験後の表面の走査型電子顕微鏡写真である。It is a scanning electron micrograph of the surface after the abrasion test of the separation membrane of the present invention concerning comparative example 2. 比較例3に係る本発明の分離膜の摩耗試験後の表面の走査型電子顕微鏡写真である。It is a scanning electron micrograph of the surface after the abrasion test of the separation membrane of the present invention concerning comparative example 3.

符号の説明Explanation of symbols

1:支持板
2:流路材
3:分離膜
4:凸部
5:凹部(溝)
6:枠体
7:ろ過液取出口
8:集液部
9:エレメント
10:分離膜モジュール
11:非処理水槽
12:散気装置
13:ブロア
14:ポンプ
1: Support plate 2: Channel material 3: Separation membrane 4: Convex part 5: Concave part (groove)
6: Frame 7: Filtrate outlet 8: Liquid collecting part 9: Element 10: Separation membrane module 11: Non-treatment water tank 12: Air diffuser 13: Blower 14: Pump

Claims (4)

有機重合体5〜30重量%、平均粒子径が5〜5000nmの範囲でかさ密度が0.05〜0.5g/mlである無機微粒子0.1〜30重量%、開孔剤としてポリオキシエチレンソルビタン脂肪酸エステルまたはポリオキシエチレン脂肪酸エステル0.1〜15重量%、溶媒40〜95重量%、非溶媒0.1〜10重量%を含む製膜原液を、基材の上に塗布し、少なくとも80重量%の非溶媒を含む凝固液に接触させる分離膜の製造方法。5-30% by weight of organic polymer, 0.1-30% by weight of inorganic fine particles having an average particle size in the range of 5-5000 nm and a bulk density of 0.05-0.5 g / ml, polyoxyethylene sorbitan as a pore-opening agent A film-forming stock solution containing 0.1 to 15% by weight of a fatty acid ester or polyoxyethylene fatty acid ester, a solvent of 40 to 95% by weight, and a non-solvent of 0.1 to 10% by weight is applied onto the substrate, and at least 80% by weight. The manufacturing method of the separation membrane made to contact the coagulation liquid containing a non-solvent%. 無機微粒子が、炭素系微粒子、または、ケイ素、アルミニウム、マグネシウムおよびカルシウムからなる群から選ばれた少なくとも一種類の酸化物微粒子である、請求項1に記載の分離膜の製造方法。 The method for producing a separation membrane according to claim 1, wherein the inorganic fine particles are carbon-based fine particles or at least one kind of oxide fine particles selected from the group consisting of silicon, aluminum, magnesium and calcium . 有機重合体が、ポリフッ化ビニリデン系樹脂、ポリスルホン系樹脂、ポリアクリロニトリル系樹脂およびポリエーテルスルホン系樹脂からなる群から選ばれた少なくとも一種類である、請求項1または2記載の分離膜の製造方法。 The method for producing a separation membrane according to claim 1 or 2, wherein the organic polymer is at least one selected from the group consisting of a polyvinylidene fluoride resin, a polysulfone resin, a polyacrylonitrile resin, and a polyethersulfone resin. . 落砂式摩耗試験前後の平均粒径0.088μmのラテックス微粒子の阻止率に関し、試験前の阻止率をA、試験後の阻止率をBとしたとき、不等式A−B≦50の関係を満足する、請求項1〜3のいずれかに記載の分離膜の製造方法。 Concerning the rejection rate of latex fine particles having an average particle size of 0.088 μm before and after the falling sand wear test, the relationship of inequality A−B ≦ 50 is satisfied, where A is the rejection rate before the test and B is the rejection rate after the test. The method for producing a separation membrane according to any one of claims 1 to 3 .
JP2004084303A 2004-03-23 2004-03-23 Manufacturing method of separation membrane Expired - Fee Related JP4513371B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004084303A JP4513371B2 (en) 2004-03-23 2004-03-23 Manufacturing method of separation membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004084303A JP4513371B2 (en) 2004-03-23 2004-03-23 Manufacturing method of separation membrane

Publications (2)

Publication Number Publication Date
JP2005270707A JP2005270707A (en) 2005-10-06
JP4513371B2 true JP4513371B2 (en) 2010-07-28

Family

ID=35170930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004084303A Expired - Fee Related JP4513371B2 (en) 2004-03-23 2004-03-23 Manufacturing method of separation membrane

Country Status (1)

Country Link
JP (1) JP4513371B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2938199B1 (en) * 2008-11-07 2011-11-25 Technlologies Avancees Et Membranes Ind FILTRATION MEMBRANE HAVING ENHANCED ABRASION RESISTANCE

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2899903B2 (en) * 1989-01-12 1999-06-02 旭化成工業株式会社 Polyvinylidene fluoride porous membrane and method for producing the same
JPH11255949A (en) * 1998-03-09 1999-09-21 Shin Etsu Polymer Co Ltd Microporous film and its production

Also Published As

Publication number Publication date
JP2005270707A (en) 2005-10-06

Similar Documents

Publication Publication Date Title
JP5310658B2 (en) Separation membrane manufacturing method and separation membrane
JP5431347B2 (en) Porous membrane, method for producing porous membrane, method for producing clarified liquid, and porous membrane module
JP4626319B2 (en) Porous membrane, method for producing the same, and solid-liquid separator
JP4784522B2 (en) Polyvinylidene fluoride based porous separation membrane
Ibrahim et al. Development of polyvinylidene fluoride (PVDF)-ZIF-8 membrane for wastewater treatment
JP5716283B2 (en) Porous separation flat membrane and method for producing the same
KR101139145B1 (en) Method for preparation of hydrophilic asymmetric utrafiltration and microfiltration membranes containing silvernano particles
JP2003144869A (en) Separation membrane and manufacturing method therefor
JP2003135939A (en) Separation membrane and manufacturing method therefor
JP4513371B2 (en) Manufacturing method of separation membrane
JP2010075851A (en) Porous film and method for manufacturing the same
JP2006224051A (en) Porous membrane, porous membrane element, and membrane filter apparatus
JP2008062119A (en) Filter medium, its manufacturing method, filtration treatment device, and filtration treatment method
JP2012106235A (en) Porous membrane, resin solution and method for manufacturing porous membrane
WO2022249839A1 (en) Separation membrane and method for producing same
JP2007007490A (en) Porous membrane, its manufacturing method, and repairing method of porous membrane
JP2008119680A (en) Membrane separation element and membrane separation module
JP2021186747A (en) Composite membrane and method for producing composite membrane
KR20130122449A (en) Asymmetric porous ectfe hollow fiber membrane
JP2007283288A (en) Porous membrane and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100420

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100503

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees