JPH0731857A - Plane membrane structure - Google Patents
Plane membrane structureInfo
- Publication number
- JPH0731857A JPH0731857A JP20302993A JP20302993A JPH0731857A JP H0731857 A JPH0731857 A JP H0731857A JP 20302993 A JP20302993 A JP 20302993A JP 20302993 A JP20302993 A JP 20302993A JP H0731857 A JPH0731857 A JP H0731857A
- Authority
- JP
- Japan
- Prior art keywords
- membrane
- flat
- membrane structure
- membranes
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は原液の膜分離に使用する
平膜構造体に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flat membrane structure used for membrane separation of a stock solution.
【0002】[0002]
【従来の技術】原液を限外濾過膜、精密濾過膜或いは低
圧用逆浸透膜で分離処理する場合、開放式の原液槽内に
膜エレメントを浸漬設置し、膜エレメントの透過側を減
圧して膜間差圧を発生させ、原液を散気装置またはポン
プにより流動させつつ、原液の溶媒を上記膜間差圧のも
とで膜透過させることが公知である。2. Description of the Related Art When a stock solution is separated by an ultrafiltration membrane, a microfiltration membrane or a low pressure reverse osmosis membrane, the membrane element is immersed in an open stock solution tank and the permeate side of the membrane element is depressurized. It is known to generate a transmembrane pressure difference and allow the stock solution to flow with an air diffuser or a pump, while permeating the solvent of the stock solution under the transmembrane pressure difference.
【0003】例えば、汚水を活性汚泥法により処理する
場合、曝気槽内に膜エレメントを浸漬設置し、散気管か
らの空気の供給下、汚水中の浮遊微生物で汚水中の有機
物を吸着・代謝分解させると共に膜エレメントの透過側
を減圧して膜間差圧を発生させ、この膜間差圧のもと
で、上記散気空気に基づく気液混合流で膜面を洗浄しつ
つ、溶媒である水を膜透過させて分離し、放流していく
ことが公知である。For example, when treating sewage by the activated sludge method, a membrane element is immersed in an aeration tank and adsorbed / metabolically decomposed organic matter in sewage by airborne microorganisms in the sewage while supplying air from an air diffuser. In addition to depressurizing the permeate side of the membrane element to generate a transmembrane pressure difference, under the transmembrane pressure difference, while cleaning the membrane surface with a gas-liquid mixed flow based on the diffused air, it is a solvent. It is known that water is permeated through a membrane to be separated and discharged.
【0004】従来、上記の槽浸漬式膜エレメントとし
て、二枚の平膜間に透過液流路材を有する平膜構造体を
所定の間隔で並設し、平膜構造体間の空間を原液流路と
したモジュ−ルが公知である(例えば、特公平4−70
958号公報)。このモジュ−ルにおいては、膜面への
懸濁物質(浮遊汚泥)の付着を、原液流れのせんだん作
用により抑制でき、高い透過流束を保証できる。Conventionally, as the above-mentioned tank-immersed membrane element, flat membrane structures having a permeate flow channel material are arranged in parallel at a predetermined interval between two flat membranes, and the space between the flat membrane structures is made into a stock solution. A module used as a flow path is known (for example, Japanese Patent Publication No. 4-70).
958 publication). In this module, the adherence of suspended substances (floating sludge) to the membrane surface can be suppressed by the suspension action of the stock solution flow, and a high permeation flux can be guaranteed.
【0005】[0005]
【発明が解決しようとする課題】上記の膜エレメントに
おいては、定期的に原液槽から引き上げて保守・点検す
る必要があり、この際、膜の透過液流路内の透過液への
浮力の作用が喪失されるために、その透過液重量が内圧
として膜に作用することになる。また、定期的な膜洗浄
が必要であり、空気または水を膜の透過側から膜に圧送
する逆洗法による膜洗浄では膜が内圧に曝される。In the above membrane element, it is necessary to periodically pull out from the stock solution tank for maintenance / inspection. At this time, buoyancy of the membrane on the permeate in the permeate flow channel is exerted. Is lost, the permeate weight acts on the membrane as an internal pressure. In addition, periodic membrane cleaning is required, and the membrane is exposed to internal pressure in the membrane cleaning by the backwashing method in which air or water is pressure-fed from the permeation side of the membrane to the membrane.
【0006】上記平膜構造体を使用した膜エレメントが
内圧で膜破壊するのを防止するために、膜を繊維基材で
補強することが提案されている。しかしながら、平膜構
造体には、膜同士の接着縁端部が存在し、上記した内圧
に対してこの膜同士の接着縁端部の強度を高めることは
容易ではなく、膜の引張り強度を高めても、その接着縁
端部が拡開破壊してしまい、膜の引張り強度を高めるこ
とは、さして有効な手段とは云い難い。[0006] In order to prevent the membrane element using the flat membrane structure from being broken by the internal pressure, it has been proposed to reinforce the membrane with a fiber base material. However, the flat film structure has a bonding edge between the films, and it is not easy to increase the strength of the bonding edge between the films with respect to the above-mentioned internal pressure, and the tensile strength of the film is increased. However, it is difficult to say that increasing the tensile strength of the film is a very effective means because the adhesive edge portion of the film expands and breaks.
【0007】本発明の目的は、槽浸漬式膜エレメントに
使用する平膜構造体において、膜エレメントを原液槽か
ら引き上げる際での膜内の溜り透過液の重量または、逆
洗時の圧力に対し、膜破損を良好に防止できる平膜構造
体を提供することにある。The object of the present invention is, in a flat membrane structure used in a tank-immersed membrane element, with respect to the weight of the permeated liquid in the membrane when pulling the membrane element out of the stock solution tank or the pressure during backwashing. Another object of the present invention is to provide a flat membrane structure capable of favorably preventing membrane damage.
【0008】[0008]
【課題を解決するための手段】本発明の平膜構造体は、
二枚の平膜間に透過液流路材を有し、平膜相互間又は各
平膜と透過液流路材との間が所定の間隔で部分接着され
ていることを特徴とする構成であり、部分接着の間隔
は、通常、5mm〜100mmとされる。The flat membrane structure of the present invention comprises:
A configuration having a permeate flow channel material between two flat membranes, wherein the flat membranes are partially bonded to each other or between each flat membrane and the permeate flow channel material at a predetermined interval. The interval of partial adhesion is usually 5 mm to 100 mm.
【0009】[0009]
【作用】部分接着の間隔をaとすれば、内圧pのもと
で、互いに前後、左右の4接着点内において平膜に作用
する全圧力は、pa2であり、膜に作用する引張り力は
pa2に比例し、kpa2で与えられる。従って、部分接
着点の間隔aを小とすれば、平膜に作用する引張り力が
小になり、平膜並びに膜同士の接着縁端部の破損が防止
される。When the interval of partial adhesion is a, under the internal pressure p, the total pressure acting on the flat membrane within the four bonding points on the front, back, left and right of each other is pa 2 , and the tensile force acting on the membrane is Is proportional to pa 2 and is given by kpa 2 . Therefore, if the distance a between the partial adhesion points is made small, the tensile force acting on the flat film becomes small, and damage to the flat film and the bonding edge portion between the films is prevented.
【0010】[0010]
【実施例】以下、図面を参照しつつ本発明の実施例を説
明する。図1の(イ)は本発明に係る平膜構造体の実施
例を示す側面説明図、図1の(ロ)並びに図1の(ハ)
は図1の(イ)のロ−ロ断面図並びにハ−ハ断面図であ
る。図1の(イ)乃至図1の(ロ)において、1,1は
平膜であり、通常の非対称膜、複合膜(不織布、織布等
の補強層を一体に有するものも含まれる)が使用され、
三方が接着剤または融着により接着封止(符号11で示
されている)されている。2は平膜1,1間に納められ
た透過液流路材であり、プラスチックネツト、織布(例
えば、トリコツト布を樹脂液で固めて耐圧縮強度を付与
したもの)、厚手の不織布等が使用されている。3,…
は縦方向並びに横方向に所定の間隔で平膜相互間が接着
された部分を示し、透過液流路材よりも低融点のホット
メルト樹脂またはウレタンやエポキシ樹脂等の接着剤、
あるいは膜同士の熱融着により接着されている。図2に
示すように、各平膜1と透過液流路材2との間を接着
剤、あるいは融着により接着(符号3で示されている)
してもよい。Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 (a) is a side view showing an embodiment of a flat film structure according to the present invention, FIG. 1 (b) and FIG. 1 (c).
FIG. 2 is a cross-sectional view and a cross-sectional view of FIG. In FIGS. 1 (a) to 1 (b), 1 and 1 are flat membranes, and ordinary asymmetric membranes and composite membranes (including those having a reinforcing layer such as nonwoven fabric and woven fabric integrally) are used. Used,
The three sides are adhesively sealed (indicated by reference numeral 11) by adhesive or fusion. Reference numeral 2 is a permeate flow path material housed between the flat membranes 1 and 1, and includes a plastic net, a woven cloth (for example, a tricot cloth that is hardened with a resin solution to provide compressive strength), a thick non-woven fabric, or the like. It is used. 3, ...
Indicates a portion in which the flat membranes are adhered to each other at a predetermined interval in the longitudinal direction and the lateral direction, and an adhesive such as a hot-melt resin or urethane or epoxy resin having a melting point lower than that of the permeated liquid channel material,
Alternatively, the films are bonded by heat fusion. As shown in FIG. 2, the flat membrane 1 and the permeated liquid flow path member 2 are bonded by an adhesive or fusion (shown by reference numeral 3).
You may.
【0011】上記の平膜構造体において、部分接着の間
隔をaとすると、内圧pに対し、一箇の接着点で支持さ
れる膜面積はa2であり、一接着点に作用する反力はa2
pである。また、膜に作用する引張り応力δは、接着点
において極大となり、a2pに比例し、δ=ka2pで与
えられる(なお、膜が柔軟であり、接着点での応力集中
は軽度である)。In the above flat membrane structure, if the interval of partial adhesion is a, the area of the film supported by one adhesion point is a 2 with respect to the internal pressure p, and the reaction force acting on one adhesion point. Is a 2
p. The tensile stress δ acting on the film is maximum at the bonding point, is proportional to a 2 p, and is given by δ = ka 2 p (note that the film is flexible and the stress concentration at the bonding point is low. is there).
【0012】上記内圧に対し、接着点に作用する剥離力
はa2pであり、部分接着の間隔aを小とすることによ
り、または接着点3の接着面積を増やし単位面積当たり
の剥離力を減少させることにより、接着点での接着状態
を安定に保持できる。従って、部分接着の間隔aを小と
して、膜に作用する引張り力ka2pを小にすることに
より、膜破断並びに膜の接着縁端部の拡開破壊を回避で
きる。With respect to the above internal pressure, the peeling force acting on the bonding point is a 2 p, and the peeling force per unit area can be increased by reducing the interval a of partial bonding or by increasing the bonding area of the bonding point 3. By reducing the amount, the bonded state at the bonding point can be stably maintained. Therefore, by making the interval a of partial adhesion small and the tensile force ka 2 p acting on the film small, it is possible to avoid film breakage and spread breakage of the adhesive edge of the film.
【0013】このことは、次ぎの試験結果からも確認で
きる。 試験結果 縦並びに横が300mmの二枚の平膜(不織布上にポリス
ルホンの多孔質支持膜を設け、その上にポリスルホンの
スキン層を設けた複合膜)間にプラスチックネツトを挾
み、それら平膜の四方の縁端部を熱融着し、一方の縁端
部に空気圧入管を取着すると共に縦方向並びに横方向に
50mmの間隔で膜相互を熱融着(融着面積、約13,0
00mm2)で部分接着して実施例品を作成した。また、比
較例品として、実施例品に対し部分接着を省略し、他は
実施例品と同じとしたものを製作した。これらについ
て、空気を圧入して耐圧試験をおこなつたところ、比較
例品においては、圧力約0.2kg/cm2で縁端部が拡開破
壊したが、実施例品では圧力約1.0kg/cm2のもとでも
何らの異常も観られなかった。This can be confirmed from the following test results. Test results A plastic net is sandwiched between two flat membranes of 300 mm in length and width (a composite membrane in which a porous support membrane of polysulfone is provided on a non-woven fabric, and a skin layer of polysulfone is provided thereon). Of the four sides are heat-sealed, air-injection pipes are attached to one edge, and the films are heat-sealed at a distance of 50 mm in the longitudinal direction and the lateral direction (fusing area, about 13,0 mm).
Example product was prepared by partially adhering with 00 mm 2 ). Further, as a comparative example product, a product was manufactured in which partial adhesion was omitted for the example product and the others were the same as the example product. When a pressure resistance test was performed on these with pressure injection of air, in the comparative example product, the edge portion expanded and fractured at a pressure of about 0.2 kg / cm 2 , but in the example product, the pressure was about 1.0 kg. No abnormality was observed even under / cm 2 .
【0014】本発明の平膜構造体において、膜相互間、
または各膜と透過液流路材との間の部分接着は、図3の
(イ)に示すように、平行な連続線状または図3の
(ロ)に示すような断続線状で行うこともできる〔図3
の(イ)並びに(ロ)において、符号3は接着部分を示
している)。また、ランダム或いは模様状のパタ−ンで
行うこともできる。In the flat membrane structure of the present invention, between the membranes,
Alternatively, the partial adhesion between each membrane and the permeate flow path member should be performed in parallel continuous lines as shown in FIG. 3 (a) or in intermittent line as shown in FIG. 3 (b). Can also [Fig. 3
In (a) and (b), the reference numeral 3 indicates an adhesive portion). Alternatively, the pattern can be randomly or patterned.
【0015】本発明の平膜構造体における部分接着の間
隔(ランダムパタ−ンの場合は、平均間隔)は、小とす
ることが膜破断の防止上、安全であるが、小さ過ぎると
有効膜面積の過度の低下が避けられないので、5mm〜1
00mmとすることが適切である。In the flat membrane structure of the present invention, it is safe to set the interval of partial adhesion (average interval in the case of a random pattern) to prevent film breakage, but if it is too small, it is effective film. Since an excessive decrease in area is unavoidable, 5 mm to 1
It is suitable to set it to 00 mm.
【0016】図4乃至図6は本発明の平膜構造体を使用
した異なる槽浸漬式膜エレメントの例を示している。図
4の(イ)並びに図4の(ロ)〔図4の(イ)のロ−ロ
断面図〕に示す膜エレメントにおいては、両側並びに下
方の三方縁端部を封止した平膜構造体Aを所定の間隔で
並設し、開口縁端部(上端部)を注型樹脂隔壁4により
一括し、この樹脂隔壁4に透過液集水ケ−ス5を取着し
てある。FIGS. 4 to 6 show examples of different bath submerged membrane elements using the flat membrane structure of the present invention. In the membrane element shown in (a) of FIG. 4 and (b) of FIG. 4 [row cross-sectional view of (a) of FIG. 4], a flat membrane structure in which both sides and lower three-sided edge portions are sealed A are arranged in parallel at a predetermined interval, the opening edge portions (upper end portions) are gathered together by a casting resin partition wall 4, and a permeated water collecting case 5 is attached to this resin partition wall 4.
【0017】図5の(イ)並びに図5の(ロ)〔図5の
(イ)のロ−ロ断面図〕に示す膜エレメントにおいて
は、両側の縁端部を封止した平膜構造体Aを所定の間隔
で並設し、上下の各開口縁端部を注型樹脂隔壁4により
一括し、これらの各樹脂隔壁4に透過液集水ケ−ス5を
取着してある。In the membrane element shown in (a) of FIG. 5 and (b) of FIG. 5 [row cross-sectional view of (a) of FIG. 5], a flat membrane structure in which both edge portions are sealed A are arranged in parallel at a predetermined interval, the upper and lower edge portions of the opening are gathered together by a casting resin partition wall 4, and a permeate collecting case 5 is attached to each of these resin partition walls 4.
【0018】図6の(イ)並びに図6の(ロ)〔図6の
(イ)のロ−ロ断面図〕に示す膜エレメントにおいて
は、上下の縁端部を封止した平膜構造体Aの両側の各開
口縁端部に下端封止の透過液集水管6を取着し、これを
複数箇枠体(図示されていない)に組込み、平膜構造体
Aを所定の間隔で並設してある。In the membrane element shown in FIG. 6 (a) and FIG. 6 (b) [row-row cross-sectional view of FIG. 6 (a)], a flat membrane structure in which upper and lower edges are sealed A permeated liquid collection pipe 6 with a lower end sealed is attached to each opening edge portion on both sides of A, and the permeated liquid collection pipes 6 are incorporated into a plurality of frame bodies (not shown), and the flat membrane structures A are arranged at predetermined intervals. It is set up.
【0019】これらの膜エレメントにおいては、散気管
を備えた曝気槽内に浸漬設置し、膜エレメントの透過側
を真空ポンプにより減圧し、コンプレッサ−を駆動し、
散気管から空気を噴出させ、好気性の浮遊微生物で汚水
中の有機物を吸着・代謝分解させると共に膜エレメント
の上記透過側の減圧による膜間差圧のもとで汚水中の水
を膜透過させ、透過液集水室または透過液集水管を経て
放流していくことができる。この場合、散気管からの噴
出空気のために、膜エレメントの平膜構造体が揺動さ
れ、膜面が擦られるから、その膜面への浮遊汚泥の付着
をよく防止でき、透過流束を高く保持できる。尤も、平
膜構造体においては、揺動に伴い歪を受けるが、捩じれ
難く、その歪が単純な曲げ歪であるから、膜を安定に保
持でき膜破損を充分に防止できる。In these membrane elements, the membrane element is immersed in an aeration tank equipped with an air diffuser, the permeate side of the membrane element is decompressed by a vacuum pump, and the compressor is driven.
Air is ejected from the air diffuser to adsorb and metabolize organic matter in wastewater with aerobic floating microorganisms, and at the same time, the water in the wastewater is permeated through the membrane under the transmembrane pressure difference due to the reduced pressure on the permeate side of the membrane element. It can be discharged through the permeate collecting chamber or the permeate collecting pipe. In this case, because the flat membrane structure of the membrane element is swung and the membrane surface is rubbed by the air blown out from the air diffuser, it is possible to prevent adhesion of floating sludge to the membrane surface well, and to reduce the permeation flux. Can hold high. However, in the flat membrane structure, strain is caused by rocking, but it is difficult to twist and the strain is a simple bending strain, so that the membrane can be stably held and membrane damage can be sufficiently prevented.
【0020】上記汚水処理においては、定期的に膜エレ
メントを曝気槽から引き上げて点検する必要があり、こ
の引揚げ時、平膜構造体の透過液流路孔内の溜り透過液
の重量が平膜に作用するが、平膜に作用する引張りスト
レスを低ストレスに抑えることができ、膜破損を充分に
防止できる。また、膜エレメントの透過側に空気又は透
過液等の洗浄液を圧入して逆洗を行う場合においても、
膜破損をよく防止できる。In the above wastewater treatment, it is necessary to periodically raise and inspect the membrane element from the aeration tank, and at the time of lifting, the weight of the permeated liquid accumulated in the permeated liquid flow passage of the flat membrane structure is equalized. Although it acts on the membrane, the tensile stress acting on the flat membrane can be suppressed to a low stress, and the membrane can be sufficiently prevented from being damaged. Also, when backwashing by pressurizing a cleaning liquid such as air or a permeating liquid into the permeate side of the membrane element,
It can prevent membrane damage well.
【0021】なお、本発明の平膜構造体は、上記汚水の
処理のほか、各種懸濁液、溶液の濃縮、精製等にも使用
でき、その用途に応じ、平膜に限外濾過膜、精密濾過膜
或いは逆浸透膜(低圧用逆浸透膜)が使用される。The flat membrane structure of the present invention can be used not only for the treatment of the above-mentioned wastewater, but also for the suspension and concentration of various solutions, purification, and the like. A microfiltration membrane or a reverse osmosis membrane (low pressure reverse osmosis membrane) is used.
【0022】[0022]
【発明の効果】本発明の平膜構造体は、上述した通りの
構成であり、内圧に対して膜に作用する引張り力を小に
できるから、その引張り力の低減のために膜縁端接着封
止部の拡開破壊をよく防止でき、槽浸漬式膜エレメント
に使用する場合、膜エレメントの引揚げ時での膜内の溜
り透過液の重量による膜縁端接着封止部の拡開破壊また
は、逆洗時での膜縁端接着封止部の拡開破壊を良好に防
止できる。EFFECTS OF THE INVENTION The flat membrane structure of the present invention is constructed as described above, and the tensile force acting on the membrane with respect to the internal pressure can be made small. Therefore, in order to reduce the tensile force, the film edge bonding is performed. Expanding destruction of the sealing part can be well prevented, and when used in a tank-immersed membrane element, the expansion breakage of the membrane edge adhesive sealing part due to the weight of the permeated liquid in the membrane when the membrane element is lifted up. Alternatively, it is possible to favorably prevent expansion and destruction of the film edge adhesive sealing portion during backwashing.
【図1】図1の(イ)は本発明の実施例を示す側面説明
図、図1の(ロ)並びに図1の(ハ)は図1の(イ)に
おけるロ−ロ断面図並びにハ−ハ断面図である。1 (a) is a side view showing an embodiment of the present invention, and FIG. 1 (b) and FIG. 1 (c) are cross-sectional views and cross-sections in FIG. 1 (a). -C is a sectional view.
【図2】本発明の別実施例を示す断面説明図である。FIG. 2 is an explanatory sectional view showing another embodiment of the present invention.
【図3】本発明の上記とは別の異なる実施例を示す側面
説明図である。FIG. 3 is a side view showing another embodiment different from the above according to the present invention.
【図4】図4の(イ)は本発明の平膜構造体を使用した
槽浸漬式膜エレメントの一例を示す説明図、図4の
(ロ)は図4の(イ)におけるロ−ロ断面図である。4 (a) is an explanatory view showing an example of a tank-immersion type membrane element using the flat membrane structure of the present invention, and FIG. 4 (b) is a roll in FIG. 4 (a). FIG.
【図5】図5の(イ)は本発明の平膜構造体を使用した
上記とは別の槽浸漬式膜エレメントの一例を示す説明
図、図5の(ロ)は図5の(イ)におけるロ−ロ断面図
である。5 (a) is an explanatory view showing an example of a tank-immersed membrane element different from the above, which uses the flat membrane structure of the present invention, and FIG. 5 (b) shows FIG. 5 (a). 3 is a cross-sectional view taken along line) in FIG.
【図6】図6の(イ)は本発明の平膜構造体を使用した
上記とは別の槽浸漬式膜エレメントの一例を示す説明
図、図6の(ロ)は図6の(イ)におけるロ−ロ断面図
である。6 (a) is an explanatory view showing an example of a tank-immersion type membrane element using the flat membrane structure of the present invention, which is different from the above, and FIG. 6 (b) shows FIG. 6 (a). 3 is a cross-sectional view taken along line) in FIG.
【符号の説明】 1 平膜 2 透過液流路材 3 接着部分[Explanation of symbols] 1 flat membrane 2 permeate flow channel material 3 bonded part
Claims (2)
相互間又は各平膜と透過液流路材との間が所定の間隔で
部分接着されていることを特徴とする平膜構造体。1. A permeate flow channel material is provided between two flat membranes, and the flat membranes are partially bonded to each other or between each flat membrane and the permeate flow channel material at a predetermined interval. The characteristic flat membrane structure.
求項1記載の平膜構造体。2. The flat membrane structure according to claim 1, wherein the interval of partial adhesion is 5 mm to 100 mm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20302993A JPH0731857A (en) | 1993-07-23 | 1993-07-23 | Plane membrane structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20302993A JPH0731857A (en) | 1993-07-23 | 1993-07-23 | Plane membrane structure |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0731857A true JPH0731857A (en) | 1995-02-03 |
Family
ID=16467175
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20302993A Pending JPH0731857A (en) | 1993-07-23 | 1993-07-23 | Plane membrane structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0731857A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002074424A1 (en) * | 2001-03-21 | 2002-09-26 | Itt Manufacturing Enterprises, Inc. | Apparatus for filtering a liquid |
JP2005211790A (en) * | 2004-01-29 | 2005-08-11 | Nitto Denko Corp | Spiral membrane element and reverse flow washing method |
WO2013125506A1 (en) * | 2012-02-24 | 2013-08-29 | 東レ株式会社 | Separation membrane element and separation membrane module |
WO2014010554A1 (en) * | 2012-07-10 | 2014-01-16 | 東レ株式会社 | Element unit, separation membrane module, and method for connecting/disconnecting separation membrane element |
JPWO2013047746A1 (en) * | 2011-09-29 | 2015-03-26 | 東レ株式会社 | Separation membrane, separation membrane element and method for producing separation membrane |
JP2017132213A (en) * | 2016-01-29 | 2017-08-03 | パナソニックIpマネジメント株式会社 | Laminate and method for producing the same |
US10464285B2 (en) | 2016-01-29 | 2019-11-05 | Panasonic Intellectual Property Management Co., Ltd. | Laminate and manufacturing method thereof |
EP2926887B1 (en) * | 2012-11-27 | 2021-01-27 | Toray Industries, Inc. | Separation membrane module |
-
1993
- 1993-07-23 JP JP20302993A patent/JPH0731857A/en active Pending
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002074424A1 (en) * | 2001-03-21 | 2002-09-26 | Itt Manufacturing Enterprises, Inc. | Apparatus for filtering a liquid |
JP2005211790A (en) * | 2004-01-29 | 2005-08-11 | Nitto Denko Corp | Spiral membrane element and reverse flow washing method |
JPWO2013047746A1 (en) * | 2011-09-29 | 2015-03-26 | 東レ株式会社 | Separation membrane, separation membrane element and method for producing separation membrane |
JPWO2013125506A1 (en) * | 2012-02-24 | 2015-07-30 | 東レ株式会社 | Separation membrane element and separation membrane module |
WO2013125506A1 (en) * | 2012-02-24 | 2013-08-29 | 東レ株式会社 | Separation membrane element and separation membrane module |
KR20140130429A (en) * | 2012-02-24 | 2014-11-10 | 도레이 카부시키가이샤 | Separation membrane element and separation membrane module |
CN104245101A (en) * | 2012-02-24 | 2014-12-24 | 东丽株式会社 | Separation membrane element and separation membrane module |
US20150021260A1 (en) * | 2012-02-24 | 2015-01-22 | Toray Industries | Separation membrane element and separation membrane module |
WO2014010554A1 (en) * | 2012-07-10 | 2014-01-16 | 東レ株式会社 | Element unit, separation membrane module, and method for connecting/disconnecting separation membrane element |
JPWO2014010554A1 (en) * | 2012-07-10 | 2016-06-23 | 東レ株式会社 | Element unit, separation membrane module, and separation membrane element attachment / detachment method |
EP2926887B1 (en) * | 2012-11-27 | 2021-01-27 | Toray Industries, Inc. | Separation membrane module |
JP2017132213A (en) * | 2016-01-29 | 2017-08-03 | パナソニックIpマネジメント株式会社 | Laminate and method for producing the same |
US10464285B2 (en) | 2016-01-29 | 2019-11-05 | Panasonic Intellectual Property Management Co., Ltd. | Laminate and manufacturing method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6979404B2 (en) | Self-manifolding sheet membrane module | |
JP5561354B2 (en) | Filtration device | |
US6755970B1 (en) | Back-flushable spiral wound filter and methods of making and using same | |
US20120111784A1 (en) | Filtration purpose flat-membrane element, flat-membrane-type separation membrane module, and filtration apparatus | |
DE60017360D1 (en) | OVERFLOW PROCEDURE AND PUMPED MEMBRANE FILTRATION SYSTEM FOR ITS IMPLEMENTATION | |
CA2377202C (en) | Back-flushable spiral wound filter and methods of making and using same | |
JPH0731857A (en) | Plane membrane structure | |
JP3725124B2 (en) | Apparatus and method for purifying fluid such as water | |
JPH0889766A (en) | Membrane separating device | |
JP2000312815A (en) | Immersible membrane separation device | |
CN109071291B (en) | Wastewater treatment method using membrane separation activated sludge process | |
JPH06319964A (en) | Flat membrane type filter | |
JPH06327949A (en) | Membrane cleaning method for membrane separation device | |
JP3603596B2 (en) | Immersion type flat membrane separator | |
JP3418443B2 (en) | Membrane module | |
JPH09155166A (en) | Immersion type flat membrane separator | |
JPH0716591A (en) | Diffusion type aerating tank | |
JPH0889765A (en) | Membrane separating device | |
JPH07227526A (en) | Separating treatment of water suspension | |
JPH09299951A (en) | Dipping type plane membrane separation device | |
JP4853454B2 (en) | Removal method of filtration membrane element | |
JPH0985064A (en) | Immersion type flat membrane separator | |
JPH11128701A (en) | Immersion-type membrane separation apparatus and method for cleaning immersion-type membrane separation apparatus thereof | |
JPH0731853A (en) | Tank immersion type membrane element | |
JP2002273177A (en) | Filter film element and water making method |