WO2013146816A1 - 分光計測用フォトダイオードアレイ及び分光計測装置 - Google Patents

分光計測用フォトダイオードアレイ及び分光計測装置 Download PDF

Info

Publication number
WO2013146816A1
WO2013146816A1 PCT/JP2013/058857 JP2013058857W WO2013146816A1 WO 2013146816 A1 WO2013146816 A1 WO 2013146816A1 JP 2013058857 W JP2013058857 W JP 2013058857W WO 2013146816 A1 WO2013146816 A1 WO 2013146816A1
Authority
WO
WIPO (PCT)
Prior art keywords
spectroscopic measurement
photodiodes
photodiode array
film layer
film
Prior art date
Application number
PCT/JP2013/058857
Other languages
English (en)
French (fr)
Inventor
秀樹 冨永
竜太 廣瀬
田窪 健二
須川 成利
理人 黒田
Original Assignee
株式会社島津製作所
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所, 国立大学法人東北大学 filed Critical 株式会社島津製作所
Priority to EP13767497.4A priority Critical patent/EP2833106A4/en
Priority to JP2014507929A priority patent/JP5892567B2/ja
Priority to US14/388,567 priority patent/US9429471B2/en
Publication of WO2013146816A1 publication Critical patent/WO2013146816A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2803Investigating the spectrum using photoelectric array detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0213Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using attenuators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0229Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using masks, aperture plates, spatial light modulators or spatial filters, e.g. reflective filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • G02B1/116Multilayers including electrically conducting layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J2003/1226Interference filters
    • G01J2003/123Indexed discrete filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J2003/1226Interference filters
    • G01J2003/1234Continuously variable IF [CVIF]; Wedge type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2803Investigating the spectrum using photoelectric array detector
    • G01J2003/2806Array and filter array

Definitions

  • the present invention relates to a photo-diode array for spectroscopic measurement for detecting light wavelength-dispersed by a spectroscope, and a spectroscopic measurement apparatus using the photo-diode array as a detector.
  • a semiconductor such as silicon (Si) or indium gallium arsenide (InGaAs) is used to simultaneously detect wavelength-dispersed light by the spectroscope
  • a photodiode array detector in which a large number of photodiodes (for example, about 128 to 1024) are arrayed in a one-dimensional manner (as described in Non-Patent Document 1, a “photodiode array detector” is a linear image sensor, etc. Is sometimes used).
  • the photodiode is abbreviated as PD and the photodiode array is abbreviated as PDA.
  • FIG. 10 is a schematic configuration diagram of a general spectrophotometer using a PDA detector.
  • the measurement light P emitted from the bright spot of the light source 1 having a predetermined emission spectrum is condensed by the lens 2 and irradiated to the sample cell 4 made of a transparent material such as quartz glass in which the solution sample 5 is held.
  • the transmitted light Q after passing through the solution sample 5 is collected by the lens 6 and further enters the spectroscope 8 such as a diffraction grating through the slit 7.
  • the transmitted light Q is wavelength-dispersed in the one-dimensional direction by the spectroscope 8, and the wavelength-dispersed light S reaches the PDA detector 10.
  • each PD constituting the pixel of the PDA detector 10 has a chromatic dispersion light S in a predetermined wavelength region in a predetermined incident angle range. Therefore, it is incident.
  • Each PD of the PDA detector 10 outputs a detection signal corresponding to the intensity (light quantity) of incident light.
  • the shutter 3 disposed between the lens 2 and the sample cell 4 and blocking the measurement light P it is possible to perform blank measurement in the absence of incident light.
  • the PDA detector 10 is a concave reflection diffraction grating as an example, and has a function of forming an image of the slit 7 on the light receiving surface of the PDA detector 10.
  • an optical element such as a lens or a mirror having such an imaging function is installed.
  • the configuration shown in FIG. 10 is a basic configuration of an absorption spectrophotometer that detects light transmitted through the sample.
  • the solution sample 5 is a solid sample or In some cases, the sample may be replaced with a gas sample, or there may be no sample cell 4 supporting these samples.
  • the light detected by the PDA detector 10 is not necessarily light transmitted through the sample, but may be light reflected or scattered by the sample or light emitted from the sample itself.
  • the spectroscope 8 is not necessarily a reflection type spectroscope but may be a transmission type spectroscope such as a prism or a transmission type diffraction grating. In these cases, according to the propagation direction of transmitted light, reflected light (or scattered light), light emission, etc., which are detection targets, the spatial arrangement of each component indicated by reference numerals 6 to 10 in FIG. Be changed.
  • a required wavelength range is 200 [nm] to 1100 [nm], that is, an ultraviolet wavelength region to a near infrared wavelength region.
  • each PD of the PDA detector needs to have high sensitivity to incident light having a specific wavelength or wavelength range.
  • a single-layer or multi-layer dielectric film is provided on the surface of the PD as an anti-reflection film, and even to the semiconductor region (photoelectric conversion region) of each PD while minimizing the loss of light incident on the PD. It is important to make the incident light reach efficiently.
  • antireflection includes, in a broad sense, the function of absorbing incident light in the film and reducing the surface reflectance, but here the term “antireflection” It is used in the meaning limited to the function of suppressing reflection to light and efficiently reaching the semiconductor region.
  • a PDA described in Non-Patent Document 1 has been used as a detector for the above-described spectroscopic measurement apparatus.
  • a conventional PDA has a structure in which the surface of all PDs is covered with a semiconductor surface protection (passivation) film such as silicon oxide (SiO 2 ) or silicon nitride (Si 3 N 4 ) having a uniform film thickness.
  • the PDA described in Non-Patent Document 1 has sensitivity in a wide wavelength range of 190 [nm] to 1100 [nm], but with silicon (Si) as a base material, the entire surface has a film thickness of about It is covered with a 1000 [nm] silicon oxide film.
  • the silicon oxide film Since the silicon oxide film has an intermediate refractive index between silicon and air, it has the effect of increasing the light transmittance to some extent, but the extinction coefficient of silicon (imaginary part of the refractive index) is large, 380 [nm] or less In the ultraviolet wavelength region, the light transmittance increasing effect is small. Further, in this PDA, a wavelength region with a high light transmittance and a wavelength region with a low light transmittance appear alternately due to the interference effect of the silicon oxide film, and this is reflected in the spectral sensitivity characteristics.
  • FIG. 11 is an example of the wavelength-to-transmittance characteristics of an antireflection film used in a conventional PDA.
  • the antireflection film is a SiO 2 single layer film having a thickness of 200 [nm] laminated on the Si substrate.
  • the transmittance characteristics are relatively flat and a high transmittance of 60% or more is maintained.
  • PD SN ratio of the detection signal of some pixels
  • NMOS linear image sensor S3901 / S3904 series Hamamatsu Photonics Co., Ltd. [Search January 17, 2012], Internet ⁇ URL: http://jp.hamamatsu.com/resources/products/ssd/pdf/s3901 -128q_etc_kmpd1036j03.pdf>
  • the present invention has been made in view of the above problems, and the main object of the present invention is to provide a spectrum that can detect chromatic dispersion light in a wide wavelength range from the ultraviolet wavelength range to the near infrared wavelength range with high sensitivity. It is to provide a PDA for measurement. Another object of the present invention is to provide a spectroscopic measurement apparatus capable of measuring absorbance, reflectance, etc. with high sensitivity and accuracy over a wide wavelength range from the ultraviolet wavelength range to the near infrared wavelength range. is there.
  • the photo-diode array for spectroscopic measurement according to the present invention which has been made to solve the above-mentioned problems, comprises a plurality of photo-diodes arranged one-dimensionally in parallel with wavelength-dispersed light that has been wavelength-dispersed by a spectroscope.
  • a photodiode array for spectroscopic measurement arranged so that the arrangement direction of the photodiodes and the wavelength dispersion direction thereof coincide with each other, All of the plurality of photodiodes are divided into a plurality of groups such that each group includes one or more photodiodes adjacent in the arrangement direction and at least one group includes two or more photodiodes, These groups are characterized in that they are coated with an antireflection film having a common transmittance characteristic for each group and different transmittance characteristics between adjacent groups.
  • the antireflection film that is different for each group has a transmittance characteristic that the surface of all photodiodes belonging to the group has a maximum transmittance in the wavelength range of light incident on the photodiodes. Is preferred. However, if the transmittance characteristics of a certain group are not extremely small compared to other groups, the transmittance characteristics of the antireflection film of the group may not necessarily be the maximum in the wavelength range. Good. Of course, even in that case, it is preferable that the variation of the transmittance with respect to the wavelength is as small as possible.
  • the spectroscopic measurement photodiode array according to the present invention has, in the design stage, the wavelength of light introduced into each photodiode from the optical arrangement of the photodiode array and the spectroscope in the spectroscopic measurement apparatus used. It is determined. Then, based on the determined wavelength, all the photodiodes are divided into a plurality of adjacent groups, and the surface of each group is covered with an antireflection film suitable for each incident light wavelength. Specifically, in each group, the transmittance of the antireflection film exhibits a maximum value in the wavelength range incident on all the photodiodes belonging to one group, and the transmittance of the antireflection film in that wavelength range. The film material and thickness are adjusted so that the minimum value is sufficiently high. As one guideline, it is preferable that the minimum transmittance of the antireflection film in that wavelength region be 75% or more of the maximum transmittance in the same wavelength region.
  • the incident angle when the wavelength-dispersed light wavelength-dispersed by the spectroscope is incident on the photodiode array differs depending on the position of the photodiode. Therefore, when calculating the transmittance of the antireflection film, not the direct incidence (incident angle 0 °) but the incident angle of the main line of the light beam incident on each photodiode in the optical arrangement of the spectroscopic measurement device, It is desirable to determine the transmittance for the incident angle.
  • silicon is used as the semiconductor substrate of the photodiode array, but the refractive index of silicon varies greatly in the wavelength range of 380 [nm] or less, that is, in the ultraviolet wavelength range, and particularly in the refractive index of 300 [nm] or less. The change of is remarkable. Therefore, as a preferred embodiment of the photodiode array for spectroscopic measurement according to the present invention, light in a wavelength range including at least an ultraviolet wavelength region and a visible wavelength region continuous thereto is measured, and light in the ultraviolet wavelength region is incident.
  • the number of groups to which the photodiodes belong is larger than the number of groups to which the photodiodes in which light in the visible wavelength range is incident, and three or more photodiodes into which light having a wavelength of 300 [nm] or less is incident It is good to have a structure divided into groups.
  • the group is subdivided in a wavelength region where the change in the refractive index of silicon is large, a high transmittance can be realized even for incident light having a wavelength in the wavelength region.
  • the number of groups is small in the wavelength region where the change in the refractive index of silicon is small, it is possible to avoid an unnecessary increase in the total number of groups and complicating the manufacturing process of the antireflection film.
  • each film layer constituting the antireflection film of the group is made of a dielectric material or a metal material having a small absorption loss in a wavelength region of light incident on the group. It is good to do.
  • the material of the substrate is silicon
  • the material of the film layer constituting the antireflection film is silicon oxide, aluminum oxide, silicon nitride, aluminum, yttrium oxide, magnesium fluoride, hafnium oxide, titanium oxide, Or it is good to contain at least one of silver.
  • each film layer constituting the antireflection film is preferably made of a material that can be formed, etched and patterned by a standard semiconductor integrated circuit manufacturing process.
  • the material of the substrate is silicon
  • the material of the film layer constituting the antireflection film may include at least one of silicon oxide, aluminum oxide, silicon nitride, or aluminum.
  • the antireflection film can be manufactured without affecting the electrical characteristics of the semiconductor circuit of the photodiode. Further, there is no need to prepare a special film material, which is advantageous in terms of cost.
  • the antireflection film covering the photodiodes belonging to a plurality of groups may include a film layer having a common material and thickness.
  • an antireflection film includes a silicon oxide layer in contact with a silicon surface as a substrate, and a dielectric film layer having a higher refractive index than silicon oxide, which is laminated next to the silicon oxide layer.
  • a spectroscopic measurement device made to solve the above problems is a spectroscopic measurement device using the spectroscopic measurement photodiode array according to the present invention as a detector,
  • the spectroscope and the spectroscopic measurement photodiode array are arranged so that the arrangement direction of the plurality of photodiodes coincides with the chromatic dispersion direction of chromatic dispersion light by the spectroscope.
  • all photodiodes are high with respect to incident light having different wavelengths in a wide wavelength range from, for example, an ultraviolet wavelength range to a near infrared wavelength range.
  • a state including an antireflection film that transmits light efficiently is realized.
  • Sensitivity is not extremely low, and highly reliable spectroscopic measurement is possible.
  • the spectroscopic measurement apparatus it is possible to measure absorbance, reflectance and the like with high sensitivity and accuracy in a wide wavelength range from an ultraviolet wavelength range to a near infrared wavelength range, for example.
  • the front view (a) and longitudinal cross-sectional view (b) of PDA which are one Example of this invention.
  • 1 is a schematic configuration diagram of a general spectrophotometer using a PDA detector.
  • the PDA of this embodiment is used as a detector for a spectrophotometer as shown in FIG. That is, the wavelength of light incident on each of a plurality of PDs constituting the PDA is determined in advance, and the wavelength range of light incident on the PDA is 200 [nm] to 1100 [nm].
  • FIG. 1 is a front view (a) and a longitudinal sectional view (b) of the PDA 100 of this embodiment.
  • the PDA 100 includes 1024 photodiodes (PD) 101 having light receiving surfaces of a vertically long size of 25 [ ⁇ m] ⁇ 2500 [ ⁇ m] so that their long sides are in contact with each other. It has a structure arranged in a line.
  • the wavelength of incident light increases from left to right. That is, light in the vicinity of 200 [nm], which is ultraviolet, enters the PD at the left end, and light in the vicinity of 1100 [nm], which is near infrared, enters the PD at the right end.
  • the antireflection film 103 laminated so as to cover the surface of the silicon substrate 102 in which the photoelectric conversion region (not shown) is formed is composed of a plurality of film layers.
  • the material, film thickness, layer order, etc. are selected so that the optical equivalent complex admittance of the substrate 102 and the antireflection film 103 viewed from the incident side (air side) as a whole is close to 1.
  • the two layers from the bottom are common to all the PDs 101 in terms of material and film thickness, and the third and subsequent layers depend on the wavelength range of incident light. The material and film thickness are different.
  • FIG. 2 is a table summarizing the refractive index (n + ik) values for the main candidates for the dielectric material and the metal material constituting the film layer in the antireflection film 103.
  • the imaginary part (extinction coefficient) k of the refractive index is 0 or a value close thereto.
  • silicon oxide (SiO 2 ) or aluminum oxide (Al 2 O 3 ) is suitable as a film layer material for the antireflection film in the wavelength range of 200 [nm] to 1100 [nm].
  • titanium oxide which is a dielectric
  • SiO 2 which is a dielectric
  • Si 3 N 4 silicon nitride
  • Si 3 N 4 silicon nitride
  • the real part n of the refractive index is as small as possible as compared with the imaginary part k, and is 10% or less of the imaginary part k as a guide.
  • silver (Ag) is a suitable material in a wavelength region of 400 [nm] to 1100 [nm]
  • aluminum (Al) is a suitable material in a wavelength region of 200 [nm] to 400 [nm]. It can be said.
  • the refractive index of each material shown in FIG. 2 is a value when manufactured under typical film forming conditions, and can take a value different from the value shown in FIG. 2 under another film forming condition. Can be considered. In such a case, it is obvious that the wavelength range in which each material is suitable as the material of the film layer of the antireflection film is different from the wavelength range shown in the above example.
  • the film layer of the antireflection film is formed with a material that is put into practical use in a standard semiconductor manufacturing process using silicon as a main raw material.
  • Materials commonly used in the current standard semiconductor manufacturing process include silicon oxide, aluminum oxide, silicon nitride (Si 3 N 4 ), and aluminum.
  • the antireflective film of the PDA of this embodiment is composed of a combination of these three types of dielectric materials.
  • FIG. 3A shows an example of the film structure of the antireflection film 103 that can achieve a transmittance of 70% or more in the wavelength range of 300 [nm] to 1100 [nm].
  • the antireflection film 103 includes a silicon oxide film layer 104 having a thickness of 5 nm formed on the silicon substrate 102, an aluminum oxide film layer 105 having a thickness of 14 nm, and a film thickness. It consists of three layers of silicon nitride film layer 106 of 15 [nm].
  • the element number of the PD assigned the shortest wavelength in the wavelength range of 200 [nm] to 1100 [nm] is # 1
  • the element number of the PD assigned the longest wavelength is # 1024.
  • the antireflection film 103 having the structure shown in FIG. 3A is provided on the surface of the PD having the element numbers # 114 to # 1024. That is, in the PDA of this embodiment, all PDs having an element number greater than # 114 (in other words, all light having a wavelength longer than the wavelength of light incident on the PD whose element number is # 114 are incident). PD) has an antireflection film 103 having the same film structure and can be said to belong to one group.
  • FIG. 3 (b) is a diagram comparing the transmittance characteristics with and without the silicon nitride film layer 106 in the film structure of FIG. 3 (a). From this figure, it can be seen that the silicon nitride film layer 106 is effective in improving the transmittance particularly in the vicinity of the short wavelength range in the visible wavelength range.
  • an antireflection film having a specific one type of film structure has a large variation in transmittance with respect to wavelength change, and it is difficult to cover the entire ultraviolet wavelength range. Therefore, in the PDA of this embodiment, 113 PDs having element numbers # 1 to # 113 are divided into five groups including about 20 PDs per group, and each film has a different film structure. The antireflection film is used.
  • FIG. 4A shows the film structure of the antireflection film 103 in the wavelength range of 200 [nm] to 300 [nm] in the PDA of this embodiment. That is, a silicon oxide film layer 104 having a thickness of 5 [nm], an aluminum oxide film layer 105 having a thickness of 14 [nm], and an oxide having a thickness of 50 [nm] on the silicon substrate 102. A silicon film layer 107 is provided, and an aluminum oxide film layer 108 having a film thickness corresponding to each group having a different wavelength range of incident light is laminated thereon to form an antireflection film 103.
  • the film thickness of the uppermost aluminum oxide film layer 108 is 13 [nm] in the first group ([i] in FIG.
  • the thickness of the aluminum oxide film layer 108 gradually increases from the short wavelength side toward the long wavelength side.
  • the two layers of the silicon oxide film layer 104 and the aluminum oxide film layer 105 that are first stacked on the silicon substrate 102 are film layers common to all PDs in terms of material and film thickness. However, they can be formed simultaneously.
  • FIG. 4B is a transmittance characteristic of each laminated film shown in FIG.
  • the curves indicated by the symbols [i] to [v] in FIG. 4B are the transmittance characteristics of the antireflection films of the groups indicated by the symbols [i] to [v] in FIG. It is a curve.
  • the curve indicated by [vi] in FIG. 4B is the transmittance characteristic curve of the antireflection film shown in FIG. As shown in FIGS. 4A and 4B, in the wavelength range of 200 [nm] to 300 [nm], one film structure (an antireflection film in which the aluminum oxide film layer 108 has a certain thickness).
  • the transmittance peak is quite narrow, but by changing the film thickness of the aluminum oxide film layer 108, the wavelength at which the transmittance is maximum can be gradually shifted. Since the wavelengths at which the respective transmittance peaks are maximized fall within the corresponding wavelength ranges of the five groups described above, the envelopes of the respective transmittance peaks of the five different film structures shown in FIG. The line can be regarded as the transmittance characteristic in the wavelength range of 200 [nm] to 300 [nm] of the antireflection film 103 in the PDA of this embodiment.
  • FIG. 5 shows the film structure (a) and transmittance characteristics (b) of the antireflection film 103 for the entire wavelength range (200 [nm] to 1100 [nm]) to be measured.
  • the average transmittance over the entire wavelength range is 75.4%
  • the minimum transmittance is 64.2%. It can be seen that the improvement of the minimum transmittance is particularly remarkable as compared with the conventional anti-reflection film made of silicon oxide shown in FIG. Accordingly, a detection signal for incident light (transmitted light S in FIG. 10) can be obtained with high sensitivity without leakage in a wide wavelength range from the ultraviolet wavelength range to the near infrared wavelength range.
  • FIG. 6 shows the film structure (a) and transmittance characteristics (b) of the antireflection film in the PDA of the second embodiment of the present invention.
  • the configuration of the antireflection film 103 in the wavelength region of less than 430 [nm] is the same as that of the first embodiment shown in FIG. 5 (the material and thickness of each film layer are the same).
  • the antireflection film 103 in the wavelength range of 430 [nm] to 690 [nm] is the same film as the antireflection film in the first group (near wavelength 200 [nm]) in the ultraviolet wavelength range. It has a configuration.
  • the antireflection film 103 in the wavelength range of 690 [nm] to 1100 [nm] has the same film configuration as the antireflection film in the fifth group (near the wavelength of 300 [nm]) in the ultraviolet wavelength range. Yes. With such a configuration, a transmittance characteristic higher than that of the first embodiment shown in FIG. 5 is realized in a wavelength region of 430 [nm] or more.
  • PDs belonging to a plurality of groups that are not adjacent to each other in the wavelength direction are covered with an antireflection film having the same film structure. It is possible that
  • FIG. 7 shows the film structure (a) and transmittance characteristics (b) of the antireflection film in the PDA of the third embodiment of the present invention.
  • the third embodiment is a modification in which the aluminum oxide film layers 105 and 108 constituting the antireflection film 103 in the PDA of the second embodiment are replaced with silicon nitride film layers 106 and 110, respectively.
  • the number of groups into which PDs that receive light in the ultraviolet region are divided is two more than in the second embodiment.
  • the thickness of each film layer is also changed in order to maximize the transmittance of the antireflection film.
  • the silicon nitride film layers 106 and 110 in this example are manufactured by a film forming method different from the silicon nitride whose refractive index is shown in FIG. Since the extinction coefficient k is sufficiently small even in the region near 225 [nm], it can be used as the material of the film layer of the antireflection film also in these wavelength regions.
  • FIG. 8 shows the film structure (a) and the transmittance characteristic (b) of the antireflection film in the PDA of the fourth embodiment, which is different from the above three embodiments.
  • an aluminum film layer 109 which is a metal, is introduced as a film layer constituting the antireflection film 103 in the ultraviolet wavelength region.
  • PDs that receive light in the wavelength region of 200 [nm] to 320 [nm] are divided into six groups, and the film thickness is 43 [nm] to 83 [nm] on the silicon substrate 102.
  • the antireflection film 103 is formed.
  • the transmittance characteristics of the antireflection film are substantially inferior to those of the third embodiment, but substantially the same characteristics as those of the first and second embodiments are realized.
  • FIG. 9 shows the film structure (a) and transmittance characteristics (b) of the antireflection film in the PDA of the fifth example which is a modification of the fourth example.
  • the lower silicon oxide film layer 104 constituting the antireflection film 103 in the PDA of the fourth embodiment is replaced with a laminate of a thin silicon oxide film layer 104 and an aluminum oxide film layer 105, and an upper silicon oxide film is further formed.
  • This is a modification in which the layer 107 is replaced with an aluminum oxide film layer 108.
  • the thickness of each film layer is also changed in order to maximize the transmittance of the antireflection film.
  • a wavelength region of 200 [nm] to 320 [nm] is divided into six, and a silicon oxide film layer having a thickness of 5 [nm] on a silicon substrate, 30 [nm] to An aluminum oxide film layer having a different thickness for each group within a range of 62 [nm], an aluminum film layer having a thickness of 7 [nm], and an aluminum oxide film layer having a thickness of 45 [nm], respectively
  • an antireflection film is formed.
  • the antireflection film 103 in the PDA of the fifth embodiment has an average transmittance of 89.7% over the entire wavelength range, and an average transmittance of 81.4% in the wavelength range of 200 [nm] to 320 [nm].
  • the transmission characteristics are improved as compared with the fourth embodiment, and an antireflection film having high transmittance characteristics comparable to the third embodiment can be realized.
  • the above embodiment is an example of the present invention, and it is obvious that any modification, correction, or addition as appropriate within the scope of the present invention is included in the scope of the claims of the present application. That is, as described above, the material of the film layer constituting the antireflection film can be variously changed including the example described above. Moreover, the film thickness can also be changed as appropriate. Moreover, the boundary wavelength which divides the whole measurement wavelength range shown in each said Example into the some group is an example, and can be changed arbitrarily. However, for the reasons described above, in general, in the ultraviolet wavelength region, a finer division is required than in the visible wavelength region and near infrared wavelength region, and the number of groups in the same wavelength width is inevitably increased.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Power Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Light Receiving Elements (AREA)

Abstract

 一次元的に配列された複数のPDを複数のグループに区分し、グループ毎に、当該グループに属する全てのPDの表面がそれらPDに入射する光の波長域の中で透過率が極大を示すような透過率特性を有する反射防止膜で被覆されるように、グループ毎に反射防止膜の膜構造(材料又は厚さの少なくとも一方)を変える。特にSi基板(102)上のSiO2膜層(104)、Al23膜層(105)は全PDに共通とし、その上の層を波長によって変え、さらに紫外波長域では波長に応じて細かく膜構造を変えることで、製造工程の複雑さを極力回避しながら、高い透過率(入射光が光電変換領域にまで到達する率)を上げることができる。これにより、PDA検出器を用いた分光計測装置において、特に紫外波長域でも漏れなく高い感度を達成することができる。

Description

分光計測用フォトダイオードアレイ及び分光計測装置
 本発明は、分光器により波長分散された光を検出するための分光計測用のフォトダイオードアレイ、及び該フォトダイオードアレイを検出器として利用した分光計測装置に関する。
 紫外可視分光光度計や液体クロマトグラフ用分光検出器などの分光計測装置において、分光器により波長分散された光を同時に検出する際には、シリコン(Si)やインジウムガリウムヒ素(InGaAs)などの半導体を基材とするフォトダイオードを多数(例えば128~1024個程度)一次元的に配列したフォトダイオードアレイ検出器(非特許文献1に記載のように「フォトダイオードアレイ検出器」はリニアイメージセンサなどと呼ばれることもある)が利用されている。以下、フォトダイオードをPD、フォトダイオードアレイをPDAと略す。
 図10はPDA検出器を用いた一般的な分光光度計の概略構成図である。所定の発光スペクトルを有する光源1の輝点を発した測定光Pはレンズ2で集光され、その内部に溶液試料5が保持されている石英ガラス等の透明体からなる試料セル4に照射される。溶液試料5中を通過した後の透過光Qはレンズ6で集光され、さらにスリット7を経て回折格子などの分光器8に入射する。透過光Qは分光器8で一次元方向に波長分散され、波長分散光SがPDA検出器10に到達する。分光器8とPDA検出器10との位置関係は常に同じであるので、PDA検出器10の画素を構成する各PDにはそれぞれ、決まった波長領域の波長分散光Sが決まった入射角範囲で以て入射する。PDA検出器10の各PDは入射した光の強度(光量)に応じた検出信号をそれぞれ出力する。なお、レンズ2と試料セル4との間に配設されたシャッタ3を閉じて測定光Pを遮ることにより、入射光が無い状態のブランク測定を行うことが可能である。また、図10に示した分光器8は一例として凹面反射回折格子であり、スリット7の像をPDA検出器10の受光面上に結像する機能を併せ持っているが、分光器8とは別にこのような結像機能を持ったレンズ、ミラーなどの光学素子が設置される場合もある。
 また、図10に示した構成は試料を透過する光を検出する吸光分光光度計の基本的な構成であるが、干渉式膜厚計や発光分析装置のように、溶液試料5が固体試料又は気体試料で置き換えられる場合や、これらの試料を担持する試料セル4がない場合もある。また、PDA検出器10で検出される光は必ずしも試料を透過した光であるとは限らず、試料で反射又は散乱された光である場合や試料自体から発せられる光である場合もある。さらにまた、分光器8は必ずしも反射型分光器であるとは限らず、プリズムや透過型回折格子などの透過型分光器である場合もある。これらの場合には、検出対象である透過光、反射光(又は散乱光)、発光等の伝播方向に応じて、図10中に符号6~10で示した各構成要素の空間配置は適宜に変更される。
 一般的な紫外可視分光光度計の場合、要求される波長範囲は200[nm]~1100[nm]、つまり紫外波長域~近赤外波長域である。上記のような分光光度計において高い検出感度を達成するには、PDA検出器の各PDがそれぞれ特定の波長又は波長域を有する入射光に対して高い感度を有している必要がある。そのためには、PDの表面に単層又は多層の誘電体膜を反射防止膜として被設し、PDへの入射光の損失を最小限に抑えつつ各PDの半導体領域(光電変換領域)にまで入射光を効率的に到達させることが重要である。一般的な単体のPDや数チャンネル程度の少数のPDが配設されたPDAについては、上述したような紫外波長域から近赤外波長域までの間の特定の波長域において高い効率で入射光を半導体領域まで到達させることが可能な反射防止膜の事例が多数報告されている。しかしながら、一種類の反射防止膜だけで、紫外波長域から近赤外波長域に至る波長域全体をカバーすることは実質的に不可能である。
 なお、一般に「反射防止」との用語は、広い意味では、入射された光を膜中で吸収して表面反射率を低減させる機能も含まれるが、ここでは「反射防止」という用語を、入射光に対する反射を抑え、効率的に半導体領域に到達させる機能に限定した意味で用いることとする。
 上記のような分光計測装置の検出器として従来、例えば非特許文献1に記載されているPDAが利用されている。こうした従来のPDAは、膜厚が一様である酸化シリコン(SiO2)、窒化シリコン(Si34)等の半導体表面保護(パッシベーション)膜で全てのPDの表面が被覆された構造を有する。具体的に言うと、非特許文献1に記載のPDAは190[nm]~1100[nm]の広い波長域で感度を有するが、シリコン(Si)を基材として、その表面全体が膜厚約1000[nm]の酸化シリコン膜で被覆されている。酸化シリコン膜はシリコンと空気との中間の屈折率を持つので、光透過率を或る程度増大する効果を示すものの、シリコンの消衰係数(屈折率の虚部)が大きい380[nm]以下の紫外波長域においてはその光透過率増大効果が小さい。また、このPDAでは、酸化シリコン膜の干渉効果によって光透過率の高い波長域と光透過率の低い波長域とが交互に現れ、これが分光感度特性に反映されている。
 図11は従来のPDAに使用される反射防止膜の波長対透過率特性の一例である。反射防止膜はSi基板上に積層された膜厚200[nm]のSiO2単層膜である。可視波長域~近赤外波長域では透過率特性は比較的平坦であり、且つ60%以上の高い透過率を保っている。これに対して、350[nm]以下の短波長域では、透過率が著しく低下する波長域が存在し、しかも波長に対する透過率の変動幅も大きいことが判る。このように特に透過率が極端に低い波長域では検出感度が大きく下がるため、こうした波長域の光が入射する一部の画素(PD)の検出信号のSN比は低くなる。
 単層のSiO2膜に代えて適宜の誘電体多層膜を用いることにより、上述したような干渉効果による透過率の大きな変動は或る程度抑えることが可能である。しかしながら、その場合でも、一部のPDについて透過率が極端に下がるために信頼性の高い検出信号を得られない、という問題を根本的に解決することはできない。
「NMOSリニアイメージセンサ S3901/S3904シリーズ」、浜松ホトニクス株式会社、[平成24年1月17日検索]、インターネット<URL : http://jp.hamamatsu.com/resources/products/ssd/pdf/s3901-128q_etc_kmpd1036j03.pdf>
 本発明は上記課題に鑑みて成されたものであり、その主たる目的とするところは、紫外波長域から近赤外波長域に至る幅広い波長域の波長分散光を高い感度で検出可能である分光計測用のPDAを提供することである。また、本発明の別の目的は、紫外波長域から近赤外波長域に至る幅広い波長域について高い感度及び精度で吸光度や反射率などを計測することが可能な分光計測装置を提供することにある。
 上記課題を解決するために成された本発明に係る分光計測用のフォトダイオードアレイは、複数のフォトダイオードが一次元的に配列されてなり、分光器により波長分散された波長分散光を並行して検出するために、前記フォトダイオードの配列方向とその波長分散方向とが一致するように配置される分光計測用のフォトダイオードアレイであって、
 各グループがそれぞれ前記配列方向に隣接した1個以上のフォトダイオードを含み且つ少なくとも1つのグループが2個以上のフォトダイオードを含むように、前記複数のフォトダイオードの全てが複数のグループに区分され、
 それらグループは、グループ毎に共通の透過率特性を有し且つ隣接するグループ間では異なる透過率特性を有する反射防止膜で被覆されてなることを特徴としている。
 グループ毎に異なる反射防止膜は、当該グループに属する全てのフォトダイオードの表面がそれらフォトダイオードに入射する光の波長域の中で透過率が極大を示すような透過率特性を有するものとするのが好ましい。ただし、或るグループの透過率特性が他のグループと比較して極端に小さくなければ、当該グループの反射防止膜の透過率特性は、当該波長域の中で必ずしも透過率が極大とならなくともよい。もちろん、その場合でも波長に対する透過率の変動は可能な限り小さいほうが好ましい。
 即ち、本発明に係る分光計測用フォトダイオードアレイは、その設計段階において、使用される分光計測装置における当該フォトダイオードアレイと分光器との光学配置から、各フォトダイオードに導入される光の波長が決定される。そして、決定された波長に基づいて、全フォトダイオードを互いに隣接した複数のグループに区分し、各グループの表面をそれぞれの入射光波長に適した反射防止膜で覆うようにする。具体的には、各グループにおいて、1つのグループに属する全てのフォトダイオードに入射する波長域の中で反射防止膜の透過率が極大値を呈し、且つその波長域で反射防止膜の透過率の最小値が十分高くなるように膜の材質や厚さを調整した構造とする。1つの目安としては、その波長域で反射防止膜の透過率の最小値が同波長域中の最大透過率の75%以上となるようにするとよい。
 なお、一般的に、分光器で波長分散された波長分散光がフォトダイオードアレイに入射するときの入射角はフォトダイオードの位置によって異なる。そこで、反射防止膜の透過率を計算する際には、直入射(入射角0°)ではなく、分光計測装置の光学配置において各フォトダイオードに入射する光束の主線の入射角を求め、それぞれその入射角についての透過率を求めることが望ましい。
 一般にフォトダイオードアレイの半導体基材としてはシリコンが利用されるが、シリコンの屈折率は380[nm]以下の波長域、つまりは紫外波長域で変化が大きく、特に300[nm]以下で屈折率の変化が顕著である。そこで、本発明に係る分光計測用フォトダイオードアレイの好ましい一実施態様として、少なくとも紫外波長域とこれに連続する可視波長域とを含む波長域の光を測定対象とし、紫外波長域の光が入射するフォトダイオードが属するグループの数が、可視波長域の光が入射するフォトダイオードが属するグループの数よりも多く、且つ波長が300[nm]以下である光が入射するフォトダイオードが3つ以上のグループに区分されている構成とするとよい。
 この構成によれば、シリコンの屈折率の変化が大きな波長域でグループが細分化されるので、該波長域の波長を持つ入射光に対しても高い透過率を実現することができる。一方、シリコンの屈折率の変化が小さい波長域ではグループの数が少ないので、グループの総数が不必要に多くなって反射防止膜の製造工程が煩雑になることを避けることができる。
 また本発明に係る分光計測用フォトダイオードアレイにおいて、前記グループの反射防止膜を構成する各膜層は、当該グループに入射する光の波長領域において吸収損失が小さい誘電体又は金属の材質からなるものとするのがよい。具体的には、例えば基板の材質はシリコンであり、反射防止膜を構成する膜層の材質が、酸化シリコン、酸化アルミニウム、窒化シリコン、アルミニウム、酸化イットリウム、フッ化マグネシウム、酸化ハフニウム、酸化チタニウム、又は銀の少なくとも一つを含むとよい。
 また前記反射防止膜を構成する各膜層は、標準的な半導体集積回路製造工程により成膜、エッチング、パターニングが可能な材質からなるものとするとよい。具体的には、例えば基板の材質はシリコンであり、反射防止膜を構成する膜層の材質が、酸化シリコン、酸化アルミニウム、窒化シリコン、又はアルミニウムの少なくとも一つを含むとよい。
 この構成によれば、フォトダイオードの半導体回路の電気的特性に影響を与えることなく反射防止膜を製造することができる。また、特殊な膜材料を用意する必要もないのでコスト的にも有利である。
 また本発明に係る分光計測用フォトダイオードアレイにおいて、複数のグループに属するフォトダイオードを被覆する反射防止膜は、材質及び厚さが共通である膜層を含むようにするとよい。具体的には、例えば反射防止膜が、基板であるシリコン表面に接する酸化シリコン層と、この酸化シリコン層の次に積層される、酸化シリコンより屈折率の実部が大きい誘電体の膜層とを共通に含むようにするか、或いは、基板であるシリコン表面に接する酸化シリコンの膜層と、この酸化シリコンの膜層の次に積層される、金属の膜層とを共通に含むようにするとよい。
 この構成によれば、製造工程を簡略化することができ、コスト的に有利である。
 また上記課題を解決するためになされた本発明に係る分光計測装置は、上記本発明に係る分光計測用フォトダイオードアレイを検出器として用いた分光計測装置であって、
 分光器による波長分散光の波長分散方向に前記複数のフォトダイオードの配列方向が一致するように、該分光器及び前記分光計測用フォトダイオードアレイが配置されていることを特徴としている。
 本発明に係る分光計測用フォトダイオードアレイによれば、全てのフォトダイオードが、例えば紫外波長域から近赤外波長域に至る広い波長域のうちの、それぞれ異なる波長を有する入射光に対して高い効率で光を透過させる反射防止膜を備える状態、が実現される。特に、従来のフォトダイオードアレイでは入射光の透過率が低いために感度の低下が顕著であった紫外波長域についても、十分に高い透過率を実現することができるので、一部の波長の検出感度が極端に低いといったことがなくなり、信頼性の高い分光計測が可能となる。
 また本発明に係る分光計測装置によれば、例えば紫外波長域から近赤外波長域に至る幅広い波長域について高い感度及び精度で吸光度や反射率などを計測することが可能となる。
本発明の一実施例であるPDAの正面図(a)及び縦断面図(b)。 反射防止膜を構成する膜層の材料候補の屈折率を示す図。 本実施例のPDAにおいて300[nm]~1100[nm]の波長域の光が入射するフォトダイオードを被覆する反射防止膜の構造(a)及び透過率特性(b)を示す図。 本実施例のPDAにおいて200[nm]~300[nm]の波長域の光が入射するフォトダイオードを被覆する反射防止膜の構造(a)及び透過率特性(b)を示す図。 本実施例のPDAにおける紫外波長域~近赤外波長域に対する反射防止膜の構造(a)と透過率特性(b)とを示す図。 本発明の第2実施例であるPDAにおける紫外波長域~近赤外波長域に対する反射防止膜の構造(a)と透過率特性(b)とを示す図。 本発明の第3実施例であるPDAにおける紫外波長域~近赤外波長域に対する反射防止膜の構造(a)と透過率特性(b)とを示す図。 本発明の第4実施例であるPDAにおける紫外波長域~近赤外波長域に対する反射防止膜の構造(a)と透過率特性(b)とを示す図。 本発明の第5実施例であるPDAにおける紫外波長域~近赤外波長域に対する反射防止膜の構造(a)と透過率特性(b)とを示す図。 PDA検出器を用いた一般的な分光光度計の概略構成図。 従来のPDAに使用される反射防止膜の透過率特性の一例を示す図。
 以下、本発明に係る分光計測用フォトダイオードアレイ(PDA)の一実施例について、添付図面を参照して説明する。この実施例のPDAは図10に示したような分光光度計の検出器として利用される。即ち、PDAを構成する複数のPDのそれぞれに入射する光の波長は予め決まっており、PDAに入射する光の波長域は200[nm]~1100[nm]である。
 図1は本実施例のPDA100の正面図(a)及び縦断面図(b)である。このPDA100は、図1(a)に示すように、25[μm]×2500[μm]の縦長サイズの受光面を有するフォトダイオード(PD)101が、互いの長辺が接するように1024個、一列に配列された構造を有する。なお、図1では左方から右方に向かって入射光の波長が長くなる。つまり、左端部のPDには紫外である200[nm]付近の光が、右端部のPDには近赤外である1100[nm]の付近の光が入射する。
 図1(b)に示すように、光電変換領域(図示せず)が内部に形成されるシリコン基板102の表面を被覆するように積層される反射防止膜103は複数の膜層からなり、これら各膜層は、全体として入射側(空気側)から見た基板102と反射防止膜103の光学的な等価複素アドミタンスが1に近くなるように、材料、膜厚、層の順序などが選択されている。本実施例では、下から(基板102の側から)2層の膜層が材料、膜厚とも全PD101に共通であり、3層目以降の膜層は、入射する光の波長域に応じて材料と膜厚とが相違している。
 図2は、反射防止膜103中の膜層を構成する誘電体材料及び金属材料の主要な候補について、屈折率(n+ik)の値をまとめた図である。
 好適な誘電体材料としては、屈折率の虚部(消衰係数)kが0又はそれに近い値であることが望ましい。例えば、酸化シリコン(SiO2)や酸化アルミニウム(Al23)は、200[nm]~1100[nm]の波長領域において反射防止膜の膜層材料として好適である。これに対し、誘電体である酸化チタン(TiO2)は、350[nm]以下の波長領域において消衰係数kが大きいので、それより長い波長領域に利用が限定される。また窒化シリコン(Si34)は、200[nm]付近の波長領域において消衰係数kが大きいので、それより長い波長領域に利用が限定される。
 また、好適な金属材料としては、屈折率の実部nが虚部kに比べてできるだけ小さく、目安として虚部kの10%以下であることが望ましい。例えば、銀(Ag)は、400[nm]~1100[nm]の波長領域において好適な材料であり、アルミニウム(Al)は200[nm]~400[nm]の波長領域において好適な材料であると言える。
 なお、図2に示した各材質の屈折率は、典型的な製膜条件で作製された場合の値であり、別の製膜条件では図2に示した値とは異なる値を取りうる場合が考えられる。そのような場合には、各材質が反射防止膜の膜層の材料として好適である波長範囲が、上記の例に示した波長範囲とは異なったものになることは明らかである。
 もちろん、上記のような光学的性質のみならず、フォトダイオードアレイの製造工程中及び長期間の使用時において化学的及び電気的に安定である膜層を形成する技術(成膜技術、パターニング技術)が確立していることも、材料選択のための重要な要素である。この観点から、シリコンを主原料とする標準的な半導体製造工程において実用化されている材料で反射防止膜の膜層を形成することが望ましい。現在の標準的な半導体製造工程で一般に利用されている材料としては、酸化シリコン、酸化アルミニウム、窒化シリコン(Si34)、アルミニウムが挙げられる。本実施例のPDAの反射防止膜は、これらの中の3種の誘電体材料の組み合わせからなっている。
 ただし、そうした組み合わせの一部に、図2に挙げた他の材料候補(酸化イットリビウム、フッ化マグネシウム、酸化ハフニウム、酸化チタン、銀)を追加したり置き換えたりすることも当然可能である。
 図3(a)は、300[nm]~1100[nm]の波長域において70%以上の透過率を達成可能である反射防止膜103の膜構造の一例である。この反射防止膜103は、シリコン基板102上に形成された膜厚が5[nm]である酸化シリコン膜層104と、膜厚が14[nm]である酸化アルミニウム膜層105と、膜厚が15[nm]である窒化シリコン膜層106の3層からなる。本実施例のPDAでは、200[nm]~1100[nm]の波長域の中で最短波長が割り当てられたPDの素子番号を#1、最長波長が割り当てられたPDの素子番号を#1024としたとき、#114~#1024の素子番号を有するPDの表面に、図3(a)に示した構造の反射防止膜103を設けている。つまり、この実施例のPDAでは、#114よりも大きな素子番号を有する全てのPD(換言すれば、素子番号が#114であるPDに入射する光の波長よりも長い波長の光が入射する全てのPD)は同じ膜構造の反射防止膜103を有しており、1つのグループに属しているといえる。
 図3(b)は、図3(a)の膜構造で窒化シリコン膜層106がある場合とない場合との透過率特性を比較した図である。この図から、窒化シリコン膜層106は特に可視波長域の中の短波長範囲付近で透過率を向上させるのに有効であることが判る。
 一方、200[nm]~300[nm]の波長域では、特定の1種の膜構造を有する反射防止膜では波長変化に対する透過率の変動が大きく、紫外波長域全体をカバーすることが難しい。そこで、本実施例のPDAでは、#1~#113の素子番号を有する113個のPDについて1グループ当たり約20個のPDを含む5つのグループに分割し、そのグループ毎にそれぞれ別の膜構造の反射防止膜を用いるようにしている。
 図4(a)は、本実施例のPDAにおける200[nm]~300[nm]の波長域での反射防止膜103の膜構造である。即ち、シリコン基板102上に、膜厚が5[nm]である酸化シリコン膜層104、膜厚が14[nm]である酸化アルミニウム膜層105、及び、膜厚が50[nm]である酸化シリコン膜層107が設けられ、さらにその上に、入射光の波長域が異なる各グループに応じた膜厚の酸化アルミニウム膜層108がそれぞれ積層されることで反射防止膜103が形成されている。最上層の酸化アルミニウム膜層108の膜厚は、波長λ=200[nm]付近の波長域に対応する第1グループ(図5(a)中の[i])では13[nm]、波長λ=225[nm]付近の波長域に対応する第2グループ(図5(a)中の[ii])では23[nm]、波長λ=250[nm]付近の波長域に対応する第3グループ(図5(a)中の[iii])では33[nm]、波長λ=275[nm]付近の波長域に対応する第4グループ(図5(a)中の[iv])では45[nm]、そして波長λ=300[nm]付近の波長域に対応する第5グループ(図5(a)中の[v])では55[nm]である。つまり、短波長側から長波長側に向かって段階的に酸化アルミニウム膜層108の膜厚が厚くなっている。なお、シリコン基板102上に最初に積層される酸化シリコン膜層104及び酸化アルミニウム膜層105の2層は材料、膜厚共に全PDに共通の膜層であり、半導体製造工程上、全PDに対し同時に形成されるようにすることができる。
 図4(b)は図4(a)に示した各積層膜の透過率特性である。図4(b)において[i]~[v]の符号で示した曲線は、それぞれ図4(a)の[i]~[v]の符号で示したグループの反射防止膜の透過率特性の曲線である。なお、図4(b)に[vi]で示されている曲線は、図3(a)に示した反射防止膜の透過率特性の曲線である。図4(a)及び(b)に示すように、200[nm]~300[nm]の波長域では、1つの膜構造(酸化アルミニウム膜層108が或る1つの膜厚である反射防止膜)の透過率ピークの幅はかなり狭いが、酸化アルミニウム膜層108の膜厚を変えることによって透過率が極大を示す波長を徐々にずらすことができる。上述した5つのグループの対応波長域中にそれぞれの透過率ピークが極大となる波長がくるようにしているので、図4(a)に示した5つの異なる膜構造のそれぞれの透過率ピークの包絡線が、本実施例のPDAにおける反射防止膜103の200[nm]~300[nm]の波長域での透過率特性であるとみなせる。
 図5に測定対象である全波長域(200[nm]~1100[nm])に対する反射防止膜103の膜構造(a)及び透過率特性(b)を示す。この例では、全波長域に亘る平均透過率は75.4%であり、最小透過率は64.2%である。図11に示した従来の単一の酸化シリコンによる反射防止膜に比べて、特に最小透過率の改善が顕著であることが判る。それにより、紫外波長域~近赤外波長域の広い波長域において、漏れなく高い感度で入射光(図10における透過光S)に対する検出信号を得ることができる。
 図6は、本発明の第2実施例のPDAにおける反射防止膜の膜構造(a)及び透過率特性(b)である。この第2実施例では、430[nm]未満の波長領域における反射防止膜103の構成は図5に示した第1実施例と同一(各膜層の材料及び膜厚が同一)である。第2実施例では、430[nm]~690[nm]の波長領域のグループの反射防止膜103が、紫外波長域の第1グループ(波長200[nm]付近)の反射防止膜と同一の膜構成となっている。また、690[nm]~1100[nm]の波長領域のグループの反射防止膜103は、紫外波長域の第5グループ(波長300[nm]付近)の反射防止膜と同一の膜構成となっている。このような構成により、430[nm]以上の波長領域において、図5に示した第1実施例よりも高い透過率特性を実現している。
 この例のように、本発明に係るPDAでは、全てのPDが区分された複数のグループのうち、波長方向に互いに隣接しない複数のグループに属するPDが全く同じ膜構造の反射防止膜で覆われていることもあり得る。
 図7は、本発明の第3実施例のPDAにおける反射防止膜の膜構造(a)及び透過率特性(b)である。この第3実施例は、上記第2実施例のPDAにおいて反射防止膜103を構成する酸化アルミニウム膜層105、108をそれぞれ窒化シリコン膜層106、110に置き換えた変形例である。第3実施例では、紫外領域の光が入射するPDが区分されるグループの数が第2実施例より2つ多くなっている。また、膜層の材質の変更に伴い、各膜層の厚さも反射防止膜の透過率を最大化するために変更されている。
 なお、この実施例における窒化シリコン膜層106、110は、図2中に屈折率の値が示されている窒化シリコンとは異なる製膜方法で作製されたものであり、波長200[nm]及び225[nm]付近の領域においても消衰係数kが十分小さいため、これら波長領域においても反射防止膜の膜層の材質として利用可能である。
 上記3つの実施例とはさらに別の、第4実施例のPDAにおける反射防止膜の膜構造(a)及び透過率特性(b)を図8に示す。この実施例は、紫外波長域の反射防止膜103を構成する膜層として、金属であるアルミニウムの膜層109を導入した例である。
 この第4実施例では、200[nm]~320[nm]の波長領域の光が入射するPDは6つのグループに区分され、シリコン基板102上に、膜厚が43[nm]~83[nm]の範囲でグループ毎に異なる膜厚を有する酸化シリコン膜層104、膜厚が7[nm]であるアルミニウム膜層109、及び、膜厚が58[nm]である酸化シリコン膜層107がそれぞれ積層されることで、反射防止膜103が形成されている。第4実施例では、反射防止膜の透過率特性について、第3実施例に比べればやや劣るものの第1及び第2実施例とほぼ同等の特性が実現されている。
 上記第4実施例の変形例である第5の実施例のPDAにおける反射防止膜の膜構造(a)及び透過率特性(b)を図9に示す。これは第4実施例のPDAにおける反射防止膜103を構成する下層の酸化シリコン膜層104を、薄い酸化シリコン膜層104と酸化アルミニウム膜層105との積層体で置き換え、さらに上層の酸化シリコン膜層107を酸化アルミニウム膜層108に置き換えた変形例である。なお、膜層の材質の変更に伴い、各膜層の厚さも反射防止膜の透過率を最大化するために変更されている。
 この第5実施例では、200[nm]~320[nm]の波長領域を6つに分割し、シリコン基板上に、膜厚が5[nm]である酸化シリコン膜層、30[nm]~62[nm]の範囲でグループ毎に異なる膜厚を有する酸化アルミニウム膜層、膜厚が7[nm]であるアルミニウム膜層、及び、膜厚が45[nm]である酸化アルミニウム膜層がそれぞれ積層されることで、反射防止膜が形成されている。この第5実施例のPDAにおける反射防止膜103は、全波長域に亘る平均透過率が89.7%、200[nm]~320[nm]の波長領域での平均透過率は81.4%と、第4実施例に比べて透過特性が改善されており、第3実施例に匹敵する高い透過率特性を持った反射防止膜を実現できる。
 なお、上記実施例は本発明の一例であり、本発明の趣旨の範囲で適宜変形や修正、追加を行っても本願特許請求の範囲に包含されることは明らかである。
 即ち、上述したように、反射防止膜を構成する膜層の材料は上記記載の例を含めて様々に変更することができる。また、その膜厚も適宜変更することができる。また、上記各実施例で示した測定波長範囲全体を複数のグループに区分する境界波長は一例であり、任意に変更することができる。ただし、上記理由により、一般に紫外波長域では可視波長域や近赤外波長域に比べて細かい区分が必要となり、必然的に同じ波長幅におけるグループ数は多くなる。
1…光源
2、6…レンズ
3…シャッタ
4…試料セル
5…溶液試料
7…スリット
8…分光器
10…フォトダイオードアレイ(PDA)検出器
100…フォトダイオードアレイ(PDA)
101…フォトダイオード(PD)
102…シリコン基板
103…反射防止膜
104、107…酸化シリコン膜層
105、108…酸化アルミニウム膜層
106、110…窒化シリコン膜層
109…アルミニウム膜層

Claims (10)

  1.  複数のフォトダイオードが一次元的に配列されてなり、分光器により波長分散された波長分散光を並行して検出するために、前記フォトダイオードの配列方向とその波長分散方向とが一致するように配置される分光計測用のフォトダイオードアレイであって、
     各グループがそれぞれ前記配列方向に隣接した1個以上のフォトダイオードを含み且つ少なくとも1つのグループが2個以上のフォトダイオードを含むように、前記複数のフォトダイオードの全てが複数のグループに区分され、
     それらグループは、グループ毎に共通の透過率特性を有し且つ隣接するグループ間では異なる透過率特性を有する反射防止膜で被覆されてなることを特徴とする分光計測用フォトダイオードアレイ。
  2.  請求項1に記載の分光計測用フォトダイオードアレイであって、
     前記グループ毎に異なる反射防止膜は、当該グループに属する全てのフォトダイオードの表面がそれらフォトダイオードに入射する光の波長域の中で透過率が極大を示すような透過率特性を有することを特徴とする分光計測用フォトダイオードアレイ。
  3.  請求項1又は2に記載の分光計測用フォトダイオードアレイであって、
     少なくとも紫外波長域とこれに連続する可視波長域とを含む波長域の光を測定対象とし、紫外波長域の光が入射するフォトダイオードが属するグループの数が、可視波長域の光が入射するフォトダイオードが属するグループの数よりも多く、且つ紫外波長域の光が入射するフォトダイオードが3つ以上のグループに区分されていることを特徴とする分光計測用フォトダイオードアレイ。
  4.  請求項1乃至3のいずれかに記載の分光計測用フォトダイオードアレイであって、
     各グループにおいて、そのグループに属するフォトダイオードの表面を被覆している反射防止膜の透過率の最小値は、同波長範囲の透過率の最大値の75%以上であることを特徴とする分光計測用フォトダイオードアレイ。
  5.  請求項1乃至4のいずれかに記載の分光計測用フォトダイオードアレイであって、
     フォトダイオードが形成されている基板の材質がシリコンであり、且つ前記反射防止膜を構成する膜層の材質が、酸化シリコン、酸化アルミニウム、窒化シリコン、アルミニウム、酸化イットリウム、フッ化マグネシウム、酸化ハフニウム、酸化チタニウム、又は銀の少なくとも一つを含むことを特徴とする分光計測用フォトダイオードアレイ。
  6.  請求項1乃至5のいずれかに記載の分光計測用フォトダイオードアレイであって、
     複数のグループに属するフォトダイオードを被覆する反射防止膜は、材質及び厚さが共通である膜層を含むことを特徴とする分光計測用フォトダイオードアレイ。
  7.  請求項6に記載の分光計測用フォトダイオードアレイであって、
     前記反射防止膜は、材質及び厚さが共通である膜層に加えて、材質が共通で厚さのみが異なる少なくとも一つの膜層を含むことを特徴とする分光計測用フォトダイオードアレイ。
  8.  請求項6に記載の分光計測用フォトダイオードアレイであって、
     前記反射防止膜は、基板であるシリコン表面に接する酸化シリコンの膜層と、この酸化シリコンの膜層の次に積層される、酸化シリコンより屈折率の実部が大きい誘電体の膜層とを共通に含むことを特徴とする分光計測用フォトダイオードアレイ。
  9.  請求項6に記載の分光計測用フォトダイオードアレイであって、
     前記反射防止膜は、基板であるシリコン表面に接する酸化シリコンの膜層と、この酸化シリコンの膜層の次に積層される、金属の膜層とを共通に含むことを特徴とする分光計測用フォトダイオードアレイ。
  10.  請求項1乃至9のいずれかに記載の分光計測用フォトダイオードアレイを検出器として用いた分光計測装置であって、
     分光器による波長分散光の波長分散方向に、前記分光計測用フォトダイオードアレイの複数のフォトダイオードが一次元的に配列されてなることを特徴とする分光計測装置。
PCT/JP2013/058857 2012-03-27 2013-03-26 分光計測用フォトダイオードアレイ及び分光計測装置 WO2013146816A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP13767497.4A EP2833106A4 (en) 2012-03-27 2013-03-26 FOTODIODENARY ARRAY FOR SPECTROSCOPIC MEASUREMENTS AND DEVICE FOR SPECTROSCOPIC MEASUREMENTS
JP2014507929A JP5892567B2 (ja) 2012-03-27 2013-03-26 分光計測用フォトダイオードアレイ及び分光計測装置
US14/388,567 US9429471B2 (en) 2012-03-27 2013-03-26 Photodiode array for spectrometric measurements and spectrometric measurement system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-072050 2012-03-27
JP2012072050 2012-03-27

Publications (1)

Publication Number Publication Date
WO2013146816A1 true WO2013146816A1 (ja) 2013-10-03

Family

ID=49260067

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/058857 WO2013146816A1 (ja) 2012-03-27 2013-03-26 分光計測用フォトダイオードアレイ及び分光計測装置

Country Status (4)

Country Link
US (1) US9429471B2 (ja)
EP (1) EP2833106A4 (ja)
JP (1) JP5892567B2 (ja)
WO (1) WO2013146816A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2922097A1 (fr) * 2014-03-20 2015-09-23 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procédé d'optimisation du rendement quantique d'une photodiode
JP2018163968A (ja) * 2017-03-24 2018-10-18 エイブリック株式会社 紫外線受光素子を有する半導体装置およびその製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05188202A (ja) * 1992-01-10 1993-07-30 Canon Inc 多層光学薄膜
JPH06229829A (ja) * 1993-02-04 1994-08-19 Olympus Optical Co Ltd 受光素子アレイ
JP2001013304A (ja) * 1999-06-30 2001-01-19 Olympus Optical Co Ltd 光学部品
JP2003139611A (ja) * 2001-11-06 2003-05-14 Olympus Optical Co Ltd 分光光度計

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5354989A (en) * 1992-12-28 1994-10-11 Advanced Fuel Research Inc. Superconducting detector assembly and apparatus utilizing same
US7085492B2 (en) * 2001-08-27 2006-08-01 Ibsen Photonics A/S Wavelength division multiplexed device
US7901870B1 (en) * 2004-05-12 2011-03-08 Cirrex Systems Llc Adjusting optical properties of optical thin films
DE102009021936A1 (de) * 2009-05-19 2010-11-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Optisches Filter und ein Verfahren zur Herstellung eines optischen Filters

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05188202A (ja) * 1992-01-10 1993-07-30 Canon Inc 多層光学薄膜
JPH06229829A (ja) * 1993-02-04 1994-08-19 Olympus Optical Co Ltd 受光素子アレイ
JP2001013304A (ja) * 1999-06-30 2001-01-19 Olympus Optical Co Ltd 光学部品
JP2003139611A (ja) * 2001-11-06 2003-05-14 Olympus Optical Co Ltd 分光光度計

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"NMOS linear image sensor S3901/S3904 series", HAMAMATSU PHOTONICS K. K., 17 January 2012 (2012-01-17), Retrieved from the Internet <URL:http://jp.hamamatsu.com/resources/products/ssd/pdf/s3901-128q_etc_kmpd1036j03.pdf>
See also references of EP2833106A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2922097A1 (fr) * 2014-03-20 2015-09-23 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procédé d'optimisation du rendement quantique d'une photodiode
FR3018954A1 (fr) * 2014-03-20 2015-09-25 Commissariat Energie Atomique Procede d'optimisation du rendement quantique d'une photodiode
US9812615B2 (en) 2014-03-20 2017-11-07 Stmicroelectronics Sa Method of optimizing the quantum efficiency of a photodiode
JP2018163968A (ja) * 2017-03-24 2018-10-18 エイブリック株式会社 紫外線受光素子を有する半導体装置およびその製造方法

Also Published As

Publication number Publication date
JPWO2013146816A1 (ja) 2015-12-14
EP2833106A1 (en) 2015-02-04
US9429471B2 (en) 2016-08-30
US20150048239A1 (en) 2015-02-19
JP5892567B2 (ja) 2016-03-23
EP2833106A4 (en) 2015-04-22

Similar Documents

Publication Publication Date Title
Tang et al. Acquisition of hyperspectral data with colloidal quantum dots
Chen et al. A CMOS image sensor integrated with plasmonic colour filters
US20170047366A1 (en) Variable optical filter and a wavelength-selective sensor based thereon
JP5973149B2 (ja) 光検出装置
US10012541B2 (en) Optical filter element for devices for converting spectral information into location information
US7916301B2 (en) Filter design for colorimetric measurement
JPWO2018155486A1 (ja) 固体撮像素子及び撮像装置
WO2015116756A1 (en) An optical filter and spectrometer
JP2002277326A (ja) 分光測光装置
JPH06323900A (ja) 共鳴キャビティを有する光ディテクタ
JPWO2003016842A1 (ja) 分光装置及び分光方法
JP5892567B2 (ja) 分光計測用フォトダイオードアレイ及び分光計測装置
CN111164394B (zh) 光学感测装置和用于制造光学感测装置的方法
JP2011511946A (ja) 面積が拡大縮小された光検出器を有する色検出器
US7576860B2 (en) Light filter having a wedge-shaped profile
CN102645740A (zh) 波长可变干涉滤波器、光模块及光分析装置
Zhou et al. Nanosphere natural lithography surface texturing as anti-reflective layer on SiC photodiodes
US20170201657A1 (en) Bandpass filter with variable passband
US20160064578A1 (en) Photosensor
CN113874689A (zh) 使用多通道色彩传感器的光谱重建
JP5498399B2 (ja) 色検出器
JP2016174163A (ja) 光学フィルター
Puspitosari et al. Comparison of FTPS performed on thin films and solar cells
CN206003791U (zh) 红外光子探测器
KR20240036482A (ko) 광 간섭 필터

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13767497

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014507929

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14388567

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013767497

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE