WO2013146589A1 - Liquid crystal display element and manufacturing method therefor - Google Patents

Liquid crystal display element and manufacturing method therefor Download PDF

Info

Publication number
WO2013146589A1
WO2013146589A1 PCT/JP2013/058303 JP2013058303W WO2013146589A1 WO 2013146589 A1 WO2013146589 A1 WO 2013146589A1 JP 2013058303 W JP2013058303 W JP 2013058303W WO 2013146589 A1 WO2013146589 A1 WO 2013146589A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
display element
crystal display
alignment film
group
Prior art date
Application number
PCT/JP2013/058303
Other languages
French (fr)
Japanese (ja)
Inventor
達哉 名木
宏之 桜井
皇晶 筒井
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to KR1020147030401A priority Critical patent/KR20140139115A/en
Priority to CN201380028338.1A priority patent/CN104335112A/en
Publication of WO2013146589A1 publication Critical patent/WO2013146589A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • C08G73/1078Partially aromatic polyimides wholly aromatic in the diamino moiety
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133715Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films by first depositing a monomer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells

Definitions

  • the present invention relates to a liquid crystal display element and a manufacturing method thereof.
  • the liquid crystal display element is configured by sandwiching and encapsulating a liquid crystal layer between a pair of substrates and aligning the liquid crystal of the liquid crystal layer in a certain direction.
  • the alignment of the liquid crystal is realized by providing a liquid crystal alignment film having a liquid crystal alignment control ability on the substrate surface.
  • a liquid crystal responds by applying a voltage to an electrode disposed between a substrate and a liquid crystal alignment film, and uses a change in the alignment of the liquid crystal to change a desired image in an image forming region. Display can be made.
  • the liquid crystal display element can provide a thin, lightweight and high-quality display device.
  • a frame-shaped sealing material disposed on a substrate is used as a method for enclosing a liquid crystal forming a liquid crystal layer between a pair of substrates. Then, a vacuum injection method, a drop injection method, or the like is used, and liquid crystal is injected into the inside of the frame-shaped sealing material, and a liquid crystal layer is sealed between the substrates.
  • the drop injection method is a preferred method in recent years because it is effective in reducing the amount of liquid crystal used.
  • an ultraviolet curable sealing material is formed in a frame shape around one substrate, and in a vacuum atmosphere, liquid crystal is dropped on the substrate in the sealing material frame, and the liquid crystal is dropped.
  • the prepared substrate and the other substrate are bonded together.
  • it is returned to the atmosphere, and the liquid crystal between both substrates bonded together is diffused by atmospheric pressure.
  • the sealing material is irradiated with ultraviolet rays, the sealing material is cured, and the liquid crystal is sealed.
  • liquid crystal alignment film is formed by subjecting a polymer film such as polyimide formed on the substrate to an alignment process such as a rubbing process or a photo-alignment process performed by irradiating polarized ultraviolet rays.
  • the rubbing treatment for the liquid crystal alignment film means that the surface of the substrate is rubbed (rubbed) with a cloth such as cotton, nylon or polyester against the organic film such as polyimide on the substrate. This is a treatment method for orienting liquid crystal. Since this rubbing treatment can easily realize a relatively stable alignment state of liquid crystals, it has been used in the manufacturing process of conventional liquid crystal display elements.
  • Patent Document 2 There are various methods for photo-alignment treatment. Anisotropy is formed in the organic film constituting the liquid crystal alignment film by linearly polarized light or collimated light, and the liquid crystal is aligned according to the anisotropy. As light, ultraviolet rays can be preferably used. This photo-alignment treatment does not require rubbing, can constitute a liquid crystal display element without concern about dust generation, etc., and can achieve the desired liquid crystal alignment.
  • the liquid crystal display element provides a thin, lightweight, high-quality display device.
  • a process of encapsulating a liquid crystal material between substrates and an alignment process for aligning the liquid crystal A process is included.
  • a process for irradiating light such as ultraviolet rays has been studied and effectively utilized.
  • Such a process using light irradiation improves the problems of the manufacturing process such as the conventional vacuum injection method and rubbing process, and is effective in improving the production efficiency and the manufacturing yield.
  • the charge retention characteristics of the liquid crystal display element may be lowered and the display quality may be lowered.
  • the liquid crystal alignment film in the image forming region may be irradiated with ultraviolet rays.
  • the charge retention characteristic is lowered, and the display quality of the image may be lowered.
  • the liquid crystal alignment film may be provided with a liquid crystal alignment control ability using polarized ultraviolet rays.
  • the charge retention characteristic is lowered and the display quality of the image may be lowered.
  • an object of the present invention is to provide a liquid crystal display element that is manufactured by performing light irradiation treatment with ultraviolet rays and in which deterioration of display quality is suppressed.
  • Another object of the present invention is to provide a method for manufacturing a liquid crystal display element, which performs a light irradiation treatment with ultraviolet rays and manufactures a liquid crystal display element in which deterioration of display quality is suppressed.
  • At least one layer selected from a polyimide precursor formed using a compound represented by the following formula (1) and a polyimide obtained by imidizing the polyimide is formed in a pixel formation region.
  • a liquid crystal alignment film containing coalescence A liquid crystal display element, wherein the pixel formation region is configured by irradiating with ultraviolet rays.
  • the liquid crystal alignment film excludes a compound represented by the above formula (1) and a compound represented by the following formula (AM) (a compound represented by the above formula (1)). And at least one polymer selected from polyimides obtained by imidizing it.
  • AM a compound represented by the above formula (1)
  • Y 1 is a divalent organic group, and two or more types may be present.
  • R 1 and R 2 are a hydrogen atom or a monovalent group. Represents an organic group.
  • the liquid crystal alignment film is obtained by imidizing a polyimide precursor formed using at least one of the compounds represented by the following formulas (CB1) to (CB5). It is preferable that the polymer contains at least one polymer selected from polyimides.
  • Z 1 is a tetravalent organic group having 4 to 13 carbon atoms and contains a non-aromatic cyclic hydrocarbon group having 4 to 6 carbon atoms.
  • R 3 represents an alkyl group having 1 to 5 carbon atoms, preferably 1 to 2 carbon atoms.
  • a second aspect of the present invention is a method of manufacturing a liquid crystal display element having a liquid crystal layer and a liquid crystal alignment film in a pixel formation region, Forming the liquid crystal alignment film containing at least one polymer selected from a polyimide precursor formed using a compound represented by the following formula (1) and a polyimide obtained by imidizing the same in a pixel formation region
  • a liquid crystal alignment film forming step The present invention relates to a method of manufacturing a liquid crystal display element, comprising a light irradiation step of irradiating a pixel formation region with ultraviolet rays after the liquid crystal alignment film formation step.
  • the liquid crystal alignment film excludes a compound represented by the above formula (1) and a compound represented by the following formula (AM) (a compound represented by the above formula (1). And at least one polymer selected from polyimides obtained by imidizing it.
  • Y 1 is a divalent organic group, and two or more types may be present.
  • R 1 and R 2 are a hydrogen atom or a monovalent group. Represents an organic group.
  • the liquid crystal alignment film is obtained by imidizing a polyimide precursor formed using at least one of the compounds represented by the following formulas (CB1) to (CB5). It is preferable that the polymer contains at least one polymer selected from polyimides.
  • Z 1 is a tetravalent organic group having 4 to 13 carbon atoms and contains a non-aromatic cyclic hydrocarbon group having 4 to 6 carbon atoms.
  • R 3 represents an alkyl group having 1 to 5 carbon atoms, preferably 1 to 2 carbon atoms.
  • the method includes a seal forming step of forming a sealant around the pixel formation region,
  • the light irradiation step is preferably a step of curing the sealing material in the seal forming step.
  • the light irradiation step is preferably a step of aligning the liquid crystal alignment film.
  • the method includes a step of forming a liquid crystal layer in a pixel formation region after the liquid crystal alignment film formation step,
  • the light irradiation step is preferably a step of irradiating the pixel formation region with ultraviolet light while driving the liquid crystal of the liquid crystal layer.
  • the liquid crystal layer comprises a liquid crystal and a photopolymerizable compound
  • the light irradiation step is preferably a step of polymerizing the photopolymerizable compound in the liquid crystal layer in the pixel formation region.
  • the method includes a step of forming a liquid crystal layer in a pixel formation region after the liquid crystal alignment film formation step,
  • the light irradiation step is preferably a step of irradiating the pixel formation region with ultraviolet light while driving the liquid crystal of the liquid crystal layer.
  • the first aspect of the present invention it is possible to provide a liquid crystal display element that is manufactured by performing a light irradiation process for irradiating ultraviolet rays and in which deterioration of display quality is suppressed.
  • the second aspect of the present invention it is possible to provide a method for manufacturing a liquid crystal display element, which performs a light irradiation process for irradiating ultraviolet rays, and manufactures a liquid crystal display element in which deterioration of display quality is suppressed.
  • the main steps include a step of encapsulating liquid crystals between substrates and an alignment treatment step of a liquid crystal alignment film for aligning liquid crystals.
  • a desired effect is realized by curing a photocurable sealing material using light, particularly visible light or ultraviolet irradiation, or performing a photoalignment treatment of the liquid crystal alignment film. be able to.
  • a liquid crystal to which a small amount (typically 0.2 wt% to 1 wt%) of a photopolymerizable compound is added is used to sandwich the liquid crystal.
  • the ultraviolet rays are irradiated in a state where a voltage is applied between the electrodes of both substrates.
  • the photopolymerizable compound reacts, polymerizes and crosslinks by such ultraviolet irradiation treatment, so that the response speed of the liquid crystal display element is increased.
  • a liquid crystal display element of a type manufactured by irradiating ultraviolet rays with a voltage applied between the electrodes of both substrates sandwiching the liquid crystal (hereinafter referred to simply as an ultraviolet irradiation method in this specification).
  • This ultraviolet irradiation type liquid crystal display element is a VA (Vertical Alignment) mode liquid crystal display element in which the initial alignment of the liquid crystal is vertical alignment, and as described above, a voltage is applied between the electrodes of both substrates sandwiching the liquid crystal.
  • a liquid crystal in which a small amount of a photopolymerizable compound is added can be used as the liquid crystal display element of the ultraviolet irradiation method.
  • An ultraviolet irradiation type liquid crystal display element can realize excellent response characteristics of liquid crystal.
  • the liquid crystal display element can realize desired characteristics by including light irradiation, particularly ultraviolet irradiation treatment in its manufacturing process.
  • the characteristics may be deteriorated by receiving light, particularly ultraviolet rays, in the formation region of the pixel that performs image display.
  • the charge retention characteristics for example, charge retention ratio
  • the residual DC characteristics may be lowered.
  • the present inventors have found that it is effective in solving such problems by optimizing the structure of the liquid crystal alignment film of the liquid crystal display element.
  • a highly heat-resistant and high-strength polyimide film is frequently used as a liquid crystal alignment film for aligning liquid crystals.
  • the method of using the following liquid crystal aligning agents is used suitably.
  • a liquid crystal aligning agent containing a polyimide precursor such as polyamic acid is prepared.
  • substrate, and obtaining a polyimide film is known.
  • a polyimide that has been imidized in advance is dissolved in a solvent to prepare a solvent-soluble liquid crystal aligning agent. And there exists a method of forming a coating film using the liquid crystal aligning agent, and obtaining a polyimide film.
  • the present inventors have found that by optimizing the molecular structure of such a polyimide-based liquid crystal alignment film, it is possible to reduce the above-described problems caused by irradiation with light, particularly ultraviolet rays. That is, the inventors of the present invention are liquid crystal display elements that are created through a process of irradiating the pixel formation region with light, particularly ultraviolet rays, and are selected from a polyimide precursor having an optimal structure and a polyimide obtained by imidizing it. Thus, a liquid crystal display element having a liquid crystal alignment film containing at least one polymer and having reduced performance deterioration with respect to irradiation with light, particularly ultraviolet rays, was obtained, and the present invention was achieved.
  • embodiments of the present invention will be described.
  • Embodiment 1 The liquid crystal display element which is the 1st Embodiment of this invention is demonstrated using drawing.
  • the liquid crystal display element of the present embodiment can be a color liquid crystal display element of a TN (Twisted Nematic) mode.
  • the liquid crystal display element of the present embodiment includes, for example, a CF substrate including a TFT substrate on which a thin film transistor (TFT) is disposed, and a color filter layer (hereinafter also referred to as a CF layer). And a sealing material is disposed around a pixel formation region for image formation, and the substrate is fixed between the substrates.
  • TFT thin film transistor
  • CF layer color filter layer
  • FIG. 1 is a cross-sectional view schematically illustrating the structure of the liquid crystal display element of this embodiment.
  • a liquid crystal display element 1 shown in FIG. 1 is an example of the liquid crystal display element according to the first embodiment of the present invention, and as described above, a transmissive TN mode liquid crystal display element driven by TFTs can be used.
  • the liquid crystal display element 1 is configured by sandwiching a liquid crystal layer 4 between the above-described TFT substrate 2 and a CF substrate 3 having a CF layer 7.
  • the TFT substrate 2 of the liquid crystal display element 1 has a TFT (not shown) and a transparent pixel electrode 6 made of ITO or the like formed in a matrix on the liquid crystal layer 4 side of the transparent substrate 5.
  • the TFT substrate 2 includes a plurality of gate lines (not shown) provided on the substrate 5 so as to extend in parallel to each other, a gate insulating film (not shown) provided so as to cover each gate line, and a gate insulating film on the gate insulating film.
  • the TFT includes an interlayer insulating film provided so as to cover each TFT and each source line, and a plurality of pixel electrodes 6 formed in a matrix on the interlayer insulating film and connected to each TFT.
  • the CF substrate 3 of the liquid crystal display element 1 is configured by arranging the CF layer 7 and the protective layer 8 on the liquid crystal layer 4 side of the transparent substrate 15.
  • the CF layer 7 has a red, green and blue colored layer 9 provided at a position facing the pixel electrode 6 of the TFT substrate 2 and a black matrix 10 provided between the colored layers 9 to block light. Configured.
  • a transparent common electrode 11 made of ITO or the like is disposed on the protective layer 8 on the CF layer 7 of the CF substrate 3.
  • the TFT substrate 2 and the CF substrate 3 are each provided with a liquid crystal alignment film 12 on the surface in contact with the liquid crystal layer 4.
  • the liquid crystal alignment film 12 can be a liquid crystal alignment film 12 configured using a polyimide film having a desired structure, which will be described in detail later.
  • the liquid crystal alignment film 12 is subjected to an alignment process such as a rubbing process, whereby a uniform alignment in the liquid crystal layer 4 sandwiched between the TFT substrate 2 and the CF substrate 3 is achieved. realizable.
  • the liquid crystal display element 1 of the present embodiment can be a TN mode liquid crystal display element.
  • the liquid crystal layer 4 is made of nematic liquid crystal and exhibits a twist alignment state of 90 degrees between the TFT substrate 2 and the CF substrate 3 by the action of the liquid crystal alignment film 12.
  • polarizing plates 17 are respectively disposed on the outer surface opposite to the liquid crystal layer 4 side.
  • the distance (also referred to as a gap) between the TFT substrate 2 and the CF substrate 3 is preferably 1 ⁇ m to 20 ⁇ m, and the gap is fixed and maintained by a sealant 16 provided in the peripheral portion of the pixel electrode 6 arrangement region. ing.
  • the seal material 16 is provided with a pixel frame 6 and is provided in a rectangular frame shape so as to surround the periphery of a pixel formation region for displaying an image.
  • the frame width of the sealing material 16 is not particularly limited, but can be set to 0.5 mm or more and 2.0 mm or less, for example.
  • an ultraviolet curable resin such as an acrylic resin, a urethane resin, a polyester resin, and an epoxy resin can be used. These resins may be used alone or in combination of two or more.
  • the sealing material 16 uses, for example, an ultraviolet curable resin and is cured by being irradiated with ultraviolet rays. Therefore, the liquid crystal display element 1 is also provided with irradiation of ultraviolet rays for curing the sealing material 16 in the pixel formation region as well.
  • the liquid crystal display element 1 irradiated with ultraviolet rays even in the pixel formation region, one pixel is formed for each pixel electrode 6, and a voltage of a predetermined magnitude is applied to the liquid crystal layer 4 in each pixel.
  • the alignment state of the liquid crystal of the liquid crystal layer 4 is changed, and for example, the transmittance of visible light incident from a backlight (not shown) is adjusted to display an image.
  • the liquid crystal display element 1 having the above structure can be manufactured as follows. First, the TFT substrate 2 having the above-described structure is prepared. The TFT substrate 2 is manufactured, for example, by forming various electrodes including TFTs and pixel electrodes 6 on a substrate 5 made of a transparent glass substrate or the like according to a known method. Then, a liquid crystal alignment film 12 is formed on the TFT substrate 2. Details of the liquid crystal alignment film 12 and the method of forming the liquid crystal alignment film 12 will be described later.
  • the CF substrate 3 having the above structure is prepared.
  • the CF substrate 3 is formed, for example, by patterning the CF layer 7 having the colored layer 9 and the black matrix 10, the common electrode 11 and the like on the substrate 15 made of a transparent glass substrate or the like.
  • a liquid crystal alignment film 12 is formed on the surface of the common electrode 11.
  • the black matrix is made of a metal material such as Ta (tantalum), Cr (chromium), Mo (molybdenum), Ni (nickel), Ti (titanium), Cu (copper), Al (aluminum), or a black pigment such as carbon. Are dispersed or a resin material in which a plurality of colored layers having light transmittance are laminated.
  • an ultraviolet curable sealing material is used, a dispenser method, a method of printing in a desired shape, or a spin coating method.
  • the sealing material 16 is formed in a frame shape according to a patterning method using a photolithography method.
  • liquid crystal is dropped onto the TFT substrate 2 within the frame of the sealing material 16 and the TFT substrate 2 and the CF substrate 3 onto which the liquid crystal has been dropped are bonded together.
  • the TFT substrate 2 and the CF substrate 3 and their state are returned to the atmosphere, and the liquid crystal between the TFT 2 substrate and the CF substrate 3 bonded together is diffused by atmospheric pressure to form the liquid crystal layer 4.
  • the sealing material 16 is irradiated with ultraviolet rays to cure the sealing material 16.
  • the polarizing plate 17 is arrange
  • the light irradiation step of irradiating ultraviolet rays is a step of curing the sealing material 16, and is a step of fixing the TFT substrate 2 and the CF substrate 3 to each other.
  • the irradiation light has a wavelength characteristic suitable for curing the sealing material 16, and can be an ultraviolet ray having a wavelength of 200 nm to 400 nm.
  • the irradiation amount of an ultraviolet-ray it is preferable to select the quantity suitable for hardening of a sealing material.
  • the ultraviolet light is also applied to the pixel formation region where the pixel electrode 6, the liquid crystal alignment film 12, the liquid crystal layer 4, and the like are disposed together with the sealing material 16. Irradiation has been made.
  • the light irradiation process is a process of curing the sealing material 16 by irradiating the entire area with ultraviolet rays without dividing the formation area of the sealing material 16 and the formation area of the pixels more easily.
  • the liquid crystal display element 1 of the present embodiment is configured using a liquid crystal alignment film 12 including a polyimide film having a structure to be described later. For this reason, for example, even when the sealing material 16 is cured, even if it is irradiated with ultraviolet rays in the pixel formation region, the deterioration of the performance is suppressed. Therefore, even if the liquid crystal display element 1 of the present embodiment is produced through a process of irradiating the pixel formation region with ultraviolet rays, it can suppress performance degradation due to ultraviolet irradiation, which has been a problem in the past. it can. That is, according to the present embodiment, it is possible to provide the liquid crystal display element 1 that is manufactured using a light irradiation process that irradiates ultraviolet rays and that suppresses the deterioration of display quality.
  • a visible light curable sealing material can be used for forming the sealing material 16.
  • a photocurable resin that is cured by irradiating visible light energy such as an acrylic resin, a methacrylic resin, an epoxy resin, and a silicone resin.
  • the liquid crystal display element 1 of the present embodiment is configured using the liquid crystal alignment film 12 including a polyimide film having a specific structure to be described later.
  • the sealing material 16 is cured, Even in the formation region, even if visible light is irradiated, deterioration of performance is suppressed. Therefore, the liquid crystal display element 1 of the present embodiment can suppress performance degradation due to visible light irradiation even when the liquid crystal display element 1 is formed through a process of irradiating visible light to a pixel formation region.
  • the liquid crystal display element of the present embodiment includes an STN (Super Twisted Nematic) mode, an IPS (In-Plane Switching) mode, a VA (Vertical Alignment) mode, or an OCB (Optically Compensating Bending). ) Mode or the like.
  • STN Super Twisted Nematic
  • IPS In-Plane Switching
  • VA Very Alignment
  • OCB Optically Compensating Bending
  • the liquid crystal display element of the present embodiment having the above-described configuration is characterized by being manufactured by being irradiated with ultraviolet rays and suppressing deterioration in display quality.
  • a liquid crystal alignment film is important. It becomes a necessary component. Therefore, a liquid crystal alignment film that is a main component of the liquid crystal display element of the present embodiment and is effective in reducing performance deterioration even when irradiated with light such as visible light or ultraviolet light will be described.
  • liquid crystal display element of this embodiment such as the VA mode also includes a suitable liquid crystal alignment film.
  • the liquid crystal alignment film of the present embodiment constituting the liquid crystal display element of the present embodiment is preferably a liquid crystal alignment film containing at least one polymer selected from a polyimide precursor and a polyimide obtained by imidizing it. By including such a polymer, the liquid crystal alignment film of this embodiment has excellent durability such as high heat resistance.
  • the liquid crystal alignment film of this embodiment is an effective liquid crystal alignment film for reducing performance deterioration of the liquid crystal display element even when irradiated with ultraviolet rays.
  • a liquid crystal alignment film containing a polymer such as polyimide is formed on a substrate such as a TFT substrate or a CF substrate
  • a method using a liquid crystal aligning agent is preferable.
  • the liquid crystal aligning agent contains at least one polymer selected from a polyimide precursor obtained by reacting a diamine compound and a tetracarboxylic acid derivative and a polyimide obtained by imidizing it. preferable.
  • a liquid crystal alignment film can be formed by heating a coating film of a liquid crystal aligning agent on a substrate such as a TFT substrate or a CF substrate to form a polymer film such as polyimide, and performing a necessary alignment treatment.
  • the liquid crystal alignment film of this embodiment is preferably formed using the liquid crystal alignment agent of this embodiment.
  • the liquid crystal aligning agent of this embodiment contains at least 1 sort (s) of polymer chosen from the polyimide precursor and the polyimide obtained by imidating it, and the weight is formed so that the liquid crystal aligning film of the said characteristic may be formed.
  • the structure of coalescence is optimized. As a result, due to the structural characteristics of the polyimide precursor and the polymer such as polyimide contained in the liquid crystal aligning agent, it is possible to provide a liquid crystal aligning film effective for reducing performance deterioration even when irradiated with ultraviolet rays.
  • the polyimide precursor that can be contained in the liquid crystal aligning agent is obtained by reacting a diamine compound and a tetracarboxylic acid derivative, and the polyimide is obtained by imidizing the polyimide precursor.
  • a diamine compound having a specific structure is preferably selected and used for the synthesis thereof.
  • the liquid crystal aligning agent of this embodiment is at least one selected from a polyimide precursor obtained by reacting a diamine compound having a specific structure and a tetracarboxylic acid derivative, and a polyimide obtained by imidizing it.
  • the liquid crystal alignment film of this embodiment can be provided.
  • the diamine compound and tetracarboxylic acid derivative having a specific structure for forming the polyimide precursor and polyimide that can be contained in the liquid crystal aligning agent of the present embodiment will be described in more detail.
  • the polyimide precursor and polyimide will be described in more detail, and the liquid crystal aligning agent of this embodiment containing them and the formation of the liquid crystal alignment film of this embodiment using the same will be described in more detail.
  • the polyimide precursor includes polyamic acid, polyamic acid ester, and the like.
  • a diamine compound having a specific structure suitable for the synthesis of the polyimide precursor contained in the liquid crystal aligning agent of this embodiment for forming the liquid crystal aligning film of this embodiment a compound represented by the following formula (1) Is used.
  • diamine for reacting with a tetracarboxylic acid derivative and synthesizing a polyimide precursor and a polyimide which can be contained in the liquid crystal aligning agent of this embodiment only the diamine compound represented by the above formula (1) is used alone. May be used. Also, a combination of the compound represented by the above formula (1) and another diamine compound represented by the following formula (AM) described below, other than the diamine compound represented by the above formula (1) May be used.
  • AM diamine compound represented by the following formula
  • Y 1 is a divalent organic group, and two or more kinds may be mixed.
  • R 1 and R 2 represent a hydrogen atom or a monovalent organic group.
  • R 1 and R 2 are each independently a hydrogen atom or an optionally substituted alkyl group, alkenyl group, or alkynyl group having 1 to 10 carbon atoms. is there.
  • R 1 and R 2 are each independently a hydrogen atom or an optionally substituted alkyl group, alkenyl group, alkynyl group having 1 to 10 carbon atoms.
  • the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, a t-butyl group, a hexyl group, an octyl group, a decyl group, a cyclopentyl group, a cyclohexyl group, and a bicyclohexyl group. It is done.
  • alkenyl group examples include those obtained by replacing one or more CH—CH structures present in the alkyl group with C ⁇ C structures, and more specifically, vinyl groups, allyl groups, 1-propenyl groups.
  • alkynyl group examples include those obtained by replacing one or more CH 2 —CH 2 structures present in the alkyl group with a C ⁇ C structure, and more specifically, an ethynyl group, a 1-propynyl group, And 2-propynyl group.
  • the above alkyl group, alkenyl group, and alkynyl group may have a substituent as long as the number of carbon atoms is 1 to 10 as a whole, and may further form a ring structure by the substituent.
  • the formation of a ring structure by a substituent means that the substituents or a substituent and a part of the mother skeleton are bonded to form a ring structure.
  • examples of the substituent include halogen groups, hydroxyl groups, thiol groups, nitro groups, aryl groups, organooxy groups, organothio groups, organosilyl groups, acyl groups, ester groups, thioester groups, phosphate ester groups, amides. Groups, alkyl groups, alkenyl groups and alkynyl groups.
  • halogen group examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • a phenyl group is mentioned as an aryl group which is the above-mentioned substituent. This aryl group may be further substituted with the other substituent described above.
  • the organooxy group which is the above-described substituent can have a structure represented by OR.
  • the R may be the same or different, and examples thereof include the alkyl group, alkenyl group, alkynyl group, and aryl group described above. These Rs may be further substituted with the substituent described above.
  • Specific examples of the organooxy group include methoxy group, ethoxy group, propyloxy group, butoxy group, pentyloxy group, hexyloxy group, heptyloxy group, octyloxy group and the like.
  • the organothio group which is the above-described substituent can have a structure represented by —S—R.
  • R include the aforementioned alkyl group, alkenyl group, alkynyl group, aryl group and the like. These Rs may be further substituted with the substituent described above.
  • Specific examples of the organothio group include a methylthio group, an ethylthio group, a propylthio group, a butylthio group, a pentylthio group, a hexylthio group, a heptylthio group, and an octylthio group.
  • the organosilyl group which is the above-described substituent can have a structure represented by —Si— (R) 3 .
  • the R may be the same or different, and examples thereof include the alkyl group, alkenyl group, alkynyl group, aryl group described above. These Rs may be further substituted with the substituent described above.
  • organosilyl group examples include a trimethylsilyl group, a triethylsilyl group, a tripropylsilyl group, a tributylsilyl group, a tripentylsilyl group, a trihexylsilyl group, a pentyldimethylsilyl group, and a hexyldimethylsilyl group.
  • the acyl group which is the above-described substituent can have a structure represented by —C (O) —R.
  • R include the alkyl groups, alkenyl groups, and aryl groups described above. These Rs may be further substituted with the substituent described above.
  • Specific examples of the acyl group include formyl group, acetyl group, propionyl group, butyryl group, isobutyryl group, valeryl group, isovaleryl group, benzoyl group and the like.
  • ester group which is the above substituent
  • a structure represented by —C (O) O—R or —OC (O) —R can be shown.
  • R include the aforementioned alkyl group, alkenyl group, alkynyl group, aryl group and the like. These Rs may be further substituted with the substituent described above.
  • thioester group which is the above-described substituent
  • a structure represented by —C (S) O—R or —OC (S) —R can be shown.
  • R include the aforementioned alkyl group, alkenyl group, alkynyl group, aryl group, and the like. These Rs may be further substituted with the substituent described above.
  • the phosphate group which is the above-described substituent can have a structure represented by —OP (O) — (OR) 2 .
  • the R may be the same or different, and examples thereof include the alkyl group, alkenyl group, alkynyl group, aryl group described above. These Rs may be further substituted with the substituent described above.
  • Examples of the amide group as the substituent include —C (O) NH 2 , or —C (O) NHR, —NHC (O) R, —C (O) N (R) 2 , —NRC (O )
  • the structure represented by R can be shown.
  • the R may be the same or different, and examples thereof include the alkyl group, alkenyl group, alkynyl group, and aryl group described above. These Rs may be further substituted with the substituent described above.
  • Examples of the aryl group that is the above-described substituent include the same aryl groups as described above. This aryl group may be further substituted with the other substituent described above.
  • Examples of the alkyl group that is the above-described substituent include the same alkyl groups as described above. This alkyl group may be further substituted with the other substituent described above.
  • Examples of the alkenyl group as the substituent include the same alkenyl groups as described above. This alkenyl group may be further substituted with the other substituent described above.
  • Examples of the alkynyl group that is the above-described substituent include the same alkynyl group as described above. This alkynyl group may be further substituted with the other substituent described above.
  • R 1 and R 2 a hydrogen atom or an optionally substituted carbon number is 1
  • An alkyl group of 1 to 5 is more preferable, and a hydrogen atom, a methyl group, or an ethyl group is particularly preferable.
  • examples of specific structures of Y 1 include Y-1 to Y-106 shown below, but are not limited thereto.
  • the polyimide precursor that is used for the reaction with the diamine compound described above and can be contained in the liquid crystal aligning agent of this embodiment and the tetracarboxylic acid derivative that synthesizes the polyimide are not particularly limited.
  • tetracarboxylic acid derivatives include tetracarboxylic dianhydride (represented by the following formula (CB1)), tetracarboxylic acid monoanhydride (represented by the following formula (CB2)), tetracarboxylic acid ( And a dicarboxylic acid dialkyl ester (represented by the following formula (CB4)), a dicarboxylic acid chloride dialkyl ester (represented by the following formula (CB5)), and the like.
  • CB1 tetracarboxylic dianhydride
  • CB2 tetracarboxylic acid monoanhydride
  • CB4 dicarboxylic acid dialkyl ester
  • CB5 dicarboxylic acid chloride dialkyl ester
  • R 3 represents an alkyl group having 1 to 5 carbon atoms, preferably 1 to 2 carbon atoms.
  • Z 1 include the following formulas (Z-1) to (Z-46).
  • the tetracarboxylic acid derivative having the above structure is used for the reaction with the above-described diamine compound, and a polyimide precursor or polyimide having a desired structure is synthesized and contained in the liquid crystal aligning agent to provide the liquid crystal alignment film of this embodiment.
  • a tetracarboxylic acid derivative in which Z 1 is the formula (Z-1) in the above formulas (CB1) to (CB5) is preferable.
  • the tetracarboxylic acid reacts with the diamine compound having a specific structure represented by the above formula (1) to provide a polyimide precursor having a desired structure, thereby providing a polyimide having a desired structure.
  • the liquid crystal aligning film of this embodiment effective in reducing performance degradation to a high level even if irradiated with light, such as visible light and an ultraviolet-ray, can be provided. Therefore, when the polyimide precursor that can be contained in the liquid crystal aligning agent of this embodiment or the tetracarboxylic acid derivative that synthesizes polyimide is used alone, Z 1 in the above formulas (CB1) to (CB5) It is preferable to use a tetracarboxylic acid derivative which is (Z-1).
  • the polyimide precursor which can be contained in the liquid crystal aligning agent of this embodiment is synthesize
  • the polyimide precursor contained in the liquid crystal aligning agent of this embodiment is a polyamic acid and polyamic acid ester, for example, and has a structural unit represented by a following formula (PA).
  • Z is an example of the above-described tetracarboxylic acid derivative, tetracarboxylic dianhydride (represented by the above formula (CB1)), tetracarboxylic monoanhydride (the above formula (CB2)). ), Tetracarboxylic acid (represented by the above formula (CB3)), dicarboxylic acid dialkyl ester (represented by the above formula (CB4)), and dicarboxylic acid chloride dialkyl ester (represented by the above formula (CB5)). It is a group derived from Z 1 group in).
  • Ra is a hydrogen atom or a monovalent organic group derived from the above-described tetracarboxylic acid derivative or an esterifying agent described later, preferably having 1 to 5 carbon atoms, more preferably 1 to 1 carbon atoms. Represents an alkyl group of 2;
  • Y is a group derived from the corresponding group of the diamine compound represented by the above formula (1) and the Y 1 group of the other diamine compound represented by the above formula (AM).
  • a 1 and A 2 represent a hydrogen atom or a monovalent organic group derived from the R 1 group and R 2 group of the other diamine compound represented by the above formula (AM).
  • the polyamic acid which is a polyimide precursor includes, for example, a diamine component (hereinafter simply referred to as a diamine component) containing the diamine compound of the above formula (1) as an essential component, and a tetracarboxylic acid derivative described above. Obtained by reaction with carboxylic dianhydride.
  • a diamine component hereinafter simply referred to as a diamine component
  • a tetracarboxylic acid derivative described above. Obtained by reaction with carboxylic dianhydride.
  • the method for obtaining the polyamic acid contained in the liquid crystal aligning agent of the present embodiment by the reaction of the above-described diamine component and tetracarboxylic dianhydride a known method can be used.
  • the synthesis method is a method in which a diamine component and tetracarboxylic dianhydride are reacted in an organic solvent.
  • the reaction between the diamine component and tetracarboxylic dianhydride is advantageous in that it proceeds relatively easily in an organic solvent and no by-products are generated.
  • the organic solvent used for the reaction between the above-described diamine component and tetracarboxylic dianhydride is not particularly limited as long as the generated polyamic acid is soluble. Specific examples are given below.
  • solvents may be used alone or in combination. Furthermore, even if the solvent does not dissolve the polyamic acid, it may be used by mixing with the above solvent as long as the produced polyamic acid does not precipitate.
  • the diamine component or tetracarboxylic dianhydride when they are composed of a plurality of types of compounds, they may be reacted in a premixed state, may be individually reacted sequentially, or may be further reacted individually. May be mixed and reacted to form a high molecular weight product.
  • the polymerization temperature at that time can be selected from -20 ° C. to 150 ° C., but is preferably in the range of ⁇ 5 ° C. to 100 ° C.
  • the reaction can be carried out at any concentration, but if the concentration is too low, it is difficult to obtain a high molecular weight polymer, and if the concentration is too high, the viscosity of the reaction solution becomes too high and uniform stirring is difficult. Therefore, the total concentration of the diamine component and the tetracarboxylic dianhydride in the reaction solution is preferably 1% by mass to 50% by mass, more preferably 5% by mass to 30% by mass.
  • the initial stage of the reaction is carried out at a high concentration, and then an organic solvent can be added.
  • the ratio of the total number of moles of tetracarboxylic dianhydride to the total number of moles of the diamine component is preferably 0.8 to 1.2. Similar to the normal polycondensation reaction, the closer the molar ratio is to 1.0, the higher the molecular weight of the polyamic acid produced.
  • the polyimide precursor which can be contained in the liquid crystal aligning agent of this embodiment is a polyamic acid, polyamic acid ester, etc. as mentioned above.
  • the polyamic acid ester which is a polyimide precursor is obtained by using, for example, the following methods (1) to (3) using a diamine component and a tetracarboxylic acid derivative containing the diamine compound represented by the above formula (1) as an essential component. Can be synthesized.
  • the polyamic acid ester can be synthesized by esterifying a polyamic acid obtained from a diamine component and tetracarboxylic dianhydride. Specifically, the polyamic acid and the esterifying agent are reacted in the presence of an organic solvent at ⁇ 20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C., for 30 minutes to 24 hours, preferably 1 hour to 4 hours. Can be synthesized.
  • esterifying agent those that can be easily removed by purification are preferred, and N, N-dimethylformamide dimethyl acetal, N, N-dimethylformamide diethyl acetal, N, N-dimethylformamide dipropyl acetal, N, N— Dimethylformamide dineopentyl butyl acetal, N, N-dimethylformamide di-t-butyl acetal, 1-methyl-3-p-tolyltriazene, 1-ethyl-3-p-tolyltriazene, 1-propyl-3 -P-tolyltriazene, 4- (4,6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride and the like.
  • the addition amount of the esterifying agent is preferably 2 to 6 molar equivalents relative to 1 mol of the polyamic acid repeating unit.
  • the solvent used in the above reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone, or ⁇ -butyrolactone from the solubility of the polymer, and these may be used alone or in combination of two or more. Good.
  • the concentration at the time of synthesis is preferably 1% by mass to 30% by mass and more preferably 5% by mass to 20% by mass from the viewpoint that polymer precipitation is unlikely to occur and a high molecular weight product is easily obtained.
  • the polyamic acid ester can be synthesized from tetracarboxylic acid diester dichloride and the above-mentioned diamine component.
  • the tetracarboxylic acid diester dichloride and the diamine component are present in the presence of a base and an organic solvent at ⁇ 20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C., for 30 minutes to 24 hours, preferably 1 to 4 It can synthesize
  • a base pyridine, triethylamine, 4-dimethylaminopyridine and the like can be used, but pyridine is preferable because the reaction proceeds gently.
  • the addition amount of the base is preferably 2 to 4 times with respect to the tetracarboxylic acid diester dichloride from the viewpoint of easy removal and high molecular weight.
  • the solvent used in the above reaction is preferably N-methyl-2-pyrrolidone or ⁇ -butyrolactone in view of the solubility of the monomer and polymer. These may be used alone or in combination of two or more.
  • the polymer concentration at the time of synthesis is preferably 1% by mass to 30% by mass and more preferably 5% by mass to 20% by mass from the viewpoint that polymer precipitation is difficult to occur and a high molecular weight product is easily obtained.
  • the solvent used for the synthesis of the polyamic acid ester is preferably dehydrated as much as possible, and it is preferable to prevent mixing of outside air in a nitrogen atmosphere.
  • Polyamic acid ester can be synthesized by polycondensation of tetracarboxylic acid diester and the above-mentioned diamine component.
  • tetracarboxylic acid diester and the above-mentioned diamine component are added in the presence of a condensing agent, a base, and an organic solvent at 0 ° C. to 150 ° C., preferably 0 ° C. to 100 ° C., for 30 minutes to 24 hours, preferably It can be synthesized by reacting for 3 to 15 hours.
  • condensing agent examples include triphenyl phosphite, dicyclohexylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, N, N′-carbonyldiimidazole, dimethoxy-1,3,5-triazide.
  • Nylmethylmorpholinium O- (benzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium tetrafluoroborate, O- (benzotriazol-1-yl) -N, N , N ′, N′-tetramethyluronium hexafluorophosphate, (2,3-dihydro-2-thioxo-3-benzoxazolyl) phosphonate diphenyl, and the like.
  • the addition amount of the condensing agent is preferably 2 to 3 times by mole with respect to the tetracarboxylic acid diester.
  • tertiary amines such as pyridine and triethylamine can be used.
  • the addition amount of the base is preferably 2 to 4 times by mole with respect to the diamine component from the viewpoint of easy removal and high molecular weight.
  • the reaction proceeds efficiently by adding Lewis acid as an additive.
  • Lewis acid lithium halides such as lithium chloride and lithium bromide are preferable.
  • the addition amount of the Lewis acid is preferably 0 to 1.0 mol times relative to the diamine component.
  • the high molecular weight polyamic acid ester is obtained, and therefore the synthesis method (1) or (2) is particularly preferable.
  • the polymer solution can be precipitated by injecting the polyamic acid ester solution obtained according to the above-described method into a poor solvent while thoroughly stirring. Precipitation is carried out several times, and after washing with a poor solvent, a purified polyamic acid ester powder can be obtained by normal temperature or heat drying.
  • a poor solvent is not specifically limited, Water, methanol, ethanol, hexane, butyl cellosolve, acetone, toluene etc. are mentioned.
  • the liquid crystal aligning agent of this embodiment contains the at least 1 sort (s) of polymer chosen from the polyimide precursor mentioned above and a polyimide.
  • the polyimide contained in the liquid crystal aligning agent of this embodiment is a polyimide obtained by dehydrating and ring-closing the polyamic acid of the polyimide precursor described above. That is, the polyimide is a polyimide obtained by dehydrating and ring-closing the polyamic acid of the polyimide precursor synthesized using a diamine component containing the diamine compound having the specific structure of the formula (1) as an essential component.
  • This polyimide is contained in the liquid crystal aligning agent of this embodiment, and is useful as a polymer for obtaining a liquid crystal aligning film.
  • the dehydration cyclization rate (imidization rate) of the amic acid group is not necessarily 100%, and can be arbitrarily adjusted according to the application and purpose. it can.
  • examples of the method for imidizing the polyamic acid include thermal imidization in which the polyamic acid solution is heated as it is, and catalytic imidation in which a catalyst is added to the polyamic acid solution.
  • the above-described polyamic acid is subjected to catalytic imidization that allows a reaction at a relatively low temperature.
  • the catalytic imidation of polyamic acid can be performed by adding a basic catalyst and an acid anhydride to a polyamic acid solution and stirring at -20 ° C to 250 ° C, preferably 0 ° C to 180 ° C.
  • the amount of the basic catalyst is 0.5 mol times to 30 mol times, preferably 2 mol times to 20 mol times of the amic acid groups, and the amount of the acid anhydride is 1 mol times to 50 mol times of the amic acid groups, The amount is preferably 3 mole times to 30 mole times.
  • Examples of the basic catalyst used for the above-mentioned catalyst imidization include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like, and among them, pyridine is preferable because it has an appropriate basicity for proceeding with the reaction.
  • Examples of the acid anhydride used for the catalyst imidization include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like. Of these, use of acetic anhydride is preferred because purification after completion of the reaction is facilitated.
  • the imidization rate by catalytic imidation can be controlled by adjusting the amount of catalyst, reaction temperature, and reaction time.
  • liquid crystal aligning agent of this embodiment As mentioned above, although the component which can be contained in the liquid crystal aligning agent of this embodiment was demonstrated, the liquid crystal aligning agent of this embodiment prepared using them next is demonstrated.
  • the liquid crystal aligning agent of this embodiment is a coating liquid for forming a liquid crystal aligning film, and is a solution in which a resin component for forming a resin film is dissolved in an organic solvent.
  • the said resin component is a resin component containing the at least 1 sort (s) of polymer chosen from the polyimide precursor mentioned above and a polyimide.
  • the content of the resin component is preferably 1% by mass to 20% by mass, more preferably 3% by mass to 15% by mass, and still more preferably 3% by mass to 10% by mass.
  • all of the above resin components may be the above-described polymers, or other polymers may be mixed.
  • the content of the polymer other than the above-mentioned polymer in the resin component is 0.5% by mass to 15% by mass, preferably 1% by mass to 10% by mass.
  • the organic solvent used in the liquid crystal aligning agent of the present embodiment is not particularly limited as long as it is an organic solvent that dissolves the resin component such as the above-described polymer. Specific examples are given below.
  • the liquid crystal aligning agent of this embodiment may contain components other than those described above. Examples thereof include solvents and compounds that improve the film thickness uniformity and surface smoothness when a liquid crystal aligning agent is applied, and compounds that improve the adhesion between the liquid crystal aligning film and the substrate.
  • These poor solvents may be used alone or in combination.
  • the above solvent it is preferably 5% by mass to 80% by mass, and more preferably 20% by mass to 60% by mass with respect to the total solvent contained in the liquid crystal aligning agent.
  • Examples of compounds that improve film thickness uniformity and surface smoothness include fluorine-based surfactants, silicone-based surfactants, and nonionic surfactants. More specifically, for example, EFTOP (registered trademark) EF301, EF303, EF352 (manufactured by Tochem Products), MegaFac (registered trademark) F171, F173, R-30 (manufactured by Dainippon Ink, Inc.), Florard FC430, FC431 (manufactured by Sumitomo 3M), Asahi Guard (registered trademark) AG710, Surflon (registered trademark) S-382, SC101, SC102, SC103, SC104, SC105, SC106 (manufactured by Asahi Glass Co., Ltd.) and the like.
  • EFTOP registered trademark
  • EF301, EF303, EF352 manufactured by Tochem Products
  • MegaFac registered trademark
  • F171, F173, R-30 manufactured by Dainippon Ink,
  • the use ratio of these surfactants is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 part by mass with respect to 100 parts by mass of the resin component contained in the liquid crystal aligning agent. Part.
  • the compound for improving the adhesion between the liquid crystal alignment film and the substrate include the following functional silane-containing compounds and epoxy group-containing compounds.
  • the usage-amount is 0.1 to 30 mass parts with respect to 100 mass parts of the resin component contained in a liquid-crystal aligning agent. More preferably, it is 1 to 20 parts by mass. If the amount used is less than 0.1 part by mass, the effect of improving the adhesion cannot be expected, and if it exceeds 30 parts by mass, the liquid crystal orientation of the liquid crystal alignment film formed may be lowered.
  • the liquid crystal aligning agent of the present embodiment has a dielectric or conductive property for the purpose of changing the electrical properties such as the dielectric constant and conductivity of the liquid crystal aligning film as long as the effects of the present invention are not impaired.
  • a substance, and further, a crosslinkable compound for the purpose of increasing the hardness and density of the liquid crystal alignment film may be added.
  • the liquid crystal aligning agent of this embodiment described above contains at least one polymer selected from a polyimide precursor and a polyimide, synthesized using a diamine component containing the diamine compound of formula (1) as an essential component. To do.
  • the liquid crystal aligning agent of this embodiment is preferably filtered before being applied to the substrate, then applied to the substrate, dried by prebaking, and then heated and fired to form a polymer film containing polyimide. be able to.
  • a coating method for applying the liquid crystal aligning agent of the present embodiment on a substrate is not particularly limited, but industrially, a method performed by screen printing, offset printing, flexographic printing, an inkjet method, or the like is common. .
  • Other coating methods include a dipping method, a roll coater method, a slit coater method, a spinner method, or a spray method, and these may be used depending on the purpose. Even if the liquid crystal aligning agent of this embodiment is a case where the above application
  • the step of drying by pre-baking after applying the liquid crystal aligning agent is not necessarily required, but when the time from application to heating and baking is not constant for each substrate, or when heating and baking is not performed immediately after application, It is preferable to include a drying step.
  • the drying by this pre-bake should just evaporate the solvent to such an extent that a coating-film shape does not deform
  • the drying means is not particularly limited. As a specific example, a method of drying on a hot plate at 50 ° C. to 120 ° C., preferably 80 ° C. to 120 ° C. for 0.5 minutes to 30 minutes, preferably 1 minute to 5 minutes is preferable.
  • the substrate coated with the liquid crystal aligning agent can be baked at a temperature of 120 ° C. to 350 ° C. by a heating means such as a hot plate, a thermal circulation oven or an IR (infrared) oven.
  • the firing temperature is preferably 140 ° C. to 300 ° C., more preferably 180 ° C. to 250 ° C.
  • the conversion rate to polyimide varies depending on the baking temperature, but the liquid crystal aligning agent of this embodiment does not necessarily need to be imidized 100%.
  • the baking time of the coating film of a liquid crystal aligning agent can be set to arbitrary time. If the baking time is too short, display failure may occur due to the influence of the residual solvent. Therefore, it is preferably 5 minutes to 60 minutes, more preferably 10 minutes to 40 minutes.
  • the thickness of the polymer film containing polyimide obtained after firing is too thick, it is disadvantageous in terms of power consumption of the liquid crystal display element. If it is too thin, the reliability of the liquid crystal display element may be lowered. It is 200 nm, more preferably 50 nm to 100 nm.
  • the polymer film after baking is preferably subjected to an alignment treatment such as rubbing by rubbing the film surface in a certain direction using a cloth.
  • the liquid crystal alignment film of the present embodiment formed as described above is a liquid crystal alignment film that is effective in reducing performance deterioration even when subjected to ultraviolet irradiation, and is subjected to a process of irradiating the pixel formation region with ultraviolet light.
  • the liquid crystal display element of the present embodiment which is produced and suppresses the reduction in performance degradation.
  • Embodiment 2 The liquid crystal display element according to the second embodiment of the present invention uses a liquid crystal alignment film that is effective in reducing performance degradation even when irradiated with ultraviolet rays, as in the liquid crystal display element according to the first embodiment described above. Configured. And in the case of the liquid crystal display element which is 2nd Embodiment, the liquid crystal aligning film is a photo-alignment film which exhibits liquid crystal alignment control ability by the photo-alignment process by ultraviolet irradiation. Therefore, the liquid crystal display element according to the second embodiment of the present invention is created through a process of irradiating the formation region of the pixel with the liquid crystal alignment film with ultraviolet rays for the photo-alignment process, and suppresses the reduction in performance deterioration. Thus, a liquid crystal display element is obtained.
  • the liquid crystal display element of this embodiment can be a color liquid crystal display element of TN (Twisted Nematic) mode as an example, as in the first embodiment described above. Therefore, it can be set as the structure similar to the liquid crystal display element 1 of FIG. 1 which is 1st Embodiment mentioned above, and the overlapping description is abbreviate
  • TN Transmission Nematic
  • the liquid crystal alignment film of the liquid crystal display element of the second embodiment is preferably formed using a liquid crystal aligning agent, like the liquid crystal alignment film of the liquid crystal display element of the first embodiment. Then, the liquid crystal alignment film of the present embodiment is formed through a process of irradiating the pixel formation region with ultraviolet rays, and the liquid crystal display element of the present embodiment in which the reduction in performance deterioration is suppressed is described above. It is preferable to form using the liquid crystal aligning agent of 1st Embodiment.
  • the liquid crystal aligning agent used by this embodiment is the liquid crystal aligning agent of 1st Embodiment mentioned above, Comprising: In the obtained liquid crystal aligning film, in order to implement
  • the liquid crystal alignment film of the present embodiment includes a diamine component containing the diamine compound of the above formula (1) and a tetracarboxylic acid in which Z 1 is the formula (Z-1) in the above formulas (CB1) to (CB5). It comprises at least one polymer selected from a polyimide precursor formed using an acid derivative and a polyimide obtained by imidizing it.
  • the formation of the liquid crystal alignment film of this embodiment can be the same as that of the first embodiment described above.
  • the method of photo-alignment treatment in the liquid crystal alignment film of the present embodiment is not particularly limited, but it is preferable to use polarized ultraviolet rays for obtaining uniform liquid crystal alignment.
  • the method of irradiating polarized ultraviolet rays is not particularly limited. For example, it is possible to irradiate a substrate on which a polymer film containing a polymer such as polyimide is formed through a polarizing plate from a certain direction. Moreover, you may irradiate twice or more by changing the incident angle of polarized ultraviolet rays. Further, it is only necessary to obtain substantially polarized light, and non-polarized ultraviolet rays may be irradiated at an angle inclined from the normal line of the substrate.
  • ultraviolet rays in the range of 100 nm to 400 nm can be generally used, but it is particularly preferable to select an optimum wavelength via a filter or the like depending on the type of polymer film to be used.
  • the irradiation time of ultraviolet rays is generally in the range of several seconds to several hours. In consideration of industrial productivity, it is preferable to select the necessary amount that realizes good liquid crystal alignment control ability depending on the type of liquid crystal alignment film to be used.
  • the liquid crystal display element of the second embodiment can be manufactured as follows.
  • the liquid crystal display element of the present embodiment can have the same structure as the liquid crystal display element 1 of FIG. 1 which is the first embodiment described above, and the same reference numerals are used for the description of the common components. This will be described with reference to FIG. 1
  • the TFT substrate 2 having the structure described above is prepared.
  • the TFT substrate 2 is manufactured, for example, by forming various electrodes including TFTs and pixel electrodes 6 on a substrate 5 made of a transparent glass substrate or the like according to a known method. Then, on the TFT substrate 2, the liquid crystal alignment film 12 of this embodiment subjected to the above-described photo-alignment processing is disposed.
  • the CF substrate 3 having the above structure is prepared.
  • the CF substrate 3 is formed, for example, by patterning the CF layer 7 having the colored layer 9 and the black matrix 10, the common electrode 11 and the like on the substrate 15 made of a transparent glass substrate or the like. And the liquid crystal aligning film 12 which performed the photo-alignment process mentioned above on the surface of the common electrode 11 is arrange
  • the black matrix is made of a metal material such as Ta (tantalum), Cr (chromium), Mo (molybdenum), Ni (nickel), Ti (titanium), Cu (copper), Al (aluminum), or a black pigment such as carbon. Are dispersed or a resin material in which a plurality of colored layers having light transmittance are laminated.
  • a sealing material is used, a method using a dispenser, a method of printing in a desired shape, and a photo coating after applying by a spin coating method.
  • the sealing material 16 is formed in a frame shape according to a patterning method using a lithography method.
  • a thermosetting type can be used as the sealing material.
  • the TFT substrate 2 and the CF substrate 3 are preferably sandwiched with a spacer of 1 ⁇ m to 30 ⁇ m, more preferably 2 ⁇ m to 10 ⁇ m.
  • the periphery is fixed with a sealing material 16.
  • liquid crystal is injected between the TFT substrate 2 and the CF substrate 3 and sealed to form the liquid crystal layer 4.
  • the method for enclosing the liquid crystal is not particularly limited, and it is possible to use a vacuum method in which liquid crystal is injected after reducing the pressure of the pixel formation region surrounded by the sealing material 16 between the TFT substrate 2 and the CF substrate 3. .
  • the dropping method etc. which seal after sealing a liquid crystal demonstrated in 1st Example can be illustrated.
  • the polarizing plate 17 is arrange
  • the light irradiation step of irradiating ultraviolet rays is a step of performing an alignment treatment of the liquid crystal alignment film, and is a step of imparting liquid crystal alignment controllability to the liquid crystal alignment film.
  • the irradiation light has a wavelength characteristic suitable for the photo-alignment treatment of the liquid crystal alignment film, and as described above, the irradiation light can be ultraviolet light having a wavelength of 100 nm to 400 nm. And as above-mentioned, as for the irradiation amount of an ultraviolet-ray, it is preferable to select the quantity suitable for a photo-alignment process according to the kind of liquid crystal aligning film.
  • the liquid crystal display element of the present embodiment is configured using a liquid crystal alignment film including at least one polymer selected from a polyimide precursor having the structure described above and a polyimide obtained by imidizing the polyimide precursor, Due to the photo-alignment treatment, the deterioration of the performance is suppressed even when the pixel formation region is irradiated with ultraviolet rays. Therefore, the liquid crystal display element according to the present embodiment is a performance by ultraviolet irradiation, which has been a problem in the past, even when the liquid crystal display element is formed through a process of irradiating the pixel formation region with ultraviolet rays for photo-alignment processing. Deterioration can be suppressed. That is, according to the present embodiment, it is possible to provide a liquid crystal display element that is manufactured by using a light irradiation process that irradiates ultraviolet rays, and in which deterioration of display quality is suppressed.
  • a photo-curing seal material such as a visible light curing type and an ultraviolet curing type can be used for forming the sealing material 16.
  • a visible light curable sealing material for example, a photocurable resin that is cured by irradiation with visible light energy such as acrylic resin, methacrylic resin, epoxy resin, and silicone resin can be used.
  • the ultraviolet curable sealing material the same materials as those described in the first embodiment can be used.
  • the liquid crystal display element of this embodiment is configured using a liquid crystal alignment film including the polyimide film having the above-described structure.
  • the sealing material 16 is cured, In the formation region, deterioration of performance is suppressed even when irradiated with visible light or ultraviolet light. Therefore, the liquid crystal display element of this embodiment suppresses performance degradation due to visible light irradiation even when it is formed through a process of irradiating a pixel formation region with visible light or ultraviolet light after a photo-alignment process. be able to.
  • the liquid crystal display element of the present embodiment includes an STN (Super Twisted Nematic) mode, an IPS (In-Plane Switching) mode, a VA (Vertical Alignment) mode, or an OCB (Optically Compensating Bending). ) Mode or the like.
  • STN Super Twisted Nematic
  • IPS In-Plane Switching
  • VA Very Alignment
  • OCB Optically Compensating Bending
  • the liquid crystal display element according to the third embodiment of the present invention is a PSA (Polymer Sustained Alignment) type liquid crystal display element.
  • a PSA-type liquid crystal display element is configured using a vertical alignment type liquid crystal alignment film as a liquid crystal alignment film.
  • the liquid crystal alignment film of the liquid crystal display element of the third embodiment is preferably formed using a liquid crystal aligning agent, like the liquid crystal alignment film of the liquid crystal display element of the first embodiment. Then, the liquid crystal alignment film of the present embodiment is formed through a process of irradiating the pixel formation region with ultraviolet rays, and the liquid crystal display element of the present embodiment in which the reduction in performance deterioration is suppressed is described above. It is preferable to form using the liquid crystal aligning agent of 1st Embodiment. In particular, in the obtained liquid crystal alignment film, at least one layer selected from a polyimide precursor having a structure suitable for vertical alignment and a polyimide obtained by imidizing the polyimide precursor so that vertical alignment of liquid crystals can be realized. It is preferable to use the liquid crystal aligning agent of the first embodiment including a coalescence.
  • the liquid crystal aligning agent of 1st Embodiment containing polymers such as a polyimide precursor of a structure suitable for vertical alignment
  • a liquid crystal cell can be prepared and obtained according to a known method.
  • a method is generally employed in which a pair of substrates on which the above-described liquid crystal alignment film is formed is fixed with a sealing material with a spacer interposed therebetween, and liquid crystal is injected and sealed.
  • the size of the spacer used is 1 ⁇ m to 30 ⁇ m, preferably 2 ⁇ m to 10 ⁇ m.
  • the substrate used for the PSA liquid crystal display element of the present embodiment is not particularly limited as long as it is a highly transparent substrate, but is preferably a substrate on which a transparent electrode for driving liquid crystal is formed.
  • a substrate that can be used for a PSA liquid crystal display element a standard electrode pattern such as PVA or MVA or a projection pattern can be used.
  • PVA or MVA or a projection pattern can be used as a substrate that can be used for a PSA liquid crystal display element.
  • the operation of the liquid crystal is possible, and the PSA liquid crystal display element of this structural example can simplify the manufacturing process and obtain high transmittance.
  • a substrate used for the PSA liquid crystal display element of this embodiment a TFT substrate on which TFTs and electrodes are arranged can be used.
  • a PSA liquid crystal display element driven by TFT is provided. be able to.
  • the PSA type liquid crystal display element of the present embodiment is a transmissive type
  • an opaque material such as a silicon wafer is used.
  • a simple substrate can also be used. At that time, a material such as aluminum that reflects light may be used for the electrode formed on the substrate.
  • the method for injecting the liquid crystal is not particularly limited, and examples thereof include a vacuum method for injecting the liquid crystal after reducing the pressure inside the produced liquid crystal cell, and a dropping method for sealing after dropping the liquid crystal.
  • a liquid crystal to which a small amount (preferably, 0.2 wt% to 1 wt%) of a photopolymerizable compound is used as a liquid crystal to be used.
  • a voltage is applied between the electrodes of the both side substrates sandwiching the liquid crystal layer of the liquid crystal cell. Then, by irradiating ultraviolet rays while the voltage is applied, the polymerizable compound is polymerized and crosslinked in that state, and as a result, the response speed of the liquid crystal display element is increased.
  • the applied voltage is 5 V pp to 30 V pp , but preferably 5 V pp to 20 V pp .
  • the irradiation amount of ultraviolet rays to be irradiated is 1 J to 60 J, but preferably 40 J or less, and the smaller the ultraviolet irradiation amount, the lowering of the reliability of the liquid crystal display element can be suppressed, and the ultraviolet irradiation time can be reduced. This increases the manufacturing tact and is suitable for improving productivity.
  • the PSA-type liquid crystal display element according to the third embodiment of the present invention reduces performance degradation even when it is irradiated with ultraviolet rays, like the liquid crystal display element according to the first embodiment described above. It is comprised using the liquid crystal aligning film effective for.
  • the liquid crystal is obtained by adding a small amount of a photopolymerizable compound, and the photopolymerizable compound is irradiated with ultraviolet rays when the liquid crystal display element is manufactured. Thus, desired response characteristics in the liquid crystal are realized.
  • the liquid crystal display element according to the third embodiment of the present invention is produced through a process of irradiating the pixel formation region with ultraviolet rays in order to react the photopolymerizable compound in the liquid crystal, and the performance deterioration is reduced.
  • the liquid crystal display element is suppressed.
  • the liquid crystal display element which is the 4th Embodiment of this invention is a liquid crystal display element of an ultraviolet irradiation system.
  • a liquid crystal alignment agent is applied on two substrates to form a liquid crystal alignment film, and the two substrates are arranged so that the liquid crystal alignment films face each other.
  • This is a vertical alignment (VA) mode liquid crystal display element manufactured by sandwiching a liquid crystal layer between substrates and irradiating ultraviolet rays while applying an electric field to the liquid crystal layer.
  • An ultraviolet irradiation type liquid crystal display element is configured using a vertical alignment type liquid crystal alignment film as a liquid crystal alignment film.
  • the liquid crystal alignment film of the liquid crystal display element of the fourth embodiment is preferably formed using a liquid crystal aligning agent, like the liquid crystal alignment film of the liquid crystal display element of the first embodiment. Then, the liquid crystal alignment film of the present embodiment is formed through a process of irradiating the pixel formation region with ultraviolet rays, and the liquid crystal display element of the present embodiment in which the reduction in performance deterioration is suppressed is described above. It is preferable to form using the liquid crystal aligning agent of 1st Embodiment. In particular, in the obtained liquid crystal alignment film, at least one layer selected from a polyimide precursor having a structure suitable for vertical alignment and a polyimide obtained by imidizing the polyimide precursor so that vertical alignment of liquid crystals can be realized. It is preferable to use the liquid crystal aligning agent of the first embodiment including a coalescence.
  • a polyimide precursor having a structure suitable for the ultraviolet irradiation method and a polyimide obtained by imidizing it are selected so that it is not necessary to add a photopolymerizable compound to the liquid crystal. It is particularly preferable that the liquid crystal aligning agent according to the first embodiment including at least one polymer is used. By doing so, the response characteristics of the liquid crystal can be easily improved.
  • the liquid crystal alignment of 1st Embodiment containing polymers such as a polyimide precursor of a structure suitable for a vertical alignment and a suitable ultraviolet irradiation system, as mentioned above.
  • a liquid crystal cell can be produced according to a known method. As an example of liquid crystal cell production, prepare a pair of substrates on which the above-mentioned liquid crystal alignment film is formed, spray spacers on the liquid crystal alignment layer of one substrate, and make the liquid crystal alignment layer surface inside.
  • Examples include a method in which one substrate is bonded and liquid crystal is injected under reduced pressure, or a method in which liquid crystal is dropped on the surface of the liquid crystal alignment layer on which spacers are dispersed and then the substrate is bonded and sealed.
  • the size of the spacer used is 1 ⁇ m to 30 ⁇ m, preferably 2 ⁇ m to 10 ⁇ m.
  • the substrate used for manufacturing the liquid crystal display element of the present embodiment is not particularly limited as long as it is a highly transparent substrate, but is preferably a substrate on which a transparent electrode for driving liquid crystal is formed.
  • a substrate that can be used for an ultraviolet irradiation type liquid crystal display element a standard electrode pattern such as PVA or MVA or a projection pattern can also be used.
  • a structure in which a line / slit electrode pattern of 1 ⁇ m to 10 ⁇ m is formed on one substrate and a slit pattern or a protrusion pattern is not formed on the opposite substrate is desirable.
  • the operation of the liquid crystal can be performed, and the ultraviolet ray irradiation type liquid crystal display element of this structural example can simplify the manufacturing process and obtain a high transmittance.
  • a substrate used for the ultraviolet irradiation type liquid crystal display element of this embodiment a TFT substrate on which TFTs and electrodes are arranged can be used.
  • an ultraviolet irradiation type liquid crystal display element driven by a TFT is used. Can be provided.
  • the ultraviolet irradiation type liquid crystal display element of the present embodiment is a transmissive type
  • a transparent substrate as described above.
  • a silicon wafer or the like can be used.
  • An opaque substrate can also be used.
  • a material such as aluminum that reflects light may be used for the electrode formed on the substrate.
  • the liquid crystal used in the liquid crystal display element of this embodiment may be a liquid crystal to which no photopolymerizable compound is added, or a liquid crystal to which a photopolymerizable compound is added.
  • the liquid crystal display element of this embodiment can increase the response speed regardless of which liquid crystal is used.
  • the step of irradiating ultraviolet rays while applying an electric field to the liquid crystal layer is, for example, a method in which an electric field is applied to the liquid crystal layer by applying a voltage between electrodes installed on the substrate, and the ultraviolet rays are irradiated while maintaining the electric field.
  • the voltage applied between the electrodes is, for example, 55 V pp to 30 V pp , and preferably 5 V pp to 20 V pp .
  • the irradiation amount of ultraviolet rays to be irradiated is 1 J to 60 J, but preferably 40 J or less, and the smaller the ultraviolet irradiation amount, the lowering of the reliability of the liquid crystal display element can be suppressed, and the ultraviolet irradiation time can be reduced. This increases the manufacturing tact and is suitable for improving productivity.
  • the ultraviolet irradiation type liquid crystal display element according to the fourth embodiment of the present invention reduces the performance deterioration even when the ultraviolet irradiation is performed, similarly to the liquid crystal display element according to the first embodiment described above. It is configured using a liquid crystal alignment film effective for the above. And in the case of the liquid crystal display element which is 4th Embodiment, the desired response characteristic in a liquid crystal is implement
  • the liquid crystal display element according to the fourth embodiment of the present invention is produced through a process of irradiating the pixel formation region in which the liquid crystal layer is formed, with ultraviolet rays, and the reduction in performance deterioration is suppressed. It becomes an element.
  • CBDA 1,2,3,4-cyclobutanetetracarboxylic dianhydride
  • the molecular weight of the polyimide in the synthesis example was measured as follows using a room temperature gel permeation chromatography (GPC) apparatus (SSC-7200) manufactured by Senshu Science Co., Ltd. and a column (KD-803, KD-805) manufactured by Shodex.
  • GPC room temperature gel permeation chromatography
  • Example 1 CBDA (7.4 g, 38 mmol) and ADA (14.4 g, 40 mmol) were mixed in NMP (87.5 g) and reacted at room temperature for 10 hours to obtain a polyamic acid solution. NMP (182.3g) and BC (72.9g) were added to this polyamic acid solution, diluted to 6% by mass, and stirred at room temperature for 5 hours to obtain a liquid crystal aligning agent (A1).
  • the number average molecular weight of the polyamic acid contained in the liquid crystal aligning agent (A1) was 8000, and the weight average molecular weight was 19,500.
  • Example 2 CBDA (4.5 g, 23 mmol), ADA (4.3 g, 12 mmol), p-PDA (1.3 g, 12 mmol) were mixed in NMP (90.8 g) and reacted at room temperature for 10 hours to obtain a polyamic acid solution. Obtained. NMP (33.6 g) and BC (33.6 g) were added to this polyamic acid solution, diluted to 6% by mass, and stirred at room temperature for 5 hours to obtain a liquid crystal aligning agent (A2). The number average molecular weight of the polyamic acid contained in the liquid crystal aligning agent (A2) was 9600, and the weight average molecular weight was 21,000.
  • CBDA 7.5 g, 38 mmol
  • terphenyl (10.4 g, 40 mmol)
  • NMP 160.8 g
  • BC 59.6 g
  • B2 The number average molecular weight of the polyamic acid contained in the liquid crystal aligning agent (B2) was 8000, and the weight average molecular weight was 18000.
  • Example 3 [Evaluation of light resistance by measuring voltage holding ratio (VHR)]
  • the liquid crystal aligning agent (A1) obtained in Example 1 was filtered through a 1.0 ⁇ m filter, spin-coated on a glass substrate with a transparent electrode, dried on an 80 ° C. hot plate for 5 minutes, and then at 250 ° C. A film having a thickness of 100 nm was obtained by baking for 20 minutes. After rubbing this polyimide film with a rayon cloth (roll diameter 120 mm, rotation speed 1000 rpm, moving speed 30 mm / sec, pushing amount 0.2 mm), ultrasonic irradiation was performed in pure water for 1 minute, and 80 ° C. for 10 minutes. Dried.
  • Two substrates with such a liquid crystal alignment film are prepared, a spacer of 6 ⁇ m is installed on the surface of the liquid crystal alignment film of one substrate, and then combined so that the rubbing directions of the two substrates are orthogonal to each other.
  • the periphery was sealed and the empty cell having a cell gap of 6 ⁇ m was produced.
  • Liquid crystal (MLC-2003 (C080), manufactured by Merck Japan Co., Ltd.) was vacuum-injected into this cell at room temperature, and the inlet was sealed to obtain a liquid crystal cell in which the liquid crystal was twisted by 90 degrees.
  • VHR was evaluated by applying a voltage of 4V to the obtained liquid crystal cell at a temperature of 23 ° C. for 60 ⁇ s, measuring the voltage after 16.67 ms, and calculating how much the voltage can be held as the voltage holding ratio. did. The same measurement was performed at a temperature of 90 ° C. The voltage holding ratio was measured using a voltage holding ratio measuring device VHR-1 manufactured by Toyo Technica. The evaluation results are shown in Table 1. Next, the liquid crystal cell was irradiated with 1 J of 365 nm ultraviolet light, and VHR after the ultraviolet irradiation was similarly evaluated. The evaluation results are shown in Table 1.
  • Example 4 [Evaluation of photo-alignment]
  • the liquid crystal aligning agent (A1) obtained in Example 1 was filtered through a 1.0 ⁇ m filter, spin-coated on a glass substrate with a transparent electrode, dried on an 80 ° C. hot plate for 5 minutes, and then 220 ° C. Was baked for 30 minutes in a hot air circulation oven to form a coating film having a thickness of 100 nm.
  • the coating surface was irradiated with 254 nm ultraviolet light through a polarizing plate at 500 mJ / cm 2 to obtain a substrate with a liquid crystal alignment film.
  • Example 2 Using the liquid crystal aligning agent (A2) obtained in Example 2, a liquid crystal cell was produced in the same manner as in the case of using the liquid crystal aligning agent (A1) described above, and the alignment was evaluated in the same manner. .
  • the evaluation results are summarized in Table 2.
  • Example 5 [Measurement of residual DC] Using each of the liquid crystal cells produced in Example 4, residual DC was measured by a dielectric absorption method using a 6254 type liquid crystal physical property evaluation apparatus manufactured by Toyo Technica. The measurement is performed in an environment of 60 ° C., a DC voltage of 10 V is applied to the cell for 30 minutes and then discharged for 1 second, and after 20 minutes the residual DC amount is 500 mV or less “good”, 500 mV or more Was defined as “bad”. The evaluation results are summarized in Table 2. Among the liquid crystal cells manufactured in Example 4, the evaluation results were obtained in the liquid crystal cells manufactured using the liquid crystal aligning agents (A1, A2) of Example 1 and Example 2. Was “good”.
  • the liquid crystal display element of this example had a good charge retention even when irradiated with ultraviolet rays, and the performance deterioration due to ultraviolet irradiation was reduced.
  • the liquid crystal display element of this example achieved good alignment of the liquid crystal by photo-alignment treatment, had excellent residual DC characteristics, and reduced performance deterioration due to ultraviolet irradiation.
  • the liquid crystal display element of the present invention is a liquid crystal display element that is produced through a process of irradiating a pixel formation region with ultraviolet rays, and the reduction in performance deterioration is suppressed. Accordingly, both excellent display characteristics and productivity can be achieved. Therefore, it can be suitably used for manufacturing a liquid crystal display element for a portable information terminal such as a large-sized liquid crystal TV or a smartphone displaying a high-definition image.

Abstract

A liquid crystal display element (1) is configured so that a TFT substrate (2) and a CF substrate (3) provided with a CF layer (7) sandwich a liquid crystal layer (4). The TFT substrate (2) and the CF substrate (3) are provided with a liquid crystal alignment film (12). In the liquid crystal display element (1), a sealing material (16) uses a UV ray curable resin, and even in the regions where pixels are formed, UV rays for curing the sealing material (16) are radiated and provided. The liquid crystal display element (1) is configured using the liquid crystal alignment film (12) which contains a polyimide film synthesized from a diamine compound of a specific structure. When the sealing material (16) is cured, even if the regions where pixels are formed are irradiated with UV rays, the degradation of functionality is suppressed.

Description

液晶表示素子およびその製造方法Liquid crystal display element and manufacturing method thereof
 本発明は、液晶表示素子およびその製造方法に関する。 The present invention relates to a liquid crystal display element and a manufacturing method thereof.
 液晶表示素子は、液晶層を一対の基板間に挟持して封入するとともに、液晶層の液晶を一定方向に配向させて構成される。液晶の配向は、その基板表面に液晶配向制御能を備えた液晶配向膜を設けることにより実現される。液晶表示素子では、液晶が、基板と液晶配向膜との間に配設された電極への電圧印加により応答し、その液晶の配向変化を利用して、画像形成領域において、所望とする画像の表示を行うことができる。そして、液晶表示素子は、薄型で軽量で高画質の表示装置を提供することができる。 The liquid crystal display element is configured by sandwiching and encapsulating a liquid crystal layer between a pair of substrates and aligning the liquid crystal of the liquid crystal layer in a certain direction. The alignment of the liquid crystal is realized by providing a liquid crystal alignment film having a liquid crystal alignment control ability on the substrate surface. In a liquid crystal display element, a liquid crystal responds by applying a voltage to an electrode disposed between a substrate and a liquid crystal alignment film, and uses a change in the alignment of the liquid crystal to change a desired image in an image forming region. Display can be made. The liquid crystal display element can provide a thin, lightweight and high-quality display device.
 液晶表示素子の製造において、一対の基板間に液晶層をなす液晶を封入する方法としては、基板上に配置された枠状のシール材が利用される。そして、真空注入法や滴下注入法等が用いられ、液晶が枠状のシール材の内側に注入されて、基板間に液晶層が封入される。上記の液晶の注入法のうち、液晶の使用量の低減に有効なことから、近年では、滴下注入法(特許文献1を参照。)が好ましい方法とされている。 In the manufacture of a liquid crystal display element, a frame-shaped sealing material disposed on a substrate is used as a method for enclosing a liquid crystal forming a liquid crystal layer between a pair of substrates. Then, a vacuum injection method, a drop injection method, or the like is used, and liquid crystal is injected into the inside of the frame-shaped sealing material, and a liquid crystal layer is sealed between the substrates. Of the liquid crystal injection methods described above, the drop injection method (see Patent Document 1) is a preferred method in recent years because it is effective in reducing the amount of liquid crystal used.
 滴下注入法は、まず、一方の基板の周囲において、紫外線硬化型のシール材を枠状に形成し、真空雰囲気において、このシール材の枠内の基板上に液晶を滴下するとともに、液晶が滴下された基板ともう一方の基板とを貼り合わせる。次いで、大気中に戻し、貼り合わされた両基板間の液晶を大気圧により拡散させる。そして、紫外線をシール材に照射し、シール材を硬化させて液晶の封入を終了する。 In the dropping injection method, first, an ultraviolet curable sealing material is formed in a frame shape around one substrate, and in a vacuum atmosphere, liquid crystal is dropped on the substrate in the sealing material frame, and the liquid crystal is dropped. The prepared substrate and the other substrate are bonded together. Next, it is returned to the atmosphere, and the liquid crystal between both substrates bonded together is diffused by atmospheric pressure. Then, the sealing material is irradiated with ultraviolet rays, the sealing material is cured, and the liquid crystal is sealed.
 また、液晶表示素子の製造において、液晶層の液晶を一定方向に配向させる方法としては、上述したように、基板表面に液晶配向制御能を備えた液晶配向膜を設ける方法が利用される。液晶配向膜は、基板上に形成されたポリイミド等の重合体膜にラビング処理や偏光された紫外線を照射して行う光配向処理等の配向処理を施して形成される。 Further, in the manufacture of the liquid crystal display element, as a method for aligning the liquid crystal in the liquid crystal layer in a certain direction, as described above, a method of providing a liquid crystal alignment film having a liquid crystal alignment control ability on the substrate surface is used. The liquid crystal alignment film is formed by subjecting a polymer film such as polyimide formed on the substrate to an alignment process such as a rubbing process or a photo-alignment process performed by irradiating polarized ultraviolet rays.
 液晶配向膜のためのラビング処理とは、基板上のポリイミド等の有機膜に対し、その表面を綿、ナイロン、ポリエステル等の布で一定方向に擦り(ラビングし)、擦った方向(ラビング方向)に液晶を配向させる処理法である。このラビング処理は簡便に比較的安定した液晶の配向状態を実現できるため、従来の液晶表示素子の製造プロセスにおいて利用されてきた。 The rubbing treatment for the liquid crystal alignment film means that the surface of the substrate is rubbed (rubbed) with a cloth such as cotton, nylon or polyester against the organic film such as polyimide on the substrate. This is a treatment method for orienting liquid crystal. Since this rubbing treatment can easily realize a relatively stable alignment state of liquid crystals, it has been used in the manufacturing process of conventional liquid crystal display elements.
 しかしながら、ポリイミド等からなる液晶配向膜の表面を擦るラビング法は、発塵や静電気の発生が問題となることがあった。また、近年の液晶表素子の高精細化や、基板上に配置された電極や液晶駆動用のスイッチング能動素子による凹凸のため、液晶配向膜の表面を布で均一に擦ることができず、均一な液晶の配向を実現できないことがあった。 However, in the rubbing method of rubbing the surface of the liquid crystal alignment film made of polyimide or the like, generation of dust or static electricity sometimes becomes a problem. In addition, due to the high definition of liquid crystal surface elements in recent years and the unevenness caused by the electrodes placed on the substrate and the switching active elements for driving the liquid crystal, the surface of the liquid crystal alignment film cannot be uniformly rubbed with a cloth. Liquid crystal alignment may not be realized.
 そこで、近年では、ラビングを行わない光配向処理が盛んに検討されている(特許文献2を参照。)。
 光配向処理には様々な方法があるが、直線偏光またはコリメートした光によって液晶配向膜を構成する有機膜内に異方性を形成し、その異方性に従って液晶を配向させる。光としては、紫外線を好適に用いることができる。この光配向処理はラビングが不要であり、発塵等を懸念すること無く液晶表示素子を構成し、所望とする液晶の配向を実現することができる。
Therefore, in recent years, an optical alignment process without rubbing has been actively studied (see Patent Document 2).
There are various methods for photo-alignment treatment. Anisotropy is formed in the organic film constituting the liquid crystal alignment film by linearly polarized light or collimated light, and the liquid crystal is aligned according to the anisotropy. As light, ultraviolet rays can be preferably used. This photo-alignment treatment does not require rubbing, can constitute a liquid crystal display element without concern about dust generation, etc., and can achieve the desired liquid crystal alignment.
特開平11-109388号公報Japanese Patent Laid-Open No. 11-109388 特許第4504665号公報Japanese Patent No. 4504665
 以上のように、液晶表示素子は、薄型軽量で高画質の表示装置を提供するが、その製造においては、主要な工程として、基板間に液晶材料を封入する工程や、液晶を配向させる配向処理工程が含まれている。そして、近年、それらはいずれにおいても、紫外線等の光を照射する工程が検討され、有効活用されるようになっている。こうした光照射を用いた工程は、従来の真空注入法やラビング処理等の製造工程の問題を改善し、生産効率の向上や製造歩留まりの向上に有効なものとなる。 As described above, the liquid crystal display element provides a thin, lightweight, high-quality display device. In the manufacture of the liquid crystal display element, as a main process, a process of encapsulating a liquid crystal material between substrates and an alignment process for aligning the liquid crystal A process is included. In recent years, a process for irradiating light such as ultraviolet rays has been studied and effectively utilized. Such a process using light irradiation improves the problems of the manufacturing process such as the conventional vacuum injection method and rubbing process, and is effective in improving the production efficiency and the manufacturing yield.
 しかしながら、一方で、液晶表示素子の製造工程中に、光の照射、特に紫外線を照射する光照射処理を設ける場合、液晶表示素子の電荷保持特性を低下させ、表示品位を低下させることがあった。 However, on the other hand, in the case where a light irradiation process, particularly a light irradiation process for irradiating ultraviolet rays, is provided during the manufacturing process of the liquid crystal display element, the charge retention characteristics of the liquid crystal display element may be lowered and the display quality may be lowered. .
 例えば、液晶注入・封入における滴下注入法を行う場合、シール材に紫外線を照射するときに、画像形成領域の液晶配向膜にも紫外線が照射されることがある。そうした場合、製造される液晶表示素子では、電荷保持特性が低下し、画像の表示品位を低下させることがあった。 For example, when performing the dropping injection method in liquid crystal injection / encapsulation, when the sealing material is irradiated with ultraviolet rays, the liquid crystal alignment film in the image forming region may be irradiated with ultraviolet rays. In such a case, in the manufactured liquid crystal display element, the charge retention characteristic is lowered, and the display quality of the image may be lowered.
 また、光配向処理を行う場合、偏光紫外線を使用して液晶配向膜に、液晶配向制御能を付与することがある。そうした場合、製造される液晶表示素子では、液晶の配向は実現されるものの、電荷保持特性が低下し、画像の表示品位を低下させることがあった。 Further, when performing the photo-alignment treatment, the liquid crystal alignment film may be provided with a liquid crystal alignment control ability using polarized ultraviolet rays. In such a case, in the manufactured liquid crystal display element, although the alignment of the liquid crystal is realized, the charge retention characteristic is lowered and the display quality of the image may be lowered.
 そこで、近年盛んに検討がされている、滴下注入法や光配向処理等、紫外線による光照射処理を行う工程を利用して製造されても、電荷保持特性等の性能を低下させることが無く、表示品位の低下を生じさせない液晶表示素子が求められている。 Therefore, even if manufactured using a process of performing light irradiation treatment with ultraviolet rays, such as a drop injection method or a photo-alignment treatment, which has been actively studied in recent years, without reducing the performance such as charge retention characteristics, There is a need for a liquid crystal display element that does not cause deterioration in display quality.
 そこで、本発明は、紫外線による光照射処理を行って製造され、表示品位の低下が抑制された液晶表示素子を提供することを目的とする。 Therefore, an object of the present invention is to provide a liquid crystal display element that is manufactured by performing light irradiation treatment with ultraviolet rays and in which deterioration of display quality is suppressed.
 また、本発明は、紫外線による光照射処理を行い、表示品位の低下が抑制された液晶表示素子を製造する液晶表示素子の製造方法を提供することを目的とする。 Another object of the present invention is to provide a method for manufacturing a liquid crystal display element, which performs a light irradiation treatment with ultraviolet rays and manufactures a liquid crystal display element in which deterioration of display quality is suppressed.
 尚、本発明の他の目的および利点は、以下の記載から明らかとなるであろう。 It should be noted that other objects and advantages of the present invention will become apparent from the following description.
 本発明の第1の態様は、画素の形成領域に、下記式(1)で表される化合物を用いて形成されたポリイミド前駆体およびそれをイミド化して得られるポリイミドから選ばれる少なくとも1つの重合体を含む液晶配向膜を有し、
 前記画素の形成領域に紫外線を照射して構成されたものであることを特徴とする液晶表示素子。
In the first aspect of the present invention, at least one layer selected from a polyimide precursor formed using a compound represented by the following formula (1) and a polyimide obtained by imidizing the polyimide is formed in a pixel formation region. Having a liquid crystal alignment film containing coalescence,
A liquid crystal display element, wherein the pixel formation region is configured by irradiating with ultraviolet rays.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 本発明の第1の態様において、液晶配向膜は、上記式(1)で表される化合物と、下記式(AM)で表される化合物(上記式(1)で表される化合物は除く。)とを用いて形成されたポリイミド前駆体およびそれをイミド化して得られるポリイミドから選ばれる少なくとも1つの重合体を含むことが好ましい。 In the first aspect of the present invention, the liquid crystal alignment film excludes a compound represented by the above formula (1) and a compound represented by the following formula (AM) (a compound represented by the above formula (1)). And at least one polymer selected from polyimides obtained by imidizing it.
Figure JPOXMLDOC01-appb-C000008
(式(AM)中、Yは、2価の有機基であり、2種類以上が混在していてもよい。また、式(AM)中、RおよびRは水素原子または1価の有機基を表す。)
Figure JPOXMLDOC01-appb-C000008
(In Formula (AM), Y 1 is a divalent organic group, and two or more types may be present. In Formula (AM), R 1 and R 2 are a hydrogen atom or a monovalent group. Represents an organic group.)
 本発明の第1の態様において、液晶配向膜は、下記式(CB1)~(CB5)で表される化合物のうちの少なくとも1種を用いて形成されたポリイミド前駆体およびそれをイミド化して得られるポリイミドから選ばれる少なくとも1つの重合体を含むことが好ましい。 In the first aspect of the present invention, the liquid crystal alignment film is obtained by imidizing a polyimide precursor formed using at least one of the compounds represented by the following formulas (CB1) to (CB5). It is preferable that the polymer contains at least one polymer selected from polyimides.
Figure JPOXMLDOC01-appb-C000009
(式(CB1)~(CB5)中、Zは炭素数4~13の4価の有機基であり、かつ炭素数4~6の非芳香族環状炭化水素基を含有する。式(CB4)および(CB5)中、Rは炭素数1~5、好ましくは炭素数1~2のアルキル基を表す。)
Figure JPOXMLDOC01-appb-C000009
(In the formulas (CB1) to (CB5), Z 1 is a tetravalent organic group having 4 to 13 carbon atoms and contains a non-aromatic cyclic hydrocarbon group having 4 to 6 carbon atoms. Formula (CB4) In (CB5), R 3 represents an alkyl group having 1 to 5 carbon atoms, preferably 1 to 2 carbon atoms.)
 本発明の第2の態様は、画素の形成領域に、液晶層と液晶配向膜とを有する液晶表示素子の製造方法であって、
 画素の形成領域に、下記式(1)で表される化合物を用いて形成されたポリイミド前駆体およびそれをイミド化して得られるポリイミドから選ばれる少なくとも1つの重合体を含む前記液晶配向膜を形成する液晶配向膜形成工程と、
 液晶配向膜形成工程の後に、画素の形成領域に紫外線を照射する光照射工程とを有することを特徴とする液晶表示素子の製造方法に関する。
A second aspect of the present invention is a method of manufacturing a liquid crystal display element having a liquid crystal layer and a liquid crystal alignment film in a pixel formation region,
Forming the liquid crystal alignment film containing at least one polymer selected from a polyimide precursor formed using a compound represented by the following formula (1) and a polyimide obtained by imidizing the same in a pixel formation region A liquid crystal alignment film forming step,
The present invention relates to a method of manufacturing a liquid crystal display element, comprising a light irradiation step of irradiating a pixel formation region with ultraviolet rays after the liquid crystal alignment film formation step.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 本発明の第2の態様において、液晶配向膜は、上記式(1)で表される化合物と、下記式(AM)で表される化合物(上記式(1)で表される化合物は除く。)とを用いて形成されたポリイミド前駆体およびそれをイミド化して得られるポリイミドから選ばれる少なくとも1つの重合体を含むことが好ましい。 In the second aspect of the present invention, the liquid crystal alignment film excludes a compound represented by the above formula (1) and a compound represented by the following formula (AM) (a compound represented by the above formula (1). And at least one polymer selected from polyimides obtained by imidizing it.
Figure JPOXMLDOC01-appb-C000011
(式(AM)中、Yは、2価の有機基であり、2種類以上が混在していてもよい。また、式(AM)中、RおよびRは水素原子または1価の有機基を表す。)
Figure JPOXMLDOC01-appb-C000011
(In Formula (AM), Y 1 is a divalent organic group, and two or more types may be present. In Formula (AM), R 1 and R 2 are a hydrogen atom or a monovalent group. Represents an organic group.)
 本発明の第2の態様において、液晶配向膜は、下記式(CB1)~(CB5)で表される化合物のうちの少なくとも1種を用いて形成されたポリイミド前駆体およびそれをイミド化して得られるポリイミドから選ばれる少なくとも1つの重合体を含むことが好ましい。 In the second aspect of the present invention, the liquid crystal alignment film is obtained by imidizing a polyimide precursor formed using at least one of the compounds represented by the following formulas (CB1) to (CB5). It is preferable that the polymer contains at least one polymer selected from polyimides.
Figure JPOXMLDOC01-appb-C000012
(式(CB1)~(CB5)中、Zは炭素数4~13の4価の有機基であり、かつ炭素数4~6の非芳香族環状炭化水素基を含有する。式(CB4)および(CB5)中、Rは炭素数1~5、好ましくは炭素数1~2のアルキル基を表す。)
Figure JPOXMLDOC01-appb-C000012
(In the formulas (CB1) to (CB5), Z 1 is a tetravalent organic group having 4 to 13 carbon atoms and contains a non-aromatic cyclic hydrocarbon group having 4 to 6 carbon atoms. Formula (CB4) In (CB5), R 3 represents an alkyl group having 1 to 5 carbon atoms, preferably 1 to 2 carbon atoms.)
 本発明の第2の態様において、液晶配向膜形成工程の後に、画素の形成領域の周囲にシール材を形成するシール形成工程を有し、
 光照射工程は、そのシール形成工程におけるシール材を硬化する工程であることが好ましい。
In the second aspect of the present invention, after the liquid crystal alignment film forming step, the method includes a seal forming step of forming a sealant around the pixel formation region,
The light irradiation step is preferably a step of curing the sealing material in the seal forming step.
 本発明の第2の態様において、光照射工程は、液晶配向膜を配向処理する工程であることが好ましい。 In the second aspect of the present invention, the light irradiation step is preferably a step of aligning the liquid crystal alignment film.
 本発明の第2の態様において、液晶配向膜形成工程の後に、画素の形成領域に液晶層を形成する工程を有し、
 光照射工程は、その液晶層の液晶を駆動しながら画素の形成領域に紫外線を照射する工程であることが好ましい。
In the second aspect of the present invention, the method includes a step of forming a liquid crystal layer in a pixel formation region after the liquid crystal alignment film formation step,
The light irradiation step is preferably a step of irradiating the pixel formation region with ultraviolet light while driving the liquid crystal of the liquid crystal layer.
 本発明の第2の態様において、液晶層は、液晶と光重合性化合物とを含んで構成され、
 光照射工程は、画素の形成領域にあるその液晶層の光重合性化合物を重合させる工程であることが好ましい。
In the second aspect of the present invention, the liquid crystal layer comprises a liquid crystal and a photopolymerizable compound,
The light irradiation step is preferably a step of polymerizing the photopolymerizable compound in the liquid crystal layer in the pixel formation region.
 本発明の第2の態様において、液晶配向膜形成工程の後に、画素の形成領域に液晶層を形成する工程を有し、
 光照射工程は、その液晶層の液晶を駆動しながら画素の形成領域に紫外線を照射する工程であることが好ましい。
In the second aspect of the present invention, the method includes a step of forming a liquid crystal layer in a pixel formation region after the liquid crystal alignment film formation step,
The light irradiation step is preferably a step of irradiating the pixel formation region with ultraviolet light while driving the liquid crystal of the liquid crystal layer.
 本発明の第1の態様によれば、紫外線を照射する光照射処理を行って製造され、表示品位の低下が抑制された液晶表示素子を提供することができる。 According to the first aspect of the present invention, it is possible to provide a liquid crystal display element that is manufactured by performing a light irradiation process for irradiating ultraviolet rays and in which deterioration of display quality is suppressed.
 本発明の第2の態様によれば、紫外線を照射する光照射処理を行い、表示品位の低下が抑制された液晶表示素子を製造する液晶表示素子の製造方法を提供することができる。 According to the second aspect of the present invention, it is possible to provide a method for manufacturing a liquid crystal display element, which performs a light irradiation process for irradiating ultraviolet rays, and manufactures a liquid crystal display element in which deterioration of display quality is suppressed.
本発明の実施形態の液晶表示素子の構造を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the liquid crystal display element of embodiment of this invention.
 液晶表示素子の製造においては、上述したように、主要な工程として、基板間に液晶を封入する工程や、液晶を配向させるための液晶配向膜の配向処理工程が含まれている。こうした工程では、光、特に可視光または紫外線の照射を利用して、光硬化型のシール材を硬化させ、または、液晶配向膜の光配向処理をする等して、所望とする効果を実現することができる。 In the manufacture of a liquid crystal display element, as described above, the main steps include a step of encapsulating liquid crystals between substrates and an alignment treatment step of a liquid crystal alignment film for aligning liquid crystals. In such a process, a desired effect is realized by curing a photocurable sealing material using light, particularly visible light or ultraviolet irradiation, or performing a photoalignment treatment of the liquid crystal alignment film. be able to.
 また、PSA(Polymer Sustained Alignment)方式の液晶表示素子では、光重合性化合物を少量(典型的には、0.2重量%~1重量%である。)添加した液晶を用い、その液晶を挟持する両基板の有する電極間に電圧を印加した状態で紫外線を照射する。その結果、PSA方式の液晶表示素子では、そうした紫外線の照射処理により、光重合性化合物が反応し、重合し架橋されることで、液晶表示素子の応答速度が速くなる。 In addition, in a PSA (Polymer Sustained Alignment) type liquid crystal display element, a liquid crystal to which a small amount (typically 0.2 wt% to 1 wt%) of a photopolymerizable compound is added is used to sandwich the liquid crystal. The ultraviolet rays are irradiated in a state where a voltage is applied between the electrodes of both substrates. As a result, in the PSA type liquid crystal display element, the photopolymerizable compound reacts, polymerizes and crosslinks by such ultraviolet irradiation treatment, so that the response speed of the liquid crystal display element is increased.
 また、液晶を挟持する両基板の有する電極間に電圧を印加した状態で紫外線を照射して製造されるタイプの液晶表示素子(本明細書においては、以下、単に、紫外線照射方式と称することにする。)がある。この紫外線照射方式の液晶表示素子は、液晶の初期配向が垂直配向であるVA(Vertical Alignment)モードの液晶表示素子であり、上述したように、液晶を挟持する両基板の有する電極間に電圧を印加した状態で紫外線を照射して製造される。紫外線照射方式の液晶表示素子は、液晶に光重合性化合物を少量添加したものを用いることも可能である。そして、紫外線照射方式の液晶表示素子は、液晶の優れた応答特性を実現することができる。 Further, a liquid crystal display element of a type manufactured by irradiating ultraviolet rays with a voltage applied between the electrodes of both substrates sandwiching the liquid crystal (hereinafter referred to simply as an ultraviolet irradiation method in this specification). There is.) This ultraviolet irradiation type liquid crystal display element is a VA (Vertical Alignment) mode liquid crystal display element in which the initial alignment of the liquid crystal is vertical alignment, and as described above, a voltage is applied between the electrodes of both substrates sandwiching the liquid crystal. Manufactured by irradiating ultraviolet rays in an applied state. As the liquid crystal display element of the ultraviolet irradiation method, a liquid crystal in which a small amount of a photopolymerizable compound is added can be used. An ultraviolet irradiation type liquid crystal display element can realize excellent response characteristics of liquid crystal.
 以上のように、液晶表示素子は、その製造工程において光照射、特に紫外線照射処理を含むことで、所望とする特性を実現することが可能となる。しかしながらその一方で、問題を生じさせる場合があることがわかっている。すなわち、従来の液晶表示素子では、画像表示を行う画素の形成領域において、光、特に紫外線の照射を受けて、特性を低下させることがあった。具体的には、紫外線の照射を受けて、電荷保持特性(例えば、電荷保持率)を低下させることや、残留DC特性を低下させることがあった。 As described above, the liquid crystal display element can realize desired characteristics by including light irradiation, particularly ultraviolet irradiation treatment in its manufacturing process. However, on the other hand, it has been found that it can cause problems. That is, in the conventional liquid crystal display element, the characteristics may be deteriorated by receiving light, particularly ultraviolet rays, in the formation region of the pixel that performs image display. Specifically, upon receiving irradiation of ultraviolet rays, the charge retention characteristics (for example, charge retention ratio) may be lowered, or the residual DC characteristics may be lowered.
 そこで、本発明者らは、鋭意研究を行った結果、液晶表示素子の液晶配向膜の構造を最適なものとすることで、こうした問題の解決に有効であることを見出した。
 液晶表示素子においては、上述したように、液晶を配向させるための液晶配向膜に高耐熱性で高強度のポリイミド膜が多用されている。
Therefore, as a result of intensive studies, the present inventors have found that it is effective in solving such problems by optimizing the structure of the liquid crystal alignment film of the liquid crystal display element.
In the liquid crystal display element, as described above, a highly heat-resistant and high-strength polyimide film is frequently used as a liquid crystal alignment film for aligning liquid crystals.
 そして、液晶表示素子を構成する基板上に液晶配向膜となるポリイミド膜を形成する場合、次のような液晶配向剤を使用する方法が好適に用いられている。
 その方法としては、上述したように、ポリアミック酸等のポリイミド前駆体を含有する液晶配向剤を調製する。そして、得られた液晶配向剤を使用してその塗膜を形成し、基板上でイミド化させてポリイミド膜を得る方法が知られている。また、別の方法としては、予めイミド化させてあるポリイミドを溶媒に溶解して、溶媒可溶型の液晶配向剤を調製する。そして、その液晶配向剤を使用して塗膜を形成し、ポリイミド膜を得る方法がある。
And when forming the polyimide film used as a liquid crystal aligning film on the board | substrate which comprises a liquid crystal display element, the method of using the following liquid crystal aligning agents is used suitably.
As the method, as described above, a liquid crystal aligning agent containing a polyimide precursor such as polyamic acid is prepared. And the method of forming the coating film using the obtained liquid crystal aligning agent, imidizing on a board | substrate, and obtaining a polyimide film is known. As another method, a polyimide that has been imidized in advance is dissolved in a solvent to prepare a solvent-soluble liquid crystal aligning agent. And there exists a method of forming a coating film using the liquid crystal aligning agent, and obtaining a polyimide film.
 本発明者らは、このようなポリイミド系の液晶配向膜の分子構造を最適化することで、上述した光、特に紫外線の照射によって生ずる問題を低減できることを見出した。すなわち、本発明者らは、画素の形成領域に光、特に紫外線を照射する工程を経て作成される液晶表示素子であって、最適構造のポリイミド前駆体およびそれをイミド化して得られるポリイミドから選ばれる少なくとも1つの重合体を含む液晶配向膜を有し、光、特に紫外線の照射に対して性能劣化が低減された液晶表示素子を得るに至り、本発明に至った。
 以下、本発明の実施形態について説明する。
The present inventors have found that by optimizing the molecular structure of such a polyimide-based liquid crystal alignment film, it is possible to reduce the above-described problems caused by irradiation with light, particularly ultraviolet rays. That is, the inventors of the present invention are liquid crystal display elements that are created through a process of irradiating the pixel formation region with light, particularly ultraviolet rays, and are selected from a polyimide precursor having an optimal structure and a polyimide obtained by imidizing it. Thus, a liquid crystal display element having a liquid crystal alignment film containing at least one polymer and having reduced performance deterioration with respect to irradiation with light, particularly ultraviolet rays, was obtained, and the present invention was achieved.
Hereinafter, embodiments of the present invention will be described.
実施形態1
 本発明の第1の実施形態である液晶表示素子について、図面を用いて説明する。
 本実施形態の液晶表示素子は、一例として、TN(Twisted Nematic)モードのカラー液晶表示素子とすることができる。
Embodiment 1
The liquid crystal display element which is the 1st Embodiment of this invention is demonstrated using drawing.
As an example, the liquid crystal display element of the present embodiment can be a color liquid crystal display element of a TN (Twisted Nematic) mode.
 その場合、本実施形態の液晶表示素子は、例えば、薄膜トランジスタ(Thin Film Transistor:TFT)が配置されたTFT基板と、カラーフィルタ層(以下、CF層と言うことがある。)を備えたCF基板とを用い、液晶層を挟持し、画像形成を行う画素の形成領域の周囲にシール材を配置して、それら基板間が固定された構造を有する。
 以下、本実施形態の液晶表示素子の構造をより詳しく説明する。
In that case, the liquid crystal display element of the present embodiment includes, for example, a CF substrate including a TFT substrate on which a thin film transistor (TFT) is disposed, and a color filter layer (hereinafter also referred to as a CF layer). And a sealing material is disposed around a pixel formation region for image formation, and the substrate is fixed between the substrates.
Hereinafter, the structure of the liquid crystal display element of this embodiment will be described in more detail.
 図1は、本実施形態の液晶表示素子の構造を模式的に説明する断面図である。 FIG. 1 is a cross-sectional view schematically illustrating the structure of the liquid crystal display element of this embodiment.
 図1に示す液晶表示素子1は、本発明の第1実施形態である液晶表示素子の一例であり、上述したように、TFT駆動による、透過型のTNモード液晶表示素子とすることができる。この液晶表示素子1は、上記したTFT基板2と、CF層7を備えたCF基板3とが、液晶層4を挟持して構成される。 A liquid crystal display element 1 shown in FIG. 1 is an example of the liquid crystal display element according to the first embodiment of the present invention, and as described above, a transmissive TN mode liquid crystal display element driven by TFTs can be used. The liquid crystal display element 1 is configured by sandwiching a liquid crystal layer 4 between the above-described TFT substrate 2 and a CF substrate 3 having a CF layer 7.
 図1に示すように、液晶表示素子1のTFT基板2は、透明な基板5の液晶層4の側に、不図示のTFTと、ITO等からなる透明な画素電極6とをマトリクス状に形成して構成されている。例えば、TFT基板2は、基板5に互いに平行に延びるように設けられた複数の不図示のゲート線と、各ゲート線を覆うように設けられた不図示のゲート絶縁膜と、ゲート絶縁膜上に各ゲート線と直交する方向に互いに平行に延びるように設けられた複数の不図示のソース線と、各ゲート線および各ソース線の交差部分毎、すなわち、画素毎にそれぞれ設けられた複数のTFTと、各TFTおよび各ソース線を覆うように設けられた層間絶縁膜と、層間絶縁膜上にマトリクス状に形成され、各TFTに接続された複数の画素電極6とを有している。 As shown in FIG. 1, the TFT substrate 2 of the liquid crystal display element 1 has a TFT (not shown) and a transparent pixel electrode 6 made of ITO or the like formed in a matrix on the liquid crystal layer 4 side of the transparent substrate 5. Configured. For example, the TFT substrate 2 includes a plurality of gate lines (not shown) provided on the substrate 5 so as to extend in parallel to each other, a gate insulating film (not shown) provided so as to cover each gate line, and a gate insulating film on the gate insulating film. A plurality of source lines (not shown) provided so as to extend in parallel with each other in a direction perpendicular to each gate line, and a plurality of gate lines and each intersection of the source lines, that is, a plurality of each provided for each pixel The TFT includes an interlayer insulating film provided so as to cover each TFT and each source line, and a plurality of pixel electrodes 6 formed in a matrix on the interlayer insulating film and connected to each TFT.
 液晶表示素子1のCF基板3は、透明な基板15の液晶層4の側に、CF層7と保護層8と配置して構成されている。CF層7は、TFT基板2の画素電極6に対向する位置に設けられた赤、緑および青の着色層9と、各着色層9の間設けられて光を遮光するブラックマトリクス10とを有して構成される。CF基板3のCF層7上の保護層8の上には、ITO等からなる透明な共通電極11が配置される。 The CF substrate 3 of the liquid crystal display element 1 is configured by arranging the CF layer 7 and the protective layer 8 on the liquid crystal layer 4 side of the transparent substrate 15. The CF layer 7 has a red, green and blue colored layer 9 provided at a position facing the pixel electrode 6 of the TFT substrate 2 and a black matrix 10 provided between the colored layers 9 to block light. Configured. A transparent common electrode 11 made of ITO or the like is disposed on the protective layer 8 on the CF layer 7 of the CF substrate 3.
 TFT基板2とCF基板3にはそれぞれ、液晶層4と接する面に液晶配向膜12が設けられている。液晶配向膜12は、後に詳述する、所望構造のポリイミド膜を使用して構成された液晶配向膜12とすることができる。液晶表示素子1では、液晶配向膜12に対し、必要な場合、例えば、ラビング処理等の配向処理をすることにより、TFT基板2とCF基板3とにより挟持された液晶層4における均一な配向を実現できる。 The TFT substrate 2 and the CF substrate 3 are each provided with a liquid crystal alignment film 12 on the surface in contact with the liquid crystal layer 4. The liquid crystal alignment film 12 can be a liquid crystal alignment film 12 configured using a polyimide film having a desired structure, which will be described in detail later. In the liquid crystal display element 1, when necessary, the liquid crystal alignment film 12 is subjected to an alignment process such as a rubbing process, whereby a uniform alignment in the liquid crystal layer 4 sandwiched between the TFT substrate 2 and the CF substrate 3 is achieved. realizable.
 本実施形態の液晶表示素子1は、TNモード液晶表示素子とすることができる。液晶層4はネマティック液晶からなり、液晶配向膜12の作用によって、TFT基板2とCF基板3との間で90度のツイスト配向状態を示す。 The liquid crystal display element 1 of the present embodiment can be a TN mode liquid crystal display element. The liquid crystal layer 4 is made of nematic liquid crystal and exhibits a twist alignment state of 90 degrees between the TFT substrate 2 and the CF substrate 3 by the action of the liquid crystal alignment film 12.
 TFT基板2とCF基板3とにおいて、液晶層4側と反対の外部側の面には、それぞれ偏光板17が配置されている。TFT基板2とCF基板3の間隔(ギャップとも言う。)は、1μm~20μmとすることが好ましく、ギャップは、画素電極6の配置領域の周辺部分に設けられたシール材16によって固定され維持されている。 In the TFT substrate 2 and the CF substrate 3, polarizing plates 17 are respectively disposed on the outer surface opposite to the liquid crystal layer 4 side. The distance (also referred to as a gap) between the TFT substrate 2 and the CF substrate 3 is preferably 1 μm to 20 μm, and the gap is fixed and maintained by a sealant 16 provided in the peripheral portion of the pixel electrode 6 arrangement region. ing.
 シール材16は、画素電極6が配置され、画像を表示するための画素の形成領域の周囲を囲むように矩形枠状に設けられている。このシール材16の枠幅は、特に限定されないが、例えば、0.5mm以上2.0mm以下に設定できる。シール材16を形成するシール材料としては、例えば、アクリル樹脂、ウレタン樹脂、ポリエステル樹脂、およびエポキシ樹脂等の紫外線硬化型樹脂を使用することができる。これらの樹脂は、単独で使用してもよく、2種以上を同時に使用しても良い。 The seal material 16 is provided with a pixel frame 6 and is provided in a rectangular frame shape so as to surround the periphery of a pixel formation region for displaying an image. The frame width of the sealing material 16 is not particularly limited, but can be set to 0.5 mm or more and 2.0 mm or less, for example. As a sealing material for forming the sealing material 16, for example, an ultraviolet curable resin such as an acrylic resin, a urethane resin, a polyester resin, and an epoxy resin can be used. These resins may be used alone or in combination of two or more.
 そして、液晶表示素子1は、シール材16が、例えば、紫外線硬化型樹脂を使用したものであり、紫外線の照射を受けて硬化されたものである。そのため、液晶表示素子1は、画素の形成領域においても、同様に、シール材16の硬化のための紫外線の照射がなされ、提供されている。 In the liquid crystal display element 1, the sealing material 16 uses, for example, an ultraviolet curable resin and is cured by being irradiated with ultraviolet rays. Therefore, the liquid crystal display element 1 is also provided with irradiation of ultraviolet rays for curing the sealing material 16 in the pixel formation region as well.
 このように、画素の形成領域でも紫外線が照射された液晶表示素子1は、画素電極6毎に1つの画素が構成されており、各画素において液晶層4に所定の大きさの電圧を印加させることにより、液晶層4の液晶の配向状態を変化させ、例えば、不図示のバックライトから入射する可視光の透過率を調整して画像の表示を行う。 As described above, in the liquid crystal display element 1 irradiated with ultraviolet rays even in the pixel formation region, one pixel is formed for each pixel electrode 6, and a voltage of a predetermined magnitude is applied to the liquid crystal layer 4 in each pixel. Thereby, the alignment state of the liquid crystal of the liquid crystal layer 4 is changed, and for example, the transmittance of visible light incident from a backlight (not shown) is adjusted to display an image.
 以上の構造を有する液晶表示素子1は、以下のようにして製造することができる。
 まず、上述した構造のTFT基板2を準備する。TFT基板2は、例えば、透明なガラス基板等からなる基板5上に、公知の方法に従い、TFTや画素電極6を含む各種電極等を形成して製造されたものである。そして、TFT基板2上に液晶配向膜12を形成する。液晶配向膜12およびその形成方法の詳細については、この後に詳述する。
The liquid crystal display element 1 having the above structure can be manufactured as follows.
First, the TFT substrate 2 having the above-described structure is prepared. The TFT substrate 2 is manufactured, for example, by forming various electrodes including TFTs and pixel electrodes 6 on a substrate 5 made of a transparent glass substrate or the like according to a known method. Then, a liquid crystal alignment film 12 is formed on the TFT substrate 2. Details of the liquid crystal alignment film 12 and the method of forming the liquid crystal alignment film 12 will be described later.
 そして、上記した構造のCF基板3を準備する。CF基板3は、例えば、透明なガラス基板等からなる基板15上に、着色層9およびブラックマトリクス10を有するCF層7、並びに、共通電極11等をパターニングして形成される。そして、共通電極11の表面に液晶配向膜12を形成する。尚、ブラックマトリクスは、Ta(タンタル)、Cr(クロム)、Mo(モリブデン)、Ni(ニッケル)、Ti(チタン)、Cu(銅)、Al(アルミニウム)等の金属材料、カーボン等の黒色顔料が分散された樹脂材料、または、各々、光透過性を有する複数色の着色層が積層された樹脂材料などにより形成される。 Then, the CF substrate 3 having the above structure is prepared. The CF substrate 3 is formed, for example, by patterning the CF layer 7 having the colored layer 9 and the black matrix 10, the common electrode 11 and the like on the substrate 15 made of a transparent glass substrate or the like. Then, a liquid crystal alignment film 12 is formed on the surface of the common electrode 11. The black matrix is made of a metal material such as Ta (tantalum), Cr (chromium), Mo (molybdenum), Ni (nickel), Ti (titanium), Cu (copper), Al (aluminum), or a black pigment such as carbon. Are dispersed or a resin material in which a plurality of colored layers having light transmittance are laminated.
 次に、そのTFT基板2の画素電極6の形成された画素の形成領域の周囲において、紫外線硬化型のシール材料を用い、ディスペンサーによる方法や、所望の形状に印刷する方法や、スピンコート法によって塗布した後でフォトリソグラフィ法によりパターニングする方法等に従い、シール材16を枠状に形成する。次いで、真空雰囲気において、このシール材16の枠内のTFT基板2上に液晶を滴下するとともに、液晶が滴下されたTFT基板2とCF基板3とを貼り合わせる。次いで、TFT基板2とCF基板3とその状態で大気中に戻し、貼り合わされたTFT2基板とCF基板3との間の液晶を大気圧により拡散させて液晶層4を形成する。そして、紫外線をシール材16に照射し、シール材16を硬化させる。その後、TFT基板2とCF基板3の液晶層4と反対側の外部側の面にそれぞれ、偏光板17を配置し、液晶表示素子1を製造する。 Next, around the region where the pixel electrode 6 of the TFT substrate 2 is formed, an ultraviolet curable sealing material is used, a dispenser method, a method of printing in a desired shape, or a spin coating method. After the coating, the sealing material 16 is formed in a frame shape according to a patterning method using a photolithography method. Next, in a vacuum atmosphere, liquid crystal is dropped onto the TFT substrate 2 within the frame of the sealing material 16 and the TFT substrate 2 and the CF substrate 3 onto which the liquid crystal has been dropped are bonded together. Next, the TFT substrate 2 and the CF substrate 3 and their state are returned to the atmosphere, and the liquid crystal between the TFT 2 substrate and the CF substrate 3 bonded together is diffused by atmospheric pressure to form the liquid crystal layer 4. Then, the sealing material 16 is irradiated with ultraviolet rays to cure the sealing material 16. Then, the polarizing plate 17 is arrange | positioned to the surface of the TFT substrate 2 and the external side of the CF substrate 3 opposite to the liquid crystal layer 4, respectively, and the liquid crystal display element 1 is manufactured.
 したがって、本実施形態の液晶表示素子1の製造において、紫外線を照射する光照射工程は、シール材16を硬化する工程であって、TFT基板2とCF基板3とを互いに固定する工程となる。照射光は、シール材16の硬化に好適な波長特性を有し、波長が200nm~400nmの紫外線とすることができる。そして、紫外線の照射量は、シール材の硬化に好適な量を選択することが好ましい。 Therefore, in the manufacture of the liquid crystal display element 1 of the present embodiment, the light irradiation step of irradiating ultraviolet rays is a step of curing the sealing material 16, and is a step of fixing the TFT substrate 2 and the CF substrate 3 to each other. The irradiation light has a wavelength characteristic suitable for curing the sealing material 16, and can be an ultraviolet ray having a wavelength of 200 nm to 400 nm. And as for the irradiation amount of an ultraviolet-ray, it is preferable to select the quantity suitable for hardening of a sealing material.
 ここで、シール材16を、紫外線の照射処理によって硬化する光照射工程では、シール材16とともに、画素電極6や液晶配向膜12や液晶層4等が配置された画素の形成領域にも紫外線の照射がなされている。画素の形成領域の液晶配向膜12等に紫外線が照射されないようにするため、例えば、所定の形状のマスクを設ける等の別段の手段は講じられていない。したがって、光照射工程は、より簡便に、シール材16の形成領域と画素の形成領域とをわけること無く、その全域に紫外線を照射して、シール材16を硬化させる工程となる。 Here, in the light irradiation process in which the sealing material 16 is cured by the ultraviolet irradiation treatment, the ultraviolet light is also applied to the pixel formation region where the pixel electrode 6, the liquid crystal alignment film 12, the liquid crystal layer 4, and the like are disposed together with the sealing material 16. Irradiation has been made. In order not to irradiate the liquid crystal alignment film 12 or the like in the pixel formation region with ultraviolet rays, no other means such as providing a mask having a predetermined shape is taken. Therefore, the light irradiation process is a process of curing the sealing material 16 by irradiating the entire area with ultraviolet rays without dividing the formation area of the sealing material 16 and the formation area of the pixels more easily.
 しかしながら、本実施形態の液晶表示素子1は、後述する構造のポリイミド膜を含む液晶配向膜12を用いて構成されている。そのため、例えば、シール材16の硬化時に画素の形成領域において紫外線の照射を受けても、性能の劣化は抑制されている。したがって、本実施形態の液晶表示素子1は、画素の形成領域に紫外線を照射する工程を経て作成された場合であっても、従来課題とされていた、紫外線照射による性能劣化を抑制することができる。すなわち、本実施形態によれば、特に、紫外線を照射する光照射処理を用いて製造され、表示品位の低下が抑制された液晶表示素子1を提供することができる。 However, the liquid crystal display element 1 of the present embodiment is configured using a liquid crystal alignment film 12 including a polyimide film having a structure to be described later. For this reason, for example, even when the sealing material 16 is cured, even if it is irradiated with ultraviolet rays in the pixel formation region, the deterioration of the performance is suppressed. Therefore, even if the liquid crystal display element 1 of the present embodiment is produced through a process of irradiating the pixel formation region with ultraviolet rays, it can suppress performance degradation due to ultraviolet irradiation, which has been a problem in the past. it can. That is, according to the present embodiment, it is possible to provide the liquid crystal display element 1 that is manufactured using a light irradiation process that irradiates ultraviolet rays and that suppresses the deterioration of display quality.
 尚、本実施形態の液晶表示素子1は、シール材16の形成に、可視光硬化型のシール材料を用いることも可能である。例えば、アクリル樹脂、メタクリル樹脂、エポキシ樹脂およびシリコーン樹脂等の可視光の光エネルギーを照射することによって硬化する光硬化性樹脂を使用することが可能である。その場合であっても、本実施形態の液晶表示素子1は、後述する特定の構造のポリイミド膜を含む液晶配向膜12を用いて構成されており、例えば、シール材16の硬化時において画素の形成領域において、可視光の照射を受けても、性能の劣化が抑制されている。したがって、本実施形態の液晶表示素子1は、画素の形成領域に可視光を照射する工程を経て作成された場合であっても、可視光照射による性能劣化を抑制することができる。 In the liquid crystal display element 1 of this embodiment, a visible light curable sealing material can be used for forming the sealing material 16. For example, it is possible to use a photocurable resin that is cured by irradiating visible light energy such as an acrylic resin, a methacrylic resin, an epoxy resin, and a silicone resin. Even in such a case, the liquid crystal display element 1 of the present embodiment is configured using the liquid crystal alignment film 12 including a polyimide film having a specific structure to be described later. For example, when the sealing material 16 is cured, Even in the formation region, even if visible light is irradiated, deterioration of performance is suppressed. Therefore, the liquid crystal display element 1 of the present embodiment can suppress performance degradation due to visible light irradiation even when the liquid crystal display element 1 is formed through a process of irradiating visible light to a pixel formation region.
 また、本実施形態の液晶表示素子には、上述のTNモードの他、STN(Super Twisted Nematic)モード、IPS(In-Planes Switching)モード、VA(Vertical Alignment)モード、または、OCB(Optically Compensated Birefringence)モード等の液晶モードとすることもできる。その場合、TFT基板やCF基板は、図1に示した例と異なり、各液晶モードに好適な公知の構造とすることができる。 In addition to the above-described TN mode, the liquid crystal display element of the present embodiment includes an STN (Super Twisted Nematic) mode, an IPS (In-Plane Switching) mode, a VA (Vertical Alignment) mode, or an OCB (Optically Compensating Bending). ) Mode or the like. In that case, the TFT substrate and the CF substrate can have a known structure suitable for each liquid crystal mode, unlike the example shown in FIG.
 以上の構成の本実施形態の液晶表示素子は、紫外線の照射を受けて製造されるとともに表示品位の低下が抑制されるという特徴を備えるが、そうした特徴を実現する場合において、液晶配向膜が重要な構成要素となる。そこで、次に、本実施形態の液晶表示素子の主要な構成要素であって、可視光や紫外線等の光の照射を受けても性能劣化を低減するのに有効な液晶配向膜について説明する。
 尚、上記した、図1の本実施形態の液晶表示素子1は、TNモードの液晶表素子であるが、これは本実施形態の一例であり、以下で説明する液晶配向膜は、IPSモードやVAモード等の本実施形態の液晶表示素子にも好適な液晶配向膜が含まれるように説明をする。
The liquid crystal display element of the present embodiment having the above-described configuration is characterized by being manufactured by being irradiated with ultraviolet rays and suppressing deterioration in display quality. In order to realize such characteristics, a liquid crystal alignment film is important. It becomes a necessary component. Therefore, a liquid crystal alignment film that is a main component of the liquid crystal display element of the present embodiment and is effective in reducing performance deterioration even when irradiated with light such as visible light or ultraviolet light will be described.
The above-described liquid crystal display element 1 of this embodiment in FIG. 1 is a TN mode liquid crystal surface element, but this is an example of this embodiment, and the liquid crystal alignment film described below has an IPS mode or Description will be made so that the liquid crystal display element of this embodiment such as the VA mode also includes a suitable liquid crystal alignment film.
 本実施形態の液晶表示素子を構成する本実施形態の液晶配向膜は、ポリイミド前駆体およびそれをイミド化して得られるポリイミドから選ばれる少なくとも1つの重合体を含む液晶配向膜とすることが好ましい。そうした重合体を含むことで、本実施形態の液晶配向膜は、高い耐熱性等、優れた耐久性を有する。 The liquid crystal alignment film of the present embodiment constituting the liquid crystal display element of the present embodiment is preferably a liquid crystal alignment film containing at least one polymer selected from a polyimide precursor and a polyimide obtained by imidizing it. By including such a polymer, the liquid crystal alignment film of this embodiment has excellent durability such as high heat resistance.
 そして、本実施形態の液晶配向膜は、紫外線の照射を受けても液晶表示素子の性能劣化を低減するのに有効な液晶配向膜である。上述したように、TFT基板やCF基板等の基板上に、ポリイミド等の重合体を含む液晶配向膜を形成する場合、液晶配向剤を使用する方法が好適である。その液晶配向剤は、ジアミン化合物とテトラカルボン酸誘導体とを反応させて得られるポリイミド前駆体およびそれをイミド化して得られるポリイミドから選ばれる少なくとも1種の重合体を含有して構成されることが好ましい。そして、TFT基板やCF基板等の基板上で液晶配向剤の塗膜を加熱してポリイミド等の重合体膜を形成し、必要な配向処理を施して液晶配向膜を形成することができる。 The liquid crystal alignment film of this embodiment is an effective liquid crystal alignment film for reducing performance deterioration of the liquid crystal display element even when irradiated with ultraviolet rays. As described above, when a liquid crystal alignment film containing a polymer such as polyimide is formed on a substrate such as a TFT substrate or a CF substrate, a method using a liquid crystal aligning agent is preferable. The liquid crystal aligning agent contains at least one polymer selected from a polyimide precursor obtained by reacting a diamine compound and a tetracarboxylic acid derivative and a polyimide obtained by imidizing it. preferable. Then, a liquid crystal alignment film can be formed by heating a coating film of a liquid crystal aligning agent on a substrate such as a TFT substrate or a CF substrate to form a polymer film such as polyimide, and performing a necessary alignment treatment.
 したがって、本実施形態の液晶配向膜は、本実施形態の液晶配向剤を用いて形成されることが好ましい。そして、本実施形態の液晶配向剤は、ポリイミド前駆体およびそれをイミド化して得られるポリイミドから選ばれる少なくとも1種の重合体を含有し、上記特性の液晶配向膜を形成するように、その重合体の構造が最適化されている。
 その結果、液晶配向剤が含有するポリイミド前駆体およびポリイミド等の重合体の構造的な特徴により、紫外線照射を受けても性能劣化を低減するのに有効な液晶配向膜を提供することができる。
Therefore, the liquid crystal alignment film of this embodiment is preferably formed using the liquid crystal alignment agent of this embodiment. And the liquid crystal aligning agent of this embodiment contains at least 1 sort (s) of polymer chosen from the polyimide precursor and the polyimide obtained by imidating it, and the weight is formed so that the liquid crystal aligning film of the said characteristic may be formed. The structure of coalescence is optimized.
As a result, due to the structural characteristics of the polyimide precursor and the polymer such as polyimide contained in the liquid crystal aligning agent, it is possible to provide a liquid crystal aligning film effective for reducing performance deterioration even when irradiated with ultraviolet rays.
 液晶配向剤に含有可能なポリイミド前駆体は、上述したように、ジアミン化合物とテトラカルボン酸誘導体とを反応させて得られ、ポリイミドは、そのポリイミド前駆体をイミド化して得られる。本実施形態の液晶配向剤が含有するポリイミド前駆体は所望の構造を実現するために、特定構造のジアミン化合物が選択され、その合成に用いられることが好ましい。 As described above, the polyimide precursor that can be contained in the liquid crystal aligning agent is obtained by reacting a diamine compound and a tetracarboxylic acid derivative, and the polyimide is obtained by imidizing the polyimide precursor. In order for the polyimide precursor contained in the liquid crystal aligning agent of the present embodiment to achieve a desired structure, a diamine compound having a specific structure is preferably selected and used for the synthesis thereof.
 すなわち、本実施形態の液晶配向剤は、特定構造のジアミン化合物とテトラカルボン酸誘導体とを反応させて得られる、所望構造のポリイミド前駆体およびそれをイミド化して得られるポリイミドから選ばれる少なくとも1種の重合体を含有し、本実施形態の液晶配向膜を提供することができる。 That is, the liquid crystal aligning agent of this embodiment is at least one selected from a polyimide precursor obtained by reacting a diamine compound having a specific structure and a tetracarboxylic acid derivative, and a polyimide obtained by imidizing it. The liquid crystal alignment film of this embodiment can be provided.
 次に、本実施形態の液晶配向剤に含有可能なポリイミド前駆体およびポリイミドを形成するための特定構造のジアミン化合物およびテトラカルボン酸誘導体についてより詳細に説明する。その後、そのポリイミド前駆体およびポリイミドについてより詳細に説明し、それらを含有する本実施形態の液晶配向剤、それを用いた本実施形態の液晶配向膜の形成について、より詳細に説明する。
 尚、本発明において、ポリイミド前駆体としては、ポリアミック酸、ポリアミック酸エステル等が含まれる。
Next, the diamine compound and tetracarboxylic acid derivative having a specific structure for forming the polyimide precursor and polyimide that can be contained in the liquid crystal aligning agent of the present embodiment will be described in more detail. Then, the polyimide precursor and polyimide will be described in more detail, and the liquid crystal aligning agent of this embodiment containing them and the formation of the liquid crystal alignment film of this embodiment using the same will be described in more detail.
In the present invention, the polyimide precursor includes polyamic acid, polyamic acid ester, and the like.
<ジアミン化合物>
 本実施形態の液晶配向膜の形成のための本実施形態の液晶配向剤に含有されるポリイミド前駆体の合成に好適な、特定構造のジアミン化合物としては、下記式(1)で表される化合物を用いる。
<Diamine compound>
As a diamine compound having a specific structure suitable for the synthesis of the polyimide precursor contained in the liquid crystal aligning agent of this embodiment for forming the liquid crystal aligning film of this embodiment, a compound represented by the following formula (1) Is used.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 テトラカルボン酸誘導体と反応させ、本実施形態の液晶配向剤の含有可能な成分であるポリイミド前駆体およびポリイミドを合成するためのジアミンとしては、上記式(1)で表されるジアミン化合物のみを単独で用いてもよい。また、上記式(1)で表される化合物と、上記式(1)で表されるジアミン化合物以外であって、次に説明する下記式(AM)で表されるその他のジアミン化合物とを組み合わせて用いてもよい。 As a diamine for reacting with a tetracarboxylic acid derivative and synthesizing a polyimide precursor and a polyimide which can be contained in the liquid crystal aligning agent of this embodiment, only the diamine compound represented by the above formula (1) is used alone. May be used. Also, a combination of the compound represented by the above formula (1) and another diamine compound represented by the following formula (AM) described below, other than the diamine compound represented by the above formula (1) May be used.
<その他のジアミン化合物>
 本実施形態の液晶配向剤の含有可能な成分であるポリイミド前駆体およびポリイミドを合成するため、上述のように、上記式(1)で表される化合物と、上記式(1)で表されるジアミン化合物以外であって、次に説明する下記式(AM)で表されるその他のジアミン化合物とを組み合わせて用いることができる。
<Other diamine compounds>
In order to synthesize a polyimide precursor and a polyimide that can be contained in the liquid crystal aligning agent of this embodiment, as described above, the compound represented by the above formula (1) and the above formula (1) are used. Other than the diamine compound, other diamine compounds represented by the following formula (AM) described below can be used in combination.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 上記式(AM)中、Yは、2価の有機基であり、2種類以上が混在していてもよい。また、上記式(AM)中、RおよびRは水素原子または1価の有機基を表す。 In the above formula (AM), Y 1 is a divalent organic group, and two or more kinds may be mixed. In the formula (AM), R 1 and R 2 represent a hydrogen atom or a monovalent organic group.
 より具体的には、上記式(AM)において、R~Rはそれぞれ独立して水素原子、または置換基を有してもよい炭素数1~10のアルキル基、アルケニル基、アルキニル基である。 More specifically, in the above formula (AM), R 1 and R 2 are each independently a hydrogen atom or an optionally substituted alkyl group, alkenyl group, or alkynyl group having 1 to 10 carbon atoms. is there.
 上記式(AM)において、RおよびRは、上述したように、それぞれ独立して水素原子、または置換基を有してもよい炭素数1~10のアルキル基、アルケニル基、アルキニル基であるが、上記アルキル基の具体例としては、メチル基、エチル基、プロピル基、ブチル基、t-ブチル基、ヘキシル基、オクチル基、デシル基、シクロペンチル基、シクロヘキシル基、ビシクロヘキシル基等が挙げられる。上記アルケニル基としては、上記のアルキル基に存在する1つ以上のCH-CH構造を、C=C構造に置き換えたものが挙げられ、より具体的には、ビニル基、アリル基、1-プロペニル基、イソプロペニル基、2-ブテニル基、1,3-ブタジエニル基、2-ペンテニル基、2-ヘキセニル基、シクロプロペニル基、シクロペンテニル基、シクロヘキセニル基等が挙げられる。上記アルキニル基としては、前記のアルキル基に存在する1つ以上のCH-CH構造をC≡C構造に置き換えたものが挙げられ、より具体的には、エチニル基、1-プロピニル基、2-プロピニル基等が挙げられる。 In the above formula (AM), as described above, R 1 and R 2 are each independently a hydrogen atom or an optionally substituted alkyl group, alkenyl group, alkynyl group having 1 to 10 carbon atoms. Specific examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, a t-butyl group, a hexyl group, an octyl group, a decyl group, a cyclopentyl group, a cyclohexyl group, and a bicyclohexyl group. It is done. Examples of the alkenyl group include those obtained by replacing one or more CH—CH structures present in the alkyl group with C═C structures, and more specifically, vinyl groups, allyl groups, 1-propenyl groups. Group, isopropenyl group, 2-butenyl group, 1,3-butadienyl group, 2-pentenyl group, 2-hexenyl group, cyclopropenyl group, cyclopentenyl group, cyclohexenyl group and the like. Examples of the alkynyl group include those obtained by replacing one or more CH 2 —CH 2 structures present in the alkyl group with a C≡C structure, and more specifically, an ethynyl group, a 1-propynyl group, And 2-propynyl group.
 上記のアルキル基、アルケニル基、アルキニル基は、全体として炭素数が1~10であれば置換基を有していてもよく、さらには置換基によって環構造を形成してもよい。尚、置換基によって環構造を形成するとは、置換基同士または置換基と母骨格の一部とが結合して環構造となることを意味する。 The above alkyl group, alkenyl group, and alkynyl group may have a substituent as long as the number of carbon atoms is 1 to 10 as a whole, and may further form a ring structure by the substituent. The formation of a ring structure by a substituent means that the substituents or a substituent and a part of the mother skeleton are bonded to form a ring structure.
 その場合、置換基の例としては、ハロゲン基、水酸基、チオール基、ニトロ基、アリール基、オルガノオキシ基、オルガノチオ基、オルガノシリル基、アシル基、エステル基、チオエステル基、リン酸エステル基、アミド基、アルキル基、アルケニル基、アルキニル基を挙げることができる。 In this case, examples of the substituent include halogen groups, hydroxyl groups, thiol groups, nitro groups, aryl groups, organooxy groups, organothio groups, organosilyl groups, acyl groups, ester groups, thioester groups, phosphate ester groups, amides. Groups, alkyl groups, alkenyl groups and alkynyl groups.
 上述の置換基であるハロゲン基としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 上述の置換基であるアリール基としては、フェニル基が挙げられる。このアリール基には前述した他の置換基がさらに置換していてもよい。
Examples of the halogen group as the substituent include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
A phenyl group is mentioned as an aryl group which is the above-mentioned substituent. This aryl group may be further substituted with the other substituent described above.
 上述の置換基であるオルガノオキシ基としては、O-Rで表される構造を示すことができる。このRは同一でも異なってもよく、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。オルガノオキシ基の具体例としては、メトキシ基、エトキシ基、プロピルオキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基等が挙げられる。 The organooxy group which is the above-described substituent can have a structure represented by OR. The R may be the same or different, and examples thereof include the alkyl group, alkenyl group, alkynyl group, and aryl group described above. These Rs may be further substituted with the substituent described above. Specific examples of the organooxy group include methoxy group, ethoxy group, propyloxy group, butoxy group, pentyloxy group, hexyloxy group, heptyloxy group, octyloxy group and the like.
 上述の置換基であるオルガノチオ基としては、-S-Rで表される構造を示すことができる。このRとしては、前述したアルキル基、アルケニル基、アルキニル基、アリール基等を例示することができる。これらのRには前述した置換基がさらに置換していてもよい。オルガノチオ基の具体例としては、メチルチオ基、エチルチオ基、プロピルチオ基、ブチルチオ基、ペンチルチオ基、ヘキシルチオ基、ヘプチルチオ基、オクチルチオ基等が挙げられる。 The organothio group which is the above-described substituent can have a structure represented by —S—R. Examples of R include the aforementioned alkyl group, alkenyl group, alkynyl group, aryl group and the like. These Rs may be further substituted with the substituent described above. Specific examples of the organothio group include a methylthio group, an ethylthio group, a propylthio group, a butylthio group, a pentylthio group, a hexylthio group, a heptylthio group, and an octylthio group.
 上述の置換基であるオルガノシリル基としては、-Si-(R)で表される構造を示すことができる。このRは同一でも異なってもよく、前述したアルキル基、アルケニル基、アルキニル基、アリール基等を例示することができる。これらのRには前述した置換基がさらに置換していてもよい。オルガノシリル基の具体例としては、トリメチルシリル基、トリエチルシリル基、トリプロピルシリル基、トリブチルシリル基、トリペンチルシリル基、トリヘキシルシリル基、ペンチルジメチルシリル基、ヘキシルジメチルシリル基等が挙げられる。 The organosilyl group which is the above-described substituent can have a structure represented by —Si— (R) 3 . The R may be the same or different, and examples thereof include the alkyl group, alkenyl group, alkynyl group, aryl group described above. These Rs may be further substituted with the substituent described above. Specific examples of the organosilyl group include a trimethylsilyl group, a triethylsilyl group, a tripropylsilyl group, a tributylsilyl group, a tripentylsilyl group, a trihexylsilyl group, a pentyldimethylsilyl group, and a hexyldimethylsilyl group.
 上述の置換基であるアシル基としては、-C(O)-Rで表される構造を示すことができる。このRとしては、前述したアルキル基、アルケニル基、アリール基等を例示することができる。これらのRには前述した置換基がさらに置換していてもよい。アシル基の具体例としては、ホルミル基、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、バレリル基、イソバレリル基、ベンゾイル基等が挙げられる。 The acyl group which is the above-described substituent can have a structure represented by —C (O) —R. Examples of R include the alkyl groups, alkenyl groups, and aryl groups described above. These Rs may be further substituted with the substituent described above. Specific examples of the acyl group include formyl group, acetyl group, propionyl group, butyryl group, isobutyryl group, valeryl group, isovaleryl group, benzoyl group and the like.
 上述の置換基であるエステル基としては、-C(O)O-R、または-OC(O)-Rで表される構造を示すことができる。このRとしては、前述したアルキル基、アルケニル基、アルキニル基、アリール基等を例示することができる。これらのRには前述した置換基がさらに置換していてもよい。
 上述の置換基であるチオエステル基としては、-C(S)O-R、または-OC(S)-Rで表される構造を示すことができる。このRとしては、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。
As the ester group which is the above substituent, a structure represented by —C (O) O—R or —OC (O) —R can be shown. Examples of R include the aforementioned alkyl group, alkenyl group, alkynyl group, aryl group and the like. These Rs may be further substituted with the substituent described above.
As the thioester group which is the above-described substituent, a structure represented by —C (S) O—R or —OC (S) —R can be shown. Examples of R include the aforementioned alkyl group, alkenyl group, alkynyl group, aryl group, and the like. These Rs may be further substituted with the substituent described above.
 上述の置換基であるリン酸エステル基としては、-OP(O)-(OR)で表される構造を示すことができる。このRは同一でも異なってもよく、前述したアルキル基、アルケニル基、アルキニル基、アリール基等を例示することができる。これらのRには前述した置換基がさらに置換していてもよい。
 上述の置換基であるアミド基としては、-C(O)NH、または、-C(O)NHR、-NHC(O)R、-C(O)N(R)、-NRC(O)Rで表される構造を示すことができる。このRは同一でも異なってもよく、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。
The phosphate group which is the above-described substituent can have a structure represented by —OP (O) — (OR) 2 . The R may be the same or different, and examples thereof include the alkyl group, alkenyl group, alkynyl group, aryl group described above. These Rs may be further substituted with the substituent described above.
Examples of the amide group as the substituent include —C (O) NH 2 , or —C (O) NHR, —NHC (O) R, —C (O) N (R) 2 , —NRC (O ) The structure represented by R can be shown. The R may be the same or different, and examples thereof include the alkyl group, alkenyl group, alkynyl group, and aryl group described above. These Rs may be further substituted with the substituent described above.
 上述の置換基であるアリール基としては、前述したアリール基と同じものを挙げることができる。このアリール基には前述した他の置換基がさらに置換していてもよい。
 上述の置換基であるアルキル基としては、前述したアルキル基と同じものを挙げることができる。このアルキル基には前述した他の置換基がさらに置換していてもよい。
 上述の置換基であるアルケニル基としては、前述したアルケニル基と同じものを挙げることができる。このアルケニル基には前述した他の置換基がさらに置換していてもよい。
 上述の置換基であるアルキニル基としては、前述したアルキニル基と同じものを挙げることができる。このアルキニル基には前述した他の置換基がさらに置換していてもよい。
Examples of the aryl group that is the above-described substituent include the same aryl groups as described above. This aryl group may be further substituted with the other substituent described above.
Examples of the alkyl group that is the above-described substituent include the same alkyl groups as described above. This alkyl group may be further substituted with the other substituent described above.
Examples of the alkenyl group as the substituent include the same alkenyl groups as described above. This alkenyl group may be further substituted with the other substituent described above.
Examples of the alkynyl group that is the above-described substituent include the same alkynyl group as described above. This alkynyl group may be further substituted with the other substituent described above.
 一般に、嵩高い構造を導入すると、アミノ基の反応性や液晶配向性を低下させる可能性があるため、RおよびRとしては、水素原子、または置換基を有してもよい炭素数1~5のアルキル基がより好ましく、水素原子、メチル基またはエチル基が特に好ましい。 In general, when a bulky structure is introduced, there is a possibility that the reactivity of the amino group and the liquid crystal orientation may be lowered. Therefore, as R 1 and R 2 , a hydrogen atom or an optionally substituted carbon number is 1 An alkyl group of 1 to 5 is more preferable, and a hydrogen atom, a methyl group, or an ethyl group is particularly preferable.
 上記式(AM)において、Yの具体的な構造の例を示すならば、以下に示すY-1~Y-106が挙げられるが、これらに限定されるものではない。 In the above formula (AM), examples of specific structures of Y 1 include Y-1 to Y-106 shown below, but are not limited thereto.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 <テトラカルボン酸誘導体>
 上述したジアミン化合物との反応に用いられ、本実施形態の液晶配向剤に含有可能なポリイミド前駆体およびポリイミドを合成するテトラカルボン酸誘導体は、特に限定されない。
<Tetracarboxylic acid derivative>
The polyimide precursor that is used for the reaction with the diamine compound described above and can be contained in the liquid crystal aligning agent of this embodiment and the tetracarboxylic acid derivative that synthesizes the polyimide are not particularly limited.
 テトラカルボン酸誘導体としては、例として、テトラカルボン酸二無水物(下記式(CB1)で表わされる。)、テトラカルボン酸一無水物(下記式(CB2)で表わされる。)、テトラカルボン酸(下記式(CB3)で表わされる。)、ジカルボン酸ジアルキルエステル(下記式(CB4)で表わされる。)、ジカルボン酸クロライドジアルキルエステル(下記式(CB5)で表わされる。)等を挙げることができる。テトラカルボン酸誘導体としては、1種を単独で用いてもよく、また、2種以上を組み合わせて用いてもよい。 Examples of tetracarboxylic acid derivatives include tetracarboxylic dianhydride (represented by the following formula (CB1)), tetracarboxylic acid monoanhydride (represented by the following formula (CB2)), tetracarboxylic acid ( And a dicarboxylic acid dialkyl ester (represented by the following formula (CB4)), a dicarboxylic acid chloride dialkyl ester (represented by the following formula (CB5)), and the like. As the tetracarboxylic acid derivative, one kind may be used alone, or two or more kinds may be used in combination.
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 上記式(CB4)および(CB5)中、Rは炭素数1~5、好ましくは炭素数1~2のアルキル基を表す。
 上記式(CB1)~(CB5)中、Zの具体例としては、以下の式(Z-1)~式(Z-46)を挙げることができる。
In the above formulas (CB4) and (CB5), R 3 represents an alkyl group having 1 to 5 carbon atoms, preferably 1 to 2 carbon atoms.
In the above formulas (CB1) to (CB5), specific examples of Z 1 include the following formulas (Z-1) to (Z-46).
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
 以上の構造のテトラカルボン酸誘導体について、上記したジアミン化合物との反応に用いられ、所望構造のポリイミド前駆体またはポリイミドを合成して液晶配向剤に含有され、本実施形態の液晶配向膜の提供に好ましいのは、上記式(CB1)~(CB5)中、Zが式(Z-1)であるテトラカルボン酸誘導体である。そのテトラカルボン酸は、上記式(1)の特定構造のジアミン化合物と反応して、所望構造のポリイミド前駆体を提供し、所望構造のポリイミドを提供する。そして、可視光や紫外線等の光の照射を受けても性能劣化を高レベルに低減するのに有効な本実施形態の液晶配向膜を提供することができる。したがって、本実施形態の液晶配向剤に含有可能なポリイミド前駆体またはポリイミドを合成するテトラカルボン酸誘導体が、1種単独で用いられる場合、上記式(CB1)~(CB5)中、Zが式(Z-1)であるテトラカルボン酸誘導体を用いることが好ましい。 The tetracarboxylic acid derivative having the above structure is used for the reaction with the above-described diamine compound, and a polyimide precursor or polyimide having a desired structure is synthesized and contained in the liquid crystal aligning agent to provide the liquid crystal alignment film of this embodiment. A tetracarboxylic acid derivative in which Z 1 is the formula (Z-1) in the above formulas (CB1) to (CB5) is preferable. The tetracarboxylic acid reacts with the diamine compound having a specific structure represented by the above formula (1) to provide a polyimide precursor having a desired structure, thereby providing a polyimide having a desired structure. And the liquid crystal aligning film of this embodiment effective in reducing performance degradation to a high level even if irradiated with light, such as visible light and an ultraviolet-ray, can be provided. Therefore, when the polyimide precursor that can be contained in the liquid crystal aligning agent of this embodiment or the tetracarboxylic acid derivative that synthesizes polyimide is used alone, Z 1 in the above formulas (CB1) to (CB5) It is preferable to use a tetracarboxylic acid derivative which is (Z-1).
<ポリイミド前駆体>
 本実施形態の液晶配向剤に含有可能なポリイミド前駆体は、上記式(1)のジアミン化合物を必須の成分として含むジアミン成分を用いて合成されたものである。本実施形態の液晶配向剤に含有するポリイミド前駆体は、例えば、ポリアミック酸およびポリアミック酸エステルであり、下記式(PA)で表される構造単位を有する。
<Polyimide precursor>
The polyimide precursor which can be contained in the liquid crystal aligning agent of this embodiment is synthesize | combined using the diamine component which contains the diamine compound of the said Formula (1) as an essential component. The polyimide precursor contained in the liquid crystal aligning agent of this embodiment is a polyamic acid and polyamic acid ester, for example, and has a structural unit represented by a following formula (PA).
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
 上記式(PA)において、Zは、上述したテトラカルボン酸誘導体の例である、テトラカルボン酸二無水物(上記式(CB1)で表わされる。)、テトラカルボン酸一無水物(上記式(CB2)で表わされる。)、テトラカルボン酸(上記式(CB3)で表わされる。)、ジカルボン酸ジアルキルエステル(上記式(CB4)で表わされる。)、および、ジカルボン酸クロライドジアルキルエステル(上記式(CB5)で表わされる。)の中のZ基に由来する基である。
 また、Rは、水素原子、または、上述したテトラカルボン酸誘導体や後述するエステル化剤に由来する1価の有機基であり、好ましくは、炭素数1~5、より好ましくは炭素数1~2のアルキル基を表す。
In the above formula (PA), Z is an example of the above-described tetracarboxylic acid derivative, tetracarboxylic dianhydride (represented by the above formula (CB1)), tetracarboxylic monoanhydride (the above formula (CB2)). ), Tetracarboxylic acid (represented by the above formula (CB3)), dicarboxylic acid dialkyl ester (represented by the above formula (CB4)), and dicarboxylic acid chloride dialkyl ester (represented by the above formula (CB5)). It is a group derived from Z 1 group in).
Ra is a hydrogen atom or a monovalent organic group derived from the above-described tetracarboxylic acid derivative or an esterifying agent described later, preferably having 1 to 5 carbon atoms, more preferably 1 to 1 carbon atoms. Represents an alkyl group of 2;
 上記式(PA)中、Yは、上述した式(1)で表されるジアミン化合物の対応する基および上記式(AM)で表されるその他のジアミン化合物のY基に由来する基である。AおよびAは水素原子、または、上記式(AM)で表されるその他のジアミン化合物のR基およびR基に由来する1価の有機基を表す。 In the above formula (PA), Y is a group derived from the corresponding group of the diamine compound represented by the above formula (1) and the Y 1 group of the other diamine compound represented by the above formula (AM). . A 1 and A 2 represent a hydrogen atom or a monovalent organic group derived from the R 1 group and R 2 group of the other diamine compound represented by the above formula (AM).
 ポリイミド前駆体であるポリアミック酸は、例えば、上述の上記式(1)のジアミン化合物を必須の成分として含むジアミン成分(以下、単にジアミン成分と言う。)と、上述したテトラカルボン酸誘導体であるテトラカルボン酸二無水物との反応により得られる。 The polyamic acid which is a polyimide precursor includes, for example, a diamine component (hereinafter simply referred to as a diamine component) containing the diamine compound of the above formula (1) as an essential component, and a tetracarboxylic acid derivative described above. Obtained by reaction with carboxylic dianhydride.
 上述のジアミン成分とテトラカルボン酸二無水物との反応により、本実施形態の液晶配向剤に含有されるポリアミック酸を得る方法としては公知の方法を利用することができる。その合成方法は、ジアミン成分とテトラカルボン酸二無水物とを有機溶媒中で反応させる方法である。ジアミン成分とテトラカルボン酸二無水物との反応は、有機溶媒中で比較的容易に進行し、かつ副生成物が発生しない点で有利である。 As the method for obtaining the polyamic acid contained in the liquid crystal aligning agent of the present embodiment by the reaction of the above-described diamine component and tetracarboxylic dianhydride, a known method can be used. The synthesis method is a method in which a diamine component and tetracarboxylic dianhydride are reacted in an organic solvent. The reaction between the diamine component and tetracarboxylic dianhydride is advantageous in that it proceeds relatively easily in an organic solvent and no by-products are generated.
 上述のジアミン成分とテトラカルボン酸二無水物との反応に用いる有機溶媒としては、生成したポリアミック酸が溶解するものであれば特に限定されない。その具体例を以下に挙げる。 The organic solvent used for the reaction between the above-described diamine component and tetracarboxylic dianhydride is not particularly limited as long as the generated polyamic acid is soluble. Specific examples are given below.
 N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-メチルカプロラクタム、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、γ-ブチロラクトン、イソプロピルアルコール、メトキシメチルペンタノール、ジペンテン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、メチルセルソルブ、エチルセルソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、ジオキサン、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、ジグライム、4-ヒドロキシ-4-メチル-2-ペンタノン、3-メトキシ-N,N-ジメチルプロパンアミド、3-エトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド等が挙げられる。 N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-methylcaprolactam, dimethyl sulfoxide, tetramethyl urea, pyridine, dimethyl sulfone, hexamethyl sulfoxide , Γ-butyrolactone, isopropyl alcohol, methoxymethylpentanol, dipentene, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, methyl cellosolve, ethyl cellosolve, methyl cellosolve acetate, ethyl cellosolve acetate, butyl Carbitol, ethyl carbitol, ethylene glycol, ethylene glycol monoacetate, ethylene glycol monoisopropyl ether, ethyl Glycol monobutyl ether, propylene glycol, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol-tert-butyl ether, dipropylene glycol monomethyl ether, diethylene glycol, diethylene glycol monoacetate, diethylene glycol dimethyl ether, dipropylene glycol monoacetate monomethyl ether, dipropylene Glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol monoacetate monoethyl ether, dipropylene glycol monopropyl ether, dipropylene glycol monoacetate monopropyl ether, 3-methyl-3-methoxybutyl acetate, tripropiate Lenglycol methyl ether, 3-methyl-3-methoxybutanol, diisopropyl ether, ethyl isobutyl ether, diisobutylene, amyl acetate, butyl butyrate, butyl ether, diisobutyl ketone, methylcyclohexene, propyl ether, dihexyl ether, dioxane, n- Hexane, n-pentane, n-octane, diethyl ether, cyclohexanone, ethylene carbonate, propylene carbonate, methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, n-butyl acetate, propylene glycol monoethyl ether, methyl pyruvate, Ethyl pyruvate, methyl 3-methoxypropionate, methyl ethyl 3-ethoxypropionate, ethyl 3-methoxypropionate, 3-ethoxypropio Acid, 3-methoxypropionic acid, propyl 3-methoxypropionate, butyl 3-methoxypropionate, diglyme, 4-hydroxy-4-methyl-2-pentanone, 3-methoxy-N, N-dimethylpropanamide, 3- Examples thereof include ethoxy-N, N-dimethylpropanamide, 3-butoxy-N, N-dimethylpropanamide and the like.
 これら例示された溶媒は、単独で使用しても、混合して使用してもよい。さらに、ポリアミック酸を溶解させない溶媒であっても、生成したポリアミック酸が析出しない範囲で、上記溶媒に混合して使用してもよい。 These exemplified solvents may be used alone or in combination. Furthermore, even if the solvent does not dissolve the polyamic acid, it may be used by mixing with the above solvent as long as the produced polyamic acid does not precipitate.
 また、有機溶媒中の水分は重合反応を阻害し、さらには生成したポリアミック酸を加水分解させる原因となるので、有機溶媒はなるべく脱水乾燥させたものを用いることが好ましい。 In addition, since water in the organic solvent inhibits the polymerization reaction and further causes hydrolysis of the generated polyamic acid, it is preferable to use a dehydrated and dried organic solvent as much as possible.
 上述のジアミン成分とテトラカルボン酸二無水物とを有機溶媒中で反応させる際には、ジアミン成分を有機溶媒に分散あるいは溶解させた溶液を攪拌させ、テトラカルボン酸二無水物をそのまま、または有機溶媒に分散あるいは溶解させて添加する方法、逆にテトラカルボン酸二無水物を有機溶媒に分散あるいは溶解させた溶液にジアミン成分を添加する方法、テトラカルボン酸二無水物とジアミン成分とを交互に添加する方法等が挙げられ、これらのいずれの方法を用いても良い。また、ジアミン成分またはテトラカルボン酸二無水物が複数種の化合物からなる場合は、あらかじめ混合した状態で反応させても良く、個別に順次反応させても良く、さらに個別に反応させた低分子量体を混合反応させ高分子量体としても良い。 When the above diamine component and tetracarboxylic dianhydride are reacted in an organic solvent, the solution in which the diamine component is dispersed or dissolved in the organic solvent is stirred, and the tetracarboxylic dianhydride is used as it is or in an organic solvent. A method of adding by dispersing or dissolving in a solvent, a method of adding a diamine component to a solution in which tetracarboxylic dianhydride is dispersed or dissolved in an organic solvent, and a tetracarboxylic dianhydride and a diamine component alternately. The method of adding etc. is mentioned, You may use any of these methods. In addition, when the diamine component or tetracarboxylic dianhydride is composed of a plurality of types of compounds, they may be reacted in a premixed state, may be individually reacted sequentially, or may be further reacted individually. May be mixed and reacted to form a high molecular weight product.
 その際の重合温度は-20℃~150℃の任意の温度を選択することができるが、好ましくは-5℃~100℃の範囲である。また、反応は任意の濃度で行うことができるが、濃度が低すぎると高分子量の重合体を得ることが難しくなり、濃度が高すぎると反応液の粘性が高くなり過ぎて均一な攪拌が困難となるので、ジアミン成分とテトラカルボン酸二無水物の反応溶液中での合計濃度が、好ましくは1質量%~50質量%、より好ましくは5質量%~30質量%である。反応初期は高濃度で行い、その後、有機溶媒を追加することができる。 The polymerization temperature at that time can be selected from -20 ° C. to 150 ° C., but is preferably in the range of −5 ° C. to 100 ° C. The reaction can be carried out at any concentration, but if the concentration is too low, it is difficult to obtain a high molecular weight polymer, and if the concentration is too high, the viscosity of the reaction solution becomes too high and uniform stirring is difficult. Therefore, the total concentration of the diamine component and the tetracarboxylic dianhydride in the reaction solution is preferably 1% by mass to 50% by mass, more preferably 5% by mass to 30% by mass. The initial stage of the reaction is carried out at a high concentration, and then an organic solvent can be added.
 ポリアミック酸の重合反応においては、テトラカルボン酸二無水物の合計モル数と、ジアミン成分の合計モル数の比は0.8~1.2であることが好ましい。通常の重縮合反応同様、このモル比が1.0に近いほど生成するポリアミック酸の分子量は大きくなる。 In the polymerization reaction of polyamic acid, the ratio of the total number of moles of tetracarboxylic dianhydride to the total number of moles of the diamine component is preferably 0.8 to 1.2. Similar to the normal polycondensation reaction, the closer the molar ratio is to 1.0, the higher the molecular weight of the polyamic acid produced.
<ポリアミック酸エステル>
 本実施形態の液晶配向剤に含有可能なポリイミド前駆体は、上述したように、ポリアミック酸およびポリアミック酸エステル等である。ポリイミド前駆体であるポリアミック酸エステルは、例えば、上述の上記式(1)ジアミン化合物を必須の成分として含むジアミン成分とテトラカルボン酸誘導体を用いて、次に示す(1)~(3)の方法で合成することができる。
<Polyamic acid ester>
The polyimide precursor which can be contained in the liquid crystal aligning agent of this embodiment is a polyamic acid, polyamic acid ester, etc. as mentioned above. The polyamic acid ester which is a polyimide precursor is obtained by using, for example, the following methods (1) to (3) using a diamine component and a tetracarboxylic acid derivative containing the diamine compound represented by the above formula (1) as an essential component. Can be synthesized.
(1)ポリアミック酸から合成する方法
 ポリアミック酸エステルは、ジアミン成分とテトラカルボン酸二無水物から得られるポリアミック酸をエステル化することによって合成することができる。
 具体的には、ポリアミック酸とエステル化剤を有機溶剤の存在下で-20℃~150℃、好ましくは0℃~50℃において、30分間~24時間、好ましくは1時間~4時間反応させることによって合成することができる。
(1) Method of synthesizing from polyamic acid The polyamic acid ester can be synthesized by esterifying a polyamic acid obtained from a diamine component and tetracarboxylic dianhydride.
Specifically, the polyamic acid and the esterifying agent are reacted in the presence of an organic solvent at −20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C., for 30 minutes to 24 hours, preferably 1 hour to 4 hours. Can be synthesized.
 上述のエステル化剤としては、精製によって容易に除去できるものが好ましく、N,N-ジメチルホルムアミドジメチルアセタール、N,N-ジメチルホルムアミドジエチルアセタール、N,N-ジメチルホルムアミドジプロピルアセタール、N,N-ジメチルホルムアミドジネオペンチルブチルアセタール、N,N-ジメチルホルムアミドジ-t-ブチルアセタール、1-メチル-3-p-トリルトリアゼン、1-エチル-3-p-トリルトリアゼン、1-プロピル-3-p-トリルトリアゼン、4-(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)-4-メチルモルホリニウムクロリドなどが挙げられる。エステル化剤の添加量は、ポリアミック酸の繰り返し単位1モルに対して、2モル当量~6モル当量が好ましい。 As the above-mentioned esterifying agent, those that can be easily removed by purification are preferred, and N, N-dimethylformamide dimethyl acetal, N, N-dimethylformamide diethyl acetal, N, N-dimethylformamide dipropyl acetal, N, N— Dimethylformamide dineopentyl butyl acetal, N, N-dimethylformamide di-t-butyl acetal, 1-methyl-3-p-tolyltriazene, 1-ethyl-3-p-tolyltriazene, 1-propyl-3 -P-tolyltriazene, 4- (4,6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride and the like. The addition amount of the esterifying agent is preferably 2 to 6 molar equivalents relative to 1 mol of the polyamic acid repeating unit.
 上記の反応に用いる溶媒は、ポリマーの溶解性からN,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、またはγ-ブチロラクトンが好ましく、これらは1種または2種以上を混合して用いてもよい。合成時の濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいという観点から、1質量%~30質量%が好ましく、5質量%~20質量%がより好ましい。 The solvent used in the above reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone, or γ-butyrolactone from the solubility of the polymer, and these may be used alone or in combination of two or more. Good. The concentration at the time of synthesis is preferably 1% by mass to 30% by mass and more preferably 5% by mass to 20% by mass from the viewpoint that polymer precipitation is unlikely to occur and a high molecular weight product is easily obtained.
(2)テトラカルボン酸ジエステルジクロリドとジアミン成分との反応により合成する方法
 ポリアミック酸エステルは、テトラカルボン酸ジエステルジクロリドと、上述のジアミン成分とから合成することができる。
(2) Method of synthesizing by reaction of tetracarboxylic acid diester dichloride and diamine component The polyamic acid ester can be synthesized from tetracarboxylic acid diester dichloride and the above-mentioned diamine component.
 具体的には、テトラカルボン酸ジエステルジクロリドとジアミン成分とを塩基と有機溶剤の存在下で-20℃~150℃、好ましくは0℃~50℃において、30分間~24時間、好ましくは1~4時間反応させることによって合成することができる。
 前記塩基には、ピリジン、トリエチルアミン、4-ジメチルアミノピリジンなどが使用できるが、反応が穏和に進行するためにピリジンが好ましい。塩基の添加量は、除去が容易な量で、かつ高分子量体が得やすいという観点から、テトラカルボン酸ジエステルジクロリドに対して、2モル倍~4モル倍であることが好ましい。
Specifically, the tetracarboxylic acid diester dichloride and the diamine component are present in the presence of a base and an organic solvent at −20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C., for 30 minutes to 24 hours, preferably 1 to 4 It can synthesize | combine by making it react for time.
As the base, pyridine, triethylamine, 4-dimethylaminopyridine and the like can be used, but pyridine is preferable because the reaction proceeds gently. The addition amount of the base is preferably 2 to 4 times with respect to the tetracarboxylic acid diester dichloride from the viewpoint of easy removal and high molecular weight.
 上記の反応に用いる溶媒は、モノマーおよびポリマーの溶解性からN-メチル-2-ピロリドン、γ-ブチロラクトンが好ましく、これらは1種または2種以上を混合して用いてもよい。合成時のポリマー濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいという観点から、1質量%~30質量%が好ましく、5質量%~20質量%がより好ましい。また、テトラカルボン酸ジエステルジクロリドの加水分解を防ぐため、ポリアミック酸エステルの合成に用いる溶媒はできるだけ脱水されていることが好ましく、窒素雰囲気中で、外気の混入を防ぐのが好ましい。 The solvent used in the above reaction is preferably N-methyl-2-pyrrolidone or γ-butyrolactone in view of the solubility of the monomer and polymer. These may be used alone or in combination of two or more. The polymer concentration at the time of synthesis is preferably 1% by mass to 30% by mass and more preferably 5% by mass to 20% by mass from the viewpoint that polymer precipitation is difficult to occur and a high molecular weight product is easily obtained. In order to prevent hydrolysis of the tetracarboxylic acid diester dichloride, the solvent used for the synthesis of the polyamic acid ester is preferably dehydrated as much as possible, and it is preferable to prevent mixing of outside air in a nitrogen atmosphere.
(3)テトラカルボン酸ジエステルとジアミン成分とから合成する方法
 ポリアミック酸エステルは、テトラカルボン酸ジエステルと上述のジアミン成分とを重縮合することにより合成することができる。
(3) Method of synthesizing from tetracarboxylic acid diester and diamine component Polyamic acid ester can be synthesized by polycondensation of tetracarboxylic acid diester and the above-mentioned diamine component.
 具体的には、テトラカルボン酸ジエステルと上述のジアミン成分とを縮合剤、塩基、有機溶剤の存在下で0℃~150℃、好ましくは0℃~100℃において、30分間~24時間、好ましくは3時間~15時間反応させることによって合成することができる。 Specifically, tetracarboxylic acid diester and the above-mentioned diamine component are added in the presence of a condensing agent, a base, and an organic solvent at 0 ° C. to 150 ° C., preferably 0 ° C. to 100 ° C., for 30 minutes to 24 hours, preferably It can be synthesized by reacting for 3 to 15 hours.
 前記縮合剤には、トリフェニルホスファイト、ジシクロヘキシルカルボジイミド、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩、N,N’-カルボニルジイミダゾール、ジメトキシ-1,3,5-トリアジニルメチルモルホリニウム、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウム テトラフルオロボラート、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロホスファート、(2,3-ジヒドロ-2-チオキソ-3-ベンゾオキサゾリル)ホスホン酸ジフェニルなどが使用できる。縮合剤の添加量は、テトラカルボン酸ジエステルに対して2モル倍~3モル倍であることが好ましい。 Examples of the condensing agent include triphenyl phosphite, dicyclohexylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, N, N′-carbonyldiimidazole, dimethoxy-1,3,5-triazide. Nylmethylmorpholinium, O- (benzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium tetrafluoroborate, O- (benzotriazol-1-yl) -N, N , N ′, N′-tetramethyluronium hexafluorophosphate, (2,3-dihydro-2-thioxo-3-benzoxazolyl) phosphonate diphenyl, and the like. The addition amount of the condensing agent is preferably 2 to 3 times by mole with respect to the tetracarboxylic acid diester.
 前記塩基には、ピリジン、トリエチルアミン等の3級アミンが使用できる。塩基の添加量は、除去が容易な量で、かつ高分子量体が得やすいという観点から、ジアミン成分に対して2モル倍~4モル倍が好ましい。 As the base, tertiary amines such as pyridine and triethylamine can be used. The addition amount of the base is preferably 2 to 4 times by mole with respect to the diamine component from the viewpoint of easy removal and high molecular weight.
 また、上記反応において、ルイス酸を添加剤として加えることで反応が効率的に進行する。ルイス酸としては、塩化リチウム、臭化リチウム等のハロゲン化リチウムが好ましい。ルイス酸の添加量はジアミン成分に対して0モル倍~1.0モル倍が好ましい。 In the above reaction, the reaction proceeds efficiently by adding Lewis acid as an additive. As the Lewis acid, lithium halides such as lithium chloride and lithium bromide are preferable. The addition amount of the Lewis acid is preferably 0 to 1.0 mol times relative to the diamine component.
 上述した3つのポリアミック酸エステルの合成方法の中でも、高分子量のポリアミック酸エステルが得られるため、上記(1)または上記(2)の合成方法が特に好ましい。 Among the above-mentioned three polyamic acid ester synthesis methods, the high molecular weight polyamic acid ester is obtained, and therefore the synthesis method (1) or (2) is particularly preferable.
 上述した方法に従って得られるポリアミック酸エステルの溶液は、よく撹拌させながら貧溶媒に注入することで、ポリマーを析出させることができる。析出を数回行い、貧溶媒で洗浄後、常温または加熱乾燥して精製されたポリアミック酸エステルの粉末を得ることができる。貧溶媒は、特に限定されないが、水、メタノール、エタノール、ヘキサン、ブチルセロソルブ、アセトン、トルエン等が挙げられる。 The polymer solution can be precipitated by injecting the polyamic acid ester solution obtained according to the above-described method into a poor solvent while thoroughly stirring. Precipitation is carried out several times, and after washing with a poor solvent, a purified polyamic acid ester powder can be obtained by normal temperature or heat drying. Although a poor solvent is not specifically limited, Water, methanol, ethanol, hexane, butyl cellosolve, acetone, toluene etc. are mentioned.
<ポリイミド>
 本実施形態の液晶配向剤は、上述したポリイミド前駆体およびポリイミドから選ばれる少なくとも1種の重合体を含有する。本実施形態の液晶配向剤に含有するポリイミドは、上述したポリイミド前駆体のポリアミック酸を脱水閉環させて得られるポリイミドである。すなわち、そのポリイミドは、上記式(1)の特定構造のジアミン化合物を必須の成分として含むジアミン成分を用いて合成された上記ポリイミド前駆体のポリアミック酸を脱水閉環させて得られるポリイミドである。このポリイミドは、本実施形態の液晶配向剤に含有され、液晶配向膜を得るための重合体として有用である。
<Polyimide>
The liquid crystal aligning agent of this embodiment contains the at least 1 sort (s) of polymer chosen from the polyimide precursor mentioned above and a polyimide. The polyimide contained in the liquid crystal aligning agent of this embodiment is a polyimide obtained by dehydrating and ring-closing the polyamic acid of the polyimide precursor described above. That is, the polyimide is a polyimide obtained by dehydrating and ring-closing the polyamic acid of the polyimide precursor synthesized using a diamine component containing the diamine compound having the specific structure of the formula (1) as an essential component. This polyimide is contained in the liquid crystal aligning agent of this embodiment, and is useful as a polymer for obtaining a liquid crystal aligning film.
 尚、本実施形態の液晶配向剤が含有するポリイミドにおいて、アミド酸基の脱水閉環率(イミド化率)は、必ずしも100%である必要はなく、用途や目的に応じて任意に調整することができる。 In the polyimide contained in the liquid crystal aligning agent of this embodiment, the dehydration cyclization rate (imidization rate) of the amic acid group is not necessarily 100%, and can be arbitrarily adjusted according to the application and purpose. it can.
<ポリイミドの製造方法>
 上述したポリアミック酸を用いてポリイミドを得るに際し、ポリアミック酸をイミド化させる方法としては、ポリアミック酸の溶液をそのまま加熱する熱イミド化、ポリアミド酸の溶液に触媒を添加する触媒イミド化が挙げられる。
<Production method of polyimide>
In obtaining a polyimide using the above-mentioned polyamic acid, examples of the method for imidizing the polyamic acid include thermal imidization in which the polyamic acid solution is heated as it is, and catalytic imidation in which a catalyst is added to the polyamic acid solution.
 このとき、上述したポリアミック酸は、比較的低温での反応が可能な、触媒イミド化を行うことが望ましい。 At this time, it is desirable that the above-described polyamic acid is subjected to catalytic imidization that allows a reaction at a relatively low temperature.
 ポリアミック酸の触媒イミド化は、ポリアミック酸の溶液に、塩基性触媒と酸無水物とを添加し、-20℃~250℃、好ましくは0℃~180℃で攪拌することにより行うことができる。塩基性触媒の量はアミド酸基の0.5モル倍~30モル倍、好ましくは2モル倍~20モル倍であり、酸無水物の量はアミド酸基の1モル倍~50モル倍、好ましくは3モル倍~30モル倍である。 The catalytic imidation of polyamic acid can be performed by adding a basic catalyst and an acid anhydride to a polyamic acid solution and stirring at -20 ° C to 250 ° C, preferably 0 ° C to 180 ° C. The amount of the basic catalyst is 0.5 mol times to 30 mol times, preferably 2 mol times to 20 mol times of the amic acid groups, and the amount of the acid anhydride is 1 mol times to 50 mol times of the amic acid groups, The amount is preferably 3 mole times to 30 mole times.
 上述の触媒イミド化に用いる塩基性触媒としては、ピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミン等を挙げることができ、中でもピリジンは反応を進行させるのに適度な塩基性を持つので好ましい。 Examples of the basic catalyst used for the above-mentioned catalyst imidization include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like, and among them, pyridine is preferable because it has an appropriate basicity for proceeding with the reaction.
 上述の触媒イミド化に用いる酸無水物としては、無水酢酸、無水トリメリット酸、無水ピロメリット酸等を挙げることができる。中でも無水酢酸を用いると反応終了後の精製が容易となるので好ましい。
 触媒イミド化によるイミド化率は、触媒量と反応温度、反応時間を調節することにより制御することができる。
Examples of the acid anhydride used for the catalyst imidization include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like. Of these, use of acetic anhydride is preferred because purification after completion of the reaction is facilitated.
The imidization rate by catalytic imidation can be controlled by adjusting the amount of catalyst, reaction temperature, and reaction time.
 以上、本実施形態の液晶配向剤に含有可能な成分について説明したが、次にそれらをもちいて調製される本実施形態の液晶配向剤について説明をする。 As mentioned above, although the component which can be contained in the liquid crystal aligning agent of this embodiment was demonstrated, the liquid crystal aligning agent of this embodiment prepared using them next is demonstrated.
<液晶配向剤>
 本実施形態の液晶配向剤は、液晶配向膜を形成するための塗布液であり、樹脂被膜を形成するための樹脂成分が有機溶媒に溶解した溶液である。ここで、前記の樹脂成分は、上述したポリイミド前駆体およびポリイミドから選ばれる少なくとも1種の重合体を含む樹脂成分である。その際、樹脂成分の含有量は1質量%~20質量%が好ましく、より好ましくは3質量%~15質量%、さらに好ましくは3質量%~10質量%である。
<Liquid crystal aligning agent>
The liquid crystal aligning agent of this embodiment is a coating liquid for forming a liquid crystal aligning film, and is a solution in which a resin component for forming a resin film is dissolved in an organic solvent. Here, the said resin component is a resin component containing the at least 1 sort (s) of polymer chosen from the polyimide precursor mentioned above and a polyimide. In that case, the content of the resin component is preferably 1% by mass to 20% by mass, more preferably 3% by mass to 15% by mass, and still more preferably 3% by mass to 10% by mass.
 尚、本実施形態において、前記の樹脂成分は、全てが上述した重合体であってもよく、それ以外の他の重合体が混合されていてもよい。その際、樹脂成分中における上述した重合体以外の他の重合体の含有量は0.5質量%~15質量%、好ましくは1質量%~10質量%である。 In the present embodiment, all of the above resin components may be the above-described polymers, or other polymers may be mixed. In that case, the content of the polymer other than the above-mentioned polymer in the resin component is 0.5% by mass to 15% by mass, preferably 1% by mass to 10% by mass.
 本実施形態の液晶配向剤に用いる有機溶媒は、上述した重合体等の樹脂成分を溶解させる有機溶媒であれば特に限定されない。その具体例を以下に挙げる。 The organic solvent used in the liquid crystal aligning agent of the present embodiment is not particularly limited as long as it is an organic solvent that dissolves the resin component such as the above-described polymer. Specific examples are given below.
 N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-メチルカプロラクタム、2-ピロリドン、N-エチルピロリドン、N-ビニルピロリドン、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、γ-ブチロラクトン、3-メトキシ-N,N-ジメチルプロパンアミド、3-エトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド、1,3-ジメチル-イミダゾリジノン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、ジグライム、4-ヒドロキシ-4-メチル-2-ペンタノン等が挙げられる。これらは単独で使用しても、混合して使用してもよい。 N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, 2-pyrrolidone, N-ethylpyrrolidone, N-vinylpyrrolidone, dimethylsulfoxide, tetramethylurea, pyridine, Dimethylsulfone, hexamethylsulfoxide, γ-butyrolactone, 3-methoxy-N, N-dimethylpropanamide, 3-ethoxy-N, N-dimethylpropanamide, 3-butoxy-N, N-dimethylpropanamide, 1,3 -Dimethyl-imidazolidinone, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, cyclohexanone, ethylene carbonate, propylene carbonate, diglyme, 4-hydroxy- - and methyl-2-pentanone and the like. These may be used alone or in combination.
 本実施形態の液晶配向剤は、上記以外の成分を含有してもよい。その例としては、液晶配向剤を塗布した際の膜厚均一性や表面平滑性を向上させる溶媒や化合物、液晶配向膜と基板との密着性を向上させる化合物などである。 The liquid crystal aligning agent of this embodiment may contain components other than those described above. Examples thereof include solvents and compounds that improve the film thickness uniformity and surface smoothness when a liquid crystal aligning agent is applied, and compounds that improve the adhesion between the liquid crystal aligning film and the substrate.
 膜厚の均一性や表面平滑性を向上させる溶媒(貧溶媒)の具体例としては次のものが挙げられる。
 例えば、イソプロピルアルコール、メトキシメチルペンタノール、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチルカルビトールアセテート、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、1-ヘキサノール、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、1-ブトキシ-2-プロパノール、1-フェノキシ-2-プロパノール、プロピレングリコールモノアセテート、プロピレングリコールジアセテート、プロピレングリコール-1-モノメチルエーテル-2-アセテート、プロピレングリコール-1-モノエチルエーテル-2-アセテート、ジプロピレングリコール、2-(2-エトキシプロポキシ)プロパノール、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステル等の低表面張力を有する溶媒等が挙げられる。
Specific examples of the solvent (poor solvent) that improves the uniformity of the film thickness and the surface smoothness include the following.
For example, isopropyl alcohol, methoxymethylpentanol, methyl cellosolve, ethyl cellosolve, butyl cellosolve, methyl cellosolve acetate, ethyl cellosolve acetate, butyl carbitol, ethyl carbitol, ethyl carbitol acetate, ethylene glycol, ethylene glycol monoacetate, ethylene glycol monoacetate Isopropyl ether, ethylene glycol monobutyl ether, propylene glycol, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol-tert-butyl ether, dipropylene glycol monomethyl ether, diethylene glycol, diethylene glycol monoacetate, diethylene glycol dimethyl ether, dipro Lenglycol monoacetate monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol monoacetate monoethyl ether, dipropylene glycol monopropyl ether, dipropylene glycol monoacetate monopropyl ether, 3-methyl-3 -Methoxybutyl acetate, tripropylene glycol methyl ether, 3-methyl-3-methoxybutanol, diisopropyl ether, ethyl isobutyl ether, diisobutylene, amyl acetate, butyl butyrate, butyl ether, diisobutyl ketone, methylcyclohexene, propyl ether, dihexyl Ether, 1-hexanol, n-hexane, n-pentane, n-octane Diethyl ether, methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, n-butyl acetate, propylene glycol monoethyl ether, methyl pyruvate, ethyl pyruvate, methyl 3-methoxypropionate, methyl ethyl 3-ethoxypropionate, Ethyl 3-methoxypropionate, 3-ethoxypropionic acid, 3-methoxypropionic acid, propyl 3-methoxypropionate, butyl 3-methoxypropionate, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, 1 -Butoxy-2-propanol, 1-phenoxy-2-propanol, propylene glycol monoacetate, propylene glycol diacetate, propylene glycol-1-monomethyl ether-2-acetate, propylene glycol- 1-monoethyl ether-2-acetate, dipropylene glycol, 2- (2-ethoxypropoxy) propanol, lactate methyl ester, lactate ethyl ester, lactate n-propyl ester, lactate n-butyl ester, lactyl isoamyl ester, etc. Examples include solvents having surface tension.
 これらの貧溶媒は1種類でも複数種類を混合して用いてもよい。上記のような溶媒を用いる場合は、液晶配向剤に含まれる溶媒全体の5質量%~80質量%であることが好ましく、より好ましくは20質量%~60質量%である。 These poor solvents may be used alone or in combination. When the above solvent is used, it is preferably 5% by mass to 80% by mass, and more preferably 20% by mass to 60% by mass with respect to the total solvent contained in the liquid crystal aligning agent.
 膜厚の均一性や表面平滑性を向上させる化合物としては、フッ素系界面活性剤、シリコーン系界面活性剤、ノ二オン系界面活性剤等が挙げられる。
 より具体的には、例えば、エフトップ(登録商標)EF301、EF303、EF352(トーケムプロダクツ社製))、メガファック(登録商標)F171、F173、R-30(大日本インキ社製)、フロラードFC430、FC431(住友スリーエム社製)、アサヒガード(登録商標)AG710、サーフロン(登録商標)S-382、SC101、SC102、SC103、SC104、SC105、SC106(旭硝子社製)等が挙げられる。
Examples of compounds that improve film thickness uniformity and surface smoothness include fluorine-based surfactants, silicone-based surfactants, and nonionic surfactants.
More specifically, for example, EFTOP (registered trademark) EF301, EF303, EF352 (manufactured by Tochem Products), MegaFac (registered trademark) F171, F173, R-30 (manufactured by Dainippon Ink, Inc.), Florard FC430, FC431 (manufactured by Sumitomo 3M), Asahi Guard (registered trademark) AG710, Surflon (registered trademark) S-382, SC101, SC102, SC103, SC104, SC105, SC106 (manufactured by Asahi Glass Co., Ltd.) and the like.
 これらの界面活性剤の使用割合は、液晶配向剤に含有される樹脂成分の100質量部に対して、好ましくは0.01質量部から2質量部、より好ましくは0.01質量部から1質量部である。 The use ratio of these surfactants is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 part by mass with respect to 100 parts by mass of the resin component contained in the liquid crystal aligning agent. Part.
 液晶配向膜と基板との密着性を向上させる化合物の具体例としては、次に示す官能性シラン含有化合物やエポキシ基含有化合物等が挙げられる。
 例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリメトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリエトキシシラン、N-トリエトキシシリルプロピルトリエチレントリアミン、N-トリメトキシシリルプロピルトリエチレントリアミン、10-トリメトキシシリル-1,4,7-トリアザデカン、10-トリエトキシシリル-1,4,7-トリアザデカン、9-トリメトキシシリル-3,6-ジアザノニルアセテート、9-トリエトキシシリル-3,6-ジアザノニルアセテート、N-ベンジル-3-アミノプロピルトリメトキシシラン、N-ベンジル-3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリメトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリエトキシシラン、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、2,2-ジブロモネオペンチルグリコールジグリシジルエーテル、1,3,5,6-テトラグリシジル-2,4-ヘキサンジオール、N,N,N’,N’,-テトラグリシジル-m-キシレンジアミン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’,-テトラグリシジル-4、4’-ジアミノジフェニルメタン等が挙げられる。
Specific examples of the compound for improving the adhesion between the liquid crystal alignment film and the substrate include the following functional silane-containing compounds and epoxy group-containing compounds.
For example, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, N-ethoxycarbonyl-3-aminopropyltrimethoxysilane, N-ethoxy Carbonyl-3-aminopropyltriethoxysilane, N-triethoxysilylpropyltriethylenetriamine, N-trimethoxysilylpropyltriethylenetriamine, 10-trimethoxysilyl-1,4,7-triazadecane, 10-to Ethoxysilyl-1,4,7-triazadecane, 9-trimethoxysilyl-3,6-diazanonyl acetate, 9-triethoxysilyl-3,6-diazanonyl acetate, N-benzyl-3-aminopropyltri Methoxysilane, N-benzyl-3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltriethoxysilane, N-bis (oxyethylene) -3-amino Propyltrimethoxysilane, N-bis (oxyethylene) -3-aminopropyltriethoxysilane, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether , Polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerin diglycidyl ether, 2,2-dibromoneopentyl glycol diglycidyl ether, 1,3,5,6-tetra Glycidyl-2,4-hexanediol, N, N, N ′, N ′,-tetraglycidyl-m-xylenediamine, 1,3-bis (N, N-diglycidylaminomethyl) cyclohexane, N, N, N Examples include ', N',-tetraglycidyl-4,4'-diaminodiphenylmethane.
 基板との密着性を向上させる化合物を使用する場合、その使用量は、液晶配向処理剤に含有される樹脂成分の100質量部に対して0.1質量部から30質量部であることが好ましく、より好ましくは1質量部から20質量部である。使用量が0.1質量部未満であると密着性向上の効果は期待できず、30質量部よりも多くなると形成される液晶配向膜の液晶配向性が低下する場合がある。 When using the compound which improves adhesiveness with a board | substrate, it is preferable that the usage-amount is 0.1 to 30 mass parts with respect to 100 mass parts of the resin component contained in a liquid-crystal aligning agent. More preferably, it is 1 to 20 parts by mass. If the amount used is less than 0.1 part by mass, the effect of improving the adhesion cannot be expected, and if it exceeds 30 parts by mass, the liquid crystal orientation of the liquid crystal alignment film formed may be lowered.
 本実施形態の液晶配向剤には、上記の他、本発明の効果が損なわれない範囲であれば、液晶配向膜の誘電率や導電性などの電気特性を変化させる目的で、誘電体や導電物質、さらには、液晶配向膜にした際の膜の硬度や緻密度を高める目的の架橋性化合物を添加してもよい。
 次に、本発明の実施形態の液晶配向膜およびそれを用いた液晶表示素子について説明する。
In addition to the above, the liquid crystal aligning agent of the present embodiment has a dielectric or conductive property for the purpose of changing the electrical properties such as the dielectric constant and conductivity of the liquid crystal aligning film as long as the effects of the present invention are not impaired. A substance, and further, a crosslinkable compound for the purpose of increasing the hardness and density of the liquid crystal alignment film may be added.
Next, a liquid crystal alignment film according to an embodiment of the present invention and a liquid crystal display element using the same will be described.
<液晶配向膜の形成>
 上述の本実施形態の液晶配向剤は、上記式(1)のジアミン化合物を必須の成分として含むジアミン成分を用いて合成された、ポリイミド前駆体およびポリイミドから選ばれる少なくとも1種の重合体を含有する。そして、本実施形態の液晶配向剤は、好ましくは基板に塗布する前に濾過した後、基板に塗布され、プリベークによる乾燥の後、加熱焼成をすることにより、ポリイミドを含む重合体膜を形成することができる。
<Formation of liquid crystal alignment film>
The liquid crystal aligning agent of this embodiment described above contains at least one polymer selected from a polyimide precursor and a polyimide, synthesized using a diamine component containing the diamine compound of formula (1) as an essential component. To do. The liquid crystal aligning agent of this embodiment is preferably filtered before being applied to the substrate, then applied to the substrate, dried by prebaking, and then heated and fired to form a polymer film containing polyimide. be able to.
 本実施形態の液晶配向剤を用い、基板上に塗布する塗布方法としては、特に限定されないが、工業的には、スクリーン印刷、オフセット印刷、フレキソ印刷またはインクジェット法等で行う方法が一般的である。その他の塗布方法としては、ディップ法、ロールコータ法、スリットコータ法、スピンナー法またはスプレー法等があり、目的に応じてこれらを用いてもよい。本実施形態の液晶配向剤は、以上の塗布法を用いた場合であっても塗布性は良好である。 A coating method for applying the liquid crystal aligning agent of the present embodiment on a substrate is not particularly limited, but industrially, a method performed by screen printing, offset printing, flexographic printing, an inkjet method, or the like is common. . Other coating methods include a dipping method, a roll coater method, a slit coater method, a spinner method, or a spray method, and these may be used depending on the purpose. Even if the liquid crystal aligning agent of this embodiment is a case where the above application | coating method is used, applicability | paintability is favorable.
 液晶配向剤を塗布した後のプリベークによる乾燥の工程は、必ずしも必要とされないが、塗布後から加熱焼成までの時間が基板ごとに一定していない場合や、塗布後ただちに加熱焼成されない場合には、乾燥工程を含める方が好ましい。このプリベークによる乾燥は、基板の搬送等により塗膜形状が変形しない程度に溶媒が蒸発していればよい。 The step of drying by pre-baking after applying the liquid crystal aligning agent is not necessarily required, but when the time from application to heating and baking is not constant for each substrate, or when heating and baking is not performed immediately after application, It is preferable to include a drying step. The drying by this pre-bake should just evaporate the solvent to such an extent that a coating-film shape does not deform | transform by conveyance of a board | substrate.
 乾燥手段については特に限定されない。具体例を挙げるならば、50℃~120℃、好ましくは80℃~120℃のホットプレート上で、0.5分間~30分間、好ましくは1分間~5分間乾燥させる方法が好ましい。 The drying means is not particularly limited. As a specific example, a method of drying on a hot plate at 50 ° C. to 120 ° C., preferably 80 ° C. to 120 ° C. for 0.5 minutes to 30 minutes, preferably 1 minute to 5 minutes is preferable.
 液晶配向剤を塗布した基板の焼成は、ホットプレート、熱循環型オーブンまたはIR(赤外線)型オーブンなどの加熱手段により、120℃~350℃の温度で行うことができる。焼成温度は、好ましくは140℃~300℃であり、さらに好ましくは180℃~250℃である。液晶配向剤中にポリアミック酸やポリアミック酸エステルを含有する場合は、この焼成温度によってポリイミドへの転化率が変化するが、本実施形態の液晶配向剤は、必ずしも100%イミド化させる必要は無い。そして、液晶配向剤の塗膜の焼成時間は任意の時間に設定することができる。焼成時間が短すぎる場合、残存溶媒の影響で表示不良が発生する場合があるため、好ましくは5分間~60分間、より好ましくは10分間~40分間である。 The substrate coated with the liquid crystal aligning agent can be baked at a temperature of 120 ° C. to 350 ° C. by a heating means such as a hot plate, a thermal circulation oven or an IR (infrared) oven. The firing temperature is preferably 140 ° C. to 300 ° C., more preferably 180 ° C. to 250 ° C. When polyamic acid or polyamic acid ester is contained in the liquid crystal aligning agent, the conversion rate to polyimide varies depending on the baking temperature, but the liquid crystal aligning agent of this embodiment does not necessarily need to be imidized 100%. And the baking time of the coating film of a liquid crystal aligning agent can be set to arbitrary time. If the baking time is too short, display failure may occur due to the influence of the residual solvent. Therefore, it is preferably 5 minutes to 60 minutes, more preferably 10 minutes to 40 minutes.
 焼成後に得られるポリイミドを含む重合体膜の厚みは、厚すぎると液晶表示素子の消費電力の面で不利となり、薄すぎると液晶表示素子の信頼性が低下する場合があるので、好ましくは10nm~200nm、より好ましくは50nm~100nmである。液晶を水平配向や傾斜配向させる場合は、焼成後の重合体膜を、布を用いて膜表面を一定方向に擦るラビング等の配向処理をすることが好ましい。 If the thickness of the polymer film containing polyimide obtained after firing is too thick, it is disadvantageous in terms of power consumption of the liquid crystal display element. If it is too thin, the reliability of the liquid crystal display element may be lowered. It is 200 nm, more preferably 50 nm to 100 nm. When the liquid crystal is horizontally or tilted, the polymer film after baking is preferably subjected to an alignment treatment such as rubbing by rubbing the film surface in a certain direction using a cloth.
 以上のようにして形成される本実施形態の液晶配向膜は、紫外線照射を受けても性能劣化を低減するのに有効な液晶配向膜であり、画素の形成領域に紫外線を照射する工程を経て作成されて、性能劣化の低減が抑制された本実施形態の液晶表示素子を提供する。 The liquid crystal alignment film of the present embodiment formed as described above is a liquid crystal alignment film that is effective in reducing performance deterioration even when subjected to ultraviolet irradiation, and is subjected to a process of irradiating the pixel formation region with ultraviolet light. Provided is the liquid crystal display element of the present embodiment which is produced and suppresses the reduction in performance degradation.
実施形態2
 本発明の第2の実施形態である液晶表示素子は、上述した第1の実施形態である液晶表示素子と同様、紫外線照射を受けても性能劣化を低減するのに有効な液晶配向膜を用いて構成される。そして、第2の実施形態である液晶表示素子の場合、その液晶配向膜は、紫外線照射による光配向処理によって液晶配向制御能を発揮する光配向膜である。したがって、本発明の第2の実施形態である液晶表示素子は、光配向処理のため、液晶配向膜のある画素の形成領域に紫外線を照射する工程を経て作成されて、性能劣化の低減が抑制された液晶表示素子となる。
Embodiment 2
The liquid crystal display element according to the second embodiment of the present invention uses a liquid crystal alignment film that is effective in reducing performance degradation even when irradiated with ultraviolet rays, as in the liquid crystal display element according to the first embodiment described above. Configured. And in the case of the liquid crystal display element which is 2nd Embodiment, the liquid crystal aligning film is a photo-alignment film which exhibits liquid crystal alignment control ability by the photo-alignment process by ultraviolet irradiation. Therefore, the liquid crystal display element according to the second embodiment of the present invention is created through a process of irradiating the formation region of the pixel with the liquid crystal alignment film with ultraviolet rays for the photo-alignment process, and suppresses the reduction in performance deterioration. Thus, a liquid crystal display element is obtained.
 本実施形態の液晶表示素子は、上述した第1実施形態と同様、一例として、TN(Twisted Nematic)モードのカラー液晶表示素子とすることができる。したがって、上述した第1の実施形態である図1の液晶表示素子1と同様の構造とすることができ、重複する説明は省略する。 The liquid crystal display element of this embodiment can be a color liquid crystal display element of TN (Twisted Nematic) mode as an example, as in the first embodiment described above. Therefore, it can be set as the structure similar to the liquid crystal display element 1 of FIG. 1 which is 1st Embodiment mentioned above, and the overlapping description is abbreviate | omitted.
 第2実施形態の液晶表示素子の液晶配向膜は、第1実施形態の液晶表示素子の液晶配向膜と同様、液晶配向剤を用いて形成されることが好ましい。そして、本実施形態の液晶配向膜は、画素の形成領域に紫外線を照射する工程を経て作成されて、性能劣化の低減が抑制された本実施形態の液晶表示素子を提供するように、上述した第1実施形態の液晶配向剤を用いて形成されることが好ましい。 The liquid crystal alignment film of the liquid crystal display element of the second embodiment is preferably formed using a liquid crystal aligning agent, like the liquid crystal alignment film of the liquid crystal display element of the first embodiment. Then, the liquid crystal alignment film of the present embodiment is formed through a process of irradiating the pixel formation region with ultraviolet rays, and the liquid crystal display element of the present embodiment in which the reduction in performance deterioration is suppressed is described above. It is preferable to form using the liquid crystal aligning agent of 1st Embodiment.
 そして、本実施形態で使用する液晶配向剤は、上述した第1実施形態の液晶配向剤であって、得られる液晶配向膜において、光配向処理による優れた液晶配向制御能を実現できるように、上記式(1)のジアミン化合物を含むジアミン成分と、上記式(CB1)~(CB5)中、Zが式(Z-1)であるテトラカルボン酸誘導体とを用いて形成されるポリイミド前駆体およびそれをイミド化して得られるポリイミドから選ばれる少なくとも1つの重合体を含んで構成されることが好ましい。その結果、本実施形態の液晶配向膜は、上記式(1)のジアミン化合物を含むジアミン成分と、上記式(CB1)~(CB5)中、Zが式(Z-1)であるテトラカルボン酸誘導体とを用いて形成されるポリイミド前駆体およびそれをイミド化して得られるポリイミドから選ばれる少なくとも1つの重合体を含んで構成される。 And the liquid crystal aligning agent used by this embodiment is the liquid crystal aligning agent of 1st Embodiment mentioned above, Comprising: In the obtained liquid crystal aligning film, in order to implement | achieve the outstanding liquid crystal alignment control ability by a photo-alignment process, A polyimide precursor formed using a diamine component containing a diamine compound of the above formula (1) and a tetracarboxylic acid derivative in which Z 1 is the formula (Z-1) in the above formulas (CB1) to (CB5) And at least one polymer selected from polyimides obtained by imidizing it. As a result, the liquid crystal alignment film of the present embodiment includes a diamine component containing the diamine compound of the above formula (1) and a tetracarboxylic acid in which Z 1 is the formula (Z-1) in the above formulas (CB1) to (CB5). It comprises at least one polymer selected from a polyimide precursor formed using an acid derivative and a polyimide obtained by imidizing it.
 本実施形態の液晶配向膜の形成は、上述した第1実施形態と同様とすることができる。そして、本実施形態の液晶配向膜における光配向処理の方法は特に限定されないが、偏光した紫外線を用いることが均一な液晶配向を得る上で好ましい。この場合、偏光した紫外線を照射する方法は特に限定されない。例えば、ポリイミド等重合体を含む重合体膜の形成された基板に対し、一定の方向から偏光板を介して偏光された紫外線を照射することが可能である。また、偏光紫外線の入射角を変えて2回以上照射してもよい。また、実質的に偏光が得られればよく、無偏光の紫外線を基板の法線から一定角度傾けて照射してもよい。 The formation of the liquid crystal alignment film of this embodiment can be the same as that of the first embodiment described above. The method of photo-alignment treatment in the liquid crystal alignment film of the present embodiment is not particularly limited, but it is preferable to use polarized ultraviolet rays for obtaining uniform liquid crystal alignment. In this case, the method of irradiating polarized ultraviolet rays is not particularly limited. For example, it is possible to irradiate a substrate on which a polymer film containing a polymer such as polyimide is formed through a polarizing plate from a certain direction. Moreover, you may irradiate twice or more by changing the incident angle of polarized ultraviolet rays. Further, it is only necessary to obtain substantially polarized light, and non-polarized ultraviolet rays may be irradiated at an angle inclined from the normal line of the substrate.
 使用する紫外線の波長としては、一般には100nm~400nmの範囲の紫外線を使用することができるが、特に好ましくは使用する重合体膜の種類によりフィルター等を介して最適な波長を選択することが好ましい。また、紫外線の照射時間は一般に数秒間から数時間の範囲である。そして、工業的な生産性を考慮し、良好な液晶配向制御能が実現される必要量を、使用する液晶配向膜の種類により選択することが好ましい。 As the wavelength of ultraviolet rays to be used, ultraviolet rays in the range of 100 nm to 400 nm can be generally used, but it is particularly preferable to select an optimum wavelength via a filter or the like depending on the type of polymer film to be used. . The irradiation time of ultraviolet rays is generally in the range of several seconds to several hours. In consideration of industrial productivity, it is preferable to select the necessary amount that realizes good liquid crystal alignment control ability depending on the type of liquid crystal alignment film to be used.
 第2実施形態の液晶表示素子は、以下のようにして製造することができる。尚、本実施形態の液晶表示素子は、上述した第1の実施形態である図1の液晶表示素子1と同様の構造とすることができ、共通する構成要素に関する説明は同一の符号を用いることとし、図1を参照しながら説明する。 The liquid crystal display element of the second embodiment can be manufactured as follows. The liquid crystal display element of the present embodiment can have the same structure as the liquid crystal display element 1 of FIG. 1 which is the first embodiment described above, and the same reference numerals are used for the description of the common components. This will be described with reference to FIG.
 まず、上述した構造のTFT基板2を準備する。TFT基板2は、例えば、透明なガラス基板等からなる基板5上に、公知の方法に従い、TFTや画素電極6を含む各種電極等を形成して製造されたものである。そして、TFT基板2上に、上述した光配向処理が施された本実施形態の液晶配向膜12を配置する。 First, the TFT substrate 2 having the structure described above is prepared. The TFT substrate 2 is manufactured, for example, by forming various electrodes including TFTs and pixel electrodes 6 on a substrate 5 made of a transparent glass substrate or the like according to a known method. Then, on the TFT substrate 2, the liquid crystal alignment film 12 of this embodiment subjected to the above-described photo-alignment processing is disposed.
 そして、上記した構造のCF基板3を準備する。CF基板3は、例えば、透明なガラス基板等からなる基板15上に、着色層9およびブラックマトリクス10を有するCF層7、並びに、共通電極11等をパターニングして形成される。そして、共通電極11の表面に、上述した光配向処理を施した液晶配向膜12を配置する。尚、ブラックマトリクスは、Ta(タンタル)、Cr(クロム)、Mo(モリブデン)、Ni(ニッケル)、Ti(チタン)、Cu(銅)、Al(アルミニウム)等の金属材料、カーボン等の黒色顔料が分散された樹脂材料、または、各々、光透過性を有する複数色の着色層が積層された樹脂材料などにより形成される。 Then, the CF substrate 3 having the above structure is prepared. The CF substrate 3 is formed, for example, by patterning the CF layer 7 having the colored layer 9 and the black matrix 10, the common electrode 11 and the like on the substrate 15 made of a transparent glass substrate or the like. And the liquid crystal aligning film 12 which performed the photo-alignment process mentioned above on the surface of the common electrode 11 is arrange | positioned. The black matrix is made of a metal material such as Ta (tantalum), Cr (chromium), Mo (molybdenum), Ni (nickel), Ti (titanium), Cu (copper), Al (aluminum), or a black pigment such as carbon. Are dispersed or a resin material in which a plurality of colored layers having light transmittance are laminated.
 次に、TFT基板2の画素電極6の形成された画素の形成領域の周囲において、シール材料を用い、ディスペンサーによる方法や、所望の形状で印刷する方法や、スピンコート法によって塗布した後でフォトリソグラフィ法によりパターニングする方法等に従い、シール材16を枠状に形成する。シール材としては、例えば、熱硬化型のものを用いることができる。 Next, around the pixel formation region on the TFT substrate 2 where the pixel electrode 6 is formed, a sealing material is used, a method using a dispenser, a method of printing in a desired shape, and a photo coating after applying by a spin coating method. The sealing material 16 is formed in a frame shape according to a patterning method using a lithography method. As the sealing material, for example, a thermosetting type can be used.
 次いで、そのTFT基板2とCF基板3とを、好ましくは1μm~30μm、より好ましくは2μm~10μmのスペーサを挟んで、各基板に照射された偏光紫外線の光軸の投影方向が、例えば、直交するように設置し、周囲をシール材16で固定する。次いで、TFT基板2とCF基板3との間に液晶を注入して封止し、液晶層4を構成する。液晶封入の方法については特に制限されず、TFT基板2とCF基板3との間のシール材16で囲まれた画素の形成領域を減圧にした後に液晶を注入する真空法の利用が可能である。また、第1実施例で説明した、液晶を滴下した後に封止を行う滴下法等が例示できる。
 その後、TFT基板2とCF基板3の液晶層4と反対側の外部側の面にそれぞれ、偏光板17を配置し、液晶表示素子1を製造する。
Next, the TFT substrate 2 and the CF substrate 3 are preferably sandwiched with a spacer of 1 μm to 30 μm, more preferably 2 μm to 10 μm. The periphery is fixed with a sealing material 16. Next, liquid crystal is injected between the TFT substrate 2 and the CF substrate 3 and sealed to form the liquid crystal layer 4. The method for enclosing the liquid crystal is not particularly limited, and it is possible to use a vacuum method in which liquid crystal is injected after reducing the pressure of the pixel formation region surrounded by the sealing material 16 between the TFT substrate 2 and the CF substrate 3. . Moreover, the dropping method etc. which seal after sealing a liquid crystal demonstrated in 1st Example can be illustrated.
Then, the polarizing plate 17 is arrange | positioned to the surface of the TFT substrate 2 and the external side of the CF substrate 3 opposite to the liquid crystal layer 4, respectively, and the liquid crystal display element 1 is manufactured.
 したがって、本実施形態の液晶表示素子の製造において、紫外線を照射する光照射工程は、液晶配向膜の配向処理をする工程であって、液晶配向膜に液晶配向の制御能を付与する工程となる。照射光は、液晶配向膜の光配向処理に好適な波長特性を有し、上述したように、波長が100nm~400nmの紫外線とすることができる。そして、紫外線の照射量は、上述したように、液晶配向膜の種類に従い、光配向処理に好適な量を選択することが好ましい。 Therefore, in the manufacture of the liquid crystal display element of the present embodiment, the light irradiation step of irradiating ultraviolet rays is a step of performing an alignment treatment of the liquid crystal alignment film, and is a step of imparting liquid crystal alignment controllability to the liquid crystal alignment film. . The irradiation light has a wavelength characteristic suitable for the photo-alignment treatment of the liquid crystal alignment film, and as described above, the irradiation light can be ultraviolet light having a wavelength of 100 nm to 400 nm. And as above-mentioned, as for the irradiation amount of an ultraviolet-ray, it is preferable to select the quantity suitable for a photo-alignment process according to the kind of liquid crystal aligning film.
 本実施形態の液晶表示素子は、上述した構造のポリイミド前駆体およびそれをイミド化して得られるポリイミドから選ばれる少なくとも1つの重合体を含んで構成される液晶配向膜を用いて構成されており、光配向処理のため、画素の形成領域において、紫外線の照射を受けても、性能の劣化が抑制されている。したがって、本実施形態の液晶表示素子は、光配向処理のために、画素の形成領域に紫外線を照射する工程を経て作成された場合であっても、従来課題とされていた、紫外線照射による性能劣化を抑制することができる。すなわち、本実施形態によれば、特に、紫外線を照射する光照射処理を用いて製造され、表示品位の低下が抑制された液晶表示素子を提供することができる。 The liquid crystal display element of the present embodiment is configured using a liquid crystal alignment film including at least one polymer selected from a polyimide precursor having the structure described above and a polyimide obtained by imidizing the polyimide precursor, Due to the photo-alignment treatment, the deterioration of the performance is suppressed even when the pixel formation region is irradiated with ultraviolet rays. Therefore, the liquid crystal display element according to the present embodiment is a performance by ultraviolet irradiation, which has been a problem in the past, even when the liquid crystal display element is formed through a process of irradiating the pixel formation region with ultraviolet rays for photo-alignment processing. Deterioration can be suppressed. That is, according to the present embodiment, it is possible to provide a liquid crystal display element that is manufactured by using a light irradiation process that irradiates ultraviolet rays, and in which deterioration of display quality is suppressed.
 尚、本実施形態の液晶表示素子1は、シール材16の形成に、可視光硬化型および紫外線硬化型等の光硬化型のシール材料を用いることも可能である。可視光硬化型のシール材料としては、例えば、アクリル樹脂、メタクリル樹脂、エポキシ樹脂およびシリコーン樹脂等の可視光の光エネルギーを照射することによって硬化する光硬化性樹脂を使用することが可能である。また、紫外線硬化型のシール材料としては、上述した第1実施形態において説明したものと同様のものを用いることができる。 In the liquid crystal display element 1 of the present embodiment, a photo-curing seal material such as a visible light curing type and an ultraviolet curing type can be used for forming the sealing material 16. As the visible light curable sealing material, for example, a photocurable resin that is cured by irradiation with visible light energy such as acrylic resin, methacrylic resin, epoxy resin, and silicone resin can be used. Further, as the ultraviolet curable sealing material, the same materials as those described in the first embodiment can be used.
 シール材が光硬化型であっても、本実施形態の液晶表示素子は、上述した構造のポリイミド膜を含む液晶配向膜を用いて構成されており、例えば、シール材16の硬化時において画素の形成領域において、可視光や紫外線の照射を受けても、性能の劣化が抑制されている。したがって、本実施形態の液晶表示素子は、光配向処理の後、画素の形成領域に可視光や紫外線を照射する工程を経て作成された場合であっても、可視光照射による性能劣化を抑制することができる。 Even if the sealing material is a photo-curing type, the liquid crystal display element of this embodiment is configured using a liquid crystal alignment film including the polyimide film having the above-described structure. For example, when the sealing material 16 is cured, In the formation region, deterioration of performance is suppressed even when irradiated with visible light or ultraviolet light. Therefore, the liquid crystal display element of this embodiment suppresses performance degradation due to visible light irradiation even when it is formed through a process of irradiating a pixel formation region with visible light or ultraviolet light after a photo-alignment process. be able to.
 また、本実施形態の液晶表示素子には、上述のTNモードの他、STN(Super Twisted Nematic)モード、IPS(In-Planes Switching)モード、VA(Vertical Alignment)モード、または、OCB(Optically Compensated Birefringence)モード等の液晶モードとすることもできる。その場合、TFT基板やCF基板は、図1に示した例と異なり、各液晶モードに好適な公知の構造とすることができる。 In addition to the above-described TN mode, the liquid crystal display element of the present embodiment includes an STN (Super Twisted Nematic) mode, an IPS (In-Plane Switching) mode, a VA (Vertical Alignment) mode, or an OCB (Optically Compensating Bending). ) Mode or the like. In that case, the TFT substrate and the CF substrate can have a known structure suitable for each liquid crystal mode, unlike the example shown in FIG.
実施形態3
 本発明の第3の実施形態である液晶表示素子は、PSA(Polymer Sustained Alignment)方式の液晶表示素子である。PSA方式の液晶表示素子は、液晶配向膜として垂直配向型の液晶配向膜を用いて構成される。
Embodiment 3
The liquid crystal display element according to the third embodiment of the present invention is a PSA (Polymer Sustained Alignment) type liquid crystal display element. A PSA-type liquid crystal display element is configured using a vertical alignment type liquid crystal alignment film as a liquid crystal alignment film.
 したがって、第3実施形態の液晶表示素子の液晶配向膜は、第1実施形態の液晶表示素子の液晶配向膜と同様、液晶配向剤を用いて形成されることが好ましい。そして、本実施形態の液晶配向膜は、画素の形成領域に紫外線を照射する工程を経て作成されて、性能劣化の低減が抑制された本実施形態の液晶表示素子を提供するように、上述した第1実施形態の液晶配向剤を用いて形成されることが好ましい。そして、特に、得られる液晶配向膜において、液晶の垂直配向を実現することができるように、垂直配向に好適な構造のポリイミド前駆体およびそれをイミド化して得られるポリイミドから選ばれる少なくとも1つの重合体を含む第1実施形態の液晶配向剤を用いて構成されることが好ましい。 Therefore, the liquid crystal alignment film of the liquid crystal display element of the third embodiment is preferably formed using a liquid crystal aligning agent, like the liquid crystal alignment film of the liquid crystal display element of the first embodiment. Then, the liquid crystal alignment film of the present embodiment is formed through a process of irradiating the pixel formation region with ultraviolet rays, and the liquid crystal display element of the present embodiment in which the reduction in performance deterioration is suppressed is described above. It is preferable to form using the liquid crystal aligning agent of 1st Embodiment. In particular, in the obtained liquid crystal alignment film, at least one layer selected from a polyimide precursor having a structure suitable for vertical alignment and a polyimide obtained by imidizing the polyimide precursor so that vertical alignment of liquid crystals can be realized. It is preferable to use the liquid crystal aligning agent of the first embodiment including a coalescence.
 第3の実施形態である液晶表示素子の製造方法については、上述したように、垂直配向に好適な構造のポリイミド前駆体等の重合体を含む第1実施形態の液晶配向剤を用い、基板に液晶配向膜を形成した後、公知の方法に従って液晶セルを作製して得ることができる。液晶セル作製の一例を挙げると、上述の液晶配向膜が形成された1対の基板を、スペーサを挟んで、シール材で固定し、液晶を注入して封止する方法が一般的である。その際、用いるスペーサの大きさは1μm~30μmであるが、好ましくは2μm~10μmである。 About the manufacturing method of the liquid crystal display element which is 3rd Embodiment, as mentioned above, the liquid crystal aligning agent of 1st Embodiment containing polymers, such as a polyimide precursor of a structure suitable for vertical alignment, is used for a board | substrate. After forming the liquid crystal alignment film, a liquid crystal cell can be prepared and obtained according to a known method. As an example of manufacturing a liquid crystal cell, a method is generally employed in which a pair of substrates on which the above-described liquid crystal alignment film is formed is fixed with a sealing material with a spacer interposed therebetween, and liquid crystal is injected and sealed. In this case, the size of the spacer used is 1 μm to 30 μm, preferably 2 μm to 10 μm.
 本実施形態のPSA方式液晶表示素子に用いる基板としては、透明性の高い基板であれば特に限定されないが、好ましくは、基板上に液晶を駆動するための透明電極が形成された基板である。PSA方式の液晶表示素子に使用できる基板には、標準的なPVAやMVAといった電極パターンや突起パターンでも使用できる。しかし、PSA方式の液晶表示素子の一例としては、片側基板に1μm~10μmのライン/スリット電極パターンを形成し、対向基板にはスリットパターンや突起パターンを形成していない構造においても、所望とする液晶の動作が可能であり、この構造例のPSA方式の液晶表示素子によって、製造時のプロセスを簡略化でき、高い透過率を得ることができる。 The substrate used for the PSA liquid crystal display element of the present embodiment is not particularly limited as long as it is a highly transparent substrate, but is preferably a substrate on which a transparent electrode for driving liquid crystal is formed. As a substrate that can be used for a PSA liquid crystal display element, a standard electrode pattern such as PVA or MVA or a projection pattern can be used. However, as an example of a PSA type liquid crystal display element, it is desirable even in a structure in which a line / slit electrode pattern of 1 μm to 10 μm is formed on one side substrate and no slit pattern or projection pattern is formed on the opposite substrate. The operation of the liquid crystal is possible, and the PSA liquid crystal display element of this structural example can simplify the manufacturing process and obtain high transmittance.
 また、本実施形態のPSA方式の液晶表示素子に用いる基板には、TFTおよび電極等が配置されたTFT基板を用いることができ、その例では、TFT駆動によるPSA方式の液晶表示素子を提供することができる。 In addition, as a substrate used for the PSA liquid crystal display element of this embodiment, a TFT substrate on which TFTs and electrodes are arranged can be used. In this example, a PSA liquid crystal display element driven by TFT is provided. be able to.
 本実施形態のPSA方式の液晶表示素子が透過型である場合は、上述のような透明な基板を用いることが好ましいが、反射型である場合、片側の基板のみにならばシリコンウエハ等の不透明な基板も用いることが可能である。その際、基板に形成された電極には、光を反射するアルミニウム等の材料を用いることもできる。 When the PSA type liquid crystal display element of the present embodiment is a transmissive type, it is preferable to use a transparent substrate as described above. However, when the PSA type liquid crystal display element is a reflective type, if only one substrate is used, an opaque material such as a silicon wafer is used. A simple substrate can also be used. At that time, a material such as aluminum that reflects light may be used for the electrode formed on the substrate.
 液晶を注入する方法は特に制限されず、作製した液晶セル内を減圧にした後、液晶を注入する真空法、液晶を滴下した後に封止を行う滴下法などを挙げることができる。 The method for injecting the liquid crystal is not particularly limited, and examples thereof include a vacuum method for injecting the liquid crystal after reducing the pressure inside the produced liquid crystal cell, and a dropping method for sealing after dropping the liquid crystal.
 PSA方式の液晶表示素子では、使用される液晶として、光重合性化合物を少量(好ましくは、は0.2重量%~1重量%。)添加した液晶を用いる。この液晶が封入されて液晶層が形成された液晶セルを得た後、その液晶セルの液晶層を挟持する両側基板の電極間に電圧を印加する。そして、その電圧印加の状態のままで、紫外線を照射することにより、重合性化合物がその状態で重合し架橋され、その結果、その液晶表示素子の応答速度が速くなる。ここで、印加する電圧は5Vp-p~30Vp-pであるが、好ましくは、5Vp-p~20Vp-pである。照射する紫外線の照射量は、1J~60Jであるが、好ましくは、40J以下であり、紫外線照射量が少ないほうが、液晶表示素子の信頼性低下を抑制でき、かつ紫外線の照射時間を減らせることで製造上のタクトが上がるので生産性の向上に好適である。 In a PSA liquid crystal display element, a liquid crystal to which a small amount (preferably, 0.2 wt% to 1 wt%) of a photopolymerizable compound is used as a liquid crystal to be used. After obtaining the liquid crystal cell in which the liquid crystal is sealed and the liquid crystal layer is formed, a voltage is applied between the electrodes of the both side substrates sandwiching the liquid crystal layer of the liquid crystal cell. Then, by irradiating ultraviolet rays while the voltage is applied, the polymerizable compound is polymerized and crosslinked in that state, and as a result, the response speed of the liquid crystal display element is increased. Here, the applied voltage is 5 V pp to 30 V pp , but preferably 5 V pp to 20 V pp . The irradiation amount of ultraviolet rays to be irradiated is 1 J to 60 J, but preferably 40 J or less, and the smaller the ultraviolet irradiation amount, the lowering of the reliability of the liquid crystal display element can be suppressed, and the ultraviolet irradiation time can be reduced. This increases the manufacturing tact and is suitable for improving productivity.
 以上のように、本発明の第3の実施形態であるPSA方式の液晶表示素子は、上述した第1の実施形態である液晶表示素子と同様、紫外線照射を受けても性能劣化を低減するのに有効な液晶配向膜を用いて構成される。そして、第3の実施形態である液晶表示素子の場合、その液晶には、光重合性化合物を少量添加したものが用いられ、液晶表示素子の製造時において、その光重合性化合物に紫外線を照射して、液晶における所望の応答特性を実現している。したがって、本発明の第3の実施形態である液晶表示素子は、液晶中の光重合性化合物を反応させるため、画素の形成領域に紫外線を照射する工程を経て作成されて、性能劣化の低減が抑制された液晶表示素子となる。 As described above, the PSA-type liquid crystal display element according to the third embodiment of the present invention reduces performance degradation even when it is irradiated with ultraviolet rays, like the liquid crystal display element according to the first embodiment described above. It is comprised using the liquid crystal aligning film effective for. In the case of the liquid crystal display element according to the third embodiment, the liquid crystal is obtained by adding a small amount of a photopolymerizable compound, and the photopolymerizable compound is irradiated with ultraviolet rays when the liquid crystal display element is manufactured. Thus, desired response characteristics in the liquid crystal are realized. Therefore, the liquid crystal display element according to the third embodiment of the present invention is produced through a process of irradiating the pixel formation region with ultraviolet rays in order to react the photopolymerizable compound in the liquid crystal, and the performance deterioration is reduced. The liquid crystal display element is suppressed.
実施形態4
 本発明の第4の実施形態である液晶表示素子は、紫外線照射方式の液晶表示素子である。紫外線照射方式の液晶表示素子は、液晶配向剤を2枚の基板上に塗布して液晶配向膜を形成し、この液晶配向膜が対向するように2枚の基板を配置し、この2枚の基板の間に液晶層を挟持し、液晶層に電界を印加しながら紫外線を照射することで作製される垂直配向(VA)モードの液晶表示素子である。紫外線照射方式の液晶表示素子は、液晶配向膜として垂直配向型の液晶配向膜を用いて構成される。
Embodiment 4
The liquid crystal display element which is the 4th Embodiment of this invention is a liquid crystal display element of an ultraviolet irradiation system. In the liquid crystal display element of the ultraviolet irradiation method, a liquid crystal alignment agent is applied on two substrates to form a liquid crystal alignment film, and the two substrates are arranged so that the liquid crystal alignment films face each other. This is a vertical alignment (VA) mode liquid crystal display element manufactured by sandwiching a liquid crystal layer between substrates and irradiating ultraviolet rays while applying an electric field to the liquid crystal layer. An ultraviolet irradiation type liquid crystal display element is configured using a vertical alignment type liquid crystal alignment film as a liquid crystal alignment film.
 したがって、第4実施形態の液晶表示素子の液晶配向膜は、第1実施形態の液晶表示素子の液晶配向膜と同様、液晶配向剤を用いて形成されることが好ましい。そして、本実施形態の液晶配向膜は、画素の形成領域に紫外線を照射する工程を経て作成されて、性能劣化の低減が抑制された本実施形態の液晶表示素子を提供するように、上述した第1実施形態の液晶配向剤を用いて形成されることが好ましい。そして、特に、得られる液晶配向膜において、液晶の垂直配向を実現することができるように、垂直配向に好適な構造のポリイミド前駆体およびそれをイミド化して得られるポリイミドから選ばれる少なくとも1つの重合体を含む第1実施形態の液晶配向剤を用いて構成されることが好ましい。 Therefore, the liquid crystal alignment film of the liquid crystal display element of the fourth embodiment is preferably formed using a liquid crystal aligning agent, like the liquid crystal alignment film of the liquid crystal display element of the first embodiment. Then, the liquid crystal alignment film of the present embodiment is formed through a process of irradiating the pixel formation region with ultraviolet rays, and the liquid crystal display element of the present embodiment in which the reduction in performance deterioration is suppressed is described above. It is preferable to form using the liquid crystal aligning agent of 1st Embodiment. In particular, in the obtained liquid crystal alignment film, at least one layer selected from a polyimide precursor having a structure suitable for vertical alignment and a polyimide obtained by imidizing the polyimide precursor so that vertical alignment of liquid crystals can be realized. It is preferable to use the liquid crystal aligning agent of the first embodiment including a coalescence.
 そしてさらに、上述したPSA方式のように、液晶中に光重合性化合物を添加する必要が無いように、紫外線照射方式に好適な構造のポリイミド前駆体およびそれをイミド化して得られるポリイミドから選ばれる少なくとも1つの重合体を含む第1実施形態の液晶配向剤を用いて構成されることが特に好ましい。そうすることで、簡単に液晶の応答特性を向上させることができる。 Furthermore, unlike the PSA method described above, a polyimide precursor having a structure suitable for the ultraviolet irradiation method and a polyimide obtained by imidizing it are selected so that it is not necessary to add a photopolymerizable compound to the liquid crystal. It is particularly preferable that the liquid crystal aligning agent according to the first embodiment including at least one polymer is used. By doing so, the response characteristics of the liquid crystal can be easily improved.
 第4の実施形態である液晶表示素子の製造方法については、上述したように、垂直配向に好適で紫外線照射方式に好適な構造のポリイミド前駆体等の重合体を含む第1実施形態の液晶配向剤を用い、基板に液晶配向膜を形成した後、公知の方法に従って液晶セルを作製して得ることができる。液晶セル作製の一例を挙げると、上述の液晶配向膜が形成された一対の基板を用意し、片方の基板の液晶配向層上にスペーサを散布し、液晶配向層面が内側になるようにしてもう片方の基板を貼り合わせ、液晶を減圧注入して封止する方法、または、スペーサを散布した液晶配向層の面に液晶を滴下した後に基板を貼り合わせて封止を行う方法等が例示できる。その際、用いるスペーサの大きさは1μm~30μmであるが、好ましくは2μm~10μmである。 About the manufacturing method of the liquid crystal display element which is 4th Embodiment, as mentioned above, the liquid crystal alignment of 1st Embodiment containing polymers, such as a polyimide precursor of a structure suitable for a vertical alignment and a suitable ultraviolet irradiation system, as mentioned above. After forming a liquid crystal alignment film on a substrate using an agent, a liquid crystal cell can be produced according to a known method. As an example of liquid crystal cell production, prepare a pair of substrates on which the above-mentioned liquid crystal alignment film is formed, spray spacers on the liquid crystal alignment layer of one substrate, and make the liquid crystal alignment layer surface inside. Examples include a method in which one substrate is bonded and liquid crystal is injected under reduced pressure, or a method in which liquid crystal is dropped on the surface of the liquid crystal alignment layer on which spacers are dispersed and then the substrate is bonded and sealed. In this case, the size of the spacer used is 1 μm to 30 μm, preferably 2 μm to 10 μm.
 本実施形態の液晶表示素子の製造に用いる基板としては、透明性の高い基板であれば特に限定されないが、好ましくは、基板上に液晶を駆動するための透明電極が形成された基板である。紫外線照射方式の液晶表示素子に使用できる基板には、標準的なPVAやMVAといった電極パターンや突起パターンでも使用できる。しかし、紫外線照射方式の液晶表示素子の一例としては、片側基板に1μm~10μmのライン/スリット電極パターンを形成し、対向基板にはスリットパターンや突起パターンを形成していない構造においても、所望とする液晶の動作が可能であり、この構造例の紫外線照射方式の液晶表示素子によって、製造時のプロセスを簡略化でき、高い透過率を得ることができる。 The substrate used for manufacturing the liquid crystal display element of the present embodiment is not particularly limited as long as it is a highly transparent substrate, but is preferably a substrate on which a transparent electrode for driving liquid crystal is formed. As a substrate that can be used for an ultraviolet irradiation type liquid crystal display element, a standard electrode pattern such as PVA or MVA or a projection pattern can also be used. However, as an example of an ultraviolet irradiation type liquid crystal display element, a structure in which a line / slit electrode pattern of 1 μm to 10 μm is formed on one substrate and a slit pattern or a protrusion pattern is not formed on the opposite substrate is desirable. The operation of the liquid crystal can be performed, and the ultraviolet ray irradiation type liquid crystal display element of this structural example can simplify the manufacturing process and obtain a high transmittance.
 また、本実施形態の紫外線照射方式の液晶表示素子に用いる基板には、TFTおよび電極等が配置されたTFT基板を用いることができ、その例では、TFT駆動による紫外線照射方式の液晶表示素子を提供することができる。 In addition, as a substrate used for the ultraviolet irradiation type liquid crystal display element of this embodiment, a TFT substrate on which TFTs and electrodes are arranged can be used. In this example, an ultraviolet irradiation type liquid crystal display element driven by a TFT is used. Can be provided.
 本実施形態の紫外線照射方式の液晶表示素子が透過型である場合は、上述のような透明な基板を用いることが好ましいが、反射型である場合、片側の基板のみにならばシリコンウエハ等の不透明な基板も用いることが可能である。その際、基板に形成された電極には、光を反射するアルミニウム等の材料を用いることもできる。 When the ultraviolet irradiation type liquid crystal display element of the present embodiment is a transmissive type, it is preferable to use a transparent substrate as described above. However, in the case of a reflective type, if only one side of the substrate is used, a silicon wafer or the like can be used. An opaque substrate can also be used. At that time, a material such as aluminum that reflects light may be used for the electrode formed on the substrate.
 本実施形態の液晶表示素子に用いる液晶は、光重合性化合物を添加していない液晶であってもよく、または、光重合性化合物を添加した液晶を用いても構わない。本実施形態の液晶表示素子は、いずれの液晶を用いても、その応答速度を速めることができる。 The liquid crystal used in the liquid crystal display element of this embodiment may be a liquid crystal to which no photopolymerizable compound is added, or a liquid crystal to which a photopolymerizable compound is added. The liquid crystal display element of this embodiment can increase the response speed regardless of which liquid crystal is used.
 液晶層に電界を印加しながら紫外線を照射する工程は、例えば基板上に設置されている電極間に電圧をかけることで液晶層に電界を印加し、この電界を保持したまま紫外線を照射する方法が挙げられる。ここで、電極間に印加する電圧は、例えば、55Vp-p~30Vp-pであるが、好ましくは、5Vp-p~20Vp-pである。照射する紫外線の照射量は、1J~60Jであるが、好ましくは、40J以下であり、紫外線照射量が少ないほうが、液晶表示素子の信頼性低下を抑制でき、かつ紫外線の照射時間を減らせることで製造上のタクトが上がるので生産性の向上に好適である。 The step of irradiating ultraviolet rays while applying an electric field to the liquid crystal layer is, for example, a method in which an electric field is applied to the liquid crystal layer by applying a voltage between electrodes installed on the substrate, and the ultraviolet rays are irradiated while maintaining the electric field. Is mentioned. Here, the voltage applied between the electrodes is, for example, 55 V pp to 30 V pp , and preferably 5 V pp to 20 V pp . The irradiation amount of ultraviolet rays to be irradiated is 1 J to 60 J, but preferably 40 J or less, and the smaller the ultraviolet irradiation amount, the lowering of the reliability of the liquid crystal display element can be suppressed, and the ultraviolet irradiation time can be reduced. This increases the manufacturing tact and is suitable for improving productivity.
 以上のように、本発明の第4の実施形態である紫外線照射方式の液晶表示素子は、上述した第1の実施形態である液晶表示素子と同様、紫外線照射を受けても性能劣化を低減するのに有効な液晶配向膜を用いて構成される。そして、第4の実施形態である液晶表示素子の場合、その製造時に、液晶層が形成された、画素の形成領域に紫外線を照射して、液晶における所望の応答特性を実現している。したがって、本発明の第4の実施形態である液晶表示素子は、液晶層の形成された、画素の形成領域に紫外線を照射する工程を経て作成されて、性能劣化の低減が抑制された液晶表示素子となる。 As described above, the ultraviolet irradiation type liquid crystal display element according to the fourth embodiment of the present invention reduces the performance deterioration even when the ultraviolet irradiation is performed, similarly to the liquid crystal display element according to the first embodiment described above. It is configured using a liquid crystal alignment film effective for the above. And in the case of the liquid crystal display element which is 4th Embodiment, the desired response characteristic in a liquid crystal is implement | achieved by irradiating the formation area of a pixel in which the liquid crystal layer was formed at the time of the manufacture. Therefore, the liquid crystal display element according to the fourth embodiment of the present invention is produced through a process of irradiating the pixel formation region in which the liquid crystal layer is formed, with ultraviolet rays, and the reduction in performance deterioration is suppressed. It becomes an element.
 以下に実施例を挙げ、本発明をさらに詳しく説明する。尚、本発明はこれらに限定して解釈されるものではない。
 実施例および比較例で使用する主な化合物と略号と構造は以下のとおりである。
<構造式>
The following examples further illustrate the present invention. The present invention is not construed as being limited to these.
Main compounds, abbreviations and structures used in Examples and Comparative Examples are as follows.
<Structural formula>
Figure JPOXMLDOC01-appb-C000035

Figure JPOXMLDOC01-appb-I000036
Figure JPOXMLDOC01-appb-C000035

Figure JPOXMLDOC01-appb-I000036
<テトラカルボン酸誘導体>
CBDA:1,2,3,4-シクロブタンテトラカルボン酸二無水物
<Tetracarboxylic acid derivative>
CBDA: 1,2,3,4-cyclobutanetetracarboxylic dianhydride
<ジアミン化合物>
DDM:4,4’-ジアミノジフェニルメタン
ターフェニル:4,4’-ジアミノパラターフェニル
ADA:ビス(パラーアミノフェニル)-9,10-アントラセン
p-PDA:1,4-フェニレンジアミン
<溶媒>
NMP:N-メチル-2-ピロリドン
BC:ブチルセロソルブ
<Diamine compound>
DDM: 4,4′-diaminodiphenylmethane terphenyl: 4,4′-diaminoparaterphenyl ADA: bis (paraaminophenyl) -9,10-anthracene p-PDA: 1,4-phenylenediamine <solvent>
NMP: N-methyl-2-pyrrolidone BC: Butyl cellosolve
 次に、本実施例および比較例で行った分子量測定の方法について説明する。
[分子量測定]
 合成例におけるポリイミドの分子量は、センシュー科学社製 常温ゲル浸透クロマトグラフィー(GPC)装置(SSC-7200)、Shodex社製カラム(KD-803、KD-805)を用い以下のようにして測定した。
 カラム温度:50℃
 溶離液:N,N’-ジメチルホルムアミド(添加剤として、臭化リチウム-水和物(LiBr・HO)が30mmol/L、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml/L)
 流速:1.0ml/分
 検量線作成用標準サンプル:東ソー社製 TSK 標準ポリエチレンオキサイド(分子量約9000000、150000、100000、30000)、および、ポリマーラボラトリー社製 ポリエチレングリコール(分子量 約12000、4000、1000)。
Next, the method of molecular weight measurement performed in the present example and the comparative example will be described.
[Molecular weight measurement]
The molecular weight of the polyimide in the synthesis example was measured as follows using a room temperature gel permeation chromatography (GPC) apparatus (SSC-7200) manufactured by Senshu Science Co., Ltd. and a column (KD-803, KD-805) manufactured by Shodex.
Column temperature: 50 ° C
Eluent: N, N′-dimethylformamide (as additives, lithium bromide-hydrate (LiBr · H 2 O) is 30 mmol / L, phosphoric acid / anhydrous crystal (o-phosphoric acid) is 30 mmol / L, Tetrahydrofuran (THF) 10ml / L)
Flow rate: 1.0 ml / min Standard sample for preparing a calibration curve: TSK standard polyethylene oxide (molecular weight: about 9000000, 150,000, 100,000, 30000) manufactured by Tosoh Corporation and polyethylene glycol (molecular weight: about 12000, 4000, 1000) manufactured by Polymer Laboratories .
<実施例1>
 CBDA(7.4g、38mmol)、ADA(14.4g、40mmol)をNMP(87.5g)中で混合し、室温で10時間反応させポリアミック酸溶液を得た。このポリアミック酸溶液にNMP(182.3g)、BC(72.9g)を加え6質量%に希釈し、室温で5時間攪拌することにより液晶配向剤(A1)を得た。液晶配向剤(A1)に含有されるポリアミック酸の数平均分子量は8000、重量平均分子量は19500であった。
<Example 1>
CBDA (7.4 g, 38 mmol) and ADA (14.4 g, 40 mmol) were mixed in NMP (87.5 g) and reacted at room temperature for 10 hours to obtain a polyamic acid solution. NMP (182.3g) and BC (72.9g) were added to this polyamic acid solution, diluted to 6% by mass, and stirred at room temperature for 5 hours to obtain a liquid crystal aligning agent (A1). The number average molecular weight of the polyamic acid contained in the liquid crystal aligning agent (A1) was 8000, and the weight average molecular weight was 19,500.
<実施例2>
 CBDA(4.5g、23mmol)、ADA(4.3g、12mmol)、p-PDA(1.3g、12mmol)をNMP(90.8g)中で混合し、室温で10時間反応させポリアミック酸溶液を得た。このポリアミック酸溶液にNMP(33.6g)、BC(33.6g)を加え6質量%に希釈し、室温で5時間攪拌することにより液晶配向剤(A2)を得た。液晶配向剤(A2)に含有されるポリアミック酸の数平均分子量は9600、重量平均分子量は21000であった。
<Example 2>
CBDA (4.5 g, 23 mmol), ADA (4.3 g, 12 mmol), p-PDA (1.3 g, 12 mmol) were mixed in NMP (90.8 g) and reacted at room temperature for 10 hours to obtain a polyamic acid solution. Obtained. NMP (33.6 g) and BC (33.6 g) were added to this polyamic acid solution, diluted to 6% by mass, and stirred at room temperature for 5 hours to obtain a liquid crystal aligning agent (A2). The number average molecular weight of the polyamic acid contained in the liquid crystal aligning agent (A2) was 9600, and the weight average molecular weight was 21,000.
<比較例1>
 CBDA(7.5g、38.4mmol)、DDM(7.9g、40mmol)をNMP(87.6g)中で混合し、室温で10時間反応させポリアミック酸溶液を得た。このポリアミック酸溶液にNMP(103.1g)、BC(51.5g)を加え6質量%に希釈し、室温で5時間攪拌することにより液晶配向剤(B1)を得た。液晶配向剤(B1)に含有されるポリアミック酸の数平均分子量は9800、重量平均分子量は19000であった。
<Comparative Example 1>
CBDA (7.5 g, 38.4 mmol) and DDM (7.9 g, 40 mmol) were mixed in NMP (87.6 g) and reacted at room temperature for 10 hours to obtain a polyamic acid solution. NMP (103.1 g) and BC (51.5 g) were added to this polyamic acid solution, diluted to 6% by mass, and stirred at room temperature for 5 hours to obtain a liquid crystal aligning agent (B1). The number average molecular weight of the polyamic acid contained in the liquid crystal aligning agent (B1) was 9800, and the weight average molecular weight was 19000.
<比較例2>
 CBDA(7.5g、38mmol)、ターフェニル(10.4g、40mmol)をNMP(160.8g)中で混合し、室温で10時間反応させポリアミック酸溶液を得た。このポリアミック酸溶液にNMP(59.6g)、BC(59.6g)を加え6質量%に希釈し、室温で5時間攪拌することにより液晶配向剤(B2)を得た。液晶配向剤(B2)に含有されるポリアミック酸の数平均分子量は8000、重量平均分子量は18000であった。
<Comparative example 2>
CBDA (7.5 g, 38 mmol) and terphenyl (10.4 g, 40 mmol) were mixed in NMP (160.8 g) and reacted at room temperature for 10 hours to obtain a polyamic acid solution. NMP (59.6 g) and BC (59.6 g) were added to this polyamic acid solution, diluted to 6% by mass, and stirred at room temperature for 5 hours to obtain a liquid crystal aligning agent (B2). The number average molecular weight of the polyamic acid contained in the liquid crystal aligning agent (B2) was 8000, and the weight average molecular weight was 18000.
<比較例3>
 CBDA(5.5g、29mmol)、p-PDA(3.2g、30mmol)をNMP(101.6g)中で混合し、室温で10時間反応させポリアミック酸溶液を得た。このポリアミック酸溶液にNMP(7.4g)、BC(29.4g)を加え6質量%に希釈し、室温で5時間攪拌することにより液晶配向剤(B3)を得た。液晶配向剤(B3)に含有されるポリアミック酸の数平均分子量は10000、重量平均分子量は22000であった。
<Comparative Example 3>
CBDA (5.5 g, 29 mmol) and p-PDA (3.2 g, 30 mmol) were mixed in NMP (101.6 g) and reacted at room temperature for 10 hours to obtain a polyamic acid solution. NMP (7.4 g) and BC (29.4 g) were added to this polyamic acid solution, diluted to 6% by mass, and stirred at room temperature for 5 hours to obtain a liquid crystal aligning agent (B3). The number average molecular weight of the polyamic acid contained in the liquid crystal aligning agent (B3) was 10,000, and the weight average molecular weight was 22,000.
<実施例3>
[電圧保持率(VHR)測定による耐光性の評価]
 実施例1で得られた液晶配向剤(A1)を1.0μmのフィルターで濾過した後、透明電極付きガラス基板上にスピンコートし、80℃のホットプレート上で5分間乾燥後、250℃で20分間焼成して膜厚100nmの塗膜を得た。このポリイミド膜をレーヨン布でラビング(ロール径120mm、回転数1000rpm、移動速度30mm/sec、押し込み量0.2mm)した後、純水中にて1分間超音波照射を行い、80℃で10分間乾燥した。このような液晶配向膜付き基板を2枚用意し、一方の基板の液晶配向膜面に6μmのスペーサを設置した後、2枚の基板のラビング方向が直交するようにして組み合わせ、液晶注入口を残して周囲をシールし、セルギャップが6μmの空セルを作製した。このセルに液晶(MLC-2003(C080)、メルク・ジャパン社製)を常温で真空注入し、注入口を封止して、液晶が90度ツイスト配向した液晶セルを得た。
<Example 3>
[Evaluation of light resistance by measuring voltage holding ratio (VHR)]
The liquid crystal aligning agent (A1) obtained in Example 1 was filtered through a 1.0 μm filter, spin-coated on a glass substrate with a transparent electrode, dried on an 80 ° C. hot plate for 5 minutes, and then at 250 ° C. A film having a thickness of 100 nm was obtained by baking for 20 minutes. After rubbing this polyimide film with a rayon cloth (roll diameter 120 mm, rotation speed 1000 rpm, moving speed 30 mm / sec, pushing amount 0.2 mm), ultrasonic irradiation was performed in pure water for 1 minute, and 80 ° C. for 10 minutes. Dried. Two substrates with such a liquid crystal alignment film are prepared, a spacer of 6 μm is installed on the surface of the liquid crystal alignment film of one substrate, and then combined so that the rubbing directions of the two substrates are orthogonal to each other. The periphery was sealed and the empty cell having a cell gap of 6 μm was produced. Liquid crystal (MLC-2003 (C080), manufactured by Merck Japan Co., Ltd.) was vacuum-injected into this cell at room temperature, and the inlet was sealed to obtain a liquid crystal cell in which the liquid crystal was twisted by 90 degrees.
 そして、VHRを評価した。
 VHRの評価は、得られた液晶セルに、23℃の温度下で4Vの電圧を60μs間印加し、16.67ms後の電圧を測定し、電圧がどのくらい保持できているかを電圧保持率として計算した。また、90℃の温度下でも同様の測定をした。なお、電圧保持率の測定には、東陽テクニカ社製の電圧保持率測定装置VHR-1を使用した。評価結果を表1に示す。
 次に、液晶セルに365nmの紫外線を1J照射し、紫外線照射後のVHRを同様に評価した。評価結果を表1に示す。
And VHR was evaluated.
VHR is evaluated by applying a voltage of 4V to the obtained liquid crystal cell at a temperature of 23 ° C. for 60 μs, measuring the voltage after 16.67 ms, and calculating how much the voltage can be held as the voltage holding ratio. did. The same measurement was performed at a temperature of 90 ° C. The voltage holding ratio was measured using a voltage holding ratio measuring device VHR-1 manufactured by Toyo Technica. The evaluation results are shown in Table 1.
Next, the liquid crystal cell was irradiated with 1 J of 365 nm ultraviolet light, and VHR after the ultraviolet irradiation was similarly evaluated. The evaluation results are shown in Table 1.
 比較例1で得られた液晶配向剤(B1)および比較例2で得られた液晶配向剤(B2)を用い、上述の液晶配向剤(A1)を用いた場合と同様に液晶セルの製造を行い、同様の方法で、紫外線照射前後のVHRを評価した。評価結果を表1にまとめて示す。 Using the liquid crystal aligning agent (B1) obtained in Comparative Example 1 and the liquid crystal aligning agent (B2) obtained in Comparative Example 2, a liquid crystal cell was produced in the same manner as in the case of using the liquid crystal aligning agent (A1). The VHR before and after UV irradiation was evaluated by the same method. The evaluation results are summarized in Table 1.
<実施例4>
[光配向性の評価]
 実施例1で得られた液晶配向剤(A1)を1.0μmのフィルターで濾過した後、透明電極付きガラス基板にスピンコートし、80℃のホットプレート上で5分間乾燥させた後、220℃の熱風循環式オーブンで30分間焼成を行い、膜厚100nmの塗膜を形成させた。この塗膜面を偏光板を介して254nmの紫外線を500mJ/cm照射し、液晶配向膜付き基板を得た。
<Example 4>
[Evaluation of photo-alignment]
The liquid crystal aligning agent (A1) obtained in Example 1 was filtered through a 1.0 μm filter, spin-coated on a glass substrate with a transparent electrode, dried on an 80 ° C. hot plate for 5 minutes, and then 220 ° C. Was baked for 30 minutes in a hot air circulation oven to form a coating film having a thickness of 100 nm. The coating surface was irradiated with 254 nm ultraviolet light through a polarizing plate at 500 mJ / cm 2 to obtain a substrate with a liquid crystal alignment film.
 液晶セルの電気特性を評価するために、上記液晶配向膜付き基板を2枚用意し、その1枚の液晶配向膜面上に4μmのスペーサを散布した。その上からシール材を印刷し、もう1枚の基板を液晶配向膜面が向き合い、その光配向方向が直交するようにして貼り合わせた後、シール材を硬化させて空セルを作製した。この空セルに真空注入法によって、液晶MLC-2003((C080)、メルク・ジャパン社製)を常温で真空注入し、注入口を封止し、液晶が90度ツイスト配向した光配向処理による液晶セルを得た。この液晶セルを105℃10分熱処理して、その後室温まで徐冷してセルの観察を行ったところ、配向性は良好であった。評価結果は、表2にまとめて示した。 In order to evaluate the electrical characteristics of the liquid crystal cell, two substrates with the above-mentioned liquid crystal alignment film were prepared, and 4 μm spacers were dispersed on the surface of the one liquid crystal alignment film. A sealing material was printed thereon, and another substrate was bonded so that the liquid crystal alignment film faces each other and the photo-alignment directions were orthogonal to each other, and then the sealing material was cured to produce an empty cell. Liquid crystal MLC-2003 ((C080), manufactured by Merck Japan Co., Ltd.) was vacuum-injected into this empty cell by vacuum injection at room temperature, the injection port was sealed, and the liquid crystal was subjected to photo-alignment treatment in which the liquid crystal was twisted 90 degrees. I got a cell. When this liquid crystal cell was heat-treated at 105 ° C. for 10 minutes and then slowly cooled to room temperature, the cell was observed. The orientation was good. The evaluation results are summarized in Table 2.
 実施例2で得られた液晶配向剤(A2)を用い、上述の液晶配向剤(A1)を用いた場合と同様に液晶セルの製造を行い、同様の方法で、配向性の評価を行った。評価結果を表2にまとめて示す。 Using the liquid crystal aligning agent (A2) obtained in Example 2, a liquid crystal cell was produced in the same manner as in the case of using the liquid crystal aligning agent (A1) described above, and the alignment was evaluated in the same manner. . The evaluation results are summarized in Table 2.
 比較例3で得られた液晶配向剤(B3)を用い、上述の液晶配向剤(A1)を用いた場合と同様に液晶セルの製造を行い、同様の方法で、配向性の評価を行った。評価結果を表2にまとめて示す。 Using the liquid crystal aligning agent (B3) obtained in Comparative Example 3, a liquid crystal cell was produced in the same manner as in the case of using the liquid crystal aligning agent (A1) described above, and the alignment was evaluated in the same manner. . The evaluation results are summarized in Table 2.
<実施例5>
[残留DCの測定]
 実施例4で製造した液晶セルをそれぞれ用い、東陽テクニカ社製の6254型液晶物性評価装置による誘電吸収法で、残留DCの測定を行った。測定は、60℃の環境下で行い、30分間セルに10Vの直流電圧を印加した後1秒間放電させ、その20分間後の残留DC量が500mV以下のものを「良好」、500mV以上のものを「不良」とした。評価結果は表2にまとめて示すが、実施例4で製造した液晶セルのうち、実施例1および実施例2の液晶配向剤(A1、A2)を用いて製造された液晶セルにおいて、評価結果は「良好」であった。
<Example 5>
[Measurement of residual DC]
Using each of the liquid crystal cells produced in Example 4, residual DC was measured by a dielectric absorption method using a 6254 type liquid crystal physical property evaluation apparatus manufactured by Toyo Technica. The measurement is performed in an environment of 60 ° C., a DC voltage of 10 V is applied to the cell for 30 minutes and then discharged for 1 second, and after 20 minutes the residual DC amount is 500 mV or less “good”, 500 mV or more Was defined as “bad”. The evaluation results are summarized in Table 2. Among the liquid crystal cells manufactured in Example 4, the evaluation results were obtained in the liquid crystal cells manufactured using the liquid crystal aligning agents (A1, A2) of Example 1 and Example 2. Was “good”.
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000038
 以上より、本実施例の液晶表示素子は、紫外線照射を受けても電荷保持率が良好であり、紫外線照射による性能劣化が低減されていることが分かった。
 また、本実施例の液晶表示素子は、光配向処理によって液晶の良好な配向を実現するとともに、優れた残留DC特性を備え、紫外線照射による性能劣化が低減されていることが分かった。
From the above, it was found that the liquid crystal display element of this example had a good charge retention even when irradiated with ultraviolet rays, and the performance deterioration due to ultraviolet irradiation was reduced.
In addition, it was found that the liquid crystal display element of this example achieved good alignment of the liquid crystal by photo-alignment treatment, had excellent residual DC characteristics, and reduced performance deterioration due to ultraviolet irradiation.
1  液晶表示素子
2  TFT基板
3  CF基板
4  液晶層
5、15  基板
6  画素電極
7  CF層
8  保護層
9  着色層
10  ブラックマトリクス
11  共通電極
12  液晶配向膜
16  シール材
17  偏光板
DESCRIPTION OF SYMBOLS 1 Liquid crystal display element 2 TFT substrate 3 CF substrate 4 Liquid crystal layers 5 and 15 Substrate 6 Pixel electrode 7 CF layer 8 Protective layer 9 Colored layer 10 Black matrix 11 Common electrode 12 Liquid crystal alignment film 16 Sealing material 17 Polarizing plate
 本発明の液晶表示素子は、画素の形成領域に紫外線を照射する工程を経て作成されて、性能劣化の低減が抑制された液晶表示素子である。したがって、優れた表示特性と生産性を両立することができる。したがって、大型の液晶TVや、高精細な画像を表示するスマートフォン等の携帯用情報端末用の液晶表示素子の製造に好適に用いることができる。 The liquid crystal display element of the present invention is a liquid crystal display element that is produced through a process of irradiating a pixel formation region with ultraviolet rays, and the reduction in performance deterioration is suppressed. Accordingly, both excellent display characteristics and productivity can be achieved. Therefore, it can be suitably used for manufacturing a liquid crystal display element for a portable information terminal such as a large-sized liquid crystal TV or a smartphone displaying a high-definition image.

Claims (11)

  1.  画素の形成領域に、下記式(1)で表される化合物を用いて形成されたポリイミド前駆体およびそれをイミド化して得られるポリイミドから選ばれる少なくとも1つの重合体を含む液晶配向膜を有し、
     前記画素の形成領域に紫外線を照射して構成されたものであることを特徴とする液晶表示素子。
    Figure JPOXMLDOC01-appb-C000001
    In a pixel formation region, a liquid crystal alignment film including at least one polymer selected from a polyimide precursor formed using a compound represented by the following formula (1) and a polyimide obtained by imidizing the polyimide precursor is provided. ,
    A liquid crystal display element, wherein the pixel formation region is configured by irradiating with ultraviolet rays.
    Figure JPOXMLDOC01-appb-C000001
  2.  前記液晶配向膜は、上記式(1)で表される化合物と、下記式(AM)で表される化合物(上記式(1)で表される化合物は除く。)とを用いて形成されたポリイミド前駆体およびそれをイミド化して得られるポリイミドから選ばれる少なくとも1つの重合体を含むことを特徴とする請求項1に記載の液晶表示素子。
    Figure JPOXMLDOC01-appb-C000002
    (式(AM)中、Yは、2価の有機基であり、2種類以上が混在していてもよい。また、式(AM)中、RおよびRは水素原子または1価の有機基を表す。)
    The liquid crystal alignment film was formed using a compound represented by the above formula (1) and a compound represented by the following formula (AM) (excluding a compound represented by the above formula (1)). The liquid crystal display element according to claim 1, comprising at least one polymer selected from a polyimide precursor and a polyimide obtained by imidization thereof.
    Figure JPOXMLDOC01-appb-C000002
    (In Formula (AM), Y 1 is a divalent organic group, and two or more types may be present. In Formula (AM), R 1 and R 2 are a hydrogen atom or a monovalent group. Represents an organic group.)
  3.  前記液晶配向膜は、下記式(CB1)~(CB5)で表される化合物のうちの少なくとも1種を用いて形成されたポリイミド前駆体およびそれをイミド化して得られるポリイミドから選ばれる少なくとも1つの重合体を含むことを特徴とする請求項1または2に記載の液晶表示素子。
    Figure JPOXMLDOC01-appb-C000003
    (式(CB1)~(CB5)中、Zは炭素数4~13の4価の有機基であり、かつ炭素数4~6の非芳香族環状炭化水素基を含有する。式(CB4)および(CB5)中、Rは炭素数1~5、好ましくは炭素数1~2のアルキル基を表す。)
    The liquid crystal alignment film includes at least one selected from a polyimide precursor formed using at least one of compounds represented by the following formulas (CB1) to (CB5) and a polyimide obtained by imidizing the polyimide precursor. The liquid crystal display element according to claim 1, comprising a polymer.
    Figure JPOXMLDOC01-appb-C000003
    (In the formulas (CB1) to (CB5), Z 1 is a tetravalent organic group having 4 to 13 carbon atoms and contains a non-aromatic cyclic hydrocarbon group having 4 to 6 carbon atoms. Formula (CB4) In (CB5), R 3 represents an alkyl group having 1 to 5 carbon atoms, preferably 1 to 2 carbon atoms.)
  4.  画素の形成領域に、液晶層と液晶配向膜とを有する液晶表示素子の製造方法であって、
     前記画素の形成領域に、下記式(1)で表される化合物を用いて形成されたポリイミド前駆体およびそれをイミド化して得られるポリイミドから選ばれる少なくとも1つの重合体を含む前記液晶配向膜を形成する液晶配向膜形成工程と、
     前記液晶配向膜形成工程の後に、前記画素の形成領域に紫外線を照射する光照射工程とを有することを特徴とする液晶表示素子の製造方法。
    Figure JPOXMLDOC01-appb-C000004
     
    A method for manufacturing a liquid crystal display element having a liquid crystal layer and a liquid crystal alignment film in a pixel formation region,
    The liquid crystal alignment film including at least one polymer selected from a polyimide precursor formed using a compound represented by the following formula (1) and a polyimide obtained by imidizing the polyimide in a formation region of the pixel: A liquid crystal alignment film forming step to be formed;
    A method of manufacturing a liquid crystal display element, comprising: a light irradiation step of irradiating the formation region of the pixel with ultraviolet rays after the liquid crystal alignment film formation step.
    Figure JPOXMLDOC01-appb-C000004
  5.  前記液晶配向膜は、上記式(1)で表される化合物と、下記式(AM)で表される化合物(上記式(1)で表される化合物は除く。)とを用いて形成されたポリイミド前駆体およびそれをイミド化して得られるポリイミドから選ばれる少なくとも1つの重合体を含むことを特徴とする請求項4に記載の液晶表示素子の製造方法。
    Figure JPOXMLDOC01-appb-C000005
    (式(AM)中、Yは、2価の有機基であり、2種類以上が混在していてもよい。また、式(AM)中、RおよびRは水素原子または1価の有機基を表す。)
    The liquid crystal alignment film was formed using a compound represented by the above formula (1) and a compound represented by the following formula (AM) (excluding a compound represented by the above formula (1)). The method for producing a liquid crystal display element according to claim 4, comprising at least one polymer selected from a polyimide precursor and a polyimide obtained by imidizing the polyimide precursor.
    Figure JPOXMLDOC01-appb-C000005
    (In Formula (AM), Y 1 is a divalent organic group, and two or more types may be present. In Formula (AM), R 1 and R 2 are a hydrogen atom or a monovalent group. Represents an organic group.)
  6.  前記液晶配向膜は、下記式(CB1)~(CB5)で表される化合物のうちの少なくとも1種を用いて形成されたポリイミド前駆体およびそれをイミド化して得られるポリイミドから選ばれる少なくとも1つの重合体を含むことを特徴とする請求項4または5に記載の液晶表示素子の製造方法。
    Figure JPOXMLDOC01-appb-C000006
    (式(CB1)~(CB5)中、Zは炭素数4~13の4価の有機基であり、かつ炭素数4~6の非芳香族環状炭化水素基を含有する。式(CB4)および(CB5)中、Rは炭素数1~5、好ましくは炭素数1~2のアルキル基を表す。)
    The liquid crystal alignment film includes at least one selected from a polyimide precursor formed using at least one of compounds represented by the following formulas (CB1) to (CB5) and a polyimide obtained by imidizing the polyimide precursor. The method for producing a liquid crystal display element according to claim 4, comprising a polymer.
    Figure JPOXMLDOC01-appb-C000006
    (In the formulas (CB1) to (CB5), Z 1 is a tetravalent organic group having 4 to 13 carbon atoms and contains a non-aromatic cyclic hydrocarbon group having 4 to 6 carbon atoms. Formula (CB4) In (CB5), R 3 represents an alkyl group having 1 to 5 carbon atoms, preferably 1 to 2 carbon atoms.)
  7.  前記液晶配向膜形成工程の後に、前記画素の形成領域の周囲にシール材を形成するシール形成工程を有し、
     前記光照射工程は、前記シール形成工程の前記シール材を硬化する工程であることを特徴とする請求項4~6のいずれか1項に記載の液晶表示素子の製造方法。
    After the liquid crystal alignment film forming step, a seal forming step of forming a sealing material around the pixel forming region,
    7. The method of manufacturing a liquid crystal display element according to claim 4, wherein the light irradiation step is a step of curing the sealing material in the seal forming step.
  8.  前記光照射工程は、前記液晶配向膜を配向処理する工程であることを特徴とする請求項4~6のいずれか1項に記載の液晶表示素子の製造方法。 7. The method for manufacturing a liquid crystal display element according to claim 4, wherein the light irradiation step is a step of aligning the liquid crystal alignment film.
  9.  前記液晶配向膜形成工程の後に、前記画素の形成領域に前記液晶層を形成する工程を有し、
     前記光照射工程は、前記液晶層の液晶を駆動しながら前記画素の形成領域に紫外線を照射する工程であることを特徴とする請求項4~6のいずれか1項に記載の液晶表示素子の製造方法。
    After the liquid crystal alignment film formation step, the step of forming the liquid crystal layer in the pixel formation region,
    7. The liquid crystal display element according to claim 4, wherein the light irradiation step is a step of irradiating the formation region of the pixel with ultraviolet light while driving the liquid crystal of the liquid crystal layer. Production method.
  10.  前記液晶層は、液晶と光重合性化合物とを含んで構成され、
     前記光照射工程は、前記画素の形成領域にある前記液晶層の前記光重合性化合物を重合させる工程であることを特徴とする請求項4~6のいずれか1項に記載の液晶表示素子の製造方法。
    The liquid crystal layer includes a liquid crystal and a photopolymerizable compound,
    7. The liquid crystal display element according to claim 4, wherein the light irradiation step is a step of polymerizing the photopolymerizable compound in the liquid crystal layer in the pixel formation region. Production method.
  11.  前記液晶配向膜形成工程の後に、前記画素の形成領域に前記液晶層を形成する工程を有し、
     前記光照射工程は、前記液晶層の液晶を駆動しながら前記画素の形成領域に紫外線を照射する工程であることを特徴とする請求項10に記載の液晶表示素子の製造方法。
    After the liquid crystal alignment film formation step, the step of forming the liquid crystal layer in the pixel formation region,
    The method of manufacturing a liquid crystal display element according to claim 10, wherein the light irradiation step is a step of irradiating the formation region of the pixel with ultraviolet rays while driving the liquid crystal of the liquid crystal layer.
PCT/JP2013/058303 2012-03-30 2013-03-22 Liquid crystal display element and manufacturing method therefor WO2013146589A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020147030401A KR20140139115A (en) 2012-03-30 2013-03-22 Liquid crystal display element and manufacturing method therefor
CN201380028338.1A CN104335112A (en) 2012-03-30 2013-03-22 Liquid crystal display element and manufacturing method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-081162 2012-03-30
JP2012081162 2012-03-30

Publications (1)

Publication Number Publication Date
WO2013146589A1 true WO2013146589A1 (en) 2013-10-03

Family

ID=49259844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/058303 WO2013146589A1 (en) 2012-03-30 2013-03-22 Liquid crystal display element and manufacturing method therefor

Country Status (5)

Country Link
JP (1) JPWO2013146589A1 (en)
KR (1) KR20140139115A (en)
CN (1) CN104335112A (en)
TW (1) TWI499616B (en)
WO (1) WO2013146589A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106292046A (en) 2016-08-19 2017-01-04 京东方科技集团股份有限公司 A kind of display floater and manufacture method
US11656503B2 (en) * 2017-07-14 2023-05-23 Sharp Kabushiki Kaisha Sealing material composition, liquid crystal cell and scanning antenna
CN111072556A (en) * 2019-12-31 2020-04-28 阜阳欣奕华材料科技有限公司 Diamine compound, preparation method and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06337425A (en) * 1993-05-28 1994-12-06 Hitachi Chem Co Ltd Composition for liquid crystal oriented film, manufacture of liquid crystal oriented film, liquid crystal oriented film, liquid crystal sandwiching substrate and liquid crystal display element
JPH08122790A (en) * 1994-10-20 1996-05-17 Japan Synthetic Rubber Co Ltd Liquid crystal orienting agent

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW461980B (en) * 1997-04-30 2001-11-01 Nissan Chemical Ind Ltd Liquid crystal orientation processing agent
CN100537638C (en) * 2004-04-28 2009-09-09 日产化学工业株式会社 Liquid-crystal aligning agent, liquid-crystal alignment film comprising the same, and liquid-crystal element
JP5382351B2 (en) * 2007-12-28 2014-01-08 日産化学工業株式会社 Liquid crystal aligning agent and liquid crystal display element using the same
JP5333454B2 (en) * 2008-11-06 2013-11-06 日産化学工業株式会社 Liquid crystal alignment treatment agent

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06337425A (en) * 1993-05-28 1994-12-06 Hitachi Chem Co Ltd Composition for liquid crystal oriented film, manufacture of liquid crystal oriented film, liquid crystal oriented film, liquid crystal sandwiching substrate and liquid crystal display element
JPH08122790A (en) * 1994-10-20 1996-05-17 Japan Synthetic Rubber Co Ltd Liquid crystal orienting agent

Also Published As

Publication number Publication date
TW201345951A (en) 2013-11-16
JPWO2013146589A1 (en) 2015-12-14
KR20140139115A (en) 2014-12-04
CN104335112A (en) 2015-02-04
TWI499616B (en) 2015-09-11

Similar Documents

Publication Publication Date Title
JP5257548B2 (en) Liquid crystal display element and liquid crystal aligning agent
WO2013125595A1 (en) Composition, liquid crystal aligninig agent, liquid crystal alighment film, and liquid crystal display element
JP5930239B2 (en) Composition, liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element
WO2015152174A1 (en) Liquid crystal alignment agent containing polyamic acid ester-polyamic acid compolymer, and liquid crystal alignment film using same
JP6331028B2 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP6052171B2 (en) Composition, liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element
JP6079627B2 (en) Composition, liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element
WO2014133042A1 (en) Polymer, liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element
WO2014092126A1 (en) Composition, liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element
WO2014119682A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
US10761375B2 (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
WO2015141598A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP5930238B2 (en) Composition, liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element
WO2013065755A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2013146589A1 (en) Liquid crystal display element and manufacturing method therefor
JP6361887B6 (en) Method for producing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element
JP7001063B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
US11112654B2 (en) Liquid crystal display device
WO2019163904A1 (en) Method for producing liquid crystal display element
WO2018216664A1 (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
WO2016125871A1 (en) Liquid crystal orientation agent, liquid crystal oriented film, and liquid crystal display element
WO2016140302A1 (en) Polyimide precursor, and liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element having precursor
JP6776897B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
TW201823303A (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element having good afterimage characteristics without producing bright dots even if used for negative liquid crystals

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13768813

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014507822

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147030401

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13768813

Country of ref document: EP

Kind code of ref document: A1