WO2013146462A1 - 内燃機関の排気ガス浄化装置 - Google Patents

内燃機関の排気ガス浄化装置 Download PDF

Info

Publication number
WO2013146462A1
WO2013146462A1 PCT/JP2013/057800 JP2013057800W WO2013146462A1 WO 2013146462 A1 WO2013146462 A1 WO 2013146462A1 JP 2013057800 W JP2013057800 W JP 2013057800W WO 2013146462 A1 WO2013146462 A1 WO 2013146462A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
stage
exhaust
nox purification
purification catalyst
Prior art date
Application number
PCT/JP2013/057800
Other languages
English (en)
French (fr)
Inventor
長岡 大治
輝男 中田
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Publication of WO2013146462A1 publication Critical patent/WO2013146462A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/02Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate silencers in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0093Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are of the same type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/02Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/36Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an exhaust flap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2260/00Exhaust treating devices having provisions not otherwise provided for
    • F01N2260/02Exhaust treating devices having provisions not otherwise provided for for cooling the device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2260/00Exhaust treating devices having provisions not otherwise provided for
    • F01N2260/02Exhaust treating devices having provisions not otherwise provided for for cooling the device
    • F01N2260/022Exhaust treating devices having provisions not otherwise provided for for cooling the device using air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2410/00By-passing, at least partially, exhaust from inlet to outlet of apparatus, to atmosphere or to other device
    • F01N2410/02By-passing, at least partially, exhaust from inlet to outlet of apparatus, to atmosphere or to other device in case of high temperature, e.g. overheating of catalytic reactor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/06Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a temperature sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/18Ammonia
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0416Methods of control or diagnosing using the state of a sensor, e.g. of an exhaust gas sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • F01N2900/1404Exhaust gas temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]

Definitions

  • the present invention relates to an exhaust gas purification device for an internal combustion engine.
  • an exhaust gas purification device including a NOx purification catalyst (DeNOx catalyst) that purifies NOx in exhaust gas is known.
  • a NOx purification catalyst for example, a NOx selective reduction catalyst (SCR) and a NOx storage reduction catalyst (LNT) are known.
  • the NOx selective reduction catalyst promotes a reduction reaction between NH3 and NOx supplied as a reducing agent, thereby reducing and purifying NOx in the exhaust gas. Further, the NOx occlusion reduction catalyst occludes NOx in the exhaust gas when the exhaust gas is in a lean atmosphere, and releases NOx when the exhaust gas is in a rich atmosphere, and the NOx is discharged into CO, HC in the exhaust gas. , H2 or the like for reduction and purification.
  • Patent Document 1 discloses an exhaust gas purifying device including a NOx selective reduction catalyst.
  • Patent Document 2 discloses an exhaust gas purification device provided with a NOx storage reduction catalyst.
  • the specifications of the exhaust gas purification device and the exhaust gas aftertreatment unit used in the exhaust gas purification device are generally the engine exhaust amount and exhaust gas mode conditions (cold / hot start, exhaust gas amount, exhaust gas Temperature).
  • an object of the present invention is to provide an exhaust gas purification device that can function a NOx purification catalyst in the entire operation region of an internal combustion engine.
  • an exhaust gas purification apparatus for an internal combustion engine is provided in an exhaust passage of the internal combustion engine, and a front-stage NOx purification catalyst that purifies NOx in the exhaust gas, and the front-stage NOx purification.
  • a rear-stage NOx purification catalyst that is disposed in the exhaust passage downstream of the catalyst and has a higher NOx purification rate characteristic than the front-stage NOx purification catalyst in a high temperature region; and the front-stage NOx purification catalyst and the rear-stage NOx purification catalyst
  • a control unit that operates the exhaust gas cooling device when a detection value of the detection unit exceeds a threshold value.
  • the exhaust gas cooling device is disposed in the exhaust passage between the front-stage NOx purification catalyst and the rear-stage NOx purification catalyst, is connected to the exhaust passage, and a radiator that dissipates heat of exhaust gas passing therethrough, A bypass passage communicating upstream and downstream of the radiator, and an opening / closing means disposed in the bypass passage for opening and closing the bypass passage, wherein the control means has a detection value of the exhaust temperature detection means as the threshold value. When the value exceeds the value, the opening / closing means may be closed to operate the exhaust gas cooling device.
  • the exhaust gas cooling device further includes a cooling fan attached to the radiator, and the control means operates the exhaust gas cooling device when a detection value of the exhaust temperature detection means exceeds the threshold value.
  • the opening / closing means may be closed and the cooling fan may be driven.
  • the exhaust gas cooling device is connected to the outer canning case that surrounds the canning case that houses the latter-stage NOx purification catalyst, and is connected to the outer canning case for cooling the space between the canning case and the outer canning case.
  • a cooling fan for supplying air, and the control means drives the cooling fan to operate the exhaust gas cooling device when the detected value of the exhaust temperature detecting means exceeds the threshold value. It may be what you do.
  • the exhaust gas cooling device is provided through the post-stage NOx purification catalyst, is connected to the introduction pipe through which cooling air can flow, and is connected to the introduction pipe to supply the cooling air to the introduction pipe
  • the control means drives the cooling fan to operate the exhaust gas cooling device when the detection value of the exhaust gas temperature detection means exceeds the threshold value. Also good.
  • FIG. 1 is a schematic view of an exhaust gas purification device for an internal combustion engine according to a first embodiment of the present invention. It is the schematic of the exhaust-gas purification apparatus of the internal combustion engine which concerns on 2nd embodiment of this invention. It is the schematic of the exhaust-gas purification apparatus of the internal combustion engine which concerns on 3rd embodiment of this invention. It is a figure which shows the temperature window of NOx purification.
  • FIG. 1 shows an exhaust gas purification apparatus 1 according to the first embodiment.
  • an intake pipe 12 is connected to an intake manifold 11 of a diesel engine 10 that is an internal combustion engine, and an exhaust pipe 14 is connected to an exhaust manifold 13.
  • the intake manifold 11 and the intake pipe 12 constitute an intake passage of the diesel engine 10
  • the exhaust manifold 13 and the exhaust pipe 14 constitute an exhaust passage of the diesel engine 10.
  • the diesel engine 10 shown in FIG. 1 shall be mounted in a vehicle.
  • an intake air amount sensor 15, a compressor 16a of a turbocharger 16, an intercooler 17, and an intake throttle valve 18 are arranged in order from the intake upstream side.
  • a turbine 16 b of the turbocharger 16 an exhaust brake valve 19, the exhaust gas purification device 1, and a silencer (not shown) are disposed in order from the exhaust upstream side.
  • the intake manifold 11 and the exhaust manifold 13 are connected by an EGR pipe 20, and an EGR cooler 21 and an EGR valve 22 are disposed in the EGR pipe 20.
  • An exhaust pipe 14 of the diesel engine 10 includes, in order from the upstream side, a front-stage oxidation catalyst (hereinafter referred to as a front-stage DOC) 23 that purifies CO (carbon monoxide) and HC (hydrocarbon) in the exhaust gas, A diesel particulate filter (hereinafter referred to as DPF) 24 that collects PM (particulate matter) of the exhaust gas, and a front-stage NOx purification catalyst (hereinafter referred to as front-stage DeNOx catalyst) 25 that purifies NOx (nitrogen oxide) in the exhaust gas.
  • a front-stage oxidation catalyst hereinafter referred to as a front-stage DOC 23 that purifies CO (carbon monoxide) and HC (hydrocarbon) in the exhaust gas
  • a diesel particulate filter (hereinafter referred to as DPF) 24 that collects PM (particulate matter) of the exhaust gas
  • a front-stage NOx purification catalyst hereinafter referred to as front-stage DeNOx catalyst
  • a post-stage NOx purification catalyst (hereinafter referred to as a post-stage DeNOx catalyst) 26 for purifying NOx in the exhaust gas, and a post-stage oxidation catalyst (hereinafter referred to as a post-stage DOC) for detoxifying excess reducing agent flowing out from the post-stage DeNOx catalyst 26 27 are arranged.
  • the front-stage DOC 23 and the DPF 24 are accommodated in a first canning case 28 disposed in the exhaust pipe 14, and the front-stage DeNOx catalyst 25 is disposed in the exhaust pipe 14 downstream of the first canning case 28.
  • the rear stage DeNOx catalyst 26 and the rear stage DOC 27 are disposed in a third canning case 30 disposed in the exhaust pipe 14 on the downstream side of the second canning case 29.
  • a NOx selective reduction catalyst for reducing and purifying NOx in exhaust gas using urea as a reducing agent, or NOx in exhaust gas using fuel as a reducing agent.
  • SCR NOx selective reduction catalyst
  • LNT NOx occlusion reduction catalyst
  • injectors 31 and 32 for injecting the reducing agent into the exhaust pipe 14 are disposed upstream of the front-stage DeNOx catalyst 25 and the rear-stage DeNOx catalyst 26, respectively.
  • injectors 31 and 32 urea injectors that inject urea as a reducing agent into the exhaust pipe 14 are used.
  • NH3 slip DOC which detoxifies NH3 (ammonia) is used as back
  • the catalyst coat uses a catalyst specialized for low temperature (for example, a copper zeolite type) for the SCR in the former stage, and uses a catalyst specialized for high temperature (for example, an iron zeolite type) for the SCR in the subsequent stage.
  • a catalyst specialized for low temperature for example, a copper zeolite type
  • a catalyst specialized for high temperature for example, an iron zeolite type
  • the temperature window for NOx purification can be expanded (see FIG. 4). That is, the front-stage SCR (front-stage DeNOx catalyst 25) has higher NOx purification rate characteristics than the rear-stage SCR (rear-stage DeNOx catalyst 26) in the low-temperature region, and the rear-stage SCR (rear-stage DeNOx catalyst 26) is in the high-temperature region.
  • the NOx purification rate characteristic is higher than that of the SCR of the preceding stage (the preceding DeNOx catalyst 25).
  • the DOC, DPF, urea injector, front SCR, radiator, urea injector, rear SCR, NH3 slip DOC which will be described later, are arranged in order from the upstream side.
  • an injector 31 that injects the reducing agent into the exhaust pipe 14 may be disposed only upstream of the front-stage DeNOx catalyst 25. However, it is desirable in terms of control that the injectors 31 and 32 are disposed upstream of the front-stage DeNOx catalyst 25 and the rear-stage DeNOx catalyst 26, respectively.
  • the injectors 31 and 32 fuel injectors that inject fuel as a reducing agent into the exhaust pipe 14 are used. Further, as the rear-stage DOC 27, an HC slip DOC that renders HC harmless is used.
  • the catalyst storage material is a low temperature catalyst coat (eg, barium) for the front LNT, and a high temperature catalyst coat (eg, potassium) for the LNT.
  • a low temperature catalyst coat eg, barium
  • a high temperature catalyst coat eg, potassium
  • the temperature window for NOx purification can be expanded by selecting the material of the adsorbent of the catalyst having different catalyst activation temperature ranges in the front and rear LNTs (see FIG. 4). That is, the front-stage LNT (the front-stage DeNOx catalyst 25) has a higher NOx purification rate characteristic than the rear-stage LNT (the rear-stage DeNOx catalyst 26) in the low-temperature region, and the rear-stage LNT (the rear-stage DeNOx catalyst 26) is in the high-temperature region.
  • the NOx purification rate characteristic is higher than that of the front stage LNT (the front stage DeNOx catalyst 25).
  • a DOC, a DPF, a fuel injector, a front stage LNT, a radiator, a fuel injector, a rear stage LNT, and an HC slip DOC are arranged in order from the upstream side.
  • the rear stage DeNOx catalyst 26 can be integrated with a silencer having a general structure when it is difficult to secure a space. Since the post-stage DeNOx catalyst 26 also has a certain level of silencing effect, it is conceivable to shorten the internal structure of the silencer having a general structure and accommodate the post-stage DeNOx catalyst 26 in the silencer.
  • an exhaust gas cooling device 40 for cooling the exhaust gas is provided in the exhaust pipe 14 between the front-stage DeNOx catalyst 25 and the rear-stage DeNOx catalyst 26.
  • the exhaust gas cooling device 40 is disposed in the exhaust pipe 14 between the front-stage DeNOx catalyst 25 and the rear-stage DeNOx catalyst 26, and a heat release chamber (heat radiator) 41 that radiates heat of the exhaust gas that passes through the exhaust pipe cooler 40.
  • a bypass passage 42 that communicates the upper and lower sides of the heat radiation chamber 41 to bypass the heat radiation chamber 41, and a switching valve (opening / closing means) 43 that is disposed in the bypass passage 42 and opens and closes the bypass passage 42.
  • a heat radiation chamber 41 for heat radiation is disposed in the middle of the exhaust pipe 14 to lower the temperature of the exhaust gas passing through the heat radiation chamber 41.
  • the capacity of the heat radiation chamber 41 is desirably equal to or larger than the displacement of the diesel engine 10 so that the exhaust gas stays for a certain period of time for cooling.
  • the position of the heat radiation chamber 41 it is desirable to install in a place where the traveling wind hits.
  • the heat radiation fins 44 are provided on the outer surface of the heat radiation chamber 41 in order to promote the heat radiation of the exhaust gas. It is desirable to determine the shape of the radiating fin 44 in consideration of the air flow.
  • a forced air cooling fan (cooling fan) 45 is attached to the heat radiation chamber 41 in order to further promote the heat radiation of the exhaust gas.
  • the temperature range of the exhaust gas that is desired to be reduced by heat dissipation is about 100 ° C. With such a temperature range, if the shape of the exhaust pipe 14 extending from the front-stage DeNOx catalyst 25 to the rear-stage DeNOx catalyst 26 and the shapes of the heat-dissipating chamber 41 and the heat-dissipating fins 44 are devised, the exhaust gas can be radiated actively. It seems that the temperature of exhaust gas can be reduced only by heat radiation.
  • a heat storage body heat storage material
  • water engine cooling water, etc.
  • air etc.
  • a heat exchanger As a heat exchanger using a heat accumulator, a heat accumulator using heat absorption by a dehydration reaction between magnesium oxide and water is known.
  • the forced air cooling fan 45 is not necessarily provided in the heat radiating body.
  • the waste heat stored in the heat storage body is generated during cold start. It can be used for early increases in engine coolant temperature and catalyst temperature.
  • an exhaust temperature sensor (exhaust temperature detection means) that detects the temperature of the exhaust gas in the exhaust pipe 14 upstream of the upstream DeNOx catalyst 25 and the downstream DeNOx catalyst 26, respectively.
  • 33 and 34 are arranged. These exhaust temperature sensors 33 and 34 are connected to an electronic control unit (hereinafter referred to as ECU) 35 as control means, and the ECU 35 uses injectors 31 and 32 based on the detected values of the exhaust temperature sensors 33 and 34 and the like.
  • the injection of the reducing agent, the operation of the exhaust gas cooling device 40 (the switching valve 43, the forced air cooling fan 45), and the like are controlled.
  • the front exhaust temperature sensor 33 is attached to the second canning case 29 and the rear exhaust temperature sensor 34 is attached to the third canning case 30.
  • the sensor 33 may be attached to the first canning case 28.
  • the ECU 35 determines which of the front-stage DeNOx catalyst 25 and the rear-stage DeNOx catalyst 26 is used to purify NOx in the exhaust gas in accordance with the detection value of the front-stage exhaust temperature sensor 33. Switch. That is, in any of the SCR and LNT catalysts, the ECU 35 switches the injection of the upstream and downstream injectors 31 and 32 using the temperature of the exhaust gas in the exhaust pipe 14 as a threshold value.
  • the ECU 35 detects the detected value of a NOx concentration sensor (not shown) that detects the NOx concentration in the exhaust gas in the exhaust pipe 14 in addition to the detected value of the exhaust gas temperature sensor 33 in the previous stage, and the operation of the diesel engine 10. Depending on the state (deceleration state, etc.), it may be determined whether to perform NOx purification of the exhaust gas.
  • the NOx purification in the exhaust gas at an exhaust gas temperature (for example, 180 ° C. to 450 ° C.) in a predetermined low / medium temperature region (conventional exhaust gas mode region) is handled by the pre-stage DeNOx catalyst 25.
  • the ECU 35 executes the injection of the reducing agent by the injector 31 at the front stage.
  • the NOx in the exhaust gas is purified by the pre-stage DeNOx catalyst 25.
  • NOx purification in the exhaust gas at an exhaust gas temperature (for example, 450 ° C. to 600 ° C.) in a predetermined high temperature region (off-cycle region) is performed after the exhaust gas temperature is reduced by the heat radiation chamber 41 and then the subsequent stage DeNOx.
  • the catalyst 26 is used. Therefore, when the detected value of the exhaust gas temperature sensor 33 at the front stage is the exhaust gas temperature in the high temperature region, the ECU 35 executes the injection of the reducing agent by the injector 32 at the rear stage. Thereby, NOx in the exhaust gas is purified by the post-stage DeNOx catalyst 26.
  • the ECU 35 switches between the non-operation and the operation of the exhaust gas cooling device 40 according to the detection value of the exhaust gas temperature sensor 34 at the subsequent stage. That is, the ECU 35 switches between the non-operation and the operation of the exhaust gas cooling device 40 with the temperature of the exhaust gas flowing into the rear stage DeNOx catalyst 26 as a threshold value.
  • the exhaust gas cooling device 40 When the temperature of the exhaust gas flowing into the downstream DeNOx catalyst 26 is low, the exhaust gas cooling device 40 is deactivated. Therefore, when the detection value of the exhaust gas temperature sensor 34 at the rear stage is less than a predetermined threshold (start threshold) (for example, 500 ° C.) (low temperature), the ECU 35 opens the switching valve 43 and the forced cooling fan 45. Is not driven, and exhaust gas is allowed to flow to the subsequent DeNOx catalyst 26 without passing through the heat radiation chamber 41. That is, when the switching valve 43 is opened, most of the exhaust gas flows through the bypass passage 42 having a low flow path resistance and is directly introduced into the downstream DeNOx catalyst 26. In this case, the ECU 35 executes the injection of the reducing agent using only the front injector 31 and does not use the rear injector 32.
  • start threshold for example, 500 ° C.
  • the exhaust gas cooling device 40 when the temperature of the exhaust gas flowing into the latter stage DeNOx catalyst 26 is high, the exhaust gas cooling device 40 is put into an operating state. Therefore, when the detection value of the exhaust gas temperature sensor 34 at the subsequent stage exceeds the above threshold value (at a high temperature), the ECU 35 closes the switching valve 43 and drives the forced air cooling fan 45 to send the exhaust gas to the heat radiation chamber 41. To the downstream DeNOx catalyst 26. That is, when the switching valve 43 is closed, the exhaust gas flows through the exhaust pipe 14 between the front-stage DeNOx catalyst 25 and the rear-stage DeNOx catalyst 26, passes through the heat radiation chamber 41, and is then introduced into the rear-stage DeNOx catalyst 26.
  • downstream DeNOx catalyst 26 is caused to function by reducing the temperature of the exhaust gas by the heat radiation chamber 41 (about 100 ° C.) even at the high temperature that can deviate from the catalyst activation temperature range of the downstream DeNOx catalyst 26. It is possible.
  • the ECU 35 switches the switching valve 43 from closed to open, and the forced air cooling fan 45. Stop driving. Note that the ECU 35 may switch the switching valve 43 from closed to open and stop the driving of the forced air cooling fan 45 according to the detection value of the exhaust gas temperature sensor 33 in the previous stage.
  • end threshold value for example, 350 ° C.
  • the total capacity of the front-stage DeNOx catalyst 25 and the rear-stage DeNOx catalyst 26 may be approximately the same as the capacity of a general DeNOx catalyst, it is the same as the case where the general DeNOx catalyst is divided into two parts and arranged separately. The up is slight.
  • the occupied space of the exhaust gas purification device 1 is only increased by the amount of the heat radiation chamber 41.
  • the rear stage DeNOx catalyst 26 can be integrated with a silencer having a general structure when it is difficult to secure a space.
  • the DeNOx catalyst (the front-stage DeNOx catalyst 25 and the rear-stage DeNOx catalyst 26) can be caused to function in the entire operation region of the diesel engine 10, and the off-cycle regulation is performed. It becomes possible to cope with.
  • FIG. 2 shows an exhaust gas purification device 2 according to the second embodiment.
  • symbol is attached
  • an exhaust gas cooling device 50 that cools the exhaust gas is provided in the latter-stage DeNOx catalyst 26.
  • the exhaust gas cooling device 50 is connected to the outer canning case 51 that surrounds the third canning case (canning case) 30 of the latter stage DeNOx catalyst 26, and is connected to the outer canning case 51.
  • a forced air cooling fan (cooling fan) 52 for supplying forced air cooling air to the space between them. That is, in the exhaust gas purifying apparatus 2 according to the second embodiment, the third canning case 30 of the rear stage DeNOx catalyst 26 is configured as a double structure with the outer canning case 51, and exhaust gas is indirectly passed through the rear stage DeNOx catalyst 26. It has a cooling structure.
  • the radiating fins 53 are provided on the outer surface of the third canning case 30.
  • the shape of the radiating fin 53 is desirably determined in consideration of the air flow.
  • the ECU 35 When the detection value of the exhaust gas temperature sensor 34 at the rear stage is less than a predetermined threshold (start threshold) (for example, 500 ° C.) (at a low temperature), the ECU 35 does not operate the forced air cooling fan 52 in a non-driven state. On the other hand, when the detected value of the exhaust gas temperature sensor 34 at the rear stage exceeds the threshold value (at a high temperature), the ECU 35 operates with the forced air cooling fan 52 in the driving state, and the forced air cooling air is supplied to the third stage of the downstream DeNOx catalyst 26.
  • the exhaust gas is indirectly cooled by supplying the space between the canning case 30 and the outer canning case 51.
  • the DeNOx catalyst (the first-stage DeNOx catalyst 25 and the second-stage DeNOx catalyst 26) can be caused to function in the entire operation region of the diesel engine 10 as in the first embodiment. Thus, it becomes possible to comply with off-cycle regulations.
  • FIG. 3 shows an exhaust gas purification device 3 according to the third embodiment.
  • symbol is attached
  • an exhaust gas cooling device 60 that cools the exhaust gas is provided in the post-stage DeNOx catalyst 26.
  • the exhaust gas cooling device 60 is provided through the downstream DeNOx catalyst 26 and the downstream DOC 27, and is connected to a secondary air introduction pipe (introduction pipe) 61 through which forced air cooling air can flow and a secondary air introduction pipe 61.
  • a forced air cooling fan (cooling fan) 62 is connected to supply air for forced air cooling to the secondary air introduction pipe 61.
  • the downstream DeNOx catalyst 26 passes through the secondary air introduction pipe 61 that introduces forced air-cooling air into the downstream DeNOx catalyst 26 (metal honeycomb carrier) with good heat dissipation.
  • the exhaust gas is indirectly cooled by using the (metal honeycomb carrier) itself as a radiating fin or a radiating plate.
  • the ECU 35 When the detection value of the exhaust temperature sensor 34 at the rear stage is less than a predetermined threshold (start threshold) (for example, 500 ° C.) (at low temperature), the ECU 35 does not operate the forced air cooling fan 62 in the non-driven state. On the other hand, when the detected value of the exhaust gas temperature sensor 34 at the rear stage exceeds the threshold value (at a high temperature), the ECU 35 operates with the forced air cooling fan 62 in the drive state, and the forced air cooling air is supplied to the rear stage DeNOx catalyst 26 and the rear stage DOC27. The exhaust gas is indirectly cooled by supplying the secondary air introduction pipe 61 penetrating the gas.
  • start threshold for example, 500 ° C.
  • the DeNOx catalyst (the first-stage DeNOx catalyst 25 and the second-stage DeNOx catalyst 26) can be caused to function in the entire operation region of the diesel engine 10 as in the first embodiment. Thus, it becomes possible to comply with off-cycle regulations.
  • the internal combustion engine 10 is not limited to a diesel engine, and the internal combustion engine 10 may be a gasoline engine or the like.
  • the internal combustion engine 10 is a four-cylinder engine, but the internal combustion engine 10 may be a single-cylinder engine, a six-cylinder engine, or the like.
  • Exhaust gas purification device 2 Exhaust gas purification device 3 Exhaust gas purification device 10 Diesel engine (internal combustion engine) 14 Exhaust pipe (exhaust passage) 25 First-stage DeNOx catalyst (first-stage NOx purification catalyst) 26 Second-stage DeNOx catalyst (second-stage NOx purification catalyst) 30 Third canning case (canning case) 34 Exhaust temperature sensor (exhaust temperature detection means) 35 ECU (control means) 40 Exhaust gas cooling device 41 Heat radiation chamber (heat radiator) 42 Bypass passage 43 Switching valve (opening / closing means) 45 Forced air cooling fan (cooling fan) 50 Exhaust gas cooling device 51 Outer canning case 52 Forced air cooling fan (cooling fan) 60 Exhaust gas cooling device 61 Secondary air introduction pipe (introduction pipe) 62 Forced air cooling fan (cooling fan)

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

内燃機関の全運転領域でNOx浄化触媒を機能させることが可能となる排気ガス浄化装置を提供する。内燃機関(10)の排気ガス浄化装置(1)は、内燃機関(10)の排気通路(14)に配設され、排気ガス中のNOxを浄化する前段NOx浄化触媒(25)と、前段NOx浄化触媒(25)よりも下流側の排気通路(14)に配設され、高温領域において前段NOx浄化触媒(25)よりも高いNOx浄化率特性を有する後段NOx浄化触媒(26)と、前段NOx浄化触媒(25)と後段NOx浄化触媒(26)との間の排気通路(14)に設けられ、排気ガスを冷却する排気ガス冷却装置(40)と、後段NOx浄化触媒(26)に流入する排気ガスの温度を検出する排気温度検出手段(34)と、排気温度検出手段(34)の検出値が閾値を超えた場合に、排気ガス冷却装置(40)を作動させる制御手段(35)とを備える。

Description

内燃機関の排気ガス浄化装置
 本発明は、内燃機関の排気ガス浄化装置に関する。
 内燃機関(エンジン)の排気ガス浄化装置としては、排気ガス中のNOxを浄化するNOx浄化触媒(DeNOx触媒)を備えた排気ガス浄化装置が知られている。このNOx浄化触媒としては、例えば、NOx選択還元触媒(SCR)や、NOx吸蔵還元触媒(LNT)が知られている。
 NOx選択還元触媒は、還元剤として供給されるNH3とNOxとの還元反応を促進することで、排気ガス中のNOxを還元浄化するものである。また、NOx吸蔵還元触媒は、排気ガスがリーン雰囲気であるときに排気ガス中のNOxを吸蔵し、排気ガスがリッチ雰囲気であるときにNOxを放出して、NOxを排気ガス中のCO、HC、H2等で還元浄化するものである。
 例えば、特許文献1には、NOx選択還元触媒を備えた排気ガス浄化装置が開示されている。また、特許文献2には、NOx吸蔵還元触媒を備えた排気ガス浄化装置が開示されている。
特開2008-255905号公報 特開2007-289844号公報
 大型車両の排出ガス規制において、排気ガスモード(JE05モード)以外の排気ガス値を担保するオフサイクル規制の導入が検討されている。現状は一般的に、排気ガス浄化装置及びその排気ガス浄化装置に使用する排気ガス後処理ユニットの仕様は、エンジンの排気量や排気ガスモードの条件(コールド/ホットスタート、排気ガス量、排気ガス温度等)で決められている。
 オフサイクル規制が開始されると、内燃機関の全運転領域で、排気ガス値を担保する必要が出てくるので、排気ガス浄化装置及びその排気ガス浄化装置に使用する排気ガス後処理ユニットの仕様もそれに合わせて見直す必要がある。
 そこで、本発明の目的は、内燃機関の全運転領域でNOx浄化触媒を機能させることが可能となる排気ガス浄化装置を提供することにある。
 上述の目的を達成するために、本発明に係る内燃機関の排気ガス浄化装置は、内燃機関の排気通路に配設され、排気ガス中のNOxを浄化する前段NOx浄化触媒と、前記前段NOx浄化触媒よりも下流側の前記排気通路に配設され、高温領域において前記前段NOx浄化触媒よりも高いNOx浄化率特性を有する後段NOx浄化触媒と、前記前段NOx浄化触媒と前記後段NOx浄化触媒との間の前記排気通路又は前記後段NOx浄化触媒に設けられ、排気ガスを冷却する排気ガス冷却装置と、前記後段NOx浄化触媒に流入する排気ガスの温度を検出する排気温度検出手段と、前記排気温度検出手段の検出値が閾値を超えた場合に、前記排気ガス冷却装置を作動させる制御手段とを備えるものである。
 前記排気ガス冷却装置は、前記前段NOx浄化触媒と前記後段NOx浄化触媒との間の前記排気通路に配設され、通過する排気ガスの熱を放熱する放熱体と、前記排気通路に接続され、前記放熱体の上下流を連通するバイパス通路と、前記バイパス通路に配設され、前記バイパス通路を開閉する開閉手段とを有し、前記制御手段は、前記排気温度検出手段の検出値が前記閾値を超えた場合は、前記排気ガス冷却装置を作動させるべく、前記開閉手段を閉とするものであっても良い。
 前記排気ガス冷却装置は、前記放熱体に装着された冷却ファンをさらに有し、前記制御手段は、前記排気温度検出手段の検出値が前記閾値を超えた場合は、前記排気ガス冷却装置を作動させるべく、前記開閉手段を閉とすると共に、前記冷却ファンを駆動するものであっても良い。
 前記排気ガス冷却装置は、前記後段NOx浄化触媒を収容するキャニングケースを囲繞する外側キャニングケースと、前記外側キャニングケースに接続され、前記キャニングケースと前記外側キャニングケースとの間の空間に冷却用の空気を供給するための冷却ファンとを有し、前記制御手段は、前記排気温度検出手段の検出値が前記閾値を超えた場合は、前記排気ガス冷却装置を作動させるべく、前記冷却ファンを駆動するものであっても良い。
 前記排気ガス冷却装置は、前記後段NOx浄化触媒を貫通させて設けられ、冷却用の空気が流通可能な導入パイプと、前記導入パイプに接続され、前記導入パイプに冷却用の空気を供給するための冷却ファンとを有し、前記制御手段は、前記排気温度検出手段の検出値が前記閾値を超えた場合は、前記排気ガス冷却装置を作動させるべく、前記冷却ファンを駆動するものであっても良い。
 本発明によれば、内燃機関の全運転領域でNOx浄化触媒を機能させることが可能となる排気ガス浄化装置を提供することができるという優れた効果を奏する。
本発明の第一実施形態に係る内燃機関の排気ガス浄化装置の概略図である。 本発明の第二実施形態に係る内燃機関の排気ガス浄化装置の概略図である。 本発明の第三実施形態に係る内燃機関の排気ガス浄化装置の概略図である。 NOx浄化の温度ウインドウを示す図である。
 以下、本発明の好適な実施形態を添付図面に基づいて詳述する。
 [第一実施形態]
 図1に第一実施形態に係る排気ガス浄化装置1を示す。
 図1に示すように、内燃機関であるディーゼルエンジン10の吸気マニホールド11には吸気管12が接続され、排気マニホールド13には排気管14が接続されている。吸気マニホールド11及び吸気管12がディーゼルエンジン10の吸気通路を構成し、排気マニホールド13及び排気管14がディーゼルエンジン10の排気通路を構成する。なお、図1に示すディーゼルエンジン10は、車両に搭載されるものであるとする。
 ディーゼルエンジン10の吸気管12には、吸気上流側から順に、吸入空気量センサ15と、ターボチャージャ16のコンプレッサ16aと、インタークーラ17と、吸気スロットルバルブ18とが配設されている。一方、ディーゼルエンジン10の排気管14には、排気上流側から順に、ターボチャージャ16のタービン16bと、排気ブレーキバルブ19と、排気ガス浄化装置1と、図示しないサイレンサとが配設されている。さらに、吸気マニホールド11と排気マニホールド13とはEGR管20で接続され、EGR管20には、EGRクーラ21とEGRバルブ22とが配設されている。
 次に、排気ガス浄化装置1を構成する排気ガス後処理ユニットについて詳述する。
 ディーゼルエンジン10の排気管14には、上流側から順に、排気ガス中のCO(一酸化炭素)、HC(炭化水素)を浄化する前段酸化触媒(以下、前段DOCという)23と、排気ガス中のPM(粒子状物質)を捕集するディーゼルパティキュレートフィルタ(以下、DPFという)24と、排気ガス中のNOx(窒素酸化物)を浄化する前段NOx浄化触媒(以下、前段DeNOx触媒という)25と、排気ガス中のNOxを浄化する後段NOx浄化触媒(以下、後段DeNOx触媒という)26と、後段DeNOx触媒26から流出した余剰の還元剤を無害化する後段酸化触媒(以下、後段DOCという)27とが配設されている。
 前段DOC23及びDPF24は、排気管14に配置された第一キャニングケース28内に収容され、前段DeNOx触媒25は、第一キャニングケース28よりも下流側の排気管14に配置された第二キャニングケース29内に配置され、後段DeNOx触媒26及び後段DOC27は、第二キャニングケース29よりも下流側の排気管14に配置された第三キャニングケース30内に配置されている。
 前段DeNOx触媒25及び後段DeNOx触媒26としては、尿素を還元剤として排気ガス中のNOxを還元して浄化するNOx選択還元触媒(以下、SCRという)や、燃料を還元剤として排気ガス中のNOxを還元して浄化するNOx吸蔵還元触媒(以下、LNTという)等を使用することができる。
 使用する前段DeNOx触媒25及び後段DeNOx触媒26がSCRの場合は、前段DeNOx触媒25及び後段DeNOx触媒26の上流にそれぞれ、還元剤を排気管14内に噴射するインジェクタ31、32を配設する。この場合、インジェクタ31、32としては、還元剤としての尿素を排気管14内に噴射する尿素インジェクタを使用する。また、後段DOC27としては、NH3(アンモニア)を無害化するNH3スリップDOCを使用する。触媒コートは、前段のSCRには低温に特化した触媒(例えば、銅ゼオライト系)を使用し、後段のSCRには高温に特化した触媒(例えば、鉄ゼオライト系)を使用する。このように前段及び後段のSCRで触媒活性温度域が異なる触媒コートを選択することで、NOx浄化の温度ウインドウを拡大することができる(図4参照)。つまり、前段のSCR(前段DeNOx触媒25)は低温領域において後段のSCR(後段DeNOx触媒26)よりも高いNOx浄化率特性を有するものであり、後段のSCR(後段DeNOx触媒26)は高温領域において前段のSCR(前段DeNOx触媒25)よりも高いNOx浄化率特性を有するものである。
 SCRを用いる場合の排気ガス浄化装置1のレイアウトとしては、上流側から順に、DOC、DPF、尿素インジェクタ、前段SCR、後述する放熱体、尿素インジェクタ、後段SCR、NH3スリップDOCが配置されることとなる。前段及び後段のSCRの総容量は、例えば、一般的なSCRを一個配置する場合と容量は換えずに、前段:後段=1:1~1:2程度の割合で設定することが考えられる。
 使用する前段DeNOx触媒25及び後段DeNOx触媒26がLNTの場合は、前段DeNOx触媒25の上流のみに、還元剤を排気管14内に噴射するインジェクタ31を配設しても良い。しかしながら、前段DeNOx触媒25及び後段DeNOx触媒26の上流にそれぞれインジェクタ31、32を配設した方が、制御上は望ましい。使用する前段DeNOx触媒25及び後段DeNOx触媒26がLNTの場合、インジェクタ31、32としては、還元剤としての燃料を排気管14内に噴射する燃料インジェクタを使用する。また、後段DOC27としては、HCを無害化するHCスリップDOCを使用する。触媒の吸蔵材の材質は、前段のLNTには低温に特化した触媒コート(例えば、バリウム系)を使用し、後段のLNTには高温に特化した触媒コート(例えば、カリウム系)を使用する。このように前段及び後段のLNTで触媒活性温度域が異なる触媒の吸着材の材質を選択することで、NOx浄化の温度ウインドウを拡大することができる(図4参照)。つまり、前段のLNT(前段DeNOx触媒25)は低温領域において後段のLNT(後段DeNOx触媒26)よりも高いNOx浄化率特性を有するものであり、後段のLNT(後段DeNOx触媒26)は高温領域において前段のLNT(前段DeNOx触媒25)よりも高いNOx浄化率特性を有するものである。
 LNTを用いる場合の排気ガス浄化装置1のレイアウトとしては、上流側から順に、DOC、DPF、燃料インジェクタ、前段LNT、後述する放熱体、燃料インジェクタ、後段LNT、HCスリップDOCが配置されることとなる。前段及び後段のLNTの総容量は、例えば、一般的なLNTを一個配置する場合と容量は換えずに、前段:後段=1:1~2:1程度の割合で設定することが考えられる。
 後段DeNOx触媒26については、スペースの確保が難しい場合は、一般的な構造のサイレンサと一体化することも可能である。後段DeNOx触媒26もある程度の消音効果があるため、一般的な構造のサイレンサの内部構造体を短縮して、そのサイレンサに後段DeNOx触媒26を収容することが考えられる。
 第一実施形態に係る排気ガス浄化装置1では、前段DeNOx触媒25と後段DeNOx触媒26との間の排気管14に、排気ガスを冷却する排気ガス冷却装置40を設けている。この排気ガス冷却装置40は、前段DeNOx触媒25と後段DeNOx触媒26との間の排気管14に配設され、通過する排気ガスの熱を放熱する放熱チャンバ(放熱体)41と、排気管14に接続され、放熱チャンバ41の上下流を連通して放熱チャンバ41をバイパスするバイパス通路42と、バイパス通路42に配設され、バイパス通路42を開閉する切替バルブ(開閉手段)43とを有する。
 排気管14の途中に放熱用の放熱チャンバ41を配設して、放熱チャンバ41を通過する排気ガスの温度を下げる。放熱チャンバ41の容量は、冷却のために排気ガスがある程度の時間留まるようにディーゼルエンジン10の排気量と同等程度以上の容量であることが望ましい。放熱チャンバ41の位置は、走行風が当たる箇所への設置が望ましい。また、排気ガスの放熱を促進するために、放熱フィン44を放熱チャンバ41の外側面に設けている。放熱フィン44の形状は、空気流れを考慮して決定することが望ましい。さらに、排気ガスの放熱をさらに促進するために、強制空冷ファン(冷却ファン)45を放熱チャンバ41に装着している。なお、放熱によって低減させたい排気ガスの温度幅としては、100℃程度である。この程度の温度幅であれば、前段DeNOx触媒25から後段DeNOx触媒26に至る排気管14の形状や、放熱チャンバ41及び放熱フィン44の形状を工夫して排気ガスの放熱を積極的に行えば、放熱のみで排気ガスの温度を低減可能な範囲と思われる。
 なお、後段DeNOx触媒26に導入される排気ガスの温度低減のために、図1に示すような放熱チャンバ41に代えて、蓄熱体(蓄熱材)、水(エンジン冷却水等)や空気等による熱交換器を放熱体として排気管14の途中に配設しても良い。蓄熱体による熱交換器としては、酸化マグネシウムと水との脱水反応による吸熱を利用した蓄熱機等が既知である。また、放熱チャンバ41や熱交換器等の放熱体自体によって排気ガスの温度を十分に低減可能な場合には、強制空冷ファン45は放熱体に必ずしも設ける必要はない。さらに、後段DeNOx触媒26に導入される排気ガスの温度を下げるために蓄熱体による熱交換器を使用する場合、補助的な動作として、蓄熱体に蓄えられた廃熱は、冷間始動時のエンジン冷却水温や触媒温度の早期上昇のために利用することができる。
 また、第一実施形態に係る排気ガス浄化装置1では、前段DeNOx触媒25及び後段DeNOx触媒26の上流にそれぞれ、排気管14内の排気ガスの温度を検出する排気温度センサ(排気温度検出手段)33、34を配設している。これら排気温度センサ33、34は制御手段としての電子制御ユニット(以下、ECUという)35に接続されており、ECU35は、排気温度センサ33、34等の検出値に基づいて、インジェクタ31、32による還元剤の噴射や、排気ガス冷却装置40(切替バルブ43、強制空冷ファン45)の作動等を制御するようになっている。第一実施形態に係る排気ガス浄化装置1では、前段の排気温度センサ33を第二キャニングケース29に取り付け、後段の排気温度センサ34を第三キャニングケース30に取り付けているが、前段の排気温度センサ33は第一キャニングケース28に取り付けても良い。
 次に、第一実施形態に係る排気ガス浄化装置1の動作(排気ガスのNOx浄化)を説明する。
 ECU35は、前段の排気温度センサ33の検出値に応じて、前段DeNOx触媒25と、後段DeNOx触媒26と、のどちらの排気ガス後処理ユニットを使用して排気ガス中のNOxを浄化するかを切り替える。つまり、SCR及びLNTの何れの触媒でも、排気管14内の排気ガスの温度を閾値として、ECU35は前段及び後段のインジェクタ31、32の噴射を切り替える。なお、ECU35は、前段の排気温度センサ33の検出値に加えて、排気管14内の排気ガス中のNOx濃度を検出するNOx濃度センサ(図示せず)の検出値や、ディーゼルエンジン10の運転状態(減速状態等)に応じて、排気ガスのNOx浄化を行うか否かを決定するものであっても良い。
 所定の低中温領域(従来の排気ガスモード領域)の排気ガス温度(例えば、180℃~450℃)での排気ガス中のNOx浄化は、前段DeNOx触媒25で対応する。そのため、前段の排気温度センサ33の検出値が上記低中温領域の排気ガス温度である場合は、ECU35は前段のインジェクタ31により還元剤の噴射を実行する。これにより、前段DeNOx触媒25により排気ガス中のNOxが浄化される。
 一方、所定の高温領域(オフサイクル領域)の排気ガス温度(例えば、450℃~600℃)での排気ガス中のNOx浄化は、放熱チャンバ41により排気ガス温度を低減させた後で、後段DeNOx触媒26で対応する。そのため、前段の排気温度センサ33の検出値が上記高温領域の排気ガス温度である場合は、ECU35は後段のインジェクタ32により還元剤の噴射を実行する。これにより、後段DeNOx触媒26により排気ガス中のNOxが浄化される。
 また、ECU35は、後段の排気温度センサ34の検出値に応じて、排気ガス冷却装置40の非作動と作動とを切り替える。つまり、後段DeNOx触媒26に流入する排気ガスの温度を閾値として、ECU35は排気ガス冷却装置40の非作動と作動とを切り替える。
 後段DeNOx触媒26に流入する排気ガス温度が低温時は、排気ガス冷却装置40を非作動状態とする。そのため、後段の排気温度センサ34の検出値が所定の閾値(開始閾値)(例えば、500℃)未満である場合(低温時)は、ECU35は切替バルブ43を開とすると共に、強制冷却ファン45を非駆動として、排気ガスを放熱チャンバ41を通さずに後段DeNOx触媒26へと流す。つまり、切替バルブ43を開とすると、排気ガスの大部分は流路抵抗の低いバイパス通路42を流れて、後段DeNOx触媒26へと直接導入される。この場合、ECU35は、前段のインジェクタ31のみを使用して還元剤の噴射を実行し、後段のインジェクタ32は使用しない。
 一方、後段DeNOx触媒26に流入する排気ガス温度が高温時は、排気ガス冷却装置40を作動状態とする。そのため、後段の排気温度センサ34の検出値が上記閾値を超えた場合(高温時)は、ECU35は切替バルブ43を閉とすると共に、強制空冷ファン45を駆動して、排気ガスを放熱チャンバ41を通して後段DeNOx触媒26へと流す。つまり、切替バルブ43を閉とすると、排気ガスは前段DeNOx触媒25と後段DeNOx触媒26との間の排気管14を流れて、放熱チャンバ41を通過した後に後段DeNOx触媒26へと導入される。このようにすることにより、後段DeNOx触媒26の触媒活性温度域を外れうる上記高温時でも、放熱チャンバ41により排気ガスの温度を低減(100℃程度)させることで、後段DeNOx触媒26を機能させることが可能である。
 そして、後段の排気温度センサ34の検出値が別の所定の閾値(終了閾値)(例えば、350℃)を下回った場合に、ECU35は切替バルブ43を閉から開に切り替えると共に、強制空冷ファン45の駆動を停止する。なお、前段の排気温度センサ33の検出値に応じて、ECU35により切替バルブ43を閉から開に切り替えると共に強制空冷ファン45の駆動を停止するようにしても良い。
 また、前段DeNOx触媒25及び後段DeNOx触媒26の総容量は一般的なDeNOx触媒の容量と同程度で良いので、一般的なDeNOx触媒を二分割して別個に配置するのと同じであり、コストアップは僅かである。
 さらに、排気ガス浄化装置1の占有スペースも、放熱チャンバ41の分だけ増加するのみである。また、後段DeNOx触媒26については、スペースの確保が難しい場合は、一般的な構造のサイレンサと一体化することが可能である。
 以上要するに、第一実施形態に係る排気ガス浄化装置1によれば、ディーゼルエンジン10の全運転領域においてDeNOx触媒(前段DeNOx触媒25及び後段DeNOx触媒26)を機能させることが可能となり、オフサイクル規制に対応することが可能となる。
 [第二実施形態]
 図2に第二実施形態に係る排気ガス浄化装置2を示す。なお、図1に示す第一実施形態と同一の構成要素には同一符号を付して、その説明を省略する。
 図2に示すように、第二実施形態に係る排気ガス浄化装置2では、後段DeNOx触媒26に、排気ガスを冷却する排気ガス冷却装置50を設けている。この排気ガス冷却装置50は、後段DeNOx触媒26の第三キャニングケース(キャニングケース)30を囲繞する外側キャニングケース51と、外側キャニングケース51に接続され、第三キャニングケース30と外側キャニングケース51との間の空間に強制空冷用の空気を供給するための強制空冷ファン(冷却ファン)52とを有する。つまり、第二実施形態に係る排気ガス浄化装置2では、後段DeNOx触媒26の第三キャニングケース30を外側キャニングケース51との二重構造として、後段DeNOx触媒26を介して排気ガスを間接的に冷却する構造としている。
 また、排気ガスの冷却を促進するために、放熱フィン53を第三キャニングケース30の外表面に設けている。放熱フィン53の形状は、空気流れを考慮して決定することが望ましい。
 第二実施形態に係る排気ガス浄化装置2の動作を説明する。
 後段の排気温度センサ34の検出値が所定の閾値(開始閾値)(例えば、500℃)未満である場合(低温時)は、ECU35は強制空冷ファン52を非駆動状態として作動させない。一方、後段の排気温度センサ34の検出値が上記閾値を超えた場合(高温時)は、ECU35は強制空冷ファン52を駆動状態として作動させ、強制空冷用の空気を後段DeNOx触媒26の第三キャニングケース30と外側キャニングケース51との間の空間に供給して排気ガスを間接的に冷却する。
 第二実施形態に係る排気ガス浄化装置2によれば、第一実施形態と同様に、ディーゼルエンジン10の全運転領域においてDeNOx触媒(前段DeNOx触媒25及び後段DeNOx触媒26)を機能させることが可能となり、オフサイクル規制に対応することが可能となる。
 [第三実施形態]
 図3に第三実施形態に係る排気ガス浄化装置3を示す。なお、図1に示す第一実施形態と同一の構成要素には同一符号を付して、その説明を省略する。
 図3に示すように、第三実施形態に係る排気ガス浄化装置3では、後段DeNOx触媒26に、排気ガスを冷却する排気ガス冷却装置60を設けている。この排気ガス冷却装置60は、後段DeNOx触媒26及び後段DOC27を貫通させて設けられ、強制空冷用の空気が流通可能な二次空気導入パイプ(導入パイプ)61と、二次空気導入パイプ61に接続され、二次空気導入パイプ61に強制空冷用の空気を供給するための強制空冷ファン(冷却ファン)62とを有する。つまり、第三実施形態に係る排気ガス浄化装置3では、放熱性の良い後段DeNOx触媒26(メタルハニカム担体)自体に強制空冷用の空気を導入する二次空気導入パイプ61を通して、後段DeNOx触媒26(メタルハニカム担体)自体を放熱フィン又は放熱板として排気ガスを間接的に冷却する構造としている。
 第三実施形態に係る排気ガス浄化装置3の動作を説明する。
 後段の排気温度センサ34の検出値が所定の閾値(開始閾値)(例えば、500℃)未満である場合(低温時)は、ECU35は強制空冷ファン62を非駆動状態として作動させない。一方、後段の排気温度センサ34の検出値が上記閾値を超えた場合(高温時)は、ECU35は強制空冷ファン62を駆動状態として作動させ、強制空冷用の空気を後段DeNOx触媒26及び後段DOC27を貫通する二次空気導入パイプ61に供給して排気ガスを間接的に冷却する。
 第三実施形態に係る排気ガス浄化装置3によれば、第一実施形態と同様に、ディーゼルエンジン10の全運転領域においてDeNOx触媒(前段DeNOx触媒25及び後段DeNOx触媒26)を機能させることが可能となり、オフサイクル規制に対応することが可能となる。
 以上、本発明の好適な実施形態について説明したが、本発明は上述の実施形態には限定されず他の様々な実施形態を採ることが可能である。
 例えば、内燃機関10はディーゼルエンジンには限定はされず、内燃機関10はガソリンエンジン等であっても良い。また、上述の実施形態(図示例)では、内燃機関10は4気筒エンジンであるが、内燃機関10は単気筒エンジンや6気筒エンジン等であっても良い。
 1 排気ガス浄化装置
 2 排気ガス浄化装置
 3 排気ガス浄化装置
10 ディーゼルエンジン(内燃機関)
14 排気管(排気通路)
25 前段DeNOx触媒(前段NOx浄化触媒)
26 後段DeNOx触媒(後段NOx浄化触媒)
30 第三キャニングケース(キャニングケース)
34 排気温度センサ(排気温度検出手段)
35 ECU(制御手段)
40 排気ガス冷却装置
41 放熱チャンバ(放熱体)
42 バイパス通路
43 切替バルブ(開閉手段)
45 強制空冷ファン(冷却ファン)
50 排気ガス冷却装置
51 外側キャニングケース
52 強制空冷ファン(冷却ファン)
60 排気ガス冷却装置
61 二次空気導入パイプ(導入パイプ)
62 強制空冷ファン(冷却ファン)

Claims (5)

  1.  内燃機関の排気通路に配設され、排気ガス中のNOxを浄化する前段NOx浄化触媒と、前記前段NOx浄化触媒よりも下流側の前記排気通路に配設され、高温領域において前記前段NOx浄化触媒よりも高いNOx浄化率特性を有する後段NOx浄化触媒と、前記前段NOx浄化触媒と前記後段NOx浄化触媒との間の前記排気通路又は前記後段NOx浄化触媒に設けられ、排気ガスを冷却する排気ガス冷却装置と、前記後段NOx浄化触媒に流入する排気ガスの温度を検出する排気温度検出手段と、前記排気温度検出手段の検出値が閾値を超えた場合に、前記排気ガス冷却装置を作動させる制御手段とを備えることを特徴とする内燃機関の排気ガス浄化装置。
  2.  前記排気ガス冷却装置は、前記前段NOx浄化触媒と前記後段NOx浄化触媒との間の前記排気通路に配設され、通過する排気ガスの熱を放熱する放熱体と、前記排気通路に接続され、前記放熱体の上下流を連通するバイパス通路と、前記バイパス通路に配設され、前記バイパス通路を開閉する開閉手段とを有し、
     前記制御手段は、前記排気温度検出手段の検出値が前記閾値を超えた場合は、前記排気ガス冷却装置を作動させるべく、前記開閉手段を閉とする
     請求項1に記載の内燃機関の排気ガス浄化装置。
  3.  前記排気ガス冷却装置は、前記放熱体に装着された冷却ファンをさらに有し、
     前記制御手段は、前記排気温度検出手段の検出値が前記閾値を超えた場合は、前記排気ガス冷却装置を作動させるべく、前記開閉手段を閉とすると共に、前記冷却ファンを駆動する
     請求項2に記載の内燃機関の排気ガス浄化装置。
  4.  前記排気ガス冷却装置は、前記後段NOx浄化触媒を収容するキャニングケースを囲繞する外側キャニングケースと、前記外側キャニングケースに接続され、前記キャニングケースと前記外側キャニングケースとの間の空間に冷却用の空気を供給するための冷却ファンとを有し、
     前記制御手段は、前記排気温度検出手段の検出値が前記閾値を超えた場合は、前記排気ガス冷却装置を作動させるべく、前記冷却ファンを駆動する
     請求項1に記載の内燃機関の排気ガス浄化装置。
  5.  前記排気ガス冷却装置は、前記後段NOx浄化触媒を貫通させて設けられ、冷却用の空気が流通可能な導入パイプと、前記導入パイプに接続され、前記導入パイプに冷却用の空気を供給するための冷却ファンとを有し、
     前記制御手段は、前記排気温度検出手段の検出値が前記閾値を超えた場合は、前記排気ガス冷却装置を作動させるべく、前記冷却ファンを駆動する
     請求項1に記載の内燃機関の排気ガス浄化装置。
PCT/JP2013/057800 2012-03-27 2013-03-19 内燃機関の排気ガス浄化装置 WO2013146462A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012071439A JP2013204439A (ja) 2012-03-27 2012-03-27 内燃機関の排気ガス浄化装置
JP2012-071439 2012-03-27

Publications (1)

Publication Number Publication Date
WO2013146462A1 true WO2013146462A1 (ja) 2013-10-03

Family

ID=49259719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/057800 WO2013146462A1 (ja) 2012-03-27 2013-03-19 内燃機関の排気ガス浄化装置

Country Status (2)

Country Link
JP (1) JP2013204439A (ja)
WO (1) WO2013146462A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102064739B1 (ko) * 2018-02-27 2020-01-13 임교석 연기처리장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0598957A (ja) * 1991-10-02 1993-04-20 Mitsubishi Heavy Ind Ltd 触媒マフラ
JPH11343834A (ja) * 1998-05-28 1999-12-14 Toyota Motor Corp 内燃機関の排気浄化装置
JP2009097469A (ja) * 2007-10-18 2009-05-07 Toyota Motor Corp 内燃機関の排気浄化システム
JP2010174645A (ja) * 2009-01-27 2010-08-12 Mitsubishi Electric Corp 排気ガス浄化装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0598957A (ja) * 1991-10-02 1993-04-20 Mitsubishi Heavy Ind Ltd 触媒マフラ
JPH11343834A (ja) * 1998-05-28 1999-12-14 Toyota Motor Corp 内燃機関の排気浄化装置
JP2009097469A (ja) * 2007-10-18 2009-05-07 Toyota Motor Corp 内燃機関の排気浄化システム
JP2010174645A (ja) * 2009-01-27 2010-08-12 Mitsubishi Electric Corp 排気ガス浄化装置

Also Published As

Publication number Publication date
JP2013204439A (ja) 2013-10-07

Similar Documents

Publication Publication Date Title
US9677439B2 (en) Systems and methods to mitigate NOx and HC emissions
JP5299572B2 (ja) 内燃機関
JP2006274986A (ja) 排気後処理装置
US8828342B1 (en) DPF energy conservation
US7921647B2 (en) Internal combustion engine exhaust gas system
US20120216529A1 (en) Engine exhaust aftertreatment system
US20100115926A1 (en) METHOD OF CONTROLLING NOx PURIFICATION SYSTEM AND NOx PURIFICATION SYSTEM
GB2558562B (en) Aftertreatment temperature control apparatus and method
JP5763294B2 (ja) 排気浄化装置
EP1550796B1 (en) Method for controlling the temperature of the exhaust gases in an engine and the relative engine apparatus
JP2006200473A (ja) 排ガス後処理装置付きエンジンの制御装置
JP6589365B2 (ja) 排出ガス浄化システム
EP2131022B1 (en) Thermal management of the after treatment system
JP4224983B2 (ja) 内燃機関の排気ガス浄化装置
US10495012B2 (en) Vehicle thermal control system including active exhaust treatment management
US10233805B2 (en) Exhaust gas control system
JP2005264821A (ja) 内燃機関の排気還流システム
JP6015198B2 (ja) 還元剤添加システム
WO2013146462A1 (ja) 内燃機関の排気ガス浄化装置
US20190232225A1 (en) Exhaust emission control device, method and computer program product for an engine
EP3631176B1 (en) A method for controlling the temperature of a nox controlling component and an exhaust after treatment system
WO2008072013A1 (en) System and method for exhaust gas after-treatment
JP2006274985A (ja) 排気後処理装置
WO2011114381A1 (ja) 内燃機関の排気装置
JP2020012407A (ja) エンジンシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13767461

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13767461

Country of ref document: EP

Kind code of ref document: A1