WO2013146460A1 - High-transparency polyimide resin - Google Patents

High-transparency polyimide resin Download PDF

Info

Publication number
WO2013146460A1
WO2013146460A1 PCT/JP2013/057793 JP2013057793W WO2013146460A1 WO 2013146460 A1 WO2013146460 A1 WO 2013146460A1 JP 2013057793 W JP2013057793 W JP 2013057793W WO 2013146460 A1 WO2013146460 A1 WO 2013146460A1
Authority
WO
WIPO (PCT)
Prior art keywords
diamine compound
polyimide
represented
polyimide resin
general formula
Prior art date
Application number
PCT/JP2013/057793
Other languages
French (fr)
Japanese (ja)
Inventor
明伸 竹上
礼子 峯
祥二 廣
川原 康行
Original Assignee
新日本理化株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012078590A external-priority patent/JP2015134843A/en
Priority claimed from JP2012078587A external-priority patent/JP2015134842A/en
Application filed by 新日本理化株式会社 filed Critical 新日本理化株式会社
Publication of WO2013146460A1 publication Critical patent/WO2013146460A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • C08G73/1078Partially aromatic polyimides wholly aromatic in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1057Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain
    • C08G73/1064Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain containing sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a highly transparent polyimide resin.
  • polyimide resins have been widely used as resins for electronic materials because they are excellent in heat resistance, strength, electrical insulation and the like.
  • a general polyimide resin is strongly colored, its use is limited.
  • Non-Patent Document 1 Japanese Patent Document 1
  • polyimide resin raw materials having fluorine atoms are uneconomical because they are difficult to produce and are expensive.
  • Non-patent Document 2 As another method for improving the hue of polyimide resin, studies have been conducted on using aliphatic or alicyclic compounds as polyimide resin raw materials. In particular, it has been found that the use of alicyclic acid dianhydride has a great effect on hue improvement (Non-patent Document 2).
  • transparent polyimide is expected especially for glass replacement applications.
  • a technique using a glass substrate is the mainstream.
  • Glass is a material excellent in properties such as high transparency, high heat resistance, and low linear expansion coefficient, but has a problem that it is easily broken when subjected to an impact and has a large specific gravity. Therefore, development of the polyimide resin excellent in the flexibility which satisfy
  • An object of the present invention is to provide a polyimide resin excellent in high transparency, heat resistance and low linear expansion coefficient.
  • the present inventors have used a specific tetracarboxylic dianhydride and a specific diamine compound as raw materials, so that high transparency, heat resistance and low line are achieved. As a result of finding out that a polyimide resin having an excellent expansion coefficient can be obtained and further studying it, the present invention has been completed.
  • the present invention relates to the following polyimide resin.
  • Item 1 General formula (1)
  • the aromatic diamine compound is represented by the general formula (2)
  • Item 2 The polyimide resin according to Item 1, which is at least one kind represented by the diamine compound.
  • Item 3 Aromatic diamine compounds (A) bis [4- (4-aminophenoxy) phenyl] sulfone, and (B) general formula (3)
  • the alicyclic diamine compound has the general formula (4)
  • the polyimide resin according to Item 4 which is at least one kind represented by the diamine compound.
  • the aromatic diamine compound is represented by the general formula (2)
  • Item 6 The polyimide resin according to Item 4 or 5, which is at least one kind represented by the diamine compound.
  • Item 7. The aromatic diamine compound is represented by the general formula (5)
  • Item 6 The polyimide resin according to Item 4 or 5, which is at least one kind represented by the diamine compound.
  • Item 8 The aromatic diamine compound is represented by the general formula (6)
  • the aromatic diamine compound is represented by the general formula (2)
  • Item 10 The polyamic acid resin according to Item 9, which is at least one kind represented by the diamine compound.
  • Item 11 The aromatic diamine compound is represented by the general formula (5)
  • the alicyclic diamine compound has the general formula (4)
  • the polyamic acid resin according to Item 12 which is at least one kind represented by the diamine compound.
  • the aromatic diamine compound is represented by the general formula (2)
  • Item 14 The polyamic acid resin according to Item 12 or 13, which is at least one kind represented by the diamine compound.
  • Item 15. Item 9. A polyimide varnish containing the polyimide resin according to any one of Items 3 to 8 and an organic solvent.
  • Item 16. Item 15. A polyamic acid varnish containing the polyamic acid resin according to any one of Items 9 to 14 and an organic solvent.
  • Item 17. Item 16.
  • Item 19. Item 19.
  • Item 20. Item 20.
  • a plastic substrate comprising the polyimide molded article according to any one of Items 17 to 19.
  • Item 21. Item 20.
  • An electrical component or electronic component comprising the plastic substrate according to Item 20.
  • a polyimide resin excellent in high transparency, heat resistance and low linear expansion coefficient can be obtained.
  • a plastic substrate made of a molded body of the polyimide resin can be used for electrical parts, electronic parts and the like.
  • the polyimide resin can be used for heat-resistant insulating materials, heat-resistant paints, heat-resistant coating materials, heat-resistant adhesives, and the like.
  • polyimide resin of the present invention has the following general formula (1):
  • Tetracarboxylic acid dianhydride represented by general formula (1) The tetracarboxylic dianhydride represented by the above general formula (1), which is a component of the polyimide resin of the present invention, is bicyclo [4.2. 0] Octane-3,4,7,8-tetracarboxylic dianhydride.
  • a photodimerization reaction is recommended.
  • Specific examples include equimolar amounts of 1,2,3,6-tetrahydrophthalic anhydride and maleic anhydride in a ketone solvent such as methyl ethyl ketone, an ester solvent such as ethyl acetate, or an ether solvent such as dioxane.
  • the tetracarboxylic dianhydride reactant can be obtained by dissolving and irradiating light of 250 to 400 nm using a high pressure mercury lamp or the like.
  • the tetracarboxylic dianhydride represented by the general formula (1) is a tetracarboxylic acid or a mono-, di-, tri- or tetra-acid chloride of tetracarboxylic acid and a mono-alcohol with a lower alcohol having 1 to 4 carbon atoms. It can also be used as a derivative such as di-, tri- or tetraester.
  • tetracarboxylic dianhydride represented by the general formula (1) can be replaced with another tetracarboxylic dianhydride as long as the effect is not hindered.
  • Other tetracarboxylic dianhydrides include aromatic tetracarboxylic dianhydrides, alicyclic tetracarboxylic dianhydrides, and aliphatic tetracarboxylic dianhydrides.
  • aromatic tetracarboxylic dianhydride examples include pyromellitic dianhydride, 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride, and 4,4′-oxydiphthalic acid.
  • alicyclic tetracarboxylic dianhydride examples include 1,2,4,5-cyclohexanetetracarboxylic dianhydride, 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic acid, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, 2,3,5-tricarboxycyclopentylacetic acid dianhydride, 3,5,6-tricarboxynorbonane-2-acetic acid dianhydride, 2,3,4,5-tetrahydrofurantetracarboxylic dianhydride, 5- (2,5-dioxotetrahydrofural) -3-methyl -3-Cyclohexene-1,2-dicarboxylic dianhydride, bicyclo [2.2.2] -oct-7-ene-2,3,5,6-tetracarboxylic dianhydride and their derivatives,
  • aliphatic tetracarboxylic dianhydride examples include 1,2,3,4-butanetetracarboxylic dianhydride, 1,2,3,4-pentanetetracarboxylic dianhydride, and those And the like.
  • tetracarboxylic dianhydrides can be used alone or in combination of two or more for the imidation polymerization reaction.
  • the amount used is the total tetracarboxylic dianhydride.
  • the amount is preferably 20 mol% or less, more preferably 10 mol% or less, particularly 5 mol% or less, based on the number of moles of the product.
  • Aromatic diamine compound There is no restriction
  • aromatic diamine compound examples include m-phenylenediamine, p-phenylenediamine, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylpropane, 4,4′-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl ether, 4,4'-diaminodiphenyl sulfone, 3,4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl Sulfide, 3,4′-diaminodiphenyl sulfide, 3,3′-diaminodiphenyl sulfide, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzone,
  • Preferred aromatic diamine compounds include aromatic diamine compounds represented by the following general formula (2).
  • aromatic diamine compounds include aromatic diamine compounds represented by the following general formula (5).
  • aromatic diamine compounds include aromatic diamine compounds represented by the following general formula (6).
  • aromatic diamine compound (A) bis [4- (4-aminophenoxy) phenyl] sulfone, and (B) at least one selected from diamine compounds represented by the following general formula (3): It is preferable to use together.
  • (A) bis [4- (4-aminophenoxy) phenyl] sulfone and (B) at least one selected from diamine compounds represented by the following general formula (7) may be used in combination. preferable.
  • Alicyclic diamine compound There is no restriction
  • alicyclic diamine compound examples include diaminocyclohexane, diaminodicyclohexylmethane, dimethyl-diaminodicyclohexylmethane, tetramethyl-diaminodicyclohexylmethane, diaminodicyclohexylpropane, diaminobicyclo [2.2.1] heptane, bis ( Aminomethyl) -bicyclo [2.2.1] heptane, 3 (4), 8 (9) -bis (aminomethyl) tricyclo [5.2.1.0 2,6 ] decane, 1,3-bisamino Examples include methylcyclohexane and isophoronediamine. These alicyclic diamine compounds can be used alone or in combination of two or more kinds for the imidation polymerization reaction.
  • Preferred examples of the alicyclic diamine compound include diamine compounds represented by the following general formula (4).
  • the molar ratio of the alicyclic diamine compound to the aromatic diamine compound is in the range of 80-20: 20-80, preferably 75-30: 25-70. In particular, it is preferably 70 to 40:30 to 60.
  • a preferable aromatic diamine compound includes an aromatic diamine compound represented by the following general formula (2).
  • aromatic diamine compounds include aromatic diamine compounds represented by the following general formula (5).
  • aromatic diamine compounds include aromatic diamine compounds represented by the following general formula (6).
  • the alicyclic diamine compound and / or the aromatic diamine compound can be used by replacing a part thereof with the aliphatic diamine compound as long as the effects of the present invention are not hindered.
  • aliphatic diamine compound examples include ethylene diamine, hexamethylene diamine, octamethylene diamine, decamethylene diamine and the like.
  • the above aliphatic diamine compounds can be used alone or in combination of two or more for the imidation polymerization reaction.
  • the amount used is preferably 20 mol% with respect to the number of moles of the total diamine compound. In the following, 10 mol% or less, more preferably 5 mol% or less is recommended.
  • the molar ratio in the imidation polymerization reaction according to the present invention is preferably in the range of all diamine compounds 90 to 110 with respect to all tetracarboxylic dianhydrides 100. More preferably, it is in the range of 95 to 105, and still more preferably in the range of 98 to 102. By performing the imidization polymerization reaction within this range, a polyimide resin having a sufficient degree of polymerization can be obtained.
  • the tetracarboxylic dianhydride, the alicyclic diamine compound, and the aromatic diamine compound can each be partially substituted with an aliphatic diamine compound within the range where the effects of the present invention are achieved. In that case, a similar molar ratio applies.
  • the diamine compound is described in the form of “diamine”. However, as long as the effect of the present invention is obtained for the purpose of improving the reactivity, an amino group is substituted for them.
  • a compound obtained by converting part or all into an isocyanate group, a silylated compound, or the like can be used.
  • polyamic acid resin which is a precursor of the polyimide resin according to the present invention is a copolymer of the tetracarboxylic dianhydride and the diamine compound described above in a reaction solvent in a temperature range of 5 ° C to 100 ° C. Obtained by reaction.
  • the reaction solvent used in the above copolymerization reaction may be any reaction solvent as long as it can dissolve the polyamic acid resin produced from the copolymerization reaction.
  • preferred examples include aprotic solvents, phenol solvents, ether solvents, carbonate solvents and the like.
  • aprotic solvents include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, 1,3-dimethylimidazolidinone, tetramethylurea, etc.
  • Amide solvents lactone solvents such as ⁇ -butyrolactone and ⁇ -valerolactone, phosphorus-containing amide solvents such as hexamethylphosphoric amide and hexamethylphosphine triamide, sulfur-containing dimethylsulfone, dimethylsulfoxide, sulfolane and the like
  • lactone solvents such as ⁇ -butyrolactone and ⁇ -valerolactone
  • phosphorus-containing amide solvents such as hexamethylphosphoric amide and hexamethylphosphine triamide
  • sulfur-containing dimethylsulfone dimethylsulfoxide
  • sulfolane and the like examples thereof include ketone solvents such as acetone, cyclohexane and methylcyclohexanone, amine solvents such as picoline and pyridine, and ester solvents such as acetic acid (2-methoxy-1-methylethyl).
  • phenol solvent examples include phenol, o-cresol, m-cresol, p-cresol, 2,3-xylenol, 2,4-xylenol, 2,5-xylenol, 2,6-xylenol, 3,4 -Xylenol, 3,5-xylenol and the like are exemplified.
  • ether solvent examples include ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, tetrahydrofuran, 1,4-dioxane and the like.
  • carbonate solvents include diethyl carbonate, methyl ethyl carbonate, ethylene carbonate, propylene carbonate, and the like.
  • reaction solvents may be used alone or in combination of two or more.
  • N-methyl-2-pyrrolidone 1,3-dimethylimidazolidinone
  • N, N-dimethylformamide N, N-dimethylacetamide
  • ⁇ -butyrolactone is particularly recommended.
  • the amount of the reaction solvent used may be an amount that can dissolve the polyamic acid resin to be produced.
  • the specific concentration of the polyamic acid resin is preferably adjusted to 5 to 50% by weight, more preferably 10 to 40% by weight, and still more preferably 10 to 30% by weight.
  • the interior of the copolymerization reaction system is preferably an inert gas atmosphere from the viewpoint of preventing coloration and safety of the reaction system.
  • an inert gas atmosphere from the viewpoint of preventing coloration and safety of the reaction system.
  • a method of replacing the inside of the reaction system with an inert gas and allowing the inert gas to flow during the reaction is recommended.
  • Nitrogen, argon, etc. are illustrated as an inert gas.
  • a salt generation inhibitor can be used in the copolymerization reaction of the polyamic acid resin according to the present invention.
  • the salt generation inhibitor is preferably one that can be volatilized and removed when the polyamic acid resin varnish is heated to imidize.
  • a general silylating agent for example, a general silylating agent can be used.
  • Specific examples include N, O-bis (trimethylsilyl) acetamide, N, O-bis (trimethylsilyl) trifluoroacetamide, trimethylsilyl chloride, hexamethyldisilazane and the like.
  • the reaction time for the copolymerization reaction of the polyamide acid resin is usually preferably about 2 to 24 hours, although it depends on the charging ratio, the substrate concentration and the like.
  • reaction time is too short, the tendency for a polymerization degree to become low is recognized. If the reaction time is too long, the amide group part may partially undergo a hydrolysis reaction and the degree of polymerization may decrease.
  • the number average molecular weight of the obtained polyamic acid resin is preferably 6,000 or more, and the weight average molecular weight is 10,000 or more, more preferably the number average molecular weight is 6,000 to 100,000, and the weight The average molecular weight is in the range of 10,000 to 500,000. This range is a range having a degree of polymerization that can give a molded product.
  • the molecular weight of the polyamic acid resin is a value measured by the method described in the example of the later operation.
  • Imidation polymerization reaction As a method of imidation polymerization reaction, (1) tetracarboxylic dianhydride and diamine compound are heated in the presence of a reaction solvent and a small amount of azeotropic solvent, and the generated water is azeotropically removed from the system. (2) Chemical imidization method using dehydration action of acid anhydrides such as acetic anhydride and propionic anhydride, or carbodiimide compounds such as dicyclohexylcarbodiimide after producing polyamic acid as a polyimide precursor (3) A thermal imidization method in which the polyamic acid of the polyimide precursor is produced and then heated to 300 ° C. or higher is exemplified.
  • the thermal imidization method (3) is industrially preferable among the above polyimide resin production methods, For example, a method in which the polyamic acid resin is heated in a temperature range of 300 to 350 ° C. to distill off the generated water accompanying the imidization reaction and perform an imidation polymerization reaction.
  • the imidation ratio in the heat imidization reaction of the polyamic acid resin (3) is usually 70% or more, preferably 80% or more, more preferably 90% or more, and particularly 95% or more. Furthermore, it may be desirable to make the imidization rate close to 100% depending on the use application of the polyimide resin.
  • the thermal imidation method of (1) is industrially preferable among the methods for producing the polyimide resin,
  • the total amount of tetracarboxylic dianhydride and diamine compound is dissolved in the reaction solvent, or a part of tetracarboxylic dianhydride and / or diamine compound is dissolved stepwise, preferably 100 to 250 ° C., More preferred is a method of heating to 150 to 200 ° C. and distilling off generated water in the system with an azeotropic solvent to carry out an imidation polymerization reaction.
  • the polymer terminal of a polyimide resin can be made into an amine terminal by using a diamine compound excessively with respect to tetracarboxylic dianhydride, On the other hand, using tetracarboxylic dianhydride more excessively than a diamine compound.
  • the polymer terminal of the polyimide resin can be made an acid terminal.
  • azeotropic solvent for distilling the generated water out of the system examples include aromatic hydrocarbons such as toluene, xylene and solvent naphtha, and alicyclic hydrocarbons such as cyclohexane, methylcyclohexane and dimethylcyclohexane. These can be used alone or as a mixed system.
  • the amount used is usually about 1 to 30% by weight, preferably about 5 to 10% by weight, based on the amount of the reaction solvent.
  • the reaction system is preferably in an inert gas atmosphere from the viewpoint of preventing coloration and safety of the reaction system.
  • a method of replacing the inside of the reaction system with an inert gas and allowing the inert gas to flow during the reaction is recommended.
  • Nitrogen, argon, etc. are illustrated as an inert gas.
  • a known catalyst can be used in the imidation polymerization reaction according to the present invention.
  • a catalyst for example, as a base catalyst, pyridine, quinoline, isoquinoline, ⁇ -picoline, ⁇ -picoline, 2,4-lutidine, 2,6-lutidine, trimethylamine, triethylamine, tripropylamine, tri Organic base catalysts such as butylamine, imidazole, N, N-dimethylaniline, N, N-diethylaniline, inorganic bases represented by potassium hydroxide, sodium hydroxide, potassium carbonate, sodium carbonate, potassium bicarbonate, sodium bicarbonate Examples are catalysts.
  • the acid catalyst examples include crotonic acid, acrylic acid, trans-3-hexenoic acid, cinnamic acid, benzoic acid, methylbenzoic acid, oxybenzoic acid, terephthalic acid, benzenesulfonic acid, p-toluenesulfonic acid, naphthalenesulfonic acid, etc. Is exemplified.
  • the reaction time of the imidation polymerization reaction is preferably about 2 to 10 hours after the start of the distillation of the soot-forming water, although it depends on the charging ratio, the substrate concentration and the like.
  • reaction time is too short, the tendency for imidation ratio to become low is recognized.
  • the reaction system may partially cause a thermal crosslinking reaction to thicken the reaction system or form a gel-like material, or the reaction system may be colored due to thermal degradation of the reaction solvent. .
  • the number average molecular weight of the polyimide resin of the present invention obtained by imidation polymerization reaction is preferably 6,000 or more and the weight average molecular weight is 10,000 or more, more preferably the number average molecular weight is 6,000 to 100. And a weight average molecular weight in the range of 10,000 to 500,000. This range is a range having a degree of polymerization that can give a molded product.
  • the molecular weight of a polyimide resin is the value measured by the method described in the Example of the postoperative.
  • the imidation ratio in the imidation polymerization reaction is usually 70% or more, preferably 80% or more, more preferably 90% or more, and particularly 95% or more. Furthermore, it may be desirable to make the imidization rate close to 100% depending on the use application of the polyimide resin.
  • end cap agents for the purpose of molecular weight control and the like.
  • the end cap agent include phthalic anhydride, maleic anhydride, nadic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, etc. for acid anhydrides, and aniline, methylaniline, allylamine, etc. for monoamines. .
  • the polyamic acid varnish of the present invention is characterized by containing a polyamic acid resin and an organic solvent.
  • the organic solvent may be the same as or different from the organic solvent used for the copolymerization reaction of the tetracarboxylic dianhydride and the diamine compound, but may be the same in consideration of the complexity of solvent replacement work and the like. preferable.
  • the viscosity of the polyamic acid varnish can be appropriately selected depending on the desired application, but the viscosity at 25 ° C. is preferably in the range of 0.1 to 500 Pa ⁇ s, more preferably in the range of 1 to 100 Pa ⁇ s.
  • the concentration of the polyamic acid resin in the polyamic acid varnish is preferably 5 to 50% by weight, more preferably 10 to 40% by weight, and further preferably 10 to 30% by weight.
  • a part of the organic solvent can be replaced with a low boiling point solvent for the purpose of efficiently performing the drying step.
  • low boiling point solvents include aromatic hydrocarbons such as toluene, xylene, solvent naphtha, alicyclic hydrocarbons such as cyclohexane, methylcyclohexane and dimethylcyclohexane, ethers such as propylene glycol monomethyl ether, acetone, methyl ethyl ketone, Ketones such as methyl isobutyl ketone are exemplified.
  • the amount used is preferably 1 to 30% by weight, more preferably 5 to 20% by weight, based on the total amount of organic solvent.
  • polyester resin polyimide resin (excluding the polyimide resin of the present invention), polyamideimide resin, polymer compound such as polyamide resin, smoothing agent, leveling agent, defoaming agent, flame retardant, antifoaming agent, antioxidant Etc. are exemplified.
  • the diamine component is selected from (A) bis [4- (4-aminophenoxy) phenyl] sulfone and (B) a diamine compound represented by the general formula (3).
  • the polyimide varnish contains a polyimide resin and an organic solvent.
  • the organic solvent may be the same as or different from the organic solvent used in the imidation polymerization reaction, but is preferably the same in consideration of the complexity of solvent replacement work and the like.
  • a method for preparing a polyimide varnish (i) a method of using a reaction solvent solution of a polyimide resin obtained by an imidization polymerization reaction as it is as a polyimide varnish, (ii) a reaction solvent solution of a polyimide resin obtained by an imidization polymerization reaction Examples are a method of obtaining a polyimide varnish by isolating a polyimide resin from the following and then dissolving the isolated polyimide resin in a desired organic solvent.
  • the viscosity of the polyimide varnish can be appropriately selected depending on the desired application, but the viscosity at 25 ° C. is preferably in the range of 0.1 to 500 Pa ⁇ s, more preferably in the range of 1 to 100 Pa ⁇ s. .
  • the concentration of the polyimide resin in the polyimide varnish is preferably 5 to 50% by weight, more preferably 10 to 40% by weight, and even more preferably 10 to 30% by weight.
  • the organic solvent is not particularly limited as long as it can dissolve the polyimide resin according to the present invention, and specific examples include those exemplified as the reaction solvent. These can be used alone or as a mixed system. Of these, N-methyl-2-pyrrolidone, 1,3-dimethylimidazolidinone, N, N-dimethylformamide, N, N-dimethylacetamide, and ⁇ -butyrolactone are recommended.
  • an organic solvent having a low boiling point is used for the purpose of preventing coloring of the polyimide resin coating film in the drying process.
  • Specific examples include N, N-dimethylformamide and N, N-dimethylacetamide.
  • a part of the organic solvent can be replaced with a low boiling point solvent for the purpose of efficiently performing the drying step.
  • low boiling point solvents include aromatic hydrocarbons such as toluene, xylene, solvent naphtha, alicyclic hydrocarbons such as cyclohexane, methylcyclohexane and dimethylcyclohexane, ethers such as propylene glycol monomethyl ether, acetone, methyl ethyl ketone, Ketones such as methyl isobutyl ketone are exemplified.
  • the amount used is preferably 1 to 30% by weight, more preferably 5 to 20% by weight, based on the total amount of organic solvent.
  • polyester resin polyimide resin (excluding the polyimide resin of the present invention), polyamideimide resin, polymer compound such as polyamide resin, smoothing agent, leveling agent, defoaming agent, flame retardant, antifoaming agent, antioxidant Etc. are exemplified.
  • the polyimide varnish thus obtained is excellent in storage stability and used for various purposes.
  • polyimide molded body of the present invention can be obtained by molding a polyamic acid varnish.
  • mold A conventionally well-known method can be used.
  • the polyamic acid varnish is dried to 200 ° C. or higher, preferably 300 ° C. or higher, and heated imide Examples thereof include a method of forming a film-like, film-like or sheet-like polyimide molded body by removing the solvent while forming.
  • the polyimide molded body of the present invention can also be obtained by molding a polyimide varnish.
  • a polyimide varnish There is no restriction
  • the organic solvent is removed from the polyimide varnish to form a film, film, or sheet polyimide.
  • mold to a molded object are illustrated.
  • a polyamic acid varnish or a polyimide varnish is cast on a PET substrate (polyethylene terephthalate substrate), and then in a vacuum dryer (decompression degree 1 to 10 mmHg) at room temperature for 30 minutes to 2 hours. Further, the temperature is raised to about 200 ° C. over 30 minutes to 2 hours, and the solvent is distilled off at that temperature for 1 to 4 hours. After cooling to room temperature, the polyimide film formed on the PET substrate is taken out from the vacuum dryer and peeled off from the PET substrate.
  • the peeled polyimide film is fixed to a stainless steel metal frame, heated again from room temperature to 230 to 330 ° C in 1 to 4 hours using a vacuum dryer, and dried at that temperature for 2 to 5 hours to completely remove the solvent. After distilling off and cooling to room temperature, a polyimide film can be obtained by taking out from the vacuum dryer. A method of adjusting the thickness of the polyimide film thus obtained to a target thickness by adjusting the coating thickness at the time of casting can be mentioned.
  • the high transparency of the polyimide resin of the present invention can be evaluated by the total light transmittance.
  • the range of the total light transmittance is preferably 87% or more, more preferably 88% or more, and particularly preferably 89% or more.
  • the total light transmittance is a value obtained by the method described in Examples described later in this specification and claims.
  • the above range of the total light transmittance is an effective range particularly in applications requiring high transparency.
  • the heat resistance of the polyimide resin of the present invention can be evaluated by the glass transition temperature.
  • the range of the glass transition temperature is preferably 250 ° C. or higher, more preferably 260 ° C. or higher, and particularly preferably 270 ° C. or higher.
  • the glass transition temperature is a value obtained by the method described in Examples described later in the present specification and claims.
  • the above glass transition temperature range is an effective range particularly for applications requiring heat resistance.
  • the range of the linear expansion coefficient of the polyimide resin of the present invention is preferably 65 ppm / K or less, more preferably 62 ppm / K or less, and particularly preferably 60 ppm / K or less.
  • the linear expansion coefficient is a value obtained by the method described in Examples described later in the present specification and claims.
  • the range of the above-mentioned linear expansion coefficient is a range that is particularly effective for use with a transparent flexible substrate such as an organic EL.
  • the plastic substrate of the present invention is characterized by comprising the polyimide molded body.
  • As the production method a conventionally known production method can be used.
  • the plastic substrate is preferably used for, for example, a flexible transparent substrate because the polyimide molded body of the present invention has high transparency, heat resistance, and a low linear expansion coefficient.
  • the flexible transparent substrate is used in many electrical components or electronic components, and is suitably used as components such as electronic paper, organic solar cells, organic EL lighting, and flexible liquid crystal displays.
  • Heat-resistant insulating material / heat-resistant coating material / heat-resistant coating material / heat-resistant adhesive material uses the polyimide resin of the present invention.
  • the polyimide resin is preferably used because it has high transparency, heat resistance and a low linear expansion coefficient.
  • Tetracarboxylic dianhydride BCODA bicyclo [4.2.0] octane-3,4,7,8-tetracarboxylic dianhydride
  • DSDA 3,3 ′, 4,4′-diphenylsulfone tetracarboxylic acid Dianhydride
  • Aromatic diamine compound DPE 4,4′-diaminodiphenyl ether
  • DAM 4,4′-diaminodiphenylmethane
  • BAPP 2,2-bis [4- (4-aminophenoxy) phenyl] propane
  • BAPS bis [4- (4 -Aminophenoxy) phenyl] sulfone
  • BAPB 4,4'-bis (4-aminophenoxy) biphenyl
  • TPE-Q 1,4-bis (4-aminophenoxy) benzene
  • m-TD m-tolidine
  • -Alicyclic diamine compound HDAM 4,4'-methylenebis (cyclohexylamine)
  • DMHDAM 3,3′-dimethyl-4,4′-methylenebis (cyclohexylamine)
  • NBDA Norbornanediamine
  • a sample solution for molecular weight measurement is prepared by diluting about 1 g of a polyimide resin reaction solution (polyimide varnish) or polyamic acid varnish with about 30 ml of N, N-dimethylformamide.
  • the number average molecular weight (Mn) and weight average molecular weight (Mw) in terms of polystyrene were determined under the following measurement conditions using gel permeation chromatography (GPC).
  • Solvent solubility was evaluated by visually observing the state after adjusting the concentration of the polyimide resin to 15% by weight after completion of the imidation polymerization reaction and leaving it at room temperature for 24 hours. Even after being allowed to stand for 24 hours, no precipitate was generated and no gelation of the reaction solution was observed.
  • ⁇ Total light transmittance> In accordance with JIS K7361-1 (1997), a polyimide film (40 ⁇ m) was measured using a HAZE-GUARD II manufactured by Toyo Seiki Co., Ltd. by a single beam method using a D65 light source.
  • tan ⁇ of the polyimide molded body (film) was measured under the following measurement conditions.
  • the maximum value of tan ⁇ was defined as the glass transition temperature (° C.).
  • Measurement mode Tensile mode Sine wave: 10 Hz Temperature increase rate: 5 ° C / min Air flow rate: 10L / min
  • Production Example BCODA was produced with reference to US Pat. No. 3,342,431. Specifically, in a 1500 ml internal irradiation type Pyrex (registered trademark) glass five-necked reaction flask, 95.0 g (969 mmol) of maleic anhydride and 1,2,3,6-tetrahydrophthalic anhydride 192 were added. 0.0 g (1262 mmol) and 1200 g of n-butyl acetate were charged and stirred and dissolved at room temperature while covering the outer wall of the reactor with aluminum foil. Further, nitrogen gas was bubbled for 15 minutes to remove oxygen in the reaction vessel. Subsequently, the reaction vessel was cooled to 20 ° C.
  • Pyrex registered trademark
  • Example 1 To a 200 mL Erlenmeyer flask equipped with a stirrer, 136 g of NMP and 11.04 g (52 mol) of m-TD as an aromatic diamine compound were added and stirred for 15 minutes. BCODA 13.01 g (52 mmol) was added to the resulting solution and stirred overnight to obtain a polyamic acid varnish. Table 1 shows the measurement results of the average molecular weight of the polyamic acid resin.
  • Example 2 A polyamic acid varnish of the present invention was obtained in the same manner as in Example 1 except that the aromatic diamine compound was changed to 10.41 g (52 mmol) of DPE. Table 1 shows the measurement results of the average molecular weight of the polyamic acid resin.
  • Example 3 A polyamic acid varnish of the present invention was obtained in the same manner as in Example 1 except that the aromatic diamine compound was changed to 15.20 g (52 mmol) of TPE-Q. Table 1 shows the measurement results of the average molecular weight of the polyamic acid resin.
  • Example 4 A polyamic acid varnish of the present invention was obtained in the same manner as in Example 1 except that the aromatic diamine compound was changed to 19.16 g (52 mmol) of BAPB. Table 1 shows the measurement results of the average molecular weight of the polyamic acid resin.
  • Example 5 A polyamic acid varnish of the present invention was obtained in the same manner as in Example 1, except that the aromatic diamine compound was changed to 22.49 g (52 mmol) of BAPS. Table 1 shows the measurement results of the average molecular weight of the polyamic acid resin.
  • Example 6 A polyamic acid varnish of the present invention was obtained in the same manner as in Example 1 except that the aromatic diamine compound was changed to 10.31 g (52 mmol) of DAM. Table 1 shows the measurement results of the average molecular weight of the polyamic acid resin.
  • Comparative Example 1 A polyamic acid varnish was obtained in the same manner as in Example 2 except that the tetracarboxylic dianhydride was changed from BCODA to 18.63 g (52 mol) of DSDA. Table 1 shows the measurement results of the average molecular weight of the polyamic acid resin.
  • Experimental example 1 The polyamic acid varnishes obtained in Examples 1 to 6 were applied onto a glass substrate using a bar coater so that the dry film thickness was 40 ⁇ m, and was vacuumed in a vacuum dryer (decompression degree: 10 mmHg or less) at 300 ° C. * It dried for 1 hour, and after making it cool to room temperature, it was made to peel from a glass substrate, and the polyimide molded body (film) was obtained.
  • Table 1 shows the measurement results of the linear expansion coefficient, total light transmittance, glass transition temperature, and mechanical properties of the obtained polyimide molded body (film).
  • Experimental example 2 The polyamic acid varnish obtained in Comparative Example 1 was applied onto a glass substrate using a bar coater so that the dry film thickness was 40 ⁇ m, and was vacuumed (with a reduced pressure of 10 mmHg or less) at 300 ° C. ⁇ 1 in a vacuum dryer. After drying for a time and cooling to room temperature, it was made to peel from a glass substrate, and the polyimide molded body (film) was obtained.
  • Table 1 shows the measurement results of the linear expansion coefficient, total light transmittance, glass transition temperature, and mechanical properties of the obtained polyimide molded body (film).
  • Example 7 In a 200 mL four-necked flask equipped with a thermometer, a stirrer, a nitrogen introducing tube, a separator decanter, and a condenser tube, 13.01 g (52 mmol) of BCODEA, 5.21 g (26 mmol) of DPE and 11.24 g of BAPS as an aromatic diamine compound ( 26 mmol) DMAc (99 g) as a reaction solvent and ECH (11 g) as an azeotropic solvent, the inside of the reaction system was purged with nitrogen, and then stirred at 160 ° C. in a nitrogen stream to remove the generated water from the system for 5 hours. Went.
  • Example 8 A DMAc solution of the polyimide resin of the present invention (polyimide varnish of the present invention) was prepared in the same manner as in Example 7, except that the aromatic diamine compound was changed to 3.12 g (15.6 mmol) of DPE and 15.74 g (36.4 mmol) of BAPS. ) Table 2 shows the measurement results of the average molecular weight of the obtained polyimide resin.
  • Example 9 Except that the aromatic diamine compound was changed to 4.42 g (20.8 mmol) of m-TD and 13.49 g (31.2 mmol) of BAPS, a DMAc solution of the polyimide resin of the present invention (of the present invention) was prepared in the same manner as in Example 7. Polyimide varnish) was obtained. Table 2 shows the measurement results of the average molecular weight of the obtained polyimide resin.
  • Example 10 In a 200 mL four-necked flask equipped with a thermometer, a stirrer, a nitrogen inlet tube, a separator decanter, and a condenser tube, 13.28 g (53.1 mmol) of BCODA and 5.55 g (26.4 mmol) of HDAM as an alicyclic diamine compound Then, DPE 5.29 g (26.4 mmol) as a reaction solvent, DMAc 123.9 g as a reaction solvent, ECH 13.7 g as an azeotropic solvent were charged, and the reaction system was purged with nitrogen, followed by stirring at 160 ° C. under a nitrogen stream.
  • a dehydration imidation polymerization reaction was carried out for 5 hours while removing the produced water out of the system. After the reaction, DMAc was added so that the resin concentration was 15% by weight to obtain a DMAc solution of the polyimide resin of the present invention (polyimide varnish of the present invention).
  • Table 2 shows the measurement results of the average molecular weight and solvent solubility of the obtained polyimide resin.
  • Example 11 A polyimide varnish of the present invention was obtained in the same manner as in Example 10 except that the aromatic diamine compound was changed to 5.23 g (26.4 mmol) of DAM. Table 2 shows the measurement results of the average molecular weight and solvent solubility of the obtained polyimide resin.
  • Example 12 A polyimide varnish of the present invention was obtained in the same manner as in Example 10 except that the amount of BCODA charged was changed to 12.33 g (49.3 mmol). Table 2 shows the measurement results of the average molecular weight and solvent solubility of the obtained polyimide resin.
  • Example 13 A polyimide varnish of the present invention was obtained in the same manner as in Example 12, except that the alicyclic diamine compound was changed to 7.77 g (37.0 mmol) of HDAM and the aromatic diamine compound was changed to 3.17 g (15.8 mmol) of DPE. .
  • Table 2 shows the measurement results of the average molecular weight and solvent solubility of the obtained polyimide resin.
  • Example 14 A polyimide varnish of the present invention was obtained in the same manner as in Example 12 except that the alicyclic diamine compound was changed to 6.29 g (26.4 mmol) of DMHDAM. Table 2 shows the measurement results of the average molecular weight and solvent solubility of the obtained polyimide resin.
  • Example 15 A polyimide varnish of the present invention was obtained in the same manner as in Example 12 except that the alicyclic diamine compound was changed to 2.78 g (13.2 mmol) of HDAM and 2.04 g (13.2 mmol) of NBDA. Table 2 shows the measurement results of the average molecular weight and solvent solubility of the obtained polyimide resin.
  • Example 16 A polyimide varnish of the present invention was obtained in the same manner as in Example 12 except that the aromatic diamine compound was changed to 5.23 g (26.4 mmol) of DAM. Table 2 shows the measurement results of the average molecular weight and solvent solubility of the obtained polyimide resin.
  • Example 17 A polyimide varnish of the present invention was obtained in the same manner as in Example 12, except that the aromatic diamine compound was changed to 10.84 g (26.4 mmol) of BAPP. Table 2 shows the measurement results of the average molecular weight and solvent solubility of the obtained polyimide resin.
  • Example 18 A polyimide varnish of the present invention was obtained in the same manner as in Example 12 except that the aromatic diamine compound was changed to 11.42 g (26.4 mmol) of BAPS. Table 2 shows the measurement results of the average molecular weight and solvent solubility of the obtained polyimide resin.
  • Example 19 The polyimide of the present invention was prepared in the same manner as in Example 12, except that the aromatic diamine compound was changed to 9.73 g (26.4 mmol) of BAPB, the reaction solvent was changed to 123.9 g of NMP, and 13.7 g of xylene as the azeotropic solvent. A varnish was obtained.
  • Table 2 shows the measurement results of the average molecular weight and solvent solubility of the obtained polyimide resin.
  • Example 20 A polyimide varnish of the present invention was obtained in the same manner as in Example 19 except that the aromatic diamine compound was changed to 7.72 g (26.4 mmol) of TPE-Q. Table 2 shows the measurement results of the average molecular weight and solvent solubility of the obtained polyimide resin.
  • Example 21 A polyimide varnish of the present invention was obtained in the same manner as in Example 19 except that the aromatic diamine compound was changed to 5.60 g (26.4 mmol) of m-TD. Table 2 shows the measurement results of the average molecular weight and solvent solubility of the obtained polyimide resin.
  • Comparative Example 2 A polyimide varnish was obtained in the same manner as in Example 9, except that BCODA was changed to 19.02 g (53.1 mmol) of DSDA. Table 2 shows the measurement results of the average molecular weight and solvent solubility of the obtained polyimide resin.
  • Experimental example 3 The polyimide varnishes obtained in Examples 7 to 21 were applied onto a glass substrate using a bar coater so that the dry film thickness was 40 ⁇ m, and the vacuum was reduced in a vacuum dryer (decompression degree: 10 mmHg or less) at 300 ° C. After drying for 1 hour and cooling to room temperature, it was peeled off from the glass substrate to obtain a polyimide molded body (film).
  • Table 2 shows the measurement results of the linear expansion coefficient, total light transmittance, glass transition temperature, and mechanical properties of the obtained polyimide molded body (film).
  • Experimental Example 4 A polyimide molded body (film) was obtained from the polyimide varnish obtained in Comparative Example 2 in the same manner as in Experimental Example 3. Table 2 shows the measurement results of the linear expansion coefficient, total light transmittance, glass transition temperature, and mechanical properties of the obtained polyimide molded body (film).
  • the polyimide resin of the present invention has excellent physical properties such as a low linear expansion coefficient of 60 ppm / K or less, a high total light transmittance of 87% or more, and a high glass transition temperature of 280 ° C. or more. it is obvious.
  • the polyimide resin obtained in Comparative Example 1 has a low coefficient of linear expansion and a high glass transition temperature, but a low total light transmittance.
  • the polyimide resin of this invention is a polyimide resin which has solvent solubility from Table 2, the low linear expansion coefficient of 60 ppm / K or less, the high total light transmittance of 87% or more, and the high glass transition temperature of 260 degreeC or more. It is clear that it has excellent physical properties. Although the solvent solubility of the polyimide resin of Comparative Example 2 is good, the total light transmittance is low.
  • the polyimide resin of the present invention is a polyimide resin that simultaneously satisfies a low linear expansion coefficient, a high total light transmittance, and a high glass transition temperature.
  • the polyimide resin of the present invention has both high transparency, heat resistance and a low coefficient of linear expansion. Therefore, the polyimide molded body obtained by molding the polyimide varnish of the polyimide resin can be suitably used for optical materials such as displays and lighting. In addition, the polyimide resin can be used for heat-resistant insulating materials, heat-resistant paints, heat-resistant coating materials, and heat-resistant adhesives.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

The present invention provides a polyimide resin having high transparency, excellent heat resistance, and a low coefficient of linear thermal expansion, and pertains more specifically to a polyimide resin obtained by running an imidization polymerization reaction of bicyclo[4.2.0]octane-3,4,7,8-tetracarboxylic dianhydride, an aromatic diamine compound, and, as needed, an alicyclic diamine compound, the total of the diamine compounds being in the range of 90-110 in terms of molar ratio in relation to 100 of the tetracarboxylic dianhydride.

Description

高透明性ポリイミド樹脂Highly transparent polyimide resin
 本発明は、高透明ポリイミド樹脂に関する。 The present invention relates to a highly transparent polyimide resin.
 従来、ポリイミド樹脂は、耐熱性、強度及び電気絶縁性等に優れることから、電子材料用樹脂として多く使用されてきた。しかしながら、一般的なポリイミド樹脂は、着色が強いため、用途に限界があった。 Conventionally, polyimide resins have been widely used as resins for electronic materials because they are excellent in heat resistance, strength, electrical insulation and the like. However, since a general polyimide resin is strongly colored, its use is limited.
 そこで、ポリイミド樹脂の色相改善の研究が行われ、ポリイミド樹脂原料にフッ素化合物を用いる手法が発見されている(非特許文献1)。しかしながら、フッ素原子を有するポリイミド樹脂原料は製造が難しく、高価であるために非経済的であった。 Therefore, research on improving the hue of polyimide resin has been conducted, and a method of using a fluorine compound as a polyimide resin raw material has been discovered (Non-Patent Document 1). However, polyimide resin raw materials having fluorine atoms are uneconomical because they are difficult to produce and are expensive.
 ポリイミド樹脂の色相改善についての別の手法として、ポリイミド樹脂原料に、脂肪族又は脂環式化合物を用いる研究も行われてきた。特に、脂環式酸二無水物を用いると、色相改善に大きな効果があることが見出されている(非特許文献2)。 As another method for improving the hue of polyimide resin, studies have been conducted on using aliphatic or alicyclic compounds as polyimide resin raw materials. In particular, it has been found that the use of alicyclic acid dianhydride has a great effect on hue improvement (Non-patent Document 2).
 また、透明なポリイミドは、特にガラスの代替用途で期待されている。現在のフラットパネルディスプレイ分野では、ガラス基板を用いる手法が主流である。ガラスは高透明性、高耐熱性及び低線膨張係数等の特性に優れる材料であるが、衝撃を受けた際に割れやすく比重が大きいという課題があった。そのため、高透明性、高耐熱性及び低線膨張係数を満たすフレキシブル性に優れたポリイミド樹脂の開発が求められていた。 Also, transparent polyimide is expected especially for glass replacement applications. In the current flat panel display field, a technique using a glass substrate is the mainstream. Glass is a material excellent in properties such as high transparency, high heat resistance, and low linear expansion coefficient, but has a problem that it is easily broken when subjected to an impact and has a large specific gravity. Therefore, development of the polyimide resin excellent in the flexibility which satisfy | fills high transparency, high heat resistance, and a low linear expansion coefficient was calculated | required.
 本発明は、高透明性、耐熱性及び低線膨張係数に優れたポリイミド樹脂を提供することを目的とする。 An object of the present invention is to provide a polyimide resin excellent in high transparency, heat resistance and low linear expansion coefficient.
 本発明者らは、上記の課題を解決すべく鋭意検討を進めた結果、特定のテトラカルボン酸二酸無水物と特定のジアミン化合物を原料に用いることで、高透明性、耐熱性及び低線膨張係数に優れたポリイミド樹脂が得られることを見出し、更に鋭意検討した結果、本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the present inventors have used a specific tetracarboxylic dianhydride and a specific diamine compound as raw materials, so that high transparency, heat resistance and low line are achieved. As a result of finding out that a polyimide resin having an excellent expansion coefficient can be obtained and further studying it, the present invention has been completed.
 すなわち、本発明は、下記のポリイミド樹脂に係る。
項1.一般式(1)
That is, the present invention relates to the following polyimide resin.
Item 1. General formula (1)
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
で表されるテトラカルボン酸二無水物と、
芳香族ジアミン化合物とを、
モル比で、該テトラカルボン酸二無水物100に対して、該ジアミン化合物の合計が90~110の範囲でイミド化重合反応して得られる、ポリイミド樹脂。
項2.芳香族ジアミン化合物が、一般式(2)
A tetracarboxylic dianhydride represented by:
An aromatic diamine compound,
A polyimide resin obtained by imidation polymerization reaction in a molar ratio of the total of the diamine compounds with respect to the tetracarboxylic dianhydride 100 in the range of 90 to 110.
Item 2. The aromatic diamine compound is represented by the general formula (2)
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
のジアミン化合物で表される少なくとも1種である、項1に記載のポリイミド樹脂。
項3.芳香族ジアミン化合物が、
(A)ビス[4-(4-アミノフェノキシ)フェニル]スルホン、及び
(B)一般式(3)
Item 2. The polyimide resin according to Item 1, which is at least one kind represented by the diamine compound.
Item 3. Aromatic diamine compounds
(A) bis [4- (4-aminophenoxy) phenyl] sulfone, and (B) general formula (3)
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
のジアミン化合物で表される少なくとも1種
である、項1に記載のポリイミド樹脂。
項4.一般式(1)
Item 2. The polyimide resin according to Item 1, which is at least one kind represented by the diamine compound.
Item 4. General formula (1)
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
で表されるテトラカルボン酸二無水物と、
芳香族ジアミン化合物、及び
脂環式ジアミン化合物とを、
モル比で、該テトラカルボン酸二無水物100に対して、該ジアミン化合物の合計が90~110の範囲でイミド化重合反応して得られる、ポリイミド樹脂。
項5.脂環式ジアミン化合物が、一般式(4)
A tetracarboxylic dianhydride represented by:
An aromatic diamine compound and an alicyclic diamine compound,
A polyimide resin obtained by imidation polymerization reaction in a molar ratio of the total of the diamine compounds with respect to the tetracarboxylic dianhydride 100 in the range of 90 to 110.
Item 5. The alicyclic diamine compound has the general formula (4)
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
のジアミン化合物で表される少なくとも1種である、項4に記載のポリイミド樹脂。
項6.芳香族ジアミン化合物が、一般式(2)
Item 5. The polyimide resin according to Item 4, which is at least one kind represented by the diamine compound.
Item 6. The aromatic diamine compound is represented by the general formula (2)
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
のジアミン化合物で表される少なくとも1種である、項4又は5に記載のポリイミド樹脂。
項7.芳香族ジアミン化合物が、一般式(5)
Item 6. The polyimide resin according to Item 4 or 5, which is at least one kind represented by the diamine compound.
Item 7. The aromatic diamine compound is represented by the general formula (5)
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
のジアミン化合物で表される少なくとも1種である、項4又は5に記載のポリイミド樹脂。
項8.芳香族ジアミン化合物が、一般式(6)
Item 6. The polyimide resin according to Item 4 or 5, which is at least one kind represented by the diamine compound.
Item 8. The aromatic diamine compound is represented by the general formula (6)
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
のジアミン化合物で表される少なくとも1種である、項4又は5に記載のポリイミド樹脂。
項9.一般式(1)
Item 6. The polyimide resin according to Item 4 or 5, which is at least one kind represented by the diamine compound.
Item 9. General formula (1)
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
で表されるテトラカルボン酸二無水物と、
芳香族ジアミン化合物とを、
モル比で、該テトラカルボン酸二無水物100に対して、該ジアミン化合物の合計が90~110の範囲で共重合反応して得られる、ポリアミド酸樹脂。
項10.芳香族ジアミン化合物が、一般式(2)
A tetracarboxylic dianhydride represented by:
An aromatic diamine compound,
A polyamic acid resin obtained by copolymerization reaction with respect to the tetracarboxylic dianhydride 100 in a molar ratio of 90 to 110 in total.
Item 10. The aromatic diamine compound is represented by the general formula (2)
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
のジアミン化合物で表される少なくとも1種である、項9に記載のポリアミド酸樹脂。
項11.芳香族ジアミン化合物が、一般式(5)
Item 10. The polyamic acid resin according to Item 9, which is at least one kind represented by the diamine compound.
Item 11. The aromatic diamine compound is represented by the general formula (5)
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
のジアミン化合物で表される少なくとも1種である、項10に記載のポリアミド酸樹脂。
項12.一般式(1)
Item 11. The polyamic acid resin according to Item 10, which is at least one kind represented by the diamine compound:
Item 12. General formula (1)
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
で表されるテトラカルボン酸二無水物と、
芳香族ジアミン化合物、及び
脂環式ジアミン化合物とを、
モル比で、該テトラカルボン酸二無水物100に対して、該ジアミン化合物の合計が90~110の範囲でイミド化重合反応して得られる、ポリアミド酸樹脂。
項13.脂環式ジアミン化合物が、一般式(4)
A tetracarboxylic dianhydride represented by:
An aromatic diamine compound and an alicyclic diamine compound,
A polyamic acid resin obtained by imidization polymerization reaction with respect to the tetracarboxylic dianhydride 100 in a molar ratio of 90 to 110 in total.
Item 13. The alicyclic diamine compound has the general formula (4)
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
のジアミン化合物で表される少なくとも1種である、項12に記載のポリアミド酸樹脂。
項14.芳香族ジアミン化合物が、一般式(2)
Item 13. The polyamic acid resin according to Item 12, which is at least one kind represented by the diamine compound.
Item 14. The aromatic diamine compound is represented by the general formula (2)
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
のジアミン化合物で表される少なくとも1種である、項12又は13に記載のポリアミド酸樹脂。
項15.項3~8のいずれかに記載のポリイミド樹脂及び有機溶剤を含有するポリイミドワニス。
項16.項9~14のいずれかに記載のポリアミド酸樹脂及び有機溶剤を含有するポリアミド酸ワニス。
項17.項15に記載のポリイミドワニスを成形加工して得られるポリイミド成形体。
項18.項16に記載のポリアミド酸ワニスを成形加工して得られるポリイミド成形体。
項19.ポリイミド成形体が、膜状、フィルム状又はシート状の形態である、項17又は18に記載のポリイミド成形体。
項20.項17~19のいずれかに記載のポリイミド成形体からなるプラスチック基板。
項21.項20に記載のプラスチック基板を備えた電気部品又は電子部品。
Item 14. The polyamic acid resin according to Item 12 or 13, which is at least one kind represented by the diamine compound.
Item 15. Item 9. A polyimide varnish containing the polyimide resin according to any one of Items 3 to 8 and an organic solvent.
Item 16. Item 15. A polyamic acid varnish containing the polyamic acid resin according to any one of Items 9 to 14 and an organic solvent.
Item 17. Item 16. A polyimide molded body obtained by molding the polyimide varnish according to Item 15.
Item 18. Item 18. A polyimide molded body obtained by molding the polyamic acid varnish according to Item 16.
Item 19. Item 19. The polyimide molded body according to item 17 or 18, wherein the polyimide molded body is in the form of a film, a film, or a sheet.
Item 20. Item 20. A plastic substrate comprising the polyimide molded article according to any one of Items 17 to 19.
Item 21. Item 20. An electrical component or electronic component comprising the plastic substrate according to Item 20.
 本発明によれば、高透明性、耐熱性及び低線膨張係数に優れたポリイミド樹脂を得ることができる。当該ポリイミド樹脂の成形体からなるプラスチック基板は、電気部品、電子部品等に使用できる。 According to the present invention, a polyimide resin excellent in high transparency, heat resistance and low linear expansion coefficient can be obtained. A plastic substrate made of a molded body of the polyimide resin can be used for electrical parts, electronic parts and the like.
 また、当該ポリイミド樹脂は、耐熱絶縁材、耐熱塗料、耐熱コーティング材又は耐熱接着材等に使用できる。 In addition, the polyimide resin can be used for heat-resistant insulating materials, heat-resistant paints, heat-resistant coating materials, heat-resistant adhesives, and the like.
 以下、本発明を詳細に説明する。
I.ポリイミド樹脂
 本発明のポリイミド樹脂は、下記一般式(1)
Hereinafter, the present invention will be described in detail.
I. Polyimide resin The polyimide resin of the present invention has the following general formula (1):
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
で表されるテトラカルボン酸二無水物と、芳香族ジアミン化合物とを、イミド化重合反応することにより得られる。 It is obtained by imidation polymerization reaction of a tetracarboxylic dianhydride represented by the following and an aromatic diamine compound.
 あるいは、下記一般式(1) Or the following general formula (1)
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
で表されるテトラカルボン酸二無水物と、芳香族ジアミン化合物、及び脂環式ジアミン化合物とを、イミド化重合反応することにより得られる。 It is obtained by carrying out imidation polymerization reaction of a tetracarboxylic dianhydride represented by the following formula, an aromatic diamine compound, and an alicyclic diamine compound.
I-1.一般式(1)で表されるテトラカルボン酸二無水物
 本発明のポリイミド樹脂の構成成分である、上記一般式(1)で表されるテトラカルボン酸二無水物は、ビシクロ[4.2.0]オクタン-3,4,7,8-テトラカルボン酸二無水物である。
I-1. Tetracarboxylic acid dianhydride represented by general formula (1) The tetracarboxylic dianhydride represented by the above general formula (1), which is a component of the polyimide resin of the present invention, is bicyclo [4.2. 0] Octane-3,4,7,8-tetracarboxylic dianhydride.
 一般式(1)で表されるテトラカルボン酸二無水物の製造方法としては、光二量化反応が推奨される。具体例としては、1,2,3,6-テトラヒドロフタル酸無水物と無水マレイン酸の等モル量を、メチルエチルケトン等のケトン系溶媒、酢酸エチル等のエステル系溶媒またはジオキサン等のエーテル系溶媒に溶解させて、高圧水銀ランプ等を用いて250~400nmの光を照射することで当該テトラカルボン酸二無水物反応物を得ることができる。 As a method for producing the tetracarboxylic dianhydride represented by the general formula (1), a photodimerization reaction is recommended. Specific examples include equimolar amounts of 1,2,3,6-tetrahydrophthalic anhydride and maleic anhydride in a ketone solvent such as methyl ethyl ketone, an ester solvent such as ethyl acetate, or an ether solvent such as dioxane. The tetracarboxylic dianhydride reactant can be obtained by dissolving and irradiating light of 250 to 400 nm using a high pressure mercury lamp or the like.
 一般式(1)で表されるテトラカルボン酸二無水物は、テトラカルボン酸、又はテトラカルボン酸のモノ、ジ、トリ又はテトラ酸塩化物、及び、炭素数1~4の低級アルコールとのモノ、ジ、トリ又はテトラエステル等の誘導体として使用することもできる。 The tetracarboxylic dianhydride represented by the general formula (1) is a tetracarboxylic acid or a mono-, di-, tri- or tetra-acid chloride of tetracarboxylic acid and a mono-alcohol with a lower alcohol having 1 to 4 carbon atoms. It can also be used as a derivative such as di-, tri- or tetraester.
 また、本発明において、その効果を妨げない範囲で、一般式(1)で表されるテトラカルボン酸二無水物の一部を他のテトラカルボン酸二無水物に置き換えて使用することができる。他のテトラカルボン酸二無水物としては、芳香族テトラカルボン酸二無水物、脂環式テトラカルボン酸二無水物、脂肪族テトラカルボン酸二無水物が挙げられる。 In the present invention, a part of the tetracarboxylic dianhydride represented by the general formula (1) can be replaced with another tetracarboxylic dianhydride as long as the effect is not hindered. Other tetracarboxylic dianhydrides include aromatic tetracarboxylic dianhydrides, alicyclic tetracarboxylic dianhydrides, and aliphatic tetracarboxylic dianhydrides.
 前記芳香族テトラカルボン酸二無水物としては、具体的には、ピロメリット酸二無水物、3,3’ ,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、4,4’-オキシジフタル酸二無水物、 3,3’ ,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’ ,4,4’-ビフェニルテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(3,4-ジカルボキシフェノキシフェニル)プロパン二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、1,2-ビス(2,3-ジカルボキシフェニル)エタン二無水物、1,1-ビス(3,4-ジカルボキシフェニル)エタン二無水物、1,2-ビス(3,4-ジカルボキシフェニル)エタン二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、4,4’-(p-フェニレンジオキシ)ジフタル酸二無水物、4,4’-(m-フェニレンジオキシ)ジフタル酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、1,2-エチレンビス(アンヒドロトリメリテート)、1,3,3a,4,5,9b-ヘキサヒドロ-5(テトラヒドロ-2,5-ジオキソ-3-フラニル)ナフト[1,2-c]フラン-1.3-ジオン及びそれらの誘導体等が例示される。 Specific examples of the aromatic tetracarboxylic dianhydride include pyromellitic dianhydride, 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride, and 4,4′-oxydiphthalic acid. Dianhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,2-bis (3,4 Dicarboxyphenyl) propane dianhydride, 2,2-bis (2,3-dicarboxyphenyl) propane dianhydride, 2,2-bis (3,4-dicarboxyphenoxyphenyl) propane dianhydride, 1, 1-bis (2,3-dicarboxyphenyl) ethane dianhydride, 1,2-bis (2,3-dicarboxyphenyl) ethane dianhydride, 1,1-bis (3,4-dicarboxyphenyl) Eta Dianhydride, 1,2-bis (3,4-dicarboxyphenyl) ethane dianhydride, bis (2,3-dicarboxyphenyl) methane dianhydride, bis (3,4-dicarboxyphenyl) methane Anhydride, 4,4 '-(p-phenylenedioxy) diphthalic dianhydride, 4,4'-(m-phenylenedioxy) diphthalic dianhydride, 2,3,6,7-naphthalenetetracarboxylic Acid dianhydride, 1,4,5,8-naphthalenetetracarboxylic dianhydride, 1,2-ethylenebis (anhydrotrimellitate), 1,3,3a, 4,5,9b-hexahydro-5 Examples thereof include (tetrahydro-2,5-dioxo-3-furanyl) naphtho [1,2-c] furan-1.3-dione and derivatives thereof.
 前記脂環式テトラカルボン酸二無水物としては、具体的には、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、2,3,5-トリカルボキシシクロペンチル酢酸二無水物、3,5,6-トリカルボキシノルボナン-2-酢酸二無水物、2,3,4,5-テトラヒドロフランテトラカルボン酸二無水物、5-(2,5-ジオキソテトラヒドロフラル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸二無水物、ビシクロ[2.2.2]-オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物及びそれらの誘導体等が例示される。 Specific examples of the alicyclic tetracarboxylic dianhydride include 1,2,4,5-cyclohexanetetracarboxylic dianhydride, 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic acid, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, 2,3,5-tricarboxycyclopentylacetic acid dianhydride, 3,5,6-tricarboxynorbonane-2-acetic acid dianhydride, 2,3,4,5-tetrahydrofurantetracarboxylic dianhydride, 5- (2,5-dioxotetrahydrofural) -3-methyl -3-Cyclohexene-1,2-dicarboxylic dianhydride, bicyclo [2.2.2] -oct-7-ene-2,3,5,6-tetracarboxylic dianhydride and their derivatives, etc. It is exemplified.
 前記脂肪族テトラカルボン酸二無水物としては、具体的には、1,2,3,4-ブタンテトラカルボン酸二無水物、1,2,3,4-ペンタンテトラカルボン酸二無水物及びそれらの誘導体等が例示される。 Specific examples of the aliphatic tetracarboxylic dianhydride include 1,2,3,4-butanetetracarboxylic dianhydride, 1,2,3,4-pentanetetracarboxylic dianhydride, and those And the like.
 上記の他のテトラカルボン酸二無水物は、単独で又は2種以上を適宜混合して当該イミド化重合反応に供することができる。 These other tetracarboxylic dianhydrides can be used alone or in combination of two or more for the imidation polymerization reaction.
 一般式(1)で表されるテトラカルボン酸二無水物の一部を、上記の他のテトラカルボン酸二無水物に置き換えて使用する場合には、その使用量は、全テトラカルボン酸二無水物のモル数に対して、好ましくは20モル%以下、より好ましくは10モル%以下、特に5モル%以下が推奨される。 When a part of the tetracarboxylic dianhydride represented by the general formula (1) is used in place of the other tetracarboxylic dianhydride, the amount used is the total tetracarboxylic dianhydride. The amount is preferably 20 mol% or less, more preferably 10 mol% or less, particularly 5 mol% or less, based on the number of moles of the product.
I-2.芳香族ジアミン化合物
 本発明のポリイミド樹脂の構成成分である芳香族ジアミン化合物としては、特に制限はなく、市販品や従来公知の製造方法により得られるものが使用できる。
I-2. Aromatic diamine compound There is no restriction | limiting in particular as an aromatic diamine compound which is a structural component of the polyimide resin of this invention, The thing obtained by a commercial item or a conventionally well-known manufacturing method can be used.
 芳香族ジアミン化合物の具体例としては、具体的には、m-フェニレンジアミン、p-フェニレンジアミン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルプロパン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルフィド、3,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルフィド、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4'-ビス(3-アミノフェノキシ)ビフェニル、ビス[4-(4-アミノフェノキシ)フェニル]エーテル、ビス[4-(3-アミノフェノキシ)フェニル]エーテル、9,9-ビス(4-アミノフェニル)フルオレン、9,9-ビス(4-アミノ-3-クロロフェニル)フルオレン、9,9-ビス(4-アミノ-3-フルオロフェニル)フルオレン、O-トリジン、m-トリジン、4,4’-ジアミノベンズアニリド、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、4-アミノフェニル-4-アミノベンゾエート、2-(4-アミノフェニル)-6-アミノベンゾオキサゾール等が例示される。これらの中でも、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルプロパン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4'-ビス(3-アミノフェノキシ)ビフェニル、ビス[4-(4-アミノフェノキシ)フェニル]エーテル、ビス[4-(3-アミノフェノキシ)フェニル]エーテル等が例示される。これらの芳香族ジアミン化合物は、単独で使用してもよいし2種以上適宜混合して用いてもよい。 Specific examples of the aromatic diamine compound include m-phenylenediamine, p-phenylenediamine, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylpropane, 4,4′-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl ether, 4,4'-diaminodiphenyl sulfone, 3,4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl Sulfide, 3,4′-diaminodiphenyl sulfide, 3,3′-diaminodiphenyl sulfide, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,4- Bis (3-aminophenoxy) benzene, 1,3 Bis (3-aminophenoxy) benzene, bis [4- (4-aminophenoxy) phenyl] sulfone, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 2,2-bis [4- ( 3-aminophenoxy) phenyl] propane, 4,4′-bis (4-aminophenoxy) biphenyl, 4,4′-bis (3-aminophenoxy) biphenyl, bis [4- (4-aminophenoxy) phenyl] ether Bis [4- (3-aminophenoxy) phenyl] ether, 9,9-bis (4-aminophenyl) fluorene, 9,9-bis (4-amino-3-chlorophenyl) fluorene, 9,9-bis ( 4-amino-3-fluorophenyl) fluorene, O-tolidine, m-tolidine, 4,4'-diaminobenzanilide, 2,2'-bis ( Trifluoromethyl) -4,4'-diaminobiphenyl, 4-aminophenyl-4-amino benzoate, 2- (4-aminophenyl) -6-amino-benzoxazole and the like. Among these, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylpropane, 4,4′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 3,3′-diaminodiphenyl ether, 4,4′- Diaminodiphenyl sulfone, 3,3′-diaminodiphenyl sulfone, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (3-aminophenoxy) Benzene, 1,3-bis (3-aminophenoxy) benzene, bis [4- (4-aminophenoxy) phenyl] sulfone, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 2,2 -Bis [4- (3-aminophenoxy) phenyl] propane, 4,4′-bis (4-amino Examples include phenoxy) biphenyl, 4,4′-bis (3-aminophenoxy) biphenyl, bis [4- (4-aminophenoxy) phenyl] ether, bis [4- (3-aminophenoxy) phenyl] ether, and the like. . These aromatic diamine compounds may be used alone or in combination of two or more.
 好ましい芳香族ジアミン化合物としては、下記一般式(2)で表される芳香族ジアミン化合物が挙げられる。 Preferred aromatic diamine compounds include aromatic diamine compounds represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
 より好ましい芳香族ジアミン化合物としては、下記一般式(5)で表される芳香族ジアミン化合物が挙げられる。 More preferable aromatic diamine compounds include aromatic diamine compounds represented by the following general formula (5).
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
 さらに好ましい芳香族ジアミン化合物としては、下記一般式(6)で表される芳香族ジアミン化合物が挙げられる。 More preferable aromatic diamine compounds include aromatic diamine compounds represented by the following general formula (6).
 さらに、芳香族ジアミン化合物として、(A)ビス[4-(4-アミノフェノキシ)フェニル]スルホン、及び(B)下記一般式(3)で表されるジアミン化合物から選択される少なくとも1種とを併用することが好ましい。 Furthermore, as the aromatic diamine compound, (A) bis [4- (4-aminophenoxy) phenyl] sulfone, and (B) at least one selected from diamine compounds represented by the following general formula (3): It is preferable to use together.
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
 より好ましくは、(A)ビス[4-(4-アミノフェノキシ)フェニル]スルホン、及び(B)下記一般式(7)で表されるジアミン化合物から選択される少なくとも1種とを併用することが好ましい。 More preferably, (A) bis [4- (4-aminophenoxy) phenyl] sulfone and (B) at least one selected from diamine compounds represented by the following general formula (7) may be used in combination. preferable.
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
I-3.脂環式ジアミン化合物
 本発明のポリイミド樹脂の構成成分として用いられ得る脂環式ジアミン化合物としては、特に制限はなく、市販品や従来公知の製造方法により得られるものが使用できる。
I-3. Alicyclic diamine compound There is no restriction | limiting in particular as an alicyclic diamine compound which can be used as a structural component of the polyimide resin of this invention, The thing obtained by a commercial item or a conventionally well-known manufacturing method can be used.
 脂環式ジアミン化合物としては、具体例には、ジアミノシクロヘキサン、ジアミノジシクロヘキシルメタン、ジメチルージアミノジシクロヘキシルメタン、テトラメチルージアミノジシクロヘキシルメタン、ジアミノジシクロヘキシルプロパン、ジアミノビシクロ[2.2.1]ヘプタン、ビス(アミノメチル)-ビシクロ[2.2.1]ヘプタン、3(4),8(9)-ビス(アミノメチル)トリシクロ[5.2.1.02,6]デカン、1,3-ビスアミノメチルシクロヘキサン、イソホロンジアミン等が例示される。これらの脂環式ジアミン化合物は、単独で又は2種以上を適宜混合して当該イミド化重合反応に供することができる。 Specific examples of the alicyclic diamine compound include diaminocyclohexane, diaminodicyclohexylmethane, dimethyl-diaminodicyclohexylmethane, tetramethyl-diaminodicyclohexylmethane, diaminodicyclohexylpropane, diaminobicyclo [2.2.1] heptane, bis ( Aminomethyl) -bicyclo [2.2.1] heptane, 3 (4), 8 (9) -bis (aminomethyl) tricyclo [5.2.1.0 2,6 ] decane, 1,3-bisamino Examples include methylcyclohexane and isophoronediamine. These alicyclic diamine compounds can be used alone or in combination of two or more kinds for the imidation polymerization reaction.
 好ましい脂環式ジアミン化合物としては、下記一般式(4)で表されるジアミン化合物が挙げられる。 Preferred examples of the alicyclic diamine compound include diamine compounds represented by the following general formula (4).
 脂環式ジアミン化合物を、芳香族ジアミン化合物と併用する場合、脂環式ジアミン化合物と芳香族ジアミン化合物のモル比は、80~20:20~80の範囲であり、好ましくは、75~30:25~70である。特に、70~40:30~60であることが好ましい。 When the alicyclic diamine compound is used in combination with an aromatic diamine compound, the molar ratio of the alicyclic diamine compound to the aromatic diamine compound is in the range of 80-20: 20-80, preferably 75-30: 25-70. In particular, it is preferably 70 to 40:30 to 60.
 脂環式ジアミン化合物を、芳香族ジアミン化合物と併用する場合、好ましい芳香族ジアミン化合物としては、下記一般式(2)で表される芳香族ジアミン化合物が挙げられる。 When the alicyclic diamine compound is used in combination with an aromatic diamine compound, a preferable aromatic diamine compound includes an aromatic diamine compound represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
 より好ましい芳香族ジアミン化合物としては、下記一般式(5)で表される芳香族ジアミン化合物が挙げられる。 More preferable aromatic diamine compounds include aromatic diamine compounds represented by the following general formula (5).
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
 さらに好ましい芳香族ジアミン化合物としては、下記一般式(6)で表される芳香族ジアミン化合物が挙げられる。 More preferable aromatic diamine compounds include aromatic diamine compounds represented by the following general formula (6).
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
 また、脂環式ジアミン化合物及び/又は芳香族ジアミン化合物は、本発明の効果を妨げない範囲で、その一部を脂肪族ジアミン化合物に置き換えて使用することができる。 In addition, the alicyclic diamine compound and / or the aromatic diamine compound can be used by replacing a part thereof with the aliphatic diamine compound as long as the effects of the present invention are not hindered.
 脂肪族ジアミン化合物の具体例としては、例えば、エチレンジアミン、ヘキサメチレンジアミン、オクタメチレンジアミン、デカメチレンジアミン等が例示される。 Specific examples of the aliphatic diamine compound include ethylene diamine, hexamethylene diamine, octamethylene diamine, decamethylene diamine and the like.
 上記の脂肪族ジアミン化合物は、単独で又は2種以上を適宜混合して当該イミド化重合反応に供することができる。 The above aliphatic diamine compounds can be used alone or in combination of two or more for the imidation polymerization reaction.
 脂環式ジアミン化合物及び/又は芳香族ジアミン化合物の一部を上記の脂肪族ジアミン化合物に置き換えて使用する場合には、その使用量は全ジアミン化合物のモル数に対して、好ましくは20モル%以下、より好ましくは10モル%以下、特に5モル%以下が推奨される。 When a part of the alicyclic diamine compound and / or aromatic diamine compound is used in place of the above aliphatic diamine compound, the amount used is preferably 20 mol% with respect to the number of moles of the total diamine compound. In the following, 10 mol% or less, more preferably 5 mol% or less is recommended.
 本発明に係るイミド化重合反応でのモル比は、全てのテトラカルボン酸二無水物100に対して、全てのジアミン化合物90~110の範囲であることが好ましい。より好ましくは、95~105の範囲であり、さらに好ましくは、98~102の範囲である。この範囲内でイミド化重合反応を行うことで、十分な重合度のポリイミド樹脂を得ることができる。なお、上記のとおり、前記テトラカルボン酸二無水物、前記脂環式ジアミン化合物及び芳香族ジアミン化合物は、本発明の効果を奏する範囲で、それぞれ一部を脂肪族ジアミン化合物に置換することが可能であり、その場合は、同様のモル比が適用される。 The molar ratio in the imidation polymerization reaction according to the present invention is preferably in the range of all diamine compounds 90 to 110 with respect to all tetracarboxylic dianhydrides 100. More preferably, it is in the range of 95 to 105, and still more preferably in the range of 98 to 102. By performing the imidization polymerization reaction within this range, a polyimide resin having a sufficient degree of polymerization can be obtained. In addition, as described above, the tetracarboxylic dianhydride, the alicyclic diamine compound, and the aromatic diamine compound can each be partially substituted with an aliphatic diamine compound within the range where the effects of the present invention are achieved. In that case, a similar molar ratio applies.
 本明細書及び特許請求の範囲において、ジアミン化合物は、「ジアミン」の形態で記載しているが、反応性の向上の目的で且つ本発明の効果を奏する限り、それらの代わりにアミノ基の一部又は全部をイソシアネート基に変換した化合物やシリル化した化合物等を使用することができる。 In the present specification and claims, the diamine compound is described in the form of “diamine”. However, as long as the effect of the present invention is obtained for the purpose of improving the reactivity, an amino group is substituted for them. A compound obtained by converting part or all into an isocyanate group, a silylated compound, or the like can be used.
II.ポリアミド酸樹脂
 本発明に係るポリイミド樹脂の前駆体であるポリアミド酸樹脂は、反応溶媒中、上記に記載のテトラカルボン酸二無水物とジアミン化合物とを、5℃~100℃の温度範囲で共重合反応して得られる。
II. Polyamic acid resin The polyamic acid resin which is a precursor of the polyimide resin according to the present invention is a copolymer of the tetracarboxylic dianhydride and the diamine compound described above in a reaction solvent in a temperature range of 5 ° C to 100 ° C. Obtained by reaction.
II-1.共重合反応
 上記共重合反応で使用される反応溶媒としては、共重合反応より生成するポリアミド酸樹脂を溶解できるものであれば、何れの反応溶媒でも良い。例えば、非プロトン性溶媒、フェノール系溶媒、エーテル系溶媒、カーボネート系溶媒等が好ましい例として挙げられる。
II-1. Copolymerization Reaction The reaction solvent used in the above copolymerization reaction may be any reaction solvent as long as it can dissolve the polyamic acid resin produced from the copolymerization reaction. For example, preferred examples include aprotic solvents, phenol solvents, ether solvents, carbonate solvents and the like.
 非プロトン性溶媒の具体例としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-メチルカプロラクタム、1,3-ジメチルイミダゾリジノン、テトラメチル尿素等のアミド系溶媒、γ-ブチロラクトン、γ-バレロラクトン等のラクトン系溶媒、ヘキサメチルホスホリックアミド、ヘキサメチルホスフィントリアミド等の含リン系アミド系溶媒、ジメチルスルホン、ジメチルスルホキシド、スルホラン等の含硫黄系溶媒、アセトン、シクロヘキサン、メチルシクロヘキサノン等のケトン系溶媒、ピコリン、ピリジン等のアミン系溶媒、酢酸(2-メトキシ-1-メチルエチル)等のエステル系溶媒等が例示される。 Specific examples of aprotic solvents include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, 1,3-dimethylimidazolidinone, tetramethylurea, etc. Amide solvents, lactone solvents such as γ-butyrolactone and γ-valerolactone, phosphorus-containing amide solvents such as hexamethylphosphoric amide and hexamethylphosphine triamide, sulfur-containing dimethylsulfone, dimethylsulfoxide, sulfolane and the like Examples thereof include ketone solvents such as acetone, cyclohexane and methylcyclohexanone, amine solvents such as picoline and pyridine, and ester solvents such as acetic acid (2-methoxy-1-methylethyl).
 フェノール系溶媒の具体例としては、フェノール、o-クレゾール、m-クレゾール、p-クレゾール、2,3-キシレノール、2,4-キシレノール、2,5-キシレノール、2,6-キシレノール、3,4-キシレノール、3,5-キシレノール等が例示される。 Specific examples of the phenol solvent include phenol, o-cresol, m-cresol, p-cresol, 2,3-xylenol, 2,4-xylenol, 2,5-xylenol, 2,6-xylenol, 3,4 -Xylenol, 3,5-xylenol and the like are exemplified.
 エーテル系溶媒の具体例としては、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、テトラヒドロフラン、1,4-ジオキサン等が例示される。 Specific examples of the ether solvent include ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, tetrahydrofuran, 1,4-dioxane and the like.
 カーボネート系溶媒の具体例としては、ジエチルカーボネート、メチルエチルカーボネート、エチレンカーボネート、プロピレンカーボネート等が例示される。 Specific examples of carbonate solvents include diethyl carbonate, methyl ethyl carbonate, ethylene carbonate, propylene carbonate, and the like.
 上記の反応溶媒は、単独で又は2種類以上混合して用いてもよい。 The above reaction solvents may be used alone or in combination of two or more.
 これらの反応溶媒の中でも、特に、N-メチル-2-ピロリドン、1,3-ジメチルイミダゾリジノン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、γ-ブチロラクトンが推奨される。 Among these reaction solvents, N-methyl-2-pyrrolidone, 1,3-dimethylimidazolidinone, N, N-dimethylformamide, N, N-dimethylacetamide, and γ-butyrolactone are particularly recommended.
 反応溶媒の使用量としては、生成するポリアミド酸樹脂を溶解できる量であれば良い。具体的なポリアミド酸樹脂の濃度としては、好ましくは5~50重量%、より好ましくは10~40重量%、さらに好ましくは10~30重量%となるように調整することが推奨される。 The amount of the reaction solvent used may be an amount that can dissolve the polyamic acid resin to be produced. The specific concentration of the polyamic acid resin is preferably adjusted to 5 to 50% by weight, more preferably 10 to 40% by weight, and still more preferably 10 to 30% by weight.
 共重合反応系内は、その反応系の着色防止及び安全性の観点から、不活性ガス雰囲気下とすることが望ましい。通常、不活性ガスで反応系内を置換し、反応中は不活性ガスを流通させるおく方法が推奨される。不活性ガスとしては、窒素、アルゴン等が例示される。 The interior of the copolymerization reaction system is preferably an inert gas atmosphere from the viewpoint of preventing coloration and safety of the reaction system. Usually, a method of replacing the inside of the reaction system with an inert gas and allowing the inert gas to flow during the reaction is recommended. Nitrogen, argon, etc. are illustrated as an inert gas.
 また、本発明に係るポリアミド酸樹脂の共重合反応においては、塩の発生抑制剤を使用することができる。塩の発生抑制剤としては、ポリアミド酸樹脂ワニスを加熱イミド化する際に揮発して除去可能であるものが好ましい。 In the copolymerization reaction of the polyamic acid resin according to the present invention, a salt generation inhibitor can be used. The salt generation inhibitor is preferably one that can be volatilized and removed when the polyamic acid resin varnish is heated to imidize.
 上記塩の発生抑制剤としては、例えば、一般的なシリル化剤を用いることができる。具体的には、N,O-ビス(トリメチルシリル)アセトアミドやN,O-ビス(トリメチルシリル)トリフルオロアセトアミドやトリメチルシリルクロリドやヘキサメチルジシラザン等が例示される。 As the salt generation inhibitor, for example, a general silylating agent can be used. Specific examples include N, O-bis (trimethylsilyl) acetamide, N, O-bis (trimethylsilyl) trifluoroacetamide, trimethylsilyl chloride, hexamethyldisilazane and the like.
 ポリアミド酸樹脂の共重合反応の反応時間は、仕込み比率、基質濃度等にもよるが、通常2~24時間程度が好ましい。反応時間が短すぎる場合には、重合度が低くなる傾向が認められる。反応時間が長すぎる場合には、部分的にアミド基部分が加水分解反応を起こして重合度が低下することがある。 The reaction time for the copolymerization reaction of the polyamide acid resin is usually preferably about 2 to 24 hours, although it depends on the charging ratio, the substrate concentration and the like. When reaction time is too short, the tendency for a polymerization degree to become low is recognized. If the reaction time is too long, the amide group part may partially undergo a hydrolysis reaction and the degree of polymerization may decrease.
 得られるポリアミド酸樹脂の数平均分子量は、好ましくは6,000以上、且つ、重量平均分子量が10,000以上であり、より好ましくは数平均分子量が6,000~100,000で、且つ、重量平均分子量が10,000~500,000の範囲のものである。この範囲は、特に成形体を与えることができる程度の重合度を有している範囲である。なお、本明細書及び特許請求範囲においてポリアミド酸樹脂の分子量は、後術の実施例に記載した方法で測定された値である。 The number average molecular weight of the obtained polyamic acid resin is preferably 6,000 or more, and the weight average molecular weight is 10,000 or more, more preferably the number average molecular weight is 6,000 to 100,000, and the weight The average molecular weight is in the range of 10,000 to 500,000. This range is a range having a degree of polymerization that can give a molded product. In the present specification and claims, the molecular weight of the polyamic acid resin is a value measured by the method described in the example of the later operation.
II-2.イミド化重合反応
 イミド化重合反応の方法としては、(1)反応溶媒と少量の共沸溶剤の存在下でテトラカルボン酸二無水物とジアミン化合物とを加熱し、生成水を共沸により系外に留去させる熱イミド化方法、(2)ポリイミド前駆体のポリアミド酸を製造後、無水酢酸、無水プロピオン酸等の酸無水物、又はジシクロヘキシルカルボジイミド等のカルボジイミド化合物の脱水作用を用いる化学イミド化方法、(3)ポリイミド前駆体のポリアミド酸を製造後、300℃以上に加熱する熱イミド化方法等が挙げられる。
II-2. Imidation polymerization reaction As a method of imidation polymerization reaction, (1) tetracarboxylic dianhydride and diamine compound are heated in the presence of a reaction solvent and a small amount of azeotropic solvent, and the generated water is azeotropically removed from the system. (2) Chemical imidization method using dehydration action of acid anhydrides such as acetic anhydride and propionic anhydride, or carbodiimide compounds such as dicyclohexylcarbodiimide after producing polyamic acid as a polyimide precursor (3) A thermal imidization method in which the polyamic acid of the polyimide precursor is produced and then heated to 300 ° C. or higher is exemplified.
II-2-1.ジアミン化合物として、脂環式ジアミン化合物を併用しない場合
 ジアミン化合物として、脂環式ジアミン化合物を併用しない場合は、上記ポリイミド樹脂の製造方法のうち(3)の熱イミド化方法が工業的に好ましく、例えば、ポリアミド酸樹脂を300~350℃の温度範囲で加熱することで、イミド化反応に伴う生成水を留去してイミド化重合反応する方法が挙げられる。 
II-2-1. As a diamine compound, when a cycloaliphatic diamine compound is not used in combination , as a diamine compound, when a cycloaliphatic diamine compound is not used in combination, the thermal imidization method (3) is industrially preferable among the above polyimide resin production methods, For example, a method in which the polyamic acid resin is heated in a temperature range of 300 to 350 ° C. to distill off the generated water accompanying the imidization reaction and perform an imidation polymerization reaction.
 上記(3)のポリアミド酸樹脂の加熱イミド化反応におけるイミド化率は、通常70%以上、好ましくは80%以上、より好ましくは90%以上、特に95%以上が推奨される。さらに、ポリイミド樹脂の使用用途によってはイミド化率を100%に近づけることが望ましい場合もある。 It is recommended that the imidation ratio in the heat imidization reaction of the polyamic acid resin (3) is usually 70% or more, preferably 80% or more, more preferably 90% or more, and particularly 95% or more. Furthermore, it may be desirable to make the imidization rate close to 100% depending on the use application of the polyimide resin.
II-2-2.ジアミン化合物として、脂環式ジアミン化合物を併用する場合
 ジアミン化合物として、脂環式ジアミン化合物を併用する場合は、上記ポリイミド樹脂の製造方法のうち(1)の熱イミド化方法が工業的に好ましく、例えば、反応溶媒中にテトラカルボン酸二無水物及びジアミン化合物全量を溶解させるか、又はテトラカルボン酸二無水物及び/又はジアミン化合物の一部を段階的に溶解後、好ましくは100~250℃、より好ましくは150~200℃に加熱し、共沸溶剤により系中の生成水を留去してイミド化重合反応する方法が挙げられる。 
II-2-2. When using an alicyclic diamine compound as a diamine compound, when using an alicyclic diamine compound as a diamine compound, the thermal imidation method of (1) is industrially preferable among the methods for producing the polyimide resin, For example, the total amount of tetracarboxylic dianhydride and diamine compound is dissolved in the reaction solvent, or a part of tetracarboxylic dianhydride and / or diamine compound is dissolved stepwise, preferably 100 to 250 ° C., More preferred is a method of heating to 150 to 200 ° C. and distilling off generated water in the system with an azeotropic solvent to carry out an imidation polymerization reaction.
 また、テトラカルボン酸二無水物に対して、ジアミン化合物を過剰に用いることによりポリイミド樹脂のポリマー末端をアミン末端とすることができ、一方、テトラカルボン酸二無水物をジアミン化合物より過剰に用いることによりポリイミド樹脂のポリマー末端を酸末端とすることができる。 Moreover, the polymer terminal of a polyimide resin can be made into an amine terminal by using a diamine compound excessively with respect to tetracarboxylic dianhydride, On the other hand, using tetracarboxylic dianhydride more excessively than a diamine compound. Thus, the polymer terminal of the polyimide resin can be made an acid terminal.
 上記の生成水を系外に留去するための共沸溶剤としては、トルエン、キシレン、ソルベントナフサ等の芳香族炭化水素、シクロヘキサン、メチルシクロヘキサン、ジメチルシクロヘキサン等の脂環族炭化水素等が例示され、これらは単独で又は混合系として用いることができる。その使用量としては、反応溶媒量に対して通常1~30重量%程度、好ましくは5~10重量%程度である。 Examples of the azeotropic solvent for distilling the generated water out of the system include aromatic hydrocarbons such as toluene, xylene and solvent naphtha, and alicyclic hydrocarbons such as cyclohexane, methylcyclohexane and dimethylcyclohexane. These can be used alone or as a mixed system. The amount used is usually about 1 to 30% by weight, preferably about 5 to 10% by weight, based on the amount of the reaction solvent.
 反応系内は、その反応系の着色防止及び安全性の観点から、不活性ガス雰囲気下とすることが望ましい。通常、不活性ガスで反応系内を置換し、反応中は不活性ガスを流通させるおく方法が推奨される。不活性ガスとしては、窒素、アルゴン等が例示される。 The reaction system is preferably in an inert gas atmosphere from the viewpoint of preventing coloration and safety of the reaction system. Usually, a method of replacing the inside of the reaction system with an inert gas and allowing the inert gas to flow during the reaction is recommended. Nitrogen, argon, etc. are illustrated as an inert gas.
 本発明に係るイミド化重合反応において、公知の触媒を使用することができる。しかし、後処理が煩雑になること、また、使用触媒が微量残存することによるポリイミドワニスの貯蔵安定性の悪化及びポリイミドワニスの着色等の観点から、無触媒下で該反応を行うことが好ましい。 In the imidation polymerization reaction according to the present invention, a known catalyst can be used. However, it is preferable to carry out the reaction in the absence of a catalyst from the viewpoints of complicated post-treatment, deterioration of the storage stability of the polyimide varnish due to the residual amount of the catalyst used, and coloring of the polyimide varnish.
 触媒を使用する場合には、例えば、塩基触媒としては、ピリジン、キノリン、イソキノリン、α-ピコリン、β-ピコリン、2,4-ルチジン、2,6-ルチジン、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、イミダゾール、N,N-ジメチルアニリン、N,N-ジエチルアニリン等の有機塩基触媒、水酸化カリウムや水酸化ナトリウム、炭酸カリウム、炭酸ナトリウム、炭酸水素カリウム、炭酸水素ナトリウムで代表される無機塩基触媒が例示される。 When a catalyst is used, for example, as a base catalyst, pyridine, quinoline, isoquinoline, α-picoline, β-picoline, 2,4-lutidine, 2,6-lutidine, trimethylamine, triethylamine, tripropylamine, tri Organic base catalysts such as butylamine, imidazole, N, N-dimethylaniline, N, N-diethylaniline, inorganic bases represented by potassium hydroxide, sodium hydroxide, potassium carbonate, sodium carbonate, potassium bicarbonate, sodium bicarbonate Examples are catalysts.
 また、酸触媒としては、クロトン酸、アクリル酸、トランス-3-ヘキセノイック酸、桂皮酸、安息香酸、メチル安息香酸、オキシ安息香酸、テレフタル酸、ベンゼンスルホン酸、パラトルエンスルホン酸、ナフタレンスルホン酸等が例示される。 Examples of the acid catalyst include crotonic acid, acrylic acid, trans-3-hexenoic acid, cinnamic acid, benzoic acid, methylbenzoic acid, oxybenzoic acid, terephthalic acid, benzenesulfonic acid, p-toluenesulfonic acid, naphthalenesulfonic acid, etc. Is exemplified.
 イミド化重合反応の反応時間は、仕込み比率、基質濃度等にもよるが、 生成水の留出開始後、通常2~10時間程度が好ましい。反応時間が短すぎる場合には、イミド化率が低くなる傾向が認められる。反応時間が長すぎる場合には、部分的に熱架橋反応を起こして反応系が増粘したりゲル状物が副生したり、また、反応溶媒の熱劣化により反応系が着色することがある。 The reaction time of the imidation polymerization reaction is preferably about 2 to 10 hours after the start of the distillation of the soot-forming water, although it depends on the charging ratio, the substrate concentration and the like. When reaction time is too short, the tendency for imidation ratio to become low is recognized. If the reaction time is too long, the reaction system may partially cause a thermal crosslinking reaction to thicken the reaction system or form a gel-like material, or the reaction system may be colored due to thermal degradation of the reaction solvent. .
 イミド化重合反応で得られる本発明のポリイミド樹脂の数平均分子量は、好ましくは6,000以上、且つ、重量平均分子量が10,000以上であり、より好ましくは数平均分子量が6,000~100,000で、且つ、重量平均分子量が10,000~500,000の範囲のものである。この範囲は、特に成形体を与えることができる程度の重合度を有している範囲である。なお、本明細書及び特許請求範囲においてポリイミド樹脂の分子量は、後術の実施例に記載した方法で測定された値である。 The number average molecular weight of the polyimide resin of the present invention obtained by imidation polymerization reaction is preferably 6,000 or more and the weight average molecular weight is 10,000 or more, more preferably the number average molecular weight is 6,000 to 100. And a weight average molecular weight in the range of 10,000 to 500,000. This range is a range having a degree of polymerization that can give a molded product. In addition, in this specification and a claim, the molecular weight of a polyimide resin is the value measured by the method described in the Example of the postoperative.
 上記イミド化重合反応におけるイミド化率は、通常70%以上、好ましくは80%以上、より好ましくは90%以上、特に95%以上が推奨される。さらに、ポリイミド樹脂の使用用途によってはイミド化率を100%に近づけることが望ましい場合もある。 The imidation ratio in the imidation polymerization reaction is usually 70% or more, preferably 80% or more, more preferably 90% or more, and particularly 95% or more. Furthermore, it may be desirable to make the imidization rate close to 100% depending on the use application of the polyimide resin.
 その他に、本発明の効果を損なわない範囲において、分子量制御等を目的に、この分野で使用される公知の1官能の酸無水物やモノアミン等をエンドキャップ剤として併用することができる。該エンドキャップ剤の具体例としては、酸無水物では無水フタル酸、無水マレイン酸、無水ナジック酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸等、モノアミンではアニリン、メチルアニリン、アリルアミン等が例示される。 In addition, as long as the effects of the present invention are not impaired, known monofunctional acid anhydrides, monoamines, and the like used in this field can be used in combination as end cap agents for the purpose of molecular weight control and the like. Specific examples of the end cap agent include phthalic anhydride, maleic anhydride, nadic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, etc. for acid anhydrides, and aniline, methylaniline, allylamine, etc. for monoamines. .
III.ポリアミド酸ワニス
 本発明のポリアミド酸ワニスは、ポリアミド酸樹脂と有機溶剤とを含有することを特徴とするものである。有機溶剤としては、前記テトラカルボン酸二無水物とジアミン化合物との共重合反応に用いられる有機溶剤と同一でも異なってもよいが、溶媒置換の作業等の煩雑さを考慮すると同一であることが好ましい。
III. Polyamic acid varnish The polyamic acid varnish of the present invention is characterized by containing a polyamic acid resin and an organic solvent. The organic solvent may be the same as or different from the organic solvent used for the copolymerization reaction of the tetracarboxylic dianhydride and the diamine compound, but may be the same in consideration of the complexity of solvent replacement work and the like. preferable.
 ポリアミド酸ワニスの粘度として所望の用途により適宜選択することができるが、25℃における粘度としては、0.1~500Pa・sの範囲が好ましく、より好ましくは1~100Pa・sの範囲が推奨される。 The viscosity of the polyamic acid varnish can be appropriately selected depending on the desired application, but the viscosity at 25 ° C. is preferably in the range of 0.1 to 500 Pa · s, more preferably in the range of 1 to 100 Pa · s. The
 ポリアミド酸ワニス中のポリアミド酸樹脂の濃度としては、好ましくは5~50重量%であり、より好ましくは10~40重量%、さらに好ましくは10~30重量%となるように調整することが推奨される。 The concentration of the polyamic acid resin in the polyamic acid varnish is preferably 5 to 50% by weight, more preferably 10 to 40% by weight, and further preferably 10 to 30% by weight. The
 また、ポリアミド酸ワニスからポリイミド樹脂の塗膜を得る際に、乾燥工程を効率よく行う目的で、有機溶剤の一部を低沸点溶剤に代えることができる。係る低沸点溶剤としては、トルエン、キシレン、ソルベントナフサ等の芳香族炭化水素や、シクロヘキサン、メチルシクロヘキサン、ジメチルシクロヘキサン等の脂環式炭化水素、プロピレングリコールモノメチルエーテル等のエーテル類、又はアセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類が例示される。これらの低沸点溶剤を使用する場合、その使用量は、全有機溶剤量に対して、好ましくは1~30重量%、より好ましくは、5~20重量%の範囲が推奨される。  Also, when a polyimide resin coating is obtained from the polyamic acid varnish, a part of the organic solvent can be replaced with a low boiling point solvent for the purpose of efficiently performing the drying step. Such low boiling point solvents include aromatic hydrocarbons such as toluene, xylene, solvent naphtha, alicyclic hydrocarbons such as cyclohexane, methylcyclohexane and dimethylcyclohexane, ethers such as propylene glycol monomethyl ether, acetone, methyl ethyl ketone, Ketones such as methyl isobutyl ketone are exemplified. When these low-boiling solvents are used, the amount used is preferably 1 to 30% by weight, more preferably 5 to 20% by weight, based on the total amount of organic solvent.
 また、本発明のポリイミド樹脂前駆体であるポリアミド酸ワニスには、本発明の効果を妨げない範囲でその他の成分を添加しても良い。例えば、ポリエステル樹脂、ポリイミド樹脂(本発明のポリイミド樹脂を除く。)、ポリアミドイミド樹脂、ポリアミド樹脂等の高分子化合物、平滑剤、レベリング剤、脱泡剤、難燃剤、消泡剤、酸化防止剤等が例示される。 In addition, other components may be added to the polyamic acid varnish which is the polyimide resin precursor of the present invention as long as the effects of the present invention are not hindered. For example, polyester resin, polyimide resin (excluding the polyimide resin of the present invention), polyamideimide resin, polymer compound such as polyamide resin, smoothing agent, leveling agent, defoaming agent, flame retardant, antifoaming agent, antioxidant Etc. are exemplified.
IV.ポリイミドワニス
 本発明のポリイミド樹脂のうち、ジアミン成分として、(A)ビス[4-(4-アミノフェノキシ)フェニル]スルホンと、(B)前記一般式(3)で表されるジアミン化合物から選択される少なくとも1種とを併用して得られたポリイミド樹脂、及び芳香族ジアミン成分と脂環式ジアミン化合物とを併用して得られたポリイミド樹脂は、溶剤に溶解する。したがって、当該ポリイミド樹脂は、ポリイミドワニスとすることができる。当該ポリイミドワニスは、ポリイミド樹脂と有機溶剤とを含有することを特徴とするものである。有機溶剤としては、前記イミド化重合反応に用いられる有機溶剤と同一でも異なってもよいが、溶媒置換の作業等の煩雑さを考慮すると同一であることが好ましい。
IV. Polyimide varnish Among the polyimide resins of the present invention, the diamine component is selected from (A) bis [4- (4-aminophenoxy) phenyl] sulfone and (B) a diamine compound represented by the general formula (3). The polyimide resin obtained by using together with at least 1 type which is used together, and the polyimide resin obtained by using together an aromatic diamine component and an alicyclic diamine compound melt | dissolve in a solvent. Therefore, the polyimide resin can be a polyimide varnish. The polyimide varnish contains a polyimide resin and an organic solvent. The organic solvent may be the same as or different from the organic solvent used in the imidation polymerization reaction, but is preferably the same in consideration of the complexity of solvent replacement work and the like.
 ポリイミドワニスの調製方法としては、(i)イミド化重合反応で得られたポリイミド樹脂の反応溶媒溶液をそのままポリイミドワニスとする方法、(ii)イミド化重合反応で得られたポリイミド樹脂の反応溶媒溶液からポリイミド樹脂を単離し、次いで所望の有機溶剤に単離したポリイミド樹脂を溶解させてポリイミドワニスを得る方法等が例示される。 As a method for preparing a polyimide varnish, (i) a method of using a reaction solvent solution of a polyimide resin obtained by an imidization polymerization reaction as it is as a polyimide varnish, (ii) a reaction solvent solution of a polyimide resin obtained by an imidization polymerization reaction Examples are a method of obtaining a polyimide varnish by isolating a polyimide resin from the following and then dissolving the isolated polyimide resin in a desired organic solvent.
 ポリイミドワニスの粘度として所望の用途により適宜選択することができるが、25℃における粘度としては、0.1~500Pa・sの範囲が好ましく、より好ましくは1~100Pa・sの範囲が推奨される。 The viscosity of the polyimide varnish can be appropriately selected depending on the desired application, but the viscosity at 25 ° C. is preferably in the range of 0.1 to 500 Pa · s, more preferably in the range of 1 to 100 Pa · s. .
 ポリイミドワニス中のポリイミド樹脂の濃度としては、好ましくは5~50重量%であり、より好ましくは10~40重量%、さらに好ましくは10~30重量%となるように調整することが推奨される。 The concentration of the polyimide resin in the polyimide varnish is preferably 5 to 50% by weight, more preferably 10 to 40% by weight, and even more preferably 10 to 30% by weight.
 有機溶剤は、本発明に係るポリイミド樹脂を溶解させることができる有機溶剤であれば特に限定されないが、具体的には上記の反応溶媒として例示したものが挙げられる。これらは単独で又は混合系として用いることもできる。これらのうち、N-メチル-2-ピロリドン、1,3-ジメチルイミダゾリジノン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、γ-ブチロラクトンが推奨される。 The organic solvent is not particularly limited as long as it can dissolve the polyimide resin according to the present invention, and specific examples include those exemplified as the reaction solvent. These can be used alone or as a mixed system. Of these, N-methyl-2-pyrrolidone, 1,3-dimethylimidazolidinone, N, N-dimethylformamide, N, N-dimethylacetamide, and γ-butyrolactone are recommended.
 また、ポリイミドワニスからポリイミド樹脂の塗膜を得る際に、乾燥工程におけるポリイミド樹脂塗膜の着色を防ぐ目的で、低沸点の有機溶剤が使用される。具体的には、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドが挙げられる。 Also, when a polyimide resin coating film is obtained from a polyimide varnish, an organic solvent having a low boiling point is used for the purpose of preventing coloring of the polyimide resin coating film in the drying process. Specific examples include N, N-dimethylformamide and N, N-dimethylacetamide.
 さらに、ポリイミドワニスからポリイミド樹脂の塗膜を得る際に、乾燥工程を効率よく行う目的で、有機溶剤の一部を低沸点溶剤に代えることができる。係る低沸点溶剤としては、トルエン、キシレン、ソルベントナフサ等の芳香族炭化水素や、シクロヘキサン、メチルシクロヘキサン、ジメチルシクロヘキサン等の脂環式炭化水素、プロピレングリコールモノメチルエーテル等のエーテル類、又はアセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類が例示される。これらの低沸点溶剤を使用する場合、その使用量は、全有機溶剤量に対して、好ましくは1~30重量%、より好ましくは、5~20重量%の範囲が推奨される。  Furthermore, when a polyimide resin coating film is obtained from a polyimide varnish, a part of the organic solvent can be replaced with a low boiling point solvent for the purpose of efficiently performing the drying step. Such low boiling point solvents include aromatic hydrocarbons such as toluene, xylene, solvent naphtha, alicyclic hydrocarbons such as cyclohexane, methylcyclohexane and dimethylcyclohexane, ethers such as propylene glycol monomethyl ether, acetone, methyl ethyl ketone, Ketones such as methyl isobutyl ketone are exemplified. When these low-boiling solvents are used, the amount used is preferably 1 to 30% by weight, more preferably 5 to 20% by weight, based on the total amount of organic solvent.
 また、本発明のポリイミドワニスには、本発明の効果を妨げない範囲でその他の成分を添加しても良い。例えば、ポリエステル樹脂、ポリイミド樹脂(本発明のポリイミド樹脂を除く。)、ポリアミドイミド樹脂、ポリアミド樹脂等の高分子化合物、平滑剤、レベリング剤、脱泡剤、難燃剤、消泡剤、酸化防止剤等が例示される。 In addition, other components may be added to the polyimide varnish of the present invention as long as the effects of the present invention are not hindered. For example, polyester resin, polyimide resin (excluding the polyimide resin of the present invention), polyamideimide resin, polymer compound such as polyamide resin, smoothing agent, leveling agent, defoaming agent, flame retardant, antifoaming agent, antioxidant Etc. are exemplified.
 かくして得られるポリイミドワニスは、貯蔵安定性に優れ、種々用途に使用される。 The polyimide varnish thus obtained is excellent in storage stability and used for various purposes.
V.ポリイミド成形体
 本発明のポリイミド成形体は、ポリアミド酸ワニスを成形加工して得ることができる。成形加工する方法としては、特に制限なく、従来公知の方法が使用できる。
V. Polyimide molded body The polyimide molded body of the present invention can be obtained by molding a polyamic acid varnish. There is no restriction | limiting in particular as a method to shape | mold, A conventionally well-known method can be used.
 例えば、該ポリアミド酸ワニスを、基板に塗布した後(膜状、フィルム状又はシート状に塗布若しくは成形した後)、該ポリアミド酸ワニスを200℃以上、好ましくは300℃以上に乾燥して加熱イミド化しながら溶剤を除去して、膜状、フィルム状又はシート状のポリイミド成形体に成形する方法等が例示される。 For example, after applying the polyamic acid varnish to a substrate (after coating or forming into a film, film, or sheet), the polyamic acid varnish is dried to 200 ° C. or higher, preferably 300 ° C. or higher, and heated imide Examples thereof include a method of forming a film-like, film-like or sheet-like polyimide molded body by removing the solvent while forming.
 また、本発明のポリイミド成形体は、ポリイミドワニスを成形加工して得ることもできる。成形加工する方法としては、特に制限なく、従来公知の方法が使用できる。 The polyimide molded body of the present invention can also be obtained by molding a polyimide varnish. There is no restriction | limiting in particular as a method to shape | mold, A conventionally well-known method can be used.
 例えば、該ポリイミドワニスを、基板に塗布した後(膜状、フィルム状又はシート状に塗布若しくは成形した後)、該ポリイミドワニスから有機溶媒を除去して、膜状、フィルム状又はシート状のポリイミド成形体に成形する方法等が例示される。 For example, after the polyimide varnish is applied to a substrate (after being applied or formed into a film, film, or sheet), the organic solvent is removed from the polyimide varnish to form a film, film, or sheet polyimide. The method etc. which shape | mold to a molded object are illustrated.
 ポリイミド成形体を製造する例としては、PET基板(ポリエチレンテレフタレート基板)上にポリアミド酸ワニス又はポリイミドワニスをキャストし、真空乾燥機内(減圧度1~10mmHg)で、室温にて30分~2時間、さらに約200℃まで30分~2時間で昇温し、その温度で1~4時間溶剤を留去させる。室温まで冷却後、真空乾燥機からPET基板上に形成されたポリイミドフィルムを取出し、PET基板から剥離する。剥離したポリイミドフィルムをステンレス製の金属枠に固定し、再び真空乾燥機にて、室温から230~330℃まで1~4時間で昇温し、その温度で2~5時間乾燥し溶剤を完全に留去し、室温まで冷却後、真空乾燥機から取出すことでポリイミドフィルムを得ることができる。このように得られたポリイミドフィルムの厚みは、キャスト時の塗工厚みを調整することで目的の厚さに調整する方法が挙げられる。 As an example of producing a polyimide molded body, a polyamic acid varnish or a polyimide varnish is cast on a PET substrate (polyethylene terephthalate substrate), and then in a vacuum dryer (decompression degree 1 to 10 mmHg) at room temperature for 30 minutes to 2 hours. Further, the temperature is raised to about 200 ° C. over 30 minutes to 2 hours, and the solvent is distilled off at that temperature for 1 to 4 hours. After cooling to room temperature, the polyimide film formed on the PET substrate is taken out from the vacuum dryer and peeled off from the PET substrate. The peeled polyimide film is fixed to a stainless steel metal frame, heated again from room temperature to 230 to 330 ° C in 1 to 4 hours using a vacuum dryer, and dried at that temperature for 2 to 5 hours to completely remove the solvent. After distilling off and cooling to room temperature, a polyimide film can be obtained by taking out from the vacuum dryer. A method of adjusting the thickness of the polyimide film thus obtained to a target thickness by adjusting the coating thickness at the time of casting can be mentioned.
 本発明のポリイミド樹脂の高透明性は、全光線透過率で評価することができる。全光線透過率の範囲は、好ましくは87%以上であり、さらに好ましくは88%以上、特に89%以上が好ましい。全光線透過率は、本明細書及び特許請求の範囲において、後述の実施例に記載した方法にて得られる値である。例えば、上記の全光線透過率の範囲は、特に高透明性を要求される用途で有効な範囲である。 The high transparency of the polyimide resin of the present invention can be evaluated by the total light transmittance. The range of the total light transmittance is preferably 87% or more, more preferably 88% or more, and particularly preferably 89% or more. The total light transmittance is a value obtained by the method described in Examples described later in this specification and claims. For example, the above range of the total light transmittance is an effective range particularly in applications requiring high transparency.
 本発明のポリイミド樹脂の耐熱性は、ガラス転移温度で評価することができる。ガラス転移温度の範囲は、好ましくは250℃以上であり、さらに好ましくは260℃以上、特に270℃以上が好ましい。ガラス転移温度は、本明細書及び特許請求の範囲において、後述の実施例に記載した方法にて得られる値である。例えば、上記のガラス転移温度の範囲は、特に耐熱性を要求される用途で有効な範囲である。 The heat resistance of the polyimide resin of the present invention can be evaluated by the glass transition temperature. The range of the glass transition temperature is preferably 250 ° C. or higher, more preferably 260 ° C. or higher, and particularly preferably 270 ° C. or higher. The glass transition temperature is a value obtained by the method described in Examples described later in the present specification and claims. For example, the above glass transition temperature range is an effective range particularly for applications requiring heat resistance.
 本発明のポリイミド樹脂の線膨張係数の範囲は、好ましくは65ppm/K以下であり、さらに好ましくは62ppm/K以下、特に60ppm/K以下が好ましい。線膨張係数は、本明細書及び特許請求の範囲において、後述の実施例に記載した方法にて得られる値である。例えば、上記の線膨張係数の範囲は、特に有機EL等の透明フレキシブル基板用途で有効な範囲である。 The range of the linear expansion coefficient of the polyimide resin of the present invention is preferably 65 ppm / K or less, more preferably 62 ppm / K or less, and particularly preferably 60 ppm / K or less. The linear expansion coefficient is a value obtained by the method described in Examples described later in the present specification and claims. For example, the range of the above-mentioned linear expansion coefficient is a range that is particularly effective for use with a transparent flexible substrate such as an organic EL.
VI.プラスチック基板/電気部品・電子部品
 本発明のプラスチック基板は、上記ポリイミド成形体からなることを特徴とする。その製造方法としては、従来公知の製造方法を用いることができる。
VI. Plastic Substrate / Electric Component / Electronic Component The plastic substrate of the present invention is characterized by comprising the polyimide molded body. As the production method, a conventionally known production method can be used.
 該プラスチック基板は、本発明のポリイミド成形体が高透明性、耐熱性及び低線膨張係数を有することにより、例えば、フレキシブル透明基板等に好適に使用される。 The plastic substrate is preferably used for, for example, a flexible transparent substrate because the polyimide molded body of the present invention has high transparency, heat resistance, and a low linear expansion coefficient.
 また、フレキシブル透明基板は、電気部品又は電子部品で数多く使用されており、例えば、電子ペーパー、有機太陽電池、有機EL照明、フレキシブル液晶ディスプレー等の部品として好適に使用される。 In addition, the flexible transparent substrate is used in many electrical components or electronic components, and is suitably used as components such as electronic paper, organic solar cells, organic EL lighting, and flexible liquid crystal displays.
VII.耐熱絶縁材/耐熱塗料/耐熱コーティング材/耐熱接着材
 本発明の耐熱絶縁材、耐熱塗料、耐熱コーティング材又は耐熱接着材は、本発明のポリイミド樹脂を使用したものである。その製造方法としては、従来公知の製造方法を用いることができる。何れも、該ポリイミド樹脂が高透明性、耐熱性及び低線膨張係数を有することから、好適に使用される。
VII. Heat-resistant insulating material / heat-resistant coating material / heat-resistant coating material / heat-resistant adhesive material The heat-resistant insulating material, heat-resistant coating material, heat-resistant coating material or heat-resistant adhesive material of the present invention uses the polyimide resin of the present invention. As the production method, a conventionally known production method can be used. In any case, the polyimide resin is preferably used because it has high transparency, heat resistance and a low linear expansion coefficient.
 以下に実施例を示し、本発明を更に詳しく説明するが、本発明はこれらの実施例によって制限されるものではない。なお、実施例及び比較例中の各特性の測定方法、化合物の略称は以下のとおりである。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. In addition, the measuring method of each characteristic in an Example and a comparative example and the abbreviation of a compound are as follows.
<化合物の略号>
・テトラカルボン酸二無水物
 BCODA:ビシクロ[4.2.0]オクタン-3,4,7,8-テトラカルボン酸二無水物
 DSDA:3,3’ ,4,4’-ジフェニルスルホンテトラカルボン酸二無水物
<Abbreviation of compound>
Tetracarboxylic dianhydride BCODA: bicyclo [4.2.0] octane-3,4,7,8-tetracarboxylic dianhydride DSDA: 3,3 ′, 4,4′-diphenylsulfone tetracarboxylic acid Dianhydride
・芳香族ジアミン化合物
 DPE:4,4’-ジアミノジフェニルエーテル
 DAM:4,4’-ジアミノジフェニルメタン
 BAPP: 2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン
 BAPS:ビス[4-(4-アミノフェノキシ)フェニル]スルホン
 BAPB:4,4’-ビス(4-アミノフェノキシ)ビフェニル
 TPE-Q:1,4-ビス(4-アミノフェノキシ)ベンゼン
 m-TD:m-トリジン
Aromatic diamine compound DPE: 4,4′-diaminodiphenyl ether DAM: 4,4′-diaminodiphenylmethane BAPP: 2,2-bis [4- (4-aminophenoxy) phenyl] propane BAPS: bis [4- (4 -Aminophenoxy) phenyl] sulfone BAPB: 4,4'-bis (4-aminophenoxy) biphenyl TPE-Q: 1,4-bis (4-aminophenoxy) benzene m-TD: m-tolidine
・脂環式ジアミン化合物
 HDAM:4,4’-メチレンビス(シクロヘキシルアミン)
 DMHDAM:3,3’-ジメチル-4,4’-メチレンビス(シクロヘキシルアミン)
 NBDA: ノルボルナンジアミン 
-Alicyclic diamine compound HDAM: 4,4'-methylenebis (cyclohexylamine)
DMHDAM: 3,3′-dimethyl-4,4′-methylenebis (cyclohexylamine)
NBDA: Norbornanediamine
・反応溶媒
 NMP:N-メチル-2-ピロリドン
 DMAc:N,N’-ジメチルアセトアミド
 ECH:エチルシクロヘキサン
Reaction solvent NMP: N-methyl-2-pyrrolidone DMAc: N, N′-dimethylacetamide ECH: Ethylcyclohexane
<ポリイミド樹脂、ポリアミド酸樹脂の数平均分子量と重量平均分子量>
 ポリイミド樹脂の反応溶液(ポリイミドワニス)又はポリアミド酸ワニス約1gをN,N-ジメチルホルムアミド約30mlで希釈して、分子量測定用の試料溶液を調製する。ゲルパーミエーションクロマトグラフィー(GPC)を用いて下記の測定条件でポリスチレン換算の数平均分子量(Mn)及び重量平均分子量(Mw)を求めた。
<Number average molecular weight and weight average molecular weight of polyimide resin and polyamic acid resin>
A sample solution for molecular weight measurement is prepared by diluting about 1 g of a polyimide resin reaction solution (polyimide varnish) or polyamic acid varnish with about 30 ml of N, N-dimethylformamide. The number average molecular weight (Mn) and weight average molecular weight (Mw) in terms of polystyrene were determined under the following measurement conditions using gel permeation chromatography (GPC).
[測定条件]
 装置:東ソー株式会社製 EcoSEC HLC-8320GPC
 カラム:東ソー株式会社製 SuperH-Hを1本とSuperHM-Mを3本直列に連結
 カラム温度:40℃
 溶離液:(5.15mmol/L-臭化リチウム+5.10mmol/L-リン酸)/N,N-ジメチルホルムアミド
 流速:0.5mL/min
 検出器:RI
[Measurement condition]
Equipment: EcoSEC HLC-8320GPC manufactured by Tosoh Corporation
Column: manufactured by Tosoh Corporation One SuperH-H and three SuperHM-Ms connected in series Column temperature: 40 ° C
Eluent: (5.15 mmol / L-lithium bromide + 5.10 mmol / L-phosphoric acid) / N, N-dimethylformamide Flow rate: 0.5 mL / min
Detector: RI
<溶剤溶解性の評価>
 溶剤可溶性は、イミド化重合反応終了後、ポリイミド樹脂の濃度を15重量%に調整し、24時間室温で放置した後の状態を目視で観察して評価した。24時間放置した後も、析出物の発生も反応溶液のゲル化も全く認められなかったものについて、可溶性有りとした。
<Evaluation of solvent solubility>
Solvent solubility was evaluated by visually observing the state after adjusting the concentration of the polyimide resin to 15% by weight after completion of the imidation polymerization reaction and leaving it at room temperature for 24 hours. Even after being allowed to stand for 24 hours, no precipitate was generated and no gelation of the reaction solution was observed.
<線膨張係数>
 JIS K7197(1991年)に準拠し、ポリイミドフィルム(40μm)を順風乾燥機内で300℃×30分間加熱して応力緩和処理を行った。このフィルムから切り取った4.0×10.0mmをエスアイアイ・ナノテクノロジー株式会社製TMA/SS6100を用いて100~150℃の範囲を窒素流量200ml/min、昇温速度10℃/minの条件で測定し、その測定値の平均値を線膨張係数とした。
<Linear expansion coefficient>
In accordance with JIS K7197 (1991), the polyimide film (40 μm) was heated in a normal air dryer at 300 ° C. for 30 minutes for stress relaxation treatment. A 4.0 × 10.0 mm piece cut from this film was measured using a TMA / SS6100 manufactured by SII NanoTechnology Co., Ltd. under the conditions of a nitrogen flow rate of 200 ml / min and a heating rate of 10 ° C./min. The average value of the measured values was taken as the linear expansion coefficient.
<全光線透過率>
 JIS K7361-1(1997年)に準拠し、ポリイミドフィルム(40μm)を株式会社東洋精機製作所製HAZE-GUARD IIを用いて、D65光源を使用したシングルビーム法により測定した。
<Total light transmittance>
In accordance with JIS K7361-1 (1997), a polyimide film (40 μm) was measured using a HAZE-GUARD II manufactured by Toyo Seiki Co., Ltd. by a single beam method using a D65 light source.
<ガラス転移温度>
 動的粘弾性測定装置RHEOGEL-E4000(ユーピーエム社製)を用いて、下記の測定条件下、ポリイミド成形体(フィルム)のtanδを測定した。そのtanδの極大値をガラス転移温度(℃)とした。
<Glass transition temperature>
Using a dynamic viscoelasticity measuring device RHEOGEL-E4000 (manufactured by UPM), tan δ of the polyimide molded body (film) was measured under the following measurement conditions. The maximum value of tan δ was defined as the glass transition temperature (° C.).
[測定条件]
   測定モード:引張モード
   正弦波:10Hz
   昇温速度:5℃/min
   空気流速:10L/min
[Measurement condition]
Measurement mode: Tensile mode Sine wave: 10 Hz
Temperature increase rate: 5 ° C / min
Air flow rate: 10L / min
<機械的特性評価>
 ポリイミド成形体(フィルム)の「弾性率」、「強度」及び「伸び」は、インストロン製の万能材料試験機5565を用いて、JIS K-7161(1994年)に準拠して測定した。
<Mechanical property evaluation>
The “elastic modulus”, “strength”, and “elongation” of the polyimide molded body (film) were measured according to JIS K-7161 (1994) using a universal material testing machine 5565 manufactured by Instron.
 製造例
 BCODAは特許文献US3423431を参考に製造した。具体的には、内容積1500ml内部照射型パイレックス(登録商標)ガラス製五つ口反応フラスコに、無水マレイン酸95.0g(969mmol)と、1,2,3,6-テトラヒドロフタル酸無水物192.0g(1262mmol)及び酢酸n-ブチル1200gを仕込み、反応器外壁をアルミ箔で被いながら室温で撹拌溶解させた。さらに窒素ガスを用いて15分間バブリングして、反応容器中の酸素を除いた。続いて撹拌しながら反応容器を20℃に冷却し、フラスコ中央部の光源冷却管中の400W高圧水銀ランプを用いて光照射を24時間続けた。反応終了後、析出した結晶を濾過、酢酸n-ブチル60gで洗浄し、ついで乾燥してBCODA結晶59.9g(239mmol、収率25%)を得た。
Production Example BCODA was produced with reference to US Pat. No. 3,342,431. Specifically, in a 1500 ml internal irradiation type Pyrex (registered trademark) glass five-necked reaction flask, 95.0 g (969 mmol) of maleic anhydride and 1,2,3,6-tetrahydrophthalic anhydride 192 were added. 0.0 g (1262 mmol) and 1200 g of n-butyl acetate were charged and stirred and dissolved at room temperature while covering the outer wall of the reactor with aluminum foil. Further, nitrogen gas was bubbled for 15 minutes to remove oxygen in the reaction vessel. Subsequently, the reaction vessel was cooled to 20 ° C. while stirring, and light irradiation was continued for 24 hours using a 400 W high-pressure mercury lamp in a light source cooling tube in the center of the flask. After completion of the reaction, the precipitated crystals were filtered, washed with 60 g of n-butyl acetate, and then dried to obtain 59.9 g (239 mmol, yield 25%) of BCODA crystals.
 実施例1
 撹拌機を備え付けた200mL三角フラスコにNMP136g及び芳香族ジアミン化合物としてm-TD11.04g(52mol)を加えて15分間撹拌した。得られた溶液にBCODA13.01g(52mmol)を加えてから終夜撹拌してポリアミド酸ワニスを得た。ポリアミド酸樹脂の平均分子量の測定結果を表1に示す。
Example 1
To a 200 mL Erlenmeyer flask equipped with a stirrer, 136 g of NMP and 11.04 g (52 mol) of m-TD as an aromatic diamine compound were added and stirred for 15 minutes. BCODA 13.01 g (52 mmol) was added to the resulting solution and stirred overnight to obtain a polyamic acid varnish. Table 1 shows the measurement results of the average molecular weight of the polyamic acid resin.
 実施例2
 芳香族ジアミン化合物をDPE10.41g(52mmol)に変更した以外は、実施例1と同様の方法で本発明のポリアミド酸ワニスを得た。ポリアミド酸樹脂の平均分子量の測定結果を表1に示す。
Example 2
A polyamic acid varnish of the present invention was obtained in the same manner as in Example 1 except that the aromatic diamine compound was changed to 10.41 g (52 mmol) of DPE. Table 1 shows the measurement results of the average molecular weight of the polyamic acid resin.
 実施例3
 芳香族ジアミン化合物をTPE-Q15.20g(52mmol)に変更した以外は、実施例1と同様の方法で本発明のポリアミド酸ワニスを得た。ポリアミド酸樹脂の平均分子量の測定結果を表1に示す。
Example 3
A polyamic acid varnish of the present invention was obtained in the same manner as in Example 1 except that the aromatic diamine compound was changed to 15.20 g (52 mmol) of TPE-Q. Table 1 shows the measurement results of the average molecular weight of the polyamic acid resin.
 実施例4
 芳香族ジアミン化合物をBAPB19.16g(52mmol)に変更した以外は、実施例1と同様の方法で本発明のポリアミド酸ワニスを得た。ポリアミド酸樹脂の平均分子量の測定結果を表1に示す。
Example 4
A polyamic acid varnish of the present invention was obtained in the same manner as in Example 1 except that the aromatic diamine compound was changed to 19.16 g (52 mmol) of BAPB. Table 1 shows the measurement results of the average molecular weight of the polyamic acid resin.
 実施例5
 芳香族ジアミン化合物をBAPS22.49g(52mmol)に変更した以外は、実施例1と同様の方法で本発明のポリアミド酸ワニスを得た。ポリアミド酸樹脂の平均分子量の測定結果を表1に示す。
Example 5
A polyamic acid varnish of the present invention was obtained in the same manner as in Example 1, except that the aromatic diamine compound was changed to 22.49 g (52 mmol) of BAPS. Table 1 shows the measurement results of the average molecular weight of the polyamic acid resin.
 実施例6
 芳香族ジアミン化合物をDAM10.31g(52mmol)に変更した以外は、実施例1と同様の方法で本発明のポリアミド酸ワニスを得た。ポリアミド酸樹脂の平均分子量の測定結果を表1に示す。
Example 6
A polyamic acid varnish of the present invention was obtained in the same manner as in Example 1 except that the aromatic diamine compound was changed to 10.31 g (52 mmol) of DAM. Table 1 shows the measurement results of the average molecular weight of the polyamic acid resin.
 比較例1
 テトラカルボン酸二無水物をBCODAからDSDA18.63g(52mol)に変更した以外は、実施例2と同様の方法でポリアミド酸ワニスを得た。ポリアミド酸樹脂の平均分子量の測定結果を表1に示す。
Comparative Example 1
A polyamic acid varnish was obtained in the same manner as in Example 2 except that the tetracarboxylic dianhydride was changed from BCODA to 18.63 g (52 mol) of DSDA. Table 1 shows the measurement results of the average molecular weight of the polyamic acid resin.
 実験例1
 実施例1~6で得られたポリアミド酸ワニスを、ガラス基板上にバーコーターを用いて、乾燥膜厚が40μmとなるよう塗布し、真空乾燥機内で真空下(減圧度10mmHg以下)、300℃×1時間乾燥し、室温へ冷却後、ガラス基板より剥離させ、ポリイミド成形体(フィルム)を得た。得られたポリイミド成形体(フィルム)の線膨張係数、全光線透過率、ガラス転移温度及び機械的特性の測定結果を表1に示す。
Experimental example 1
The polyamic acid varnishes obtained in Examples 1 to 6 were applied onto a glass substrate using a bar coater so that the dry film thickness was 40 μm, and was vacuumed in a vacuum dryer (decompression degree: 10 mmHg or less) at 300 ° C. * It dried for 1 hour, and after making it cool to room temperature, it was made to peel from a glass substrate, and the polyimide molded body (film) was obtained. Table 1 shows the measurement results of the linear expansion coefficient, total light transmittance, glass transition temperature, and mechanical properties of the obtained polyimide molded body (film).
 実験例2
 比較例1で得られたポリアミド酸ワニスを、ガラス基板上にバーコーターを用いて、乾燥膜厚が40μmとなるよう塗布し、真空乾燥機内で真空下(減圧度10mmHg以下)、300℃×1時間乾燥し、室温へ冷却後、ガラス基板より剥離させ、ポリイミド成形体(フィルム)を得た。得られたポリイミド成形体(フィルム)の線膨張係数、全光線透過率、ガラス転移温度及び機械的特性の測定結果を表1に示す。
Experimental example 2
The polyamic acid varnish obtained in Comparative Example 1 was applied onto a glass substrate using a bar coater so that the dry film thickness was 40 μm, and was vacuumed (with a reduced pressure of 10 mmHg or less) at 300 ° C. × 1 in a vacuum dryer. After drying for a time and cooling to room temperature, it was made to peel from a glass substrate, and the polyimide molded body (film) was obtained. Table 1 shows the measurement results of the linear expansion coefficient, total light transmittance, glass transition temperature, and mechanical properties of the obtained polyimide molded body (film).
 実施例7
 温度計、撹拌機、窒素導入管、分液デカンタ及び、冷却管を備えた200mLの4つ口フラスコにBCODA13.01g(52mmol)、芳香族ジアミン化合物としてDPE5.21g(26mmol)およびBAPS11.24g(26mmol)反応溶媒としてDMAc99g、共沸溶剤としてECH11gを仕込み、反応系内を窒素置換した後、窒素気流下、160℃で攪拌し、生成水を系外に除去しながら5時間脱水イミド化重合反応を行った。反応後、樹脂濃度が20重量%になるようにDMAcを追加し、本発明のポリイミド樹脂のDMAc溶液(本発明のポリイミドワニス)を得た。得られたポリイミド樹脂の平均分子量の測定結果を表2に示す。
Example 7
In a 200 mL four-necked flask equipped with a thermometer, a stirrer, a nitrogen introducing tube, a separator decanter, and a condenser tube, 13.01 g (52 mmol) of BCODEA, 5.21 g (26 mmol) of DPE and 11.24 g of BAPS as an aromatic diamine compound ( 26 mmol) DMAc (99 g) as a reaction solvent and ECH (11 g) as an azeotropic solvent, the inside of the reaction system was purged with nitrogen, and then stirred at 160 ° C. in a nitrogen stream to remove the generated water from the system for 5 hours. Went. After the reaction, DMAc was added so that the resin concentration was 20% by weight to obtain a DMAc solution of the polyimide resin of the present invention (polyimide varnish of the present invention). Table 2 shows the measurement results of the average molecular weight of the obtained polyimide resin.
 実施例8
 芳香族ジアミン化合物をDPE3.12g(15.6mmol)およびBAPS15.74g(36.4mmol)に変更した以外は、実施例7と同様の方法で本発明のポリイミド樹脂のDMAc溶液(本発明のポリイミドワニス)を得た。得られたポリイミド樹脂の平均分子量の測定結果を表2に示す。
Example 8
A DMAc solution of the polyimide resin of the present invention (polyimide varnish of the present invention) was prepared in the same manner as in Example 7, except that the aromatic diamine compound was changed to 3.12 g (15.6 mmol) of DPE and 15.74 g (36.4 mmol) of BAPS. ) Table 2 shows the measurement results of the average molecular weight of the obtained polyimide resin.
 実施例9
 芳香族ジアミン化合物をm-TD4.42g(20.8mmol)およびBAPS13.49g(31.2mmol)に変更した以外は、実施例7と同様の方法で本発明のポリイミド樹脂のDMAc溶液(本発明のポリイミドワニス)を得た。得られたポリイミド樹脂の平均分子量の測定結果を表2に示す。
Example 9
Except that the aromatic diamine compound was changed to 4.42 g (20.8 mmol) of m-TD and 13.49 g (31.2 mmol) of BAPS, a DMAc solution of the polyimide resin of the present invention (of the present invention) was prepared in the same manner as in Example 7. Polyimide varnish) was obtained. Table 2 shows the measurement results of the average molecular weight of the obtained polyimide resin.
 実施例10
 温度計、撹拌機、窒素導入管、分液デカンタ及び、冷却管を備えた200mLの4つ口フラスコにBCODA13.28g(53.1mmol)、脂環式ジアミン化合物としてHDAM5.55g(26.4mmol)、芳香族ジアミン化合物としてDPE5.29g(26.4mmol)反応溶媒としてDMAc123.9g、共沸溶剤としてECH13.7gを仕込み、反応系内を窒素置換した後、窒素気流下、160℃で攪拌し、生成水を系外に除去しながら5時間脱水イミド化重合反応を行った。反応後、樹脂濃度が15重量%になるようにDMAcを追加し、本発明のポリイミド樹脂のDMAc溶液(本発明のポリイミドワニス)を得た。得られたポリイミド樹脂の平均分子量及び溶剤溶解性の測定結果を表2に示す。
Example 10
In a 200 mL four-necked flask equipped with a thermometer, a stirrer, a nitrogen inlet tube, a separator decanter, and a condenser tube, 13.28 g (53.1 mmol) of BCODA and 5.55 g (26.4 mmol) of HDAM as an alicyclic diamine compound Then, DPE 5.29 g (26.4 mmol) as a reaction solvent, DMAc 123.9 g as a reaction solvent, ECH 13.7 g as an azeotropic solvent were charged, and the reaction system was purged with nitrogen, followed by stirring at 160 ° C. under a nitrogen stream. A dehydration imidation polymerization reaction was carried out for 5 hours while removing the produced water out of the system. After the reaction, DMAc was added so that the resin concentration was 15% by weight to obtain a DMAc solution of the polyimide resin of the present invention (polyimide varnish of the present invention). Table 2 shows the measurement results of the average molecular weight and solvent solubility of the obtained polyimide resin.
 実施例11
 芳香族ジアミン化合物をDAM5.23g(26.4mmol)に変更した以外は、実施例10と同様の方法で本発明のポリイミドワニスを得た。得られたポリイミド樹脂の平均分子量及び溶剤溶解性の測定結果を表2に示す。
Example 11
A polyimide varnish of the present invention was obtained in the same manner as in Example 10 except that the aromatic diamine compound was changed to 5.23 g (26.4 mmol) of DAM. Table 2 shows the measurement results of the average molecular weight and solvent solubility of the obtained polyimide resin.
 実施例12
 BCODAの仕込み量を12.33g(49.3mmol)に変更した以外は、実施例10と同様の方法で本発明のポリイミドワニスを得た。得られたポリイミド樹脂の平均分子量及び溶剤溶解性の測定結果を表2に示す。
Example 12
A polyimide varnish of the present invention was obtained in the same manner as in Example 10 except that the amount of BCODA charged was changed to 12.33 g (49.3 mmol). Table 2 shows the measurement results of the average molecular weight and solvent solubility of the obtained polyimide resin.
 実施例13
 脂環式ジアミン化合物をHDAM7.77g(37.0mmol)に芳香族ジアミン化合物をDPE3.17g(15.8mmol)に変更した以外は、実施例12と同様の方法で本発明のポリイミドワニスを得た。得られたポリイミド樹脂の平均分子量及び溶剤溶解性の測定結果を表2に示す。
Example 13
A polyimide varnish of the present invention was obtained in the same manner as in Example 12, except that the alicyclic diamine compound was changed to 7.77 g (37.0 mmol) of HDAM and the aromatic diamine compound was changed to 3.17 g (15.8 mmol) of DPE. . Table 2 shows the measurement results of the average molecular weight and solvent solubility of the obtained polyimide resin.
 実施例14
 脂環式ジアミン化合物をDMHDAM6.29g(26.4mmol)に変更した以外は、実施例12と同様の方法で本発明のポリイミドワニスを得た。得られたポリイミド樹脂の平均分子量及び溶剤溶解性の測定結果を表2に示す。
Example 14
A polyimide varnish of the present invention was obtained in the same manner as in Example 12 except that the alicyclic diamine compound was changed to 6.29 g (26.4 mmol) of DMHDAM. Table 2 shows the measurement results of the average molecular weight and solvent solubility of the obtained polyimide resin.
 実施例15
 脂環式ジアミン化合物をHDAM2.78g(13.2mmol)とNBDA2.04g(13.2mmol)に変更した以外は、実施例12と同様の方法で本発明のポリイミドワニスを得た。得られたポリイミド樹脂の平均分子量及び溶剤溶解性の測定結果を表2に示す。
Example 15
A polyimide varnish of the present invention was obtained in the same manner as in Example 12 except that the alicyclic diamine compound was changed to 2.78 g (13.2 mmol) of HDAM and 2.04 g (13.2 mmol) of NBDA. Table 2 shows the measurement results of the average molecular weight and solvent solubility of the obtained polyimide resin.
 実施例16
 芳香族ジアミン化合物をDAM5.23g(26.4mmol)に変更した以外は、実施例12と同様の方法で本発明のポリイミドワニスを得た。得られたポリイミド樹脂の平均分子量及び溶剤溶解性の測定結果を表2に示す。
Example 16
A polyimide varnish of the present invention was obtained in the same manner as in Example 12 except that the aromatic diamine compound was changed to 5.23 g (26.4 mmol) of DAM. Table 2 shows the measurement results of the average molecular weight and solvent solubility of the obtained polyimide resin.
 実施例17
 芳香族ジアミン化合物をBAPP10.84g(26.4mmol)に変更した以外は、実施例12と同様の方法で本発明のポリイミドワニスを得た。得られたポリイミド樹脂の平均分子量及び溶剤溶解性の測定結果を表2に示す。
Example 17
A polyimide varnish of the present invention was obtained in the same manner as in Example 12, except that the aromatic diamine compound was changed to 10.84 g (26.4 mmol) of BAPP. Table 2 shows the measurement results of the average molecular weight and solvent solubility of the obtained polyimide resin.
 実施例18
 芳香族ジアミン化合物をBAPS11.42g(26.4mmol)に変更した以外は、実施例12と同様の方法で本発明のポリイミドワニスを得た。得られたポリイミド樹脂の平均分子量及び溶剤溶解性の測定結果を表2に示す。
Example 18
A polyimide varnish of the present invention was obtained in the same manner as in Example 12 except that the aromatic diamine compound was changed to 11.42 g (26.4 mmol) of BAPS. Table 2 shows the measurement results of the average molecular weight and solvent solubility of the obtained polyimide resin.
 実施例19
 芳香族ジアミン化合物をBAPB9.73g(26.4mmol)に変更し、反応溶媒をNMP123.9g、共沸溶剤としてキシレン13.7gに変更した以外は、実施例12と同様の方法で本発明のポリイミドワニスを得た。得られたポリイミド樹脂の平均分子量及び溶剤溶解性の測定結果を表2に示す。
Example 19
The polyimide of the present invention was prepared in the same manner as in Example 12, except that the aromatic diamine compound was changed to 9.73 g (26.4 mmol) of BAPB, the reaction solvent was changed to 123.9 g of NMP, and 13.7 g of xylene as the azeotropic solvent. A varnish was obtained. Table 2 shows the measurement results of the average molecular weight and solvent solubility of the obtained polyimide resin.
 実施例20
 芳香族ジアミン化合物をTPE-Q7.72g(26.4mmol)に変更した以外は、実施例19と同様の方法で本発明のポリイミドワニスを得た。得られたポリイミド樹脂の平均分子量及び溶剤溶解性の測定結果を表2に示す。
Example 20
A polyimide varnish of the present invention was obtained in the same manner as in Example 19 except that the aromatic diamine compound was changed to 7.72 g (26.4 mmol) of TPE-Q. Table 2 shows the measurement results of the average molecular weight and solvent solubility of the obtained polyimide resin.
 実施例21
 芳香族ジアミン化合物をm-TD5.60g(26.4mmol)に変更した以外は、実施例19と同様の方法で本発明のポリイミドワニスを得た。得られたポリイミド樹脂の平均分子量及び溶剤溶解性の測定結果を表2に示す。
Example 21
A polyimide varnish of the present invention was obtained in the same manner as in Example 19 except that the aromatic diamine compound was changed to 5.60 g (26.4 mmol) of m-TD. Table 2 shows the measurement results of the average molecular weight and solvent solubility of the obtained polyimide resin.
 比較例2
 BCODAをDSDA19.02g(53.1mmol)に変更した以外は、実施例9と同様の方法でポリイミドワニスを得た。得られたポリイミド樹脂の平均分子量及び溶剤溶解性の測定結果を表2に示す。
Comparative Example 2
A polyimide varnish was obtained in the same manner as in Example 9, except that BCODA was changed to 19.02 g (53.1 mmol) of DSDA. Table 2 shows the measurement results of the average molecular weight and solvent solubility of the obtained polyimide resin.
 実験例3
 実施例7~21で得られたポリイミドワニスを、ガラス基板上にバーコーターを用いて、乾燥膜厚が40μmとなるよう塗布し、真空乾燥機内で真空下(減圧度10mmHg以下)、300℃×1時間乾燥し、室温へ冷却後、ガラス基板より剥離させ、ポリイミド成形体(フィルム)を得た。得られたポリイミド成形体(フィルム)の線膨張係数、全光線透過率、ガラス転移温度及び機械的特性の測定結果を表2に示す。
Experimental example 3
The polyimide varnishes obtained in Examples 7 to 21 were applied onto a glass substrate using a bar coater so that the dry film thickness was 40 μm, and the vacuum was reduced in a vacuum dryer (decompression degree: 10 mmHg or less) at 300 ° C. After drying for 1 hour and cooling to room temperature, it was peeled off from the glass substrate to obtain a polyimide molded body (film). Table 2 shows the measurement results of the linear expansion coefficient, total light transmittance, glass transition temperature, and mechanical properties of the obtained polyimide molded body (film).
 実験例4
 比較例2で得られたポリイミドワニスを、実験例3と同様の方法でポリイミド成形体(フィルム)を得た。得られたポリイミド成形体(フィルム)の線膨張係数、全光線透過率、ガラス転移温度及び機械的特性の測定結果を表2に示す。
Experimental Example 4
A polyimide molded body (film) was obtained from the polyimide varnish obtained in Comparative Example 2 in the same manner as in Experimental Example 3. Table 2 shows the measurement results of the linear expansion coefficient, total light transmittance, glass transition temperature, and mechanical properties of the obtained polyimide molded body (film).
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-I000042
Figure JPOXMLDOC01-appb-I000042
 本発明のポリイミド樹脂は、表1から、60ppm/K以下という低い線膨張係数、87%以上という高い全光線透過率且つ280℃以上という高いガラス転移温度の優れた物性を有していることが明らかである。比較例1で得られたポリイミド樹脂は、線膨張係数が低くガラス転移温度は高いが、全光線透過率が低い。 From Table 1, the polyimide resin of the present invention has excellent physical properties such as a low linear expansion coefficient of 60 ppm / K or less, a high total light transmittance of 87% or more, and a high glass transition temperature of 280 ° C. or more. it is obvious. The polyimide resin obtained in Comparative Example 1 has a low coefficient of linear expansion and a high glass transition temperature, but a low total light transmittance.
 また、本発明のポリイミド樹脂は、表2から、溶剤可溶性を有するポリイミド樹脂であり、60ppm/K以下という低い線膨張係数、87%以上という高い全光線透過率且つ260℃以上という高いガラス転移温度の優れた物性を有していることが明らかである。比較例2のポリイミド樹脂の溶剤溶解性は良好であるが、全光線透過率が低い。 Moreover, the polyimide resin of this invention is a polyimide resin which has solvent solubility from Table 2, the low linear expansion coefficient of 60 ppm / K or less, the high total light transmittance of 87% or more, and the high glass transition temperature of 260 degreeC or more. It is clear that it has excellent physical properties. Although the solvent solubility of the polyimide resin of Comparative Example 2 is good, the total light transmittance is low.
 すなわち、本発明のポリイミド樹脂は、低い線膨張係数、高い全光線透過率及び高いガラス転移温度を同時に満たすポリイミド樹脂であることがわかる。 That is, it can be seen that the polyimide resin of the present invention is a polyimide resin that simultaneously satisfies a low linear expansion coefficient, a high total light transmittance, and a high glass transition temperature.
産業上の利用分野Industrial application fields
 本発明のポリイミド樹脂は、高透明性、耐熱性及び低線膨張係数を併せ持っている。そのため、該ポリイミド樹脂のポリイミドワニスを成形加工して得られるポリイミド成形体は、ディスプレーや照明等の光学材料に好適に用いることができる。また、当該ポリイミド樹脂は、耐熱絶縁材、耐熱塗料、耐熱コーティング材、耐熱接着材に使用できる。 The polyimide resin of the present invention has both high transparency, heat resistance and a low coefficient of linear expansion. Therefore, the polyimide molded body obtained by molding the polyimide varnish of the polyimide resin can be suitably used for optical materials such as displays and lighting. In addition, the polyimide resin can be used for heat-resistant insulating materials, heat-resistant paints, heat-resistant coating materials, and heat-resistant adhesives.

Claims (21)

  1. 一般式(1)
    Figure JPOXMLDOC01-appb-C000001
    で表されるテトラカルボン酸二無水物と、
    芳香族ジアミン化合物とを、
    モル比で、該テトラカルボン酸二無水物100に対して、該ジアミン化合物の合計が90~110の範囲でイミド化重合反応して得られる、ポリイミド樹脂。
    General formula (1)
    Figure JPOXMLDOC01-appb-C000001
    A tetracarboxylic dianhydride represented by:
    An aromatic diamine compound,
    A polyimide resin obtained by imidation polymerization reaction in a molar ratio of the total of the diamine compounds with respect to the tetracarboxylic dianhydride 100 in the range of 90 to 110.
  2. 芳香族ジアミン化合物が、一般式(2)
    Figure JPOXMLDOC01-appb-C000002
    のジアミン化合物で表される少なくとも1種である、請求項1に記載のポリイミド樹脂。
    The aromatic diamine compound is represented by the general formula (2)
    Figure JPOXMLDOC01-appb-C000002
    The polyimide resin of Claim 1 which is at least 1 sort (s) represented by the diamine compound.
  3. 芳香族ジアミン化合物が、
    (A)ビス[4-(4-アミノフェノキシ)フェニル]スルホン、及び
    (B)一般式(3)
    Figure JPOXMLDOC01-appb-C000003
    のジアミン化合物で表される少なくとも1種
    である、請求項1に記載のポリイミド樹脂。
    Aromatic diamine compounds
    (A) bis [4- (4-aminophenoxy) phenyl] sulfone, and (B) general formula (3)
    Figure JPOXMLDOC01-appb-C000003
    The polyimide resin of Claim 1 which is at least 1 sort (s) represented by the diamine compound.
  4. 一般式(1)
    Figure JPOXMLDOC01-appb-C000004
    で表されるテトラカルボン酸二無水物と、
    芳香族ジアミン化合物、及び
    脂環式ジアミン化合物とを、
    モル比で、該テトラカルボン酸二無水物100に対して、該ジアミン化合物の合計が90~110の範囲でイミド化重合反応して得られる、ポリイミド樹脂。
    General formula (1)
    Figure JPOXMLDOC01-appb-C000004
    A tetracarboxylic dianhydride represented by:
    An aromatic diamine compound and an alicyclic diamine compound,
    A polyimide resin obtained by imidation polymerization reaction in a molar ratio of the total of the diamine compounds with respect to the tetracarboxylic dianhydride 100 in the range of 90 to 110.
  5. 脂環式ジアミン化合物が、一般式(4)
    Figure JPOXMLDOC01-appb-C000005
    のジアミン化合物で表される少なくとも1種である、請求項4に記載のポリイミド樹脂。
    The alicyclic diamine compound has the general formula (4)
    Figure JPOXMLDOC01-appb-C000005
    The polyimide resin according to claim 4, which is at least one kind represented by the diamine compound.
  6. 芳香族ジアミン化合物が、一般式(2)
    Figure JPOXMLDOC01-appb-C000006
    のジアミン化合物で表される少なくとも1種である、請求項4又は5に記載のポリイミド樹脂。
    The aromatic diamine compound is represented by the general formula (2)
    Figure JPOXMLDOC01-appb-C000006
    The polyimide resin according to claim 4 or 5, which is at least one kind represented by the diamine compound.
  7. 芳香族ジアミン化合物が、一般式(5)
    Figure JPOXMLDOC01-appb-C000007
    のジアミン化合物で表される少なくとも1種である、請求項4又は5に記載のポリイミド樹脂。
    The aromatic diamine compound is represented by the general formula (5)
    Figure JPOXMLDOC01-appb-C000007
    The polyimide resin according to claim 4 or 5, which is at least one kind represented by the diamine compound.
  8. 芳香族ジアミン化合物が、一般式(6)
    Figure JPOXMLDOC01-appb-C000008
    のジアミン化合物で表される少なくとも1種である、請求項4又は5に記載のポリイミド樹脂。
    The aromatic diamine compound is represented by the general formula (6)
    Figure JPOXMLDOC01-appb-C000008
    The polyimide resin according to claim 4 or 5, which is at least one kind represented by the diamine compound.
  9. 一般式(1)
    Figure JPOXMLDOC01-appb-C000009
    で表されるテトラカルボン酸二無水物と、
    芳香族ジアミン化合物とを、
    モル比で、該テトラカルボン酸二無水物100に対して、該ジアミン化合物の合計が90~110の範囲で共重合反応して得られる、ポリアミド酸樹脂。
    General formula (1)
    Figure JPOXMLDOC01-appb-C000009
    A tetracarboxylic dianhydride represented by:
    An aromatic diamine compound,
    A polyamic acid resin obtained by copolymerization reaction with respect to the tetracarboxylic dianhydride 100 in a molar ratio of 90 to 110 in total.
  10. 芳香族ジアミン化合物が、一般式(2)
    Figure JPOXMLDOC01-appb-C000010
    のジアミン化合物で表される少なくとも1種である、請求項9に記載のポリアミド酸樹脂。
    The aromatic diamine compound is represented by the general formula (2)
    Figure JPOXMLDOC01-appb-C000010
    The polyamic acid resin of Claim 9 which is at least 1 sort (s) represented by the diamine compound of these.
  11. 芳香族ジアミン化合物が、一般式(5)
    Figure JPOXMLDOC01-appb-C000011
    のジアミン化合物で表される少なくとも1種である、請求項10に記載のポリアミド酸樹脂。
    The aromatic diamine compound is represented by the general formula (5)
    Figure JPOXMLDOC01-appb-C000011
    The polyamic acid resin of Claim 10 which is at least 1 type represented by the diamine compound.
  12. 一般式(1)
    Figure JPOXMLDOC01-appb-C000012
    で表されるテトラカルボン酸二無水物と、
    芳香族ジアミン化合物、及び
    脂環式ジアミン化合物とを、
    モル比で、該テトラカルボン酸二無水物100に対して、該ジアミン化合物の合計が90~110の範囲でイミド化重合反応して得られる、ポリアミド酸樹脂。
    General formula (1)
    Figure JPOXMLDOC01-appb-C000012
    A tetracarboxylic dianhydride represented by:
    An aromatic diamine compound and an alicyclic diamine compound,
    A polyamic acid resin obtained by imidization polymerization reaction with respect to the tetracarboxylic dianhydride 100 in a molar ratio of 90 to 110 in total.
  13. 脂環式ジアミン化合物が、一般式(4)
    Figure JPOXMLDOC01-appb-C000013
    のジアミン化合物で表される少なくとも1種である、請求項12に記載のポリアミド酸樹脂。
    The alicyclic diamine compound has the general formula (4)
    Figure JPOXMLDOC01-appb-C000013
    The polyamic acid resin of Claim 12 which is at least 1 sort (s) represented by the diamine compound.
  14. 芳香族ジアミン化合物が、一般式(2)
    Figure JPOXMLDOC01-appb-C000014
    のジアミン化合物で表される少なくとも1種である、請求項12又は13に記載のポリアミド酸樹脂。
    The aromatic diamine compound is represented by the general formula (2)
    Figure JPOXMLDOC01-appb-C000014
    The polyamic acid resin according to claim 12 or 13, which is at least one kind represented by the diamine compound.
  15. 請求項3~8のいずれかに記載のポリイミド樹脂及び有機溶剤を含有するポリイミドワニス。 A polyimide varnish containing the polyimide resin according to any one of claims 3 to 8 and an organic solvent.
  16. 請求項9~14のいずれかに記載のポリアミド酸樹脂及び有機溶剤を含有するポリアミド酸ワニス。 A polyamic acid varnish containing the polyamic acid resin according to any one of claims 9 to 14 and an organic solvent.
  17. 請求項15に記載のポリイミドワニスを成形加工して得られるポリイミド成形体。 A polyimide molded body obtained by molding the polyimide varnish according to claim 15.
  18. 請求項16に記載のポリアミド酸ワニスを成形加工して得られるポリイミド成形体。 A polyimide molded body obtained by molding the polyamic acid varnish according to claim 16.
  19. ポリイミド成形体が、膜状、フィルム状又はシート状の形態である、請求項17又は18に記載のポリイミド成形体。 The polyimide molded body according to claim 17 or 18, wherein the polyimide molded body is in the form of a film, a film, or a sheet.
  20. 請求項17~19のいずれかに記載のポリイミド成形体からなるプラスチック基板。 A plastic substrate comprising the polyimide molded body according to any one of claims 17 to 19.
  21. 請求項20に記載のプラスチック基板を備えた電気部品又は電子部品。 An electrical component or electronic component comprising the plastic substrate according to claim 20.
PCT/JP2013/057793 2012-03-30 2013-03-19 High-transparency polyimide resin WO2013146460A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-078587 2012-03-30
JP2012078590A JP2015134843A (en) 2012-03-30 2012-03-30 highly transparent polyimide resin
JP2012-078590 2012-03-30
JP2012078587A JP2015134842A (en) 2012-03-30 2012-03-30 solvent-soluble polyimide resin

Publications (1)

Publication Number Publication Date
WO2013146460A1 true WO2013146460A1 (en) 2013-10-03

Family

ID=49259717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/057793 WO2013146460A1 (en) 2012-03-30 2013-03-19 High-transparency polyimide resin

Country Status (2)

Country Link
TW (1) TW201400527A (en)
WO (1) WO2013146460A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150106852A (en) 2014-03-12 2015-09-22 신닛테츠 수미킨 가가쿠 가부시키가이샤 Display device and method for manufacturing the same, and polyimide film for display device
CN109912616A (en) * 2019-03-20 2019-06-21 浙江福斯特新材料研究院有限公司 Alicyclic dianhydride monomer and high transparency low dielectric coefficient polyimide film
CN111234528A (en) * 2020-01-16 2020-06-05 东营欣邦电子科技有限公司 Transparent polyimide film with low thermal expansion coefficient and preparation method thereof
CN111902457A (en) * 2018-03-28 2020-11-06 三菱瓦斯化学株式会社 Polyimide resin, polyimide varnish, and polyimide film

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7070406B2 (en) * 2017-03-22 2022-05-18 東レ株式会社 Resin composition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3423431A (en) * 1966-09-12 1969-01-21 Mobil Oil Corp Photolytic process for preparing polycyclic fused ring dianhydrides
JP2006350347A (en) * 2005-06-14 2006-12-28 Lg Phillips Lcd Co Ltd Liquid crystal display device and method of fabricating the same
JP2011081379A (en) * 2009-10-05 2011-04-21 Sony Corp Polyamic acid obtained by reaction of dianhydride and diamine, polyimide, substrate, liquid crystal display, use method of polyimide, and method for manufacturing liquid crystal display

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3423431A (en) * 1966-09-12 1969-01-21 Mobil Oil Corp Photolytic process for preparing polycyclic fused ring dianhydrides
JP2006350347A (en) * 2005-06-14 2006-12-28 Lg Phillips Lcd Co Ltd Liquid crystal display device and method of fabricating the same
JP2011081379A (en) * 2009-10-05 2011-04-21 Sony Corp Polyamic acid obtained by reaction of dianhydride and diamine, polyimide, substrate, liquid crystal display, use method of polyimide, and method for manufacturing liquid crystal display

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
B.A. ZUBANOV: "Besonderheiten der Einstufensynthese von Polyimiden", FASERFORSCHUNG UND TEXTILTECHNIK, vol. 29, 1978, pages 311 - 316 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150106852A (en) 2014-03-12 2015-09-22 신닛테츠 수미킨 가가쿠 가부시키가이샤 Display device and method for manufacturing the same, and polyimide film for display device
CN111902457A (en) * 2018-03-28 2020-11-06 三菱瓦斯化学株式会社 Polyimide resin, polyimide varnish, and polyimide film
CN111902457B (en) * 2018-03-28 2023-03-28 三菱瓦斯化学株式会社 Polyimide resin, polyimide varnish, and polyimide film
CN109912616A (en) * 2019-03-20 2019-06-21 浙江福斯特新材料研究院有限公司 Alicyclic dianhydride monomer and high transparency low dielectric coefficient polyimide film
CN111234528A (en) * 2020-01-16 2020-06-05 东营欣邦电子科技有限公司 Transparent polyimide film with low thermal expansion coefficient and preparation method thereof

Also Published As

Publication number Publication date
TW201400527A (en) 2014-01-01

Similar Documents

Publication Publication Date Title
JP6123929B2 (en) Copolymer polyimide precursor and copolymer polyimide
JP5727795B2 (en) Ester group-containing tetracarboxylic dianhydride, polyester polyimide precursor, polyesterimide, and methods for producing them
JP7302595B2 (en) Polyimide resin, polyimide varnish and polyimide film
WO2013179727A1 (en) Polyimide precursor and polyimide
WO2015080139A1 (en) Polyimide precursor composition, method for producing polyimide, polyimide, polyimide film, and substrate
WO2016063988A1 (en) Polyimide precursor, polyimide, and polyimide film
CN111465634B (en) Polyimide resin, polyimide varnish, and polyimide film
JP7180617B2 (en) Polyimide resin composition and polyimide film
KR20200052308A (en) Polyimide resin, polyimide varnish and polyimide film
WO2013146460A1 (en) High-transparency polyimide resin
JP2014114429A (en) Solvent-soluble polyimide resin
KR20230066346A (en) Polymer composition, varnish, and polyimide film
JP5412933B2 (en) Polyimide resin
JP2017197631A (en) Polyimide precursor, polyimide, polyimide film, polyimide laminate, and polyimide/hard coat laminate
US10968316B2 (en) Polyimide resin and polyimide film
JP2009263654A (en) Polyimide, polyimide film, and methods for producing the same
JP2015134842A (en) solvent-soluble polyimide resin
JP2009286853A (en) Polyesterimide precursor and polyesterimide
JP2013227500A (en) Solvent-soluble polyimide resin
JP2010235859A (en) Polyimide material, film and composition, and method for producing the same
JP2015134843A (en) highly transparent polyimide resin
KR102268338B1 (en) Precursor of polyimide and polyimide manufactured thereof and polyimide film including the same
KR20230066345A (en) Polymer composition, varnish, and polyimide film
JP5966966B2 (en) High heat resistance polyimide resin
KR20230007329A (en) Imide-amic acid copolymer and its preparation method, varnish, and polyimide film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13768190

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 13768190

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP