WO2013146455A1 - 二軸延伸ナイロンフィルム、ラミネートフィルム、ラミネート包材および二軸延伸ナイロンフィルムの製造方法 - Google Patents

二軸延伸ナイロンフィルム、ラミネートフィルム、ラミネート包材および二軸延伸ナイロンフィルムの製造方法 Download PDF

Info

Publication number
WO2013146455A1
WO2013146455A1 PCT/JP2013/057783 JP2013057783W WO2013146455A1 WO 2013146455 A1 WO2013146455 A1 WO 2013146455A1 JP 2013057783 W JP2013057783 W JP 2013057783W WO 2013146455 A1 WO2013146455 A1 WO 2013146455A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
biaxially stretched
stretched nylon
laminate
nylon film
Prior art date
Application number
PCT/JP2013/057783
Other languages
English (en)
French (fr)
Inventor
真男 高重
Original Assignee
出光ユニテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光ユニテック株式会社 filed Critical 出光ユニテック株式会社
Publication of WO2013146455A1 publication Critical patent/WO2013146455A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/28Shaping by stretching, e.g. drawing through a die; Apparatus therefor of blown tubular films, e.g. by inflation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2077/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • B32B2307/518Oriented bi-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/704Crystalline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2553/00Packaging equipment or accessories not otherwise provided for

Definitions

  • the present invention particularly relates to a biaxially stretched nylon film, a laminate film, a laminate packaging material and a method for producing a biaxially stretched nylon film that can be suitably used as a packaging material for cold forming.
  • Biaxially stretched nylon film (hereinafter also referred to as ONy film) is excellent in strength, impact resistance, pinhole resistance, etc., and is therefore often used for applications that require heavy strength loads such as heavy weight packaging and water packaging. .
  • ONy film Biaxially stretched nylon film
  • the use of drawing a laminate packaging material including this ONy film is increasing.
  • cold drawing that is superior in safety and freedom of shape (drawing formability) and can be made thinner and lighter than hot forming is being actively studied (for example, patents).
  • Laminate packaging materials including such ONy films are used for battery packaging, pharmaceuticals (especially PTP: Press through pack packaging, etc.), daily necessities (especially refill packaging for liquid detergents, etc.), foods, etc. Can be suitably used.
  • the packaging material for cold forming is required to further improve drawability (deep drawability) as the capacity of batteries and the like increases.
  • redrawable packaging materials for liquid detergents are required to have deep drawability when a straw or the like for an inlet is attached.
  • high moisture resistance and deep drawability are required even for PTP packaging materials. ing.
  • a laminate packaging material including a biaxially stretched nylon film as described in Patent Document 1 there is no problem with ordinary drawing, but pinholes may occur when deep drawing is performed.
  • the present invention provides a biaxially stretched nylon film, a laminate film, a laminate packaging material, and a method for producing a biaxially stretched nylon film that have excellent deep drawability during cold forming and have excellent impact resistance.
  • the purpose is to provide.
  • cold molding refers to molding performed at room temperature without heating in drawing molding.
  • One means of such cold forming is to use a cold forming machine used for forming aluminum foil or the like to push the sheet material into the female mold with a male mold and press it at high speed. According to such cold forming, plastic deformation such as molding, bending, shearing and drawing can be generated without heating.
  • the present invention provides the following biaxially stretched nylon film, laminate film, laminate packaging material, and method for producing a biaxially stretched nylon film. That is, the biaxially stretched nylon film of the present invention is a biaxially stretched nylon film made from a nylon resin, and has a crystal size index of 0.55 (1 / deg) or less. .
  • the “crystal size index” is the reciprocal of the peak half-value width obtained from the X-ray diffraction pattern by wide-angle X-ray diffraction.
  • the biaxially stretched nylon film of the present invention is a biaxially stretched nylon film made from a nylon resin, and the content ratio of ⁇ -type crystals to ⁇ -type crystals ( ⁇ -type crystals / ⁇ -type crystal ratio) is 1.5 or more. 3.1 or less.
  • the laminate film of the present invention is formed by laminating the biaxially stretched nylon film.
  • the laminate packaging material of the present invention is characterized by using the laminate film.
  • the method for producing a biaxially stretched nylon film of the present invention is a method for producing a biaxially stretched nylon film for producing the biaxially stretched nylon film, and a raw film production process for forming a raw film from the raw material, A biaxial stretching step of biaxially stretching the original film, and a heat fixing step of heat-treating the film after the biaxial stretching step by heat treatment.
  • the method for producing a biaxially stretched nylon film of the present invention includes a raw film production process for forming a raw film from the raw material, a biaxial stretch process for stretching the raw film, and a heat treatment after the biaxial stretch process.
  • the content ratio of ⁇ -type crystals and ⁇ -type crystals ( ⁇ -type crystals / ⁇ -type crystal ratio) of the obtained biaxially stretched nylon film is 1.5 or more and 3.1 or less. It is characterized by that.
  • the biaxial stretching process is performed biaxially by a tubular biaxial stretching method.
  • a biaxially stretched nylon film, a laminate film, a laminate packaging material, and a method for producing a biaxially stretched nylon film having excellent deep drawability at the time of cold forming and having excellent impact resistance can be provided.
  • the biaxially stretched nylon film (ONy film) of this embodiment is formed by biaxially stretching a raw film made of nylon resin as a raw material and heat-fixing it at a predetermined temperature.
  • Nylon 6, nylon 8, nylon 11, nylon 12, nylon 6,6, nylon 6,10, nylon 6,12, etc. can be used as the nylon resin as the raw material.
  • Nylon 6 (hereinafter also referred to as Ny6) is preferably used from the viewpoint of physical properties, melting characteristics, and ease of handling.
  • the chemical formula of Ny6 is shown in the following formula (1).
  • the number average molecular weight of the raw material nylon resin is preferably 15000 or more and 30000 or less, and more preferably 22000 or more and 24000 or less.
  • the crystal size index needs to be 0.55 (1 / deg) or less. If the crystal size index exceeds 0.55 (1 / deg), the deep drawability and impact resistance of the resulting film will be insufficient.
  • the crystal size can be obtained by the Scherrer equation represented by the following equation (F1) using the peak half-value width obtained from the X-ray diffraction pattern by wide-angle X-ray diffraction.
  • X-ray diffraction pattern by wide-angle X-ray diffraction can be measured under the following conditions by a rate meter method using, for example, a rotor flex RU-200 manufactured by Rigaku Corporation.
  • the laminate film of this embodiment is configured by laminating one or two or more other laminate base materials on at least one surface of the above-described ONy film.
  • other laminate base materials include, for example, an aluminum layer, a film containing an aluminum layer, a polypropylene-based or polyethylene-based seal layer (sealant layer), and the like.
  • the laminate packaging material of the present embodiment is a polyester resin such as polyethylene terephthalate (PET), polyvinylidene chloride resin, polyvinylidene chloride copolymer resin, lubricant, or the like on at least one surface of the above-mentioned ONy film.
  • a laminate in which an antistatic agent or a coating layer of nitrified cotton amide resin is further laminated may be used.
  • By laminating such a laminate substrate it is possible to improve manufacturing efficiency and conveyance efficiency, and functionality (chemical resistance, electrical insulation, moisture resistance, cold resistance, workability, etc.) Can be obtained.
  • stacking aspect of the said laminate film ONy / Al / PP, PET / ONy / Al / PP, ONy / Al / PVC is mentioned, for example.
  • the total thickness of the ONy film and other laminate base material is preferably 200 ⁇ m or less.
  • the total thickness exceeds 200 ⁇ m, it becomes difficult to form the corner portion by cold forming, and it tends to be difficult to obtain a molded product having a sharp shape.
  • the thickness of the ONy film in the laminate packaging material of the present embodiment is preferably 5 ⁇ m or more and 50 ⁇ m or less, and more preferably 10 ⁇ m or more and 30 ⁇ m or less.
  • the thickness of the ONy film is less than 5 ⁇ m, the impact resistance of the laminate packaging material tends to be low, and the cold formability tends to be insufficient.
  • the thickness of the ONy film exceeds 50 ⁇ m, it is difficult to obtain an effect of further improving the impact resistance of the laminate packaging material, which is not preferable because the total thickness of the packaging material is increased.
  • the film manufacturing apparatus 100 includes an original fabric manufacturing apparatus 90 for manufacturing the original fabric film 1, a biaxial stretching apparatus (tubular stretching apparatus) 10 that stretches the original fabric film 1, and stretching.
  • a first heat treatment device 20 that preheats a base film 2 that is folded later (hereinafter also simply referred to as “film 2”), a separation device 30 that separates the preheated film 2 into two upper and lower sheets, A second heat treatment device 40 that heat-treats (heat-set) the separated film 2, a tension control device 50 that applies tension to the film 2 from the downstream side when the film 2 is heat-set, and the film 2 is heat-set.
  • a winding device 60 for winding the biaxially stretched nylon film 3 (hereinafter also simply referred to as “film 3”).
  • the second heat treatment apparatus 40 includes a tenter 41 and a heating furnace 42 as shown in FIG.
  • the tension controller 50 includes guide rolls 51 ⁇ / b> A and 51 ⁇ / b> B and a tension roll 52.
  • the winding device 60 includes a guide roll 61 and a winding roll 62.
  • the raw material nylon resin is melt-kneaded by an extruder 91 and extruded into a tube shape by a circular die 92.
  • the tubular molten resin is cooled by a water cooling ring 93.
  • the raw film 1 is molded by rapidly cooling a molten nylon resin as a raw material by a water cooling ring 93.
  • the cooled original film 1 is folded by the stabilizer 94.
  • the folded original fabric film 1 is sent to the next biaxial stretching process by a pinch roll 95 as a flat film.
  • the original film 1 manufactured by the original film manufacturing process is introduced into the apparatus as a flat film by a pinch roll 11.
  • the introduced raw film 1 is bubble-stretched by being heated with infrared rays at the heating unit 12.
  • the film 2 after being bubble-stretched is folded by the guide plate 13.
  • the folded film 2 is pinched by the pinch roll 14 and sent to the next first heat treatment step as a flat film 2.
  • the draw ratios in the MD direction and the TD direction are each preferably 2.8 times or more.
  • the stretching ratio in the TD direction is larger than the stretching ratio in the MD direction at the end of stretching.
  • the difference (TD ⁇ MD) obtained by subtracting the draw ratio in the MD direction from the draw ratio in the TD direction is preferably 0.1 times or more, more preferably 0.2 times or more and 0.8 times or less. Preferably, it is still more preferably 0.3 times or more and 0.8 times or less.
  • the film 2 sent from the biaxial stretching step is at or above the shrinkage start temperature of the film 2 and about 30 ° C. higher than the melting point of the film 2 while being gripped at both ends by clips (not shown) of the tenter 21.
  • the film 2 is preheated at a low temperature or lower and sent to the next separation step.
  • the heat treatment temperature in the first heat treatment is preferably 120 ° C. or higher and 190 ° C. or lower, and the relaxation rate is preferably 15% or lower.
  • the flat film 2 sent through the guide roll 31 is cut into both ends by a blade 321 of a trimming device 32 and separated into two films 2A and 2B.
  • film 2A, 2B is isolate
  • the incision of the flat film 2 may be performed so that a part of the ear is generated by positioning the blade 321 slightly inward from both ends, or by positioning the blade 321 in the fold portion of the film 2. , It may be performed so that the ear does not occur.
  • These films 2A and 2B are overlapped again by three grooved rolls 34A to 34C positioned in order in the film flow direction, and sent to the next second heat treatment step.
  • these grooved rolls 34A to 34C are obtained by plating the surface after the grooved processing. A good contact state between the films 2A and 2B and the air can be obtained through the grooves.
  • the overlapped films 2A and 2B are heat-treated at a temperature equal to or lower than the melting point of the resin constituting the film 2 and about 30 ° C. lower than the melting point while being gripped at both ends by clips (not shown) of the tenter 41. It is (heat-set) and becomes a biaxially stretched nylon film 3 (hereinafter also referred to as film 3) having stable physical properties, and is sent to the next winding step.
  • the heat treatment temperature in the second heat treatment (heat setting) is preferably 160 ° C. or higher and 215 ° C. or lower, and more preferably 190 ° C. or higher and 215 ° C. or lower.
  • the film shrinkage rate tends to increase and the risk of delamination tends to increase.
  • the upper limit is exceeded, the bowing phenomenon during heat setting increases, and the film is distorted.
  • the density tends to be too high, the crystallinity becomes too high, and the film tends to be difficult to deform.
  • the relaxation rate at this time is preferably 15% or less. A strong tension is applied to the films 2A and 2B in the heating furnace 42 by the tension control device 50 located on the downstream side.
  • the biaxially stretched nylon film (ONy film) of this embodiment is formed by biaxially stretching a raw film made of nylon resin as a raw material and heat-fixing it at a predetermined temperature.
  • Nylon 6, nylon 8, nylon 11, nylon 12, nylon 6,6, nylon 6,10, nylon 6,12, etc. can be used as the nylon resin as the raw material.
  • Nylon 6 (hereinafter also referred to as Ny6) is preferably used from the viewpoint of physical properties, melting characteristics, and ease of handling.
  • the chemical formula of Ny6 is shown in the following formula (1).
  • the number average molecular weight of the raw material nylon resin is preferably 15000 or more and 30000 or less, and more preferably 22000 or more and 24000 or less.
  • the content ratio of ⁇ -type crystals and ⁇ -type crystals is 1.5 or more and 3.1 or less.
  • the content ratio of the ⁇ -type crystal and the ⁇ -type crystal can be easily measured by a commonly used infrared absorption spectrum. Specifically, it is obtained as follows. 1201cm -1 in the infrared absorption spectrum is attributed to conformational (structural) A contained in the ⁇ -type crystal, 1170cm -1 is attributed to the conformation (structure) B present in the ⁇ -type crystal or amorphous region.
  • Absorbance at 1201 cm ⁇ 1 is A 1201
  • Absorbance at 1170 cm ⁇ 1 is measured as B 1170
  • the content ratio ( ⁇ type crystal / ⁇ type crystal ratio) of ⁇ type crystal and ⁇ type crystal is A 1201 / B 1170 Is required.
  • the content ratio of ⁇ -type crystal and ⁇ -type crystal thus obtained is 1.5 or more and 3.1 or less, both impact resistance and drawability (deep drawability and cold formability) are good. It is.
  • the content ratio is more preferably 1.8 or more and 3 or less, and further preferably 2 or more and 2.9 or less.
  • the tensile strength of the biaxially stretched nylon film is preferably 240 MPa or more. This is because if the tensile strength is less than 240 MPa, the deep drawability of the film may be insufficient. Further, from the viewpoint of obtaining excellent deep drawability during cold forming, the tensile strength is more preferably 250 MPa or more. The tensile strength can be measured according to the method described in ASTM D882.
  • the biaxially oriented nylon film preferably has a breaking elongation of 70% or more. This is because if the elongation at break is less than 70%, the deep drawability of the film may be insufficient. Further, from the viewpoint of obtaining excellent deep drawability during cold forming, the elongation at break is more preferably 80% or more. In particular, the breaking elongation in the TD direction is preferably 130% or less. The elongation at break can be measured according to the method described in ASTM D882. In this embodiment, a biaxially stretched nylon film is manufactured by the same manufacturing method as in the first embodiment, but the content ratio of the ⁇ -type crystal and the ⁇ -type crystal is changed by changing the heat treatment temperature. Can be controlled. For example, when the content ratio is lowered, the heat treatment temperature may be lowered.
  • the tubular method is adopted as the biaxial stretching method, but a tenter method may be used.
  • the stretching method may be simultaneous biaxial stretching or sequential biaxial stretching.
  • the second heat treatment is performed as one means for bringing the content ratio ( ⁇ -type crystal / ⁇ -type crystal ratio) of the ⁇ -type crystal and the ⁇ -type crystal of the biaxially stretched nylon film into the range of the present invention.
  • the adjustment of the heat treatment temperature condition in the process heat setting process
  • the present invention is not limited to this as long as the ⁇ -type crystal / ⁇ -type crystal ratio can be within the scope of the present invention.
  • the ⁇ type crystal / ⁇ type crystal ratio may be adjusted by adjusting the temperature setting in the first heat treatment step.
  • a laminate film is formed with a nylon film and an LLDPE sealant of 50 ⁇ m to produce a 130 mm ⁇ 150 mm bag product (inner dimensions 110 mm ⁇ 110 mm), and 120 ml of liquid in the bag product (Water) was filled, and the upper part of the bag was sealed to produce a sealed bag.
  • two plastic plates having a length of 44 cm were stacked and connected with a hinge, and a plate having a weight of 3 kg (one 1.5 kg) was placed sideways from the vertical state. Subsequently, the sealed bag filled with the liquid was placed on its side, and the plastic plate was repeatedly struck from above the sealed bag.
  • the biaxial stretching in the MD direction and the TD direction was performed by the tubular method by expanding and taking up with a pair of downstream pinch rolls 14.
  • the magnification during this stretching was 3.0 times in the MD direction and 3.3 times in the TD direction.
  • First heat treatment step and second heat treatment step Next, as shown in FIG. 1, the film 2 is subjected to heat treatment at a temperature of 170 ° C. by the first heat treatment apparatus 20, and then passed through the separation apparatus 30 and then heat treated at a temperature of 210 ° C. by the second heat treatment apparatus 40. And heat fixed.
  • Windding process Next, as shown in FIG.
  • the film 3 heat-set in the second heat treatment step is wound as two films 3 ⁇ / b> A and 3 ⁇ / b> B on two winding rolls 62 via a guide roll 61 via a tension control device 50.
  • a biaxially stretched nylon film was produced.
  • the thickness of the obtained biaxially stretched nylon film was 15 ⁇ m.
  • the resulting biaxially stretched nylon film was measured for peak half width, crystal size index and impact strength.
  • the obtained results are shown in Table 1. (Production of laminate film)
  • the obtained biaxially stretched nylon film was used as a front substrate film, an aluminum foil having a thickness of 40 ⁇ m was used as an intermediate substrate, and a CPP film having a thickness of 60 ⁇ m was used as a sealant film to obtain a laminate film.
  • the laminated film after dry lamination was aged at 40 ° C. for 3 days.
  • the resulting laminate film was evaluated for impact resistance and deep drawability.
  • Table 1 The obtained results are shown in Table 1.
  • Examples 1-2 to 1-4 biaxial as in Example 1-1 except that each condition was changed according to the production conditions shown in Table 1 (biaxial stretching method, stretching ratio, and heat setting temperature).
  • Table 1 biaxial stretching method, stretching ratio, and heat setting temperature.
  • a stretched nylon film and a laminate film were produced.
  • the resulting biaxially stretched nylon film was measured for peak half width, crystal size index and impact strength.
  • the obtained results are shown in Table 1.
  • the impact resistance and deep drawing moldability of the obtained laminate film were evaluated. The obtained results are shown in Table 1.
  • Comparative Examples 1-1 to 1-3 biaxially stretched nylon films obtained by the method according to the biaxial stretching method shown in Table 1 were obtained, and as in Example 1-1, the peak half width, The crystal size index and impact strength were measured. The obtained results are shown in Table 1.
  • a laminate film was produced using the biaxially stretched nylon films of Comparative Examples 1-1 to 1-3, and the impact resistance and deep drawability were evaluated in the same manner as in Example 1-1. The obtained results are shown in Table 1.
  • the raw film 1 is inserted between a pair of pinch rolls 11, and then heated by the heating unit 12 while a gas is being pressed into the film 1, and blown to the stretching start point to form bubbles.
  • the biaxial stretching in the MD direction and the TD direction was performed by the tubular method by expanding and taking up with a pair of downstream pinch rolls 14.
  • First heat treatment step and second heat treatment step Next, as shown in FIG. 1, the film 2 is subjected to heat treatment at a temperature of 170 ° C. by the first heat treatment apparatus 20, and after passing through the separation apparatus 30, the film 2 is heat treated at a temperature of 210 ° C.
  • the film 3 heat-fixed was obtained.
  • the content ratio ( ⁇ -type crystal / ⁇ -type crystal ratio) of ⁇ -type crystal and ⁇ -type crystal in the obtained film 3 was measured and found to be 3.0.
  • the film 3 heat-set in the second heat treatment step is wound as two films 3 ⁇ / b> A and 3 ⁇ / b> B on two winding rolls 62 via a guide roll 61 via a tension control device 50.
  • a biaxially stretched nylon film was produced.
  • the thickness of the obtained biaxially stretched nylon film was 15 ⁇ m.
  • the impact strength of the obtained biaxially stretched nylon film was measured. The obtained results are shown in Table 2.
  • the obtained biaxially stretched nylon film was used as a front substrate film, an aluminum foil having a thickness of 40 ⁇ m was used as an intermediate substrate, and a CPP film having a thickness of 60 ⁇ m was used as a sealant film to obtain a laminate film.
  • the laminated film after dry lamination was aged at 40 ° C. for 3 days.
  • Example 2-2 The test was performed under the same conditions as in Example 2-1, except that the heat treatment temperature in the second heat treatment step was changed to 200 ° C. A laminate film was produced in the same manner as in Example 2-1. Laminate films were produced in the same manner for the following examples and comparative examples. The ( ⁇ -type crystal / ⁇ -type crystal ratio) in the obtained film was 2.8.
  • the test was carried out under the same conditions as in Example 2-1.
  • the ( ⁇ -type crystal / ⁇ -type crystal ratio) in the obtained film was 2.3.
  • Example 2-5 The test was performed under the same conditions as in Example 2-1, except that the heat treatment temperature was changed to 140 ° C.
  • the ( ⁇ -type crystal / ⁇ -type crystal ratio) in the obtained film was 1.4.
  • the biaxially stretched nylon film of the present invention is, for example, an industrial field (such as a lithium battery packaging material mounted on an electric vehicle, a tablet-type terminal device, a smartphone, etc.), a pharmaceutical field (such as a PTP packaging material), and a daily necessities field It can be suitably used as a packaging material that particularly requires impact resistance and pinhole resistance, such as packaging materials for liquid detergents (refillable packaging materials for liquid detergents) and packaging materials for foods (such as packaging materials for retort foods). . Further, the laminate packaging material of the present invention can be suitably used as a packaging material for cold molding that requires particularly excellent deep drawability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)
  • Wrappers (AREA)

Abstract

 本発明の二軸延伸ナイロンフィルムは、ナイロン樹脂を原料とする二軸延伸ナイロンフィルムであって、結晶サイズ指標が0.55(1/deg)以下であることを特徴とするものである。

Description

二軸延伸ナイロンフィルム、ラミネートフィルム、ラミネート包材および二軸延伸ナイロンフィルムの製造方法
 本発明は、特に、冷間成型用の包装材料として好適に用いることができる二軸延伸ナイロンフィルム、ラミネートフィルム、ラミネート包材および二軸延伸ナイロンフィルムの製造方法に関する。
 二軸延伸ナイロンフィルム(以後、ONyフィルムとも言う)は、強度、耐衝撃性、耐ピンホール性などに優れるため、重量物包装や水物包装など大きな強度負荷が掛かる用途に多く用いられている。
 一方、近年になって、このONyフィルムを含むラミネート包材に対して絞り成型を行う用途が増えつつある。また、絞り成型の中でも、熱間成型に比して、安全性や形状自由度(絞り成型性)に優れ、薄肉化や軽量化が図れる冷間成型が盛んに検討されている(例えば、特許文献1)。
 このようなONyフィルムを含むラミネート包材は、電池包装用、医薬用(特に、PTP:Press through pack包材など)、日用品用(特に、液体洗剤用詰め替え包材など)、食品用などの用途に好適に用いることができる。
特開2008-44209号公報
 一方、冷間成型用の包装材料は、電池などの大容量化に伴い、更なる絞り成型性の向上(深絞り成型性)が要求されるようになっている。また、液体洗剤用詰め替え包材でも、注入口のストローなどを装着する際に、深絞り成型性が要求されるようになっている。さらに、近年高齢化が進むにつれて、優れた嚥下機能(飲み込む機能)を付与すべく水に溶けやすい医薬の開発に伴い、PTP包材でも高防湿性や深絞り成形性が要求されるようになっている。しかしながら、特許文献1に記載のような二軸延伸ナイロンフィルムを含むラミネート包材においては、通常の絞り成型では問題にはならないものの、深絞り成型をすると、ピンホールが発生するおそれがある。
 そこで、本発明は、冷間成型時に優れた深絞り成型性を有し、かつ優れた耐衝撃性を有する二軸延伸ナイロンフィルム、ラミネートフィルム、ラミネート包材および二軸延伸ナイロンフィルムの製造方法を提供することを目的とする。
 本発明において、冷間成型とは、絞り成型のうちで加熱せず常温下で行う成型をいう。かかる冷間成型の一手段として、アルミニウム箔などの成型に用いられる冷間成型機を用いて、シート材料を雌金型に対して雄金型で押し込み、高速でプレスすることが挙げられる。かかる冷間成型によると、加熱することなく型付け、曲げ、剪断、絞りなどの塑性変形を生じさせることができる。
 前記課題を解決すべく、本発明は、以下のような二軸延伸ナイロンフィルム、ラミネートフィルム、ラミネート包材および二軸延伸ナイロンフィルムの製造方法を提供するものである。
 すなわち、本発明の二軸延伸ナイロンフィルムは、ナイロン樹脂を原料とする二軸延伸ナイロンフィルムであって、結晶サイズ指標が0.55(1/deg)以下であることを特徴とするものである。
 なお、本発明における「結晶サイズ指標」とは、広角X線回折によるX線回折パターンから得られるピーク半価幅の逆数である。
 本発明の二軸延伸ナイロンフィルムは、ナイロン樹脂を原料とする二軸延伸ナイロンフィルムであって、α型結晶とγ型結晶の含有比(α型結晶/γ型結晶比)が1.5以上3.1以下であることを特徴とする。
 本発明のラミネートフィルムは、前記二軸延伸ナイロンフィルムを積層してなることを特徴とするものである。
 本発明のラミネート包材は、前記ラミネートフィルムを用いたことを特徴とするものである。
 本発明の二軸延伸ナイロンフィルムの製造方法は、前記二軸延伸ナイロンフィルムを製造する二軸延伸ナイロンフィルムの製造方法であって、前記原料から原反フィルムを成形する原反フィルム製造工程と、前記原反フィルムを二軸延伸する二軸延伸工程と、前記二軸延伸工程後のフィルムに熱処理を施して熱固定する熱固定工程と、を備えることを特徴とするものである。
 本発明の二軸延伸ナイロンフィルムの製造方法は、前記原料から原反フィルムを成形する原反フィルム製造工程と、前記原反フィルムを延伸する二軸延伸工程と、前記二軸延伸工程後に熱処理を施す熱固定工程とを有し、得られた二軸延伸ナイロンフィルムのα型結晶とγ型結晶の含有比(α型結晶/γ型結晶比)を、1.5以上3.1以下とすることを特徴とする。
 本発明の二軸延伸ナイロンフィルムの製造方法においては、前記二軸延伸工程において、チューブラー式二軸延伸法にて二軸延伸することが好ましい。
 本発明によれば、冷間成型時に優れた深絞り成型性を有し、かつ優れた耐衝撃性を有する二軸延伸ナイロンフィルム、ラミネートフィルム、ラミネート包材および二軸延伸ナイロンフィルムの製造方法を提供することができる。
本発明の二軸延伸ナイロンフィルムを製造する装置の一例を示す概略構成図である。
 以下、本発明をその好適な実施形態に即して詳細に説明する。
<第1実施形態>
 〔二軸延伸ナイロンフィルムの構成〕
 本実施形態の二軸延伸ナイロンフィルム(ONyフィルム)は、ナイロン樹脂を原料とする原反フィルムを二軸延伸し、所定の温度で熱固定して形成したものである。
 原料であるナイロン樹脂としては、ナイロン6、ナイロン8、ナイロン11、ナイロン12、ナイロン6,6、ナイロン6,10、ナイロン6,12などを使用することができる。物性や溶融特性、取り扱いやすさの点からはナイロン6(以後、Ny6ともいう)を用いることが好ましい。
 ここで、前記Ny6の化学式を下記式(1)に示す。
Figure JPOXMLDOC01-appb-C000001
 原料であるナイロン樹脂の数平均分子量は、15000以上30000以下であることが好ましく、22000以上24000以下であることがより好ましい。
 本実施形態においては、結晶サイズ指標が0.55(1/deg)以下であることが必要である。結晶サイズ指標が0.55(1/deg)を超えると、得られるフィルムの深絞り成型性および耐衝撃性が不十分となる。
 ここで、結晶サイズは、広角X線回折によるX線回折パターンから得られるピーク半価幅を用いて、下記数式(F1)で表されるシェラーの式により求めることができる。
l=k・λ/Hcosθ ・・・(F1)
l : 結晶サイズ (Å)
H : ピーク半価幅(deg)
θ : ブラッグ角 (deg)
λ : X線の波長 (Å)
k : シェラー定数
 広角X線回折によるX線回折パターンは、例えば理学電機社製のローターフレックスRU-200を使用して、レートメーター法により、下記の条件により測定することができる。
X線出力:40KV、50mA
走査速度:1deg/min
走査範囲:2θ=10deg~35deg
 ピーク半価幅は、2θ=20deg付近に現れるポリアミドの(002)面反射のピークの半価幅を用いる。
 ここで、上述したシェラーの式からピーク半価幅の逆数が結晶サイズに比例することが確認できるため、本発明における「結晶サイズ指標」は、ピーク半価幅の逆数(1/deg)で示す。
 なお、測定される結晶は、ポリアミドの非晶部以外のことを指し、この結晶の中には、α型結晶やγ型結晶が混在している。
 〔ラミネートフィルムの構成〕
 本実施形態のラミネートフィルムは、上記したONyフィルムの少なくともいずれか一方の面に、1層または2層以上の他のラミネート基材を積層して構成されている。具体的に、他のラミネート基材としては、例えばアルミニウム層やアルミニウム層を含むフィルムや、ポリプロピレン系やポリエチレン系のシール層(シーラント層)などが挙げられる。
 また、本実施形態のラミネート包材は、上記したONyフィルムの少なくとも一方の面にポリエチレンテレフタレート(PET)などのポリエステル樹脂や、ポリ塩化ビニリデン樹脂や、ポリ塩化ビニリデン共重合体樹脂や、滑剤や、帯電防止剤や、硝化綿アミド樹脂などのコーティング層をさらに積層したものでもよい。
 このようなラミネート基材が積層されることで、製造効率の向上や搬送効率の向上を図ることができるとともに、機能性(耐薬品性、電気絶縁性、防湿性、耐寒性、加工性など)が付加されたラミネートフィルムを得ることができる。
 前記ラミネートフィルムの積層態様としては、例えば、ONy/Al/PP、PET/ONy/Al/PP、ONy/Al/PVCが挙げられる。
 〔ラミネート包材の構成〕
 本実施形態のラミネート包材は、上記ラミネートフィルムから構成されている。一般に、アルミニウム層を含むラミネート包材は、冷間成型の際にアルミニウム層においてネッキングによる破断が生じ易いため冷間成型に適していない。この点、本実施形態のラミネート包材によれば、上記したONyフィルムが優れた絞り成型性を有するため、冷間での深絞り成型などの際に、アルミニウム層の破断を抑制でき、包材におけるピンホールの発生を抑制できる。したがって、包材総厚が薄い場合でも、シャープな形状かつ高強度の成型品が得られる。
 本実施形態のラミネート包材は、ONyフィルムと他のラミネート基材との全体の厚みが200μm以下であることが好ましい。かかる全体の厚みが200μmを超えると、冷間成型によるコーナー部の成型が困難となり、シャープな形状の成型品が得られにくい傾向がある。
 本実施形態のラミネート包材におけるONyフィルムの厚さは、5μm以上50μm以下であることが好ましく、10μm以上30μm以下であることがより好ましい。ここで、ONyフィルムの厚さが5μm未満では、ラミネート包材の耐衝撃性が低くなり、冷間成型性が不十分となる傾向にある。一方、ONyフィルムの厚さが50μmを超えると、ラミネート包材の耐衝撃性の更なる向上効果が得られにくくなり、包材総厚が増加するばかりで好ましくない。
 〔二軸延伸ナイロンフィルムの製造装置〕
 次に、本実施形態の二軸延伸ナイロンフィルムを製造する方法について図面に基づいて説明する。
 先ず、本実施形態の二軸延伸ナイロンフィルムを製造する装置について、一例を挙げて説明する。
 フィルム製造装置100は、図1に示すように、原反フィルム1を製造するための原反製造装置90と、原反フィルム1を延伸する二軸延伸装置(チューブラー延伸装置)10と、延伸後に折り畳まれた基材フィルム2(以後、単に「フィルム2」ともいう)を予熱する第一熱処理装置20(予熱炉)と、予熱されたフィルム2を上下2枚に分離する分離装置30と、分離されたフィルム2を熱処理(熱固定)する第二熱処理装置40と、フィルム2が熱固定されるときに、下流側からフィルム2に張力を加える張力制御装置50と、フィルム2が熱固定されてなる二軸延伸ナイロンフィルム3(以後、単に「フィルム3」ともいう)を巻き取る巻取装置60とを備えている。
 原反製造装置90は、図1に示すように、押出機91と、サーキュラーダイス92と、水冷リング93と、安定板94と、ピンチロール95とを備えている。
 チューブラー延伸装置10は、チューブ状の原反フィルム1を内部空気の圧力により二軸延伸(バブル延伸)してフィルム2を製造するための装置である。このチューブラー延伸装置10は、図1に示すように、ピンチロール11と、加熱部12と、案内板13と、ピンチロール14とを備えている。
 第一熱処理装置20は、扁平となったフィルム2を予備的に熱処理するための装置である。第一熱処理装置20は、図1に示すように、テンター21と、加熱炉22とを備えている。
 分離装置30は、図1に示すように、ガイドロール31と、トリミング装置32と、分離ロール33A,33Bと、溝付ロール34A~34Cとを備えている。また、トリミング装置32は、ブレード321を有している。
 第二熱処理装置40は、図1に示すように、テンター41と、加熱炉42とを備えている。
 張力制御装置50は、図1に示すように、ガイドロール51A,51Bと、張力ロール52とを備えている。
 巻取装置60は、図1に示すように、ガイドロール61と、巻取ロール62とを備えている。
 〔二軸延伸ナイロンフィルムの製造方法〕
 次に、このフィルム製造装置100を用いて二軸延伸ナイロンフィルムを製造する各工程を詳細に説明する。
 (原反フィルム製造工程)
 原料であるナイロン樹脂は、図1に示すように、押出機91により溶融混練され、サーキュラーダイス92によりチューブ状に押し出される。チューブ状の溶融樹脂は、水冷リング93により冷却される。原反フィルム1は原料である溶融ナイロン樹脂が水冷リング93により急冷されることで成型される。冷却された原反フィルム1は、安定板94により折り畳まれる。折り畳まれた原反フィルム1は、ピンチロール95により、扁平なフィルムとして次の二軸延伸工程に送られる。
 (二軸延伸工程)
 原反フィルム製造工程により製造された原反フィルム1は、図1に示すように、ピンチロール11により、扁平なフィルムとして装置内部に導入される。導入された原反フィルム1は、加熱部12で赤外線により加熱することでバブル延伸される。その後、バブル延伸された後のフィルム2は、案内板13により折り畳まれる。折り畳まれたフィルム2は、ピンチロール14によりピンチされ扁平なフィルム2として次の第一熱処理工程に送られる。
 この際、MD方向およびTD方向の延伸倍率がそれぞれ2.8倍以上であることが好ましい。MD方向およびTD方向の延伸倍率のいずれかが2.8倍未満である場合、衝撃強度が低下して実用性に問題が生ずる傾向にある。
 さらに、延伸終了時にはMD方向の延伸倍率よりもTD方向の延伸倍率の方が大きくなることが好ましい。また、TD方向の延伸倍率からMD方向の延伸倍率を減じた差(TD-MD)が、0.1倍以上であることが好ましく、0.2倍以上0.8倍以下であることがより好ましく、0.3倍以上0.8倍以下であることが更により好ましい。TD-MDの値が前記下限未満では、得られるフィルムの深絞り成型性が不十分となる傾向にあり、また、フィルムの厚み精度が低下する傾向にある。また、特に、TD-MDの値が0.1倍以下の場合には、延伸安定性が劣るとともに、フィルムの厚み精度が低下する傾向にある。一方、TD-MDの値が前記上限を超えると、得られるフィルムの深絞り成型性が不十分となる傾向にあり、また、延伸安定性が低下する傾向にある。
 (第一熱処理工程)
 二軸延伸工程から送られたフィルム2は、テンター21のクリップ(図示せず)で両端部を把持されながら、このフィルム2の収縮開始温度以上であって、フィルム2の融点よりも約30℃低い温度かそれ以下の温度でこのフィルム2を予め熱処理されて次の分離工程に送られる。
 この第一熱処理における熱処理温度は、120℃以上190℃以下であり、かつ、弛緩率は、15%以下であることが好ましい。
 この第一熱処理工程により、フィルム2の結晶化度が増して、重なり合ったフィルム同士の滑り性が良好になる。
 (分離工程)
 ガイドロール31を介して送られた扁平なフィルム2は、図1に示すように、トリミング装置32のブレード321により、両端部を切開されて2枚のフィルム2A,2Bに分離される。そして、フィルム2A,2Bは、上下に離れて位置する一対の分離ロール33A、33Bにより、フィルム2A,2Bの間に空気を介在させながらこれらを分離される。この扁平なフィルム2の切開は、両端部から若干内側にブレード321を位置させることにより、一部分耳部が生じるように行ってもよく、或いは、フィルム2の折り目部分にブレード321を位置させることにより、耳部が生じないように行ってもよい。
 これらのフィルム2A,2Bは、フィルムの流れ方向に順に位置する3個の溝付ロール34Aから34Cにより、再び重ねられて次の第二熱処理工程に送られる。なお、これらの溝付ロール34Aから34Cは、溝付き加工後、表面にめっき処理を施したものである。この溝を介してフィルム2A、2Bと空気との良好な接触状態が得られる。
 (第二熱処理工程(熱固定工程))
 重なった状態のフィルム2A、2Bは、テンター41のクリップ(図示せず)で両端部を把持されながら、フィルム2を構成する樹脂の融点以下であって、融点から約30℃低い温度以上で熱処理(熱固定)され、物性の安定した二軸延伸ナイロンフィルム3(以後、フィルム3ともいう)となり、次の巻取工程に送られる。
 この第二熱処理(熱固定)における熱処理温度は、160℃以上215℃以下であることが好ましく、190℃以上215℃以下であることがより好ましい。熱処理温度が前記下限未満では、フィルム収縮率が大きくなり、デラミネーションが発生する危険性が高まる傾向にあり、他方、前記上限を超えると、熱固定時のボーイング現象が大きくなり、フィルムの歪みが増し、また、密度が高くなり過ぎて、結晶化度が高くなり過ぎてフィルムの変形がし難くなる傾向にある。
 また、このときの弛緩率は、15%以下であることが好ましい。
 なお、加熱炉42内のフィルム2A、2Bに対しては、下流側に位置する張力制御装置50により強い張力が加えられるようになっている。
 (巻取工程)
 第二熱処理工程により熱固定されたフィルム3は、張力制御装置50を経て、ガイドロール61を介して2本の巻取ロール62に、フィルム3A,3Bとして巻き取られる。
 ここで、上述した二軸延伸ナイロンフィルムの製造方法で得られた二軸延伸ナイロンフィルムの結晶サイズ指標を本願発明の範囲内にするためには、上述した二軸延伸ナイロンフィルムの製造方法のうち、熱処理工程での温度設定や、原反フィルム製造工程での急冷化条件、並びに延伸工程での延伸倍率条件などを適宜調整することなどが挙げられる。
<第2実施形態>
 第2実施形態の説明にあたって、第1実施形態と同一の内容又は同一の構成要素については、同一符号や名称を付す等して、その説明を省略もしくは簡略する。
 〔二軸延伸ナイロンフィルムの構成〕
 本実施形態の二軸延伸ナイロンフィルム(ONyフィルム)は、ナイロン樹脂を原料とする原反フィルムを二軸延伸し、所定の温度で熱固定して形成したものである。
 原料であるナイロン樹脂としては、ナイロン6、ナイロン8、ナイロン11、ナイロン12、ナイロン6,6、ナイロン6,10、ナイロン6,12などを使用することができる。物性や溶融特性、取り扱いやすさの点からはナイロン6(以後、Ny6ともいう)を用いることが好ましい。
 ここで、前記Ny6の化学式を下記式(1)に示す。
Figure JPOXMLDOC01-appb-C000002
 原料であるナイロン樹脂の数平均分子量は、15000以上30000以下であることが好ましく、22000以上24000以下であることがより好ましい。
 本実施形態における二軸延伸ナイロンフィルムは、α型結晶とγ型結晶の含有比(α型結晶/γ型結晶比)が1.5以上3.1以下である。ここで、α型結晶とγ型結晶の含有比は、汎用される赤外吸収スペクトルにより容易に測定できる。具体的には以下のようにして求められる。
 赤外吸収スペクトルにおける1201cm-1はα型結晶に含まれるコンフォメーション(構造)Aに帰属し、1170cm-1はγ型結晶あるいは非晶領域に存在するコンフォメーション(構造)Bに帰属する。そこで、
  1201cm-1の吸光度をA1201
  1170cm-1の吸光度をB1170
とすると、α型結晶とγ型結晶の含有比(α型結晶/γ型結晶比)は、
  A1201/B1170
により求められる。
 このようにして求められたα型結晶とγ型結晶の含有比が1.5以上3.1以下であると、耐衝撃性および絞り成型性(深絞り成型性および冷間成型性)ともに良好である。なお、さらなる絞り成型性の向上の観点から、この含有比は、1.8以上3以下がより好ましく、2以上2.9以下がさらに好ましい。
 ここで、前記二軸延伸ナイロンフィルムの引張強度は、240MPa以上であることが好ましい。引張強度が240MPa未満では、フィルムの深絞り成型性が不足するおそれがあるからである。また、冷間成型時に優れた深絞り成型性を得るという観点から、引張強度は250MPa以上であることがより好ましい。なお、引張強度は、ASTM D 882に記載の方法に準拠して測定できる。
 また、前記二軸延伸ナイロンフィルムの破断伸び率は70%以上であることが好ましい。破断伸び率が70%未満では、フィルムの深絞り成型性が不足するおそれがあるからである。また、冷間成型時に優れた深絞り成型性を得るという観点から、破断伸び率は80%以上であることがより好ましい。特に、TD方向の破断伸び率は130%以下であることが好ましい。なお、破断伸び率は、ASTM D 882に記載の方法に準拠して測定できる。
 なお、本実施形態のおいては、第1実施形態と同様の製造方法にて二軸延伸ナイロンフィルムを製造するが、熱処理温度を変更することで上述のα型結晶とγ型結晶の含有比を制御することができる。たとえば、この含有比を下げる場合には熱処理温度を下げればよい。
 〔実施形態の変形〕
 なお、以上説明した態様は、本発明の一態様を示したものであって、本発明は、前記した実施形態に限定されるものではなく、本発明の構成を備え、目的および効果を達成できる範囲内での変形や改良が、本発明の内容に含まれるものであることはいうまでもない。また、本発明を実施する際における具体的な構造および形状などは、本発明の目的および効果を達成できる範囲内において、他の構造や形状などとしても問題はない。
 例えば、前記した実施形態では、二軸延伸方法としてチューブラー方式を採用したが、テンター方式であってもよい。さらに、延伸方法としては同時二軸延伸でも逐次二軸延伸でもよい。
 また、前記第2実施形態では、二軸延伸ナイロンフィルムのα型結晶とγ型結晶の含有比(α型結晶/γ型結晶比)を本発明の範囲内にする一手段として、第二熱処理工程(熱固定工程)の熱処理温度条件を調整することを採用したが、α型結晶/γ型結晶比を本発明の範囲内にできるのでればこれに限らない。例えば、上述した二軸延伸ナイロンフィルムの製造方法のうち、第一熱処理工程における温度設定を調整することで、α型結晶/γ型結晶比を調整するようにしてもよい。
 次に、本発明を実施例および比較例によりさらに詳細に説明するが、本発明はこれらの例によってなんら限定されるものではない。
<第1実施形態の実施例>
 第1実施形態において、各例における特性(二軸延伸ナイロンフィルムのピーク半価幅、結晶サイズ指標および衝撃強度、並びにラミネートフィルムの耐衝撃性および深絞り成型性)は以下のような方法で評価した。
(i)ピーク半価幅および結晶サイズ指標
 理学電機社製のローターフレックス RU-200を使用して、二軸延伸ナイロンフィルムの広角X線回折のスペクトルを測定し、得られたスペクトルからピーク半価幅(deg)を算出した。また、ピーク半価幅の値の逆数から結晶サイズ指標(1/deg)を算出した。
(ii)衝撃強度
 二軸延伸ナイロンフィルムの衝撃強度(J/m)は、フィルムインパクトテスター(東洋精機製、30Kg-cmの1/2インチ半球ヘッド)を用いて測定した。
(iii)耐衝撃性
 ラミネートフィルムの耐衝撃性は、下記に示す落板衝撃強度試験で評価した。
 落板衝撃強度試験とは、ナイロンフィルムとLLDPEシーラント50μmでラミネートフィルムを形成し、130mm×150mmの製袋品(内寸110mm×110mm)を作製して、その製袋品の中に120mlの液体(水)を充填して、袋の上部をシールして密閉袋を作製した。そして、44cm長さのプラスチック製板を2枚重ねて蝶番で接続し、重さ3Kgの板(1枚1.5Kg)を垂直状態から横に倒して配置した。続いて、液体を充填した密閉袋を横に倒して配置し、プラスチック製板を密封袋の上から繰り返して打ち付けた。そして、この動作を100回繰り返し、密封袋が破袋して液体が漏れ出すまでの回数をカウントした。
A:100回落下させても破袋が生じなかった。
B:100回未満の落下で破袋が生じた。
(iv)深絞り成型性
 ラミネートフィルムを裁断して、120×80mmの短冊片を作製してサンプルとした。33×55mmの矩形状の金型を用い、0.1MPaの面圧で押えて、0.5mmの成型深さから0.5mm単位で成型深さを変えて各10枚のサンプルについて冷間成型(引き込み1段成型)した。そして、アルミニウム箔にピンホールが10枚のサンプルのいずれにも発生していない成型深さを限界成型深さとし、その成型深さを評価値として示した。なお、ピンホールの確認は透過光を目視で確認した。
A:限界成型深さが5mm以上である。
B:限界成型深さが5mm未満である。
〔実施例1-1〕
(原反フィルム製造工程)
 図1に示すように、Ny6ペレットを押出機91中で、275℃で溶融混練した後、溶融物をサーキュラーダイス92からチューブ状のフィルムとして押出し、引き続き水(15℃)で急冷して原反フィルム1を作製した。
 Ny6として使用したものは、宇部興産(株)製ナイロン6〔UBEナイロン1022FD(商品名)、相対粘度 ηr=3.5〕である。
(二軸延伸工程)
 次に、図1に示すように、この原反フィルム1を一対のピンチロール11間に挿通した後、中に気体を圧入しながら加熱部12で加熱すると共に、延伸開始点に吹き付けてバブルに膨張させ、下流側の一対のピンチロール14で引き取ることにより、チューブラー法によるMD方向およびTD方向の同時二軸延伸を行った。この延伸の際の倍率はMD方向で3.0倍、TD方向で3.3倍とした。
(第一熱処理工程および第二熱処理工程)
 次に、図1に示すように、フィルム2に対し第一熱処理装置20により温度170℃にて熱処理を施し、その後、分離装置30を経た後に、第二熱処理装置40により温度210℃にて熱処理を施し、熱固定した。
(巻取工程)
 次いで、図1に示すように、第二熱処理工程により熱固定されたフィルム3を、張力制御装置50を経て、ガイドロール61を介して2本の巻取ロール62に、フィルム3A,3Bとして巻き取って二軸延伸ナイロンフィルムを製造した。得られた二軸延伸ナイロンフィルムの厚みは15μmであった。
 得られた二軸延伸ナイロンフィルムのピーク半価幅、結晶サイズ指標および衝撃強度を測定した。得られた結果を表1に示す。
(ラミネートフィルムの作製)
 得られた二軸延伸ナイロンフィルムを表基材フィルムとし、厚さ40μmのアルミニウム箔を中間基材とし、厚さ60μmのCPPフィルムをシーラントフィルムとして、ドライラミネートすることによりラミネートフィルムを得た。また、ドライラミネート後のラミネートフィルムは、40℃で3日間エージングを行った。
 得られたラミネートフィルムの耐衝撃性および深絞り成型性を評価した。得られた結果を表1に示す。
〔実施例1-2~1-4、比較例1-1~1-3〕
 実施例1-2~1-4として、表1に示す製造条件(二軸延伸方法、延伸倍率および熱固定温度)に従って各条件を変更した以外は実施例1-1と同様にして、二軸延伸ナイロンフィルムおよびラミネートフィルムを製造した。
 得られた二軸延伸ナイロンフィルムのピーク半価幅、結晶サイズ指標および衝撃強度を測定した。得られた結果を表1に示す。また、得られたラミネートフィルムの耐衝撃性および深絞り成型性を評価した。得られた結果を表1に示す。
 一方、比較例1-1~1-3として、表1に示す二軸延伸方法による方法で得られた二軸延伸ナイロンフィルムを入手し、実施例1-1と同様に、ピーク半価幅、結晶サイズ指標および衝撃強度を測定した。得られた結果を表1に示す。また、比較例1-1~1-3の二軸延伸ナイロンフィルムを用いてラミネートフィルムを作製し、実施例1-1と同様に、耐衝撃性および深絞り成型性を評価した。得られた結果を表1に示す。
Figure JPOXMLDOC01-appb-T000003
 表1に示す結果からも明らかなように、二軸延伸ナイロンフィルムの結晶サイズ指標が前記条件を満たす場合(実施例1-1~1-4)には、冷間成型時に優れた深絞り成型性を有し、かつ優れた耐衝撃性を有することが確認された。
 一方で、二軸延伸ナイロンフィルムの結晶サイズ指標が前記条件を満たさない場合(比較例1-1~1-3)には、この二軸延伸ナイロンフィルムを用いて得られるラミネートフィルムの深絞り成型性および耐衝撃性が不十分であることが確認された。
<第2実施形態の実施例>
〔実施例2-1〕
(原反フィルム製造工程)
 図1に示すように、Ny6ペレットを押出機91中で、270℃で溶融混練した後、溶融物をサーキュラーダイス92からチューブ状のフィルムとして押出し、引き続き水(15℃)で急冷して原反フィルム1を作製した。
 Ny6として使用したものは、宇部興産(株)製ナイロン6〔UBEナイロン1022FD(商品名)、相対粘度 ηr=3.5〕である。
(二軸延伸工程)
 次に、図1に示すように、この原反フィルム1を一対のピンチロール11間に挿通した後、中に気体を圧入しながら加熱部12で加熱すると共に、延伸開始点に吹き付けてバブルに膨張させ、下流側の一対のピンチロール14で引き取ることにより、チューブラー法によるMD方向およびTD方向の同時二軸延伸を行った。この延伸の際の倍率はMD方向で3.0倍、TD方向で3.3倍(TD-MD=0.3)とした。
(第一熱処理工程および第二熱処理工程)
 次に、図1に示すように、フィルム2に対し第一熱処理装置20により温度170℃にて熱処理を施し、その後、分離装置30を経た後に、第二熱処理装置40により温度210℃にて熱処理を施し、熱固定されたフィルム3を得た。
 得られたフィルム3におけるα型結晶とγ型結晶の含有比(α型結晶/γ型結晶比)を測定したところ、3.0であった。
(巻取工程)
 次いで、図1に示すように、第二熱処理工程により熱固定されたフィルム3を、張力制御装置50を経て、ガイドロール61を介して2本の巻取ロール62に、フィルム3A,3Bとして巻き取って二軸延伸ナイロンフィルムを製造した。得られた二軸延伸ナイロンフィルムの厚みは15μmであった。
 得られた二軸延伸ナイロンフィルムの衝撃強度を測定した。得られた結果を表2に示す。
(ラミネートフィルムの作製)
 得られた二軸延伸ナイロンフィルムを表基材フィルムとし、厚さ40μmのアルミニウム箔を中間基材とし、厚さ60μmのCPPフィルムをシーラントフィルムとして、ドライラミネートすることによりラミネートフィルムを得た。また、ドライラミネート後のラミネートフィルムは、40℃で3日間エージングを行った。
〔実施例2-2〕
 第二熱処理工程における熱処理温度を200℃に変更した以外は、実施例2-1と同様の条件で実施した。また、ラミネートフィルムについては、実施例2-1と同様にして製造した。以下の各実施例・比較例についても同様にしてラミネートフィルムを製造した。得られたフィルムにおける(α型結晶/γ型結晶比)は、2.8であった。
〔実施例2-3〕
 二軸延伸工程における延伸倍率をMD/TD=3.0/3.2(TD-MD=0.2)に変更するとともに、第二熱処理工程における熱処理温度を190℃に変更した以外は、実施例2-1と同様の条件で実施した。得られたフィルムにおける(α型結晶/γ型結晶比)は、2.3であった。
〔実施例2-4〕
 二軸延伸工程における延伸倍率をMD/TD=3.0/3.5(TD-MD=0.5)に変更するとともに、第二熱処理工程における熱処理温度を205℃に変更した以外は、実施例2-1と同様の条件で実施した。得られたフィルムにおける(α型結晶/γ型結晶比)は、3.1であった。
〔実施例2-5〕
 二軸延伸工程における延伸倍率をMD/TD=2.95/3.3(TD-MD=0.35)に変更するとともに、第二熱処理工程における熱処理温度を160℃に変更した以外は、実施例2-1と同様の条件で実施した。得られたフィルムにおける(α型結晶/γ型結晶比)は、1.5であった。
〔比較例2-1〕
 同時二軸延伸テンター法で得られたナイロンフィルム(厚さ15μm)を入手し、(α型結晶/γ型結晶比)を測定した結果、3.5であった。
〔比較例2-2〕
 逐次二軸延伸テンター法で得られたナイロンフィルム(厚さ15μm)を入手し、(α型結晶/γ型結晶比)を測定した結果、3.2であった。
〔比較例2-3〕
 同時二軸延伸テンター法でナイロンフィルム(厚さ15μm)を入手し、(α型結晶/γ型結晶比)を測定した結果、3.3であった。
〔比較例2-4〕
 逐次二軸延伸テンター法ナイロンフィルム(厚さ15μm)を入手し、(α型結晶/γ型結晶比)を測定した結果、3.4であった。
〔比較例2-5〕
熱処理温度を140℃に変更した以外は、実施例2-1と同様の条件で実施した。得られたフィルムにおける(α型結晶/γ型結晶比)は、1.4であった。
〔評価方法〕
 各実施例・比較例で得られたラミネートフィルムの耐衝撃性および深絞り成型性について以下のような方法で評価した。
(i)耐衝撃性
 実用的な耐衝撃性を、以下のような落下試験により評価した。
 ONyフィルムとLLDPEシーラント50μmからラミネートフィルムを形成し、130mm×150mmの製袋品(内寸110mm×110mm)を作製した。その製袋品の中に120mLの水を充填して、袋の上部をシールして密閉袋を作製した。そして、この密封袋を横向きにした状態で、2mの高さから100回落下させ、密封袋が破袋して液体が漏れ出すまでの回数をカウントした。測定は、常温(25℃)で行った。
 落下試験の結果について、以下の基準で評価した。結果を表2に示す。
  A:100回落下させても破袋が生じなかった。
  B:100回未満の落下で破袋が生じた。
(ii)深絞り成型性
 ラミネートフィルムを裁断して、120×80mmの短冊片を作製してサンプルとした。33×55mmの矩形状の金型を用い、0.1MPaの面圧で押えて、0.5mmの成型深さから0.5mm単位で成型深さを変えて各10枚のサンプルについて絞り成型(冷間成型、引き込み1段成型)を行った。そして、10枚のサンプルのいずれにもアルミニウム箔にピンホールが発生していない成型深さを限界成型深さとし、その限界成型深さにより以下の基準で評価した。なお、ピンホールの確認は透過光を目視で確認した。結果を表2に示す。
  A:限界成型深さが7mm以上である。
  B:限界成型深さが5mm以上7mm未満である。
  C:限界成型深さが5mm未満である。
Figure JPOXMLDOC01-appb-T000004
〔評価結果〕
 表2に示す結果からも明らかなように、二軸延伸ナイロンフィルムにおける(α型結晶/γ型結晶比)が所定の範囲内である場合(実施例2-1~2-5)には、冷間成型時に良好な深絞り成型性を有し、さらに優れた耐衝撃性を有することが確認された。
 一方、二軸延伸ナイロンフィルムが前記条件を満たさない場合(比較例2-1~2-4)では、冷間成型時に深絞り成型性が不十分であるだけでなく耐衝撃性も劣ることが確認された。
 また、フィルムの(α型結晶/γ型結晶比)が1.4の比較例2-5では、収縮特性が大きくなりすぎて、加工適性が不良で、デラミネーション(層間剥離)が発生した結果、冷間成型時の深絞り成型性が不十分であった。
 本発明の二軸延伸ナイロンフィルムは、例えば工業用分野(電気自動車、タブレット型端末機器、スマートフォンなどに搭載されるリチウム電池用包材など)、医薬用分野(PTP包材など)、日用品用分野(液体洗剤用詰め替え包材など)、および食品用分野(レトルト食品用包材など)の包装材料など、耐衝撃性や耐ピンホール特性が特に必要とされる包装材料として好適に用いることができる。また、本発明のラミネート包材は、特に優れた深絞り成型性が要求される冷間成型用包材として好適に用いることができる。
  3,3A,3B…二軸延伸ナイロンフィルム

Claims (7)

  1.  ナイロン樹脂を原料とする二軸延伸ナイロンフィルムであって、
     結晶サイズ指標が0.55(1/deg)以下である
     ことを特徴とする二軸延伸ナイロンフィルム。
  2.  ナイロン樹脂を原料とする二軸延伸ナイロンフィルムであって、
     α型結晶とγ型結晶の含有比(α型結晶/γ型結晶比)が1.5以上3.1以下である
     ことを特徴とする二軸延伸ナイロンフィルム。
  3.  請求項1または請求項2に記載の二軸延伸ナイロンフィルムを積層してなることを特徴とするラミネートフィルム。
  4.  請求項3に記載のラミネートフィルムを用いたことを特徴とするラミネート包材。
  5.  請求項1に記載の二軸延伸ナイロンフィルムを製造する二軸延伸ナイロンフィルムの製造方法であって、
     前記原料から原反フィルムを成形する原反フィルム製造工程と、
     前記原反フィルムを二軸延伸する二軸延伸工程と、
     前記二軸延伸工程後のフィルムに熱処理を施して熱固定する熱固定工程と、を備える
     ことを特徴とする二軸延伸ナイロンフィルムの製造方法。
  6.  請求項2に記載の二軸延伸ナイロンフィルムの製造方法であって、
     前記原料から原反フィルムを成形する原反フィルム製造工程と、
     前記原反フィルムを延伸する二軸延伸工程と、
     前記二軸延伸工程後に熱処理を施す熱固定工程とを有し、
     得られた二軸延伸ナイロンフィルムのα型結晶とγ型結晶の含有比(α型結晶/γ型結晶比)を、1.5以上3.1以下とする
     ことを特徴とする二軸延伸ナイロンフィルムの製造方法。
  7.  請求項5または請求項6に記載の二軸延伸ナイロンフィルムの製造方法において、
     前記二軸延伸工程において、チューブラー式二軸延伸法にて二軸延伸する
     ことを特徴とする二軸延伸ナイロンフィルムの製造方法。
PCT/JP2013/057783 2012-03-28 2013-03-19 二軸延伸ナイロンフィルム、ラミネートフィルム、ラミネート包材および二軸延伸ナイロンフィルムの製造方法 WO2013146455A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-074510 2012-03-28
JP2012074510 2012-03-28
JP2012074522 2012-03-28
JP2012-074522 2012-03-28

Publications (1)

Publication Number Publication Date
WO2013146455A1 true WO2013146455A1 (ja) 2013-10-03

Family

ID=49259712

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/057783 WO2013146455A1 (ja) 2012-03-28 2013-03-19 二軸延伸ナイロンフィルム、ラミネートフィルム、ラミネート包材および二軸延伸ナイロンフィルムの製造方法

Country Status (3)

Country Link
JP (1) JPWO2013146455A1 (ja)
TW (1) TW201343371A (ja)
WO (1) WO2013146455A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5656827A (en) * 1979-10-17 1981-05-19 Toray Ind Inc Polyamide film
JP2008045016A (ja) * 2006-08-14 2008-02-28 Idemitsu Unitech Co Ltd 二軸延伸ナイロンフィルム、ラミネート包材及び二軸延伸ナイロンフィルムの製造方法
JP2010158775A (ja) * 2008-12-12 2010-07-22 Kohjin Co Ltd 延伸ポリアミドフィルム及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5656827A (en) * 1979-10-17 1981-05-19 Toray Ind Inc Polyamide film
JP2008045016A (ja) * 2006-08-14 2008-02-28 Idemitsu Unitech Co Ltd 二軸延伸ナイロンフィルム、ラミネート包材及び二軸延伸ナイロンフィルムの製造方法
JP2010158775A (ja) * 2008-12-12 2010-07-22 Kohjin Co Ltd 延伸ポリアミドフィルム及びその製造方法

Also Published As

Publication number Publication date
JPWO2013146455A1 (ja) 2015-12-10
TW201343371A (zh) 2013-11-01

Similar Documents

Publication Publication Date Title
JP6218582B2 (ja) 延伸ナイロンフィルムの製造方法、多層フィルムの製造方法、包装材の製造方法、および電池の製造方法
JP5226941B2 (ja) 冷間成形用二軸延伸ナイロンフィルム、ラミネート包材及び冷間成形用二軸延伸ナイロンフィルムの製造方法
TW208684B (ja)
JP2015107583A (ja) 多層フィルム、包装材および電池
JP2015107581A (ja) 多層フィルム、多層フィルム包材、絞り成型品、および、電池
WO2013089081A1 (ja) 二軸延伸ナイロンフィルム、二軸延伸ナイロンフィルムの製造方法およびラミネート包材
JP2015107585A (ja) 多層フィルム、多層フィルム包材、絞り成型品、および電池
WO2013141135A1 (ja) 二軸延伸ナイロンフィルム、ラミネートフィルム、ラミネート包材および二軸延伸ナイロンフィルムの製造方法
WO2014103785A1 (ja) 二軸延伸ナイロンフィルム、ラミネートフィルム、ラミネート包材および二軸延伸ナイロンフィルムの製造方法
WO2013137395A1 (ja) 二軸延伸ナイロンフィルム、ラミネートフィルム、ラミネート包材及び二軸延伸ナイロンフィルムの製造方法
JP2015051525A (ja) 二軸延伸ナイロンフィルム、ラミネートフィルム、ラミネート包材、電池および二軸延伸ナイロンフィルムの製造方法
JP2015051527A (ja) 二軸延伸ナイロンフィルム、ラミネートフィルム、ラミネート包材、電池および二軸延伸ナイロンフィルムの製造方法
WO2013146455A1 (ja) 二軸延伸ナイロンフィルム、ラミネートフィルム、ラミネート包材および二軸延伸ナイロンフィルムの製造方法
WO2014141963A1 (ja) 二軸延伸ナイロンコーティングフィルム、ラミネート包材および成型体
WO2013137153A1 (ja) 二軸延伸ナイロンフィルム、ラミネートフィルム、ラミネート包材および二軸延伸ナイロンフィルムの製造方法
JP2015051528A (ja) 二軸延伸ナイロンフィルム、ラミネートフィルム、ラミネート包材、電池および二軸延伸ナイロンフィルムの製造方法
JP2014176999A (ja) 二軸延伸ナイロンコーティングフィルム、ラミネート包材および成型体
JP2015107582A (ja) 多層フィルム、多層フィルム包材、絞り成型品、および、医薬用包装材
JP2014046473A (ja) 二軸延伸ナイロンフィルム、ラミネートフィルム、ラミネート包材および二軸延伸ナイロンフィルムの製造方法
WO2014021425A1 (ja) 二軸延伸ナイロンフィルム、ラミネートフィルム、ラミネート包材、電池および二軸延伸ナイロンフィルムの製造方法
JP2014037076A (ja) 二軸延伸ナイロンフィルム、ラミネートフィルム、ラミネート包材および二軸延伸ナイロンフィルムの製造方法
WO2014021418A1 (ja) 易裂性二軸延伸ナイロンフィルム、易裂性ラミネートフィルム、易裂性ラミネート包材および易裂性二軸延伸ナイロンフィルムの製造方法
JPH0459131B2 (ja)
JP2014046472A (ja) 二軸延伸ナイロンフィルム、ラミネートフィルム、ラミネート包材および二軸延伸ナイロンフィルムの製造方法
WO2014156556A1 (ja) 二軸延伸ナイロンフィルム、ラミネートフィルムおよび成形体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13769053

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014507747

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13769053

Country of ref document: EP

Kind code of ref document: A1