WO2013146436A1 - 嚥下シミュレーション装置及び方法 - Google Patents

嚥下シミュレーション装置及び方法 Download PDF

Info

Publication number
WO2013146436A1
WO2013146436A1 PCT/JP2013/057718 JP2013057718W WO2013146436A1 WO 2013146436 A1 WO2013146436 A1 WO 2013146436A1 JP 2013057718 W JP2013057718 W JP 2013057718W WO 2013146436 A1 WO2013146436 A1 WO 2013146436A1
Authority
WO
WIPO (PCT)
Prior art keywords
swallowing
product
head
neck
unit
Prior art date
Application number
PCT/JP2013/057718
Other languages
English (en)
French (fr)
Inventor
幸博 道脇
圭吾 羽生
神谷 哲
義雄 外山
里香 村上
Original Assignee
株式会社明治
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社明治 filed Critical 株式会社明治
Priority to SG11201406037PA priority Critical patent/SG11201406037PA/en
Priority to CN201380017017.1A priority patent/CN104302228B/zh
Priority to EP13767280.4A priority patent/EP2832293A4/en
Priority to US14/387,531 priority patent/US10049602B2/en
Publication of WO2013146436A1 publication Critical patent/WO2013146436A1/ja
Priority to HK15106591.3A priority patent/HK1205905A1/xx

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B23/00Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
    • G09B23/28Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B23/00Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
    • G09B23/28Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine
    • G09B23/30Anatomical models
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B23/00Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
    • G09B23/28Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine
    • G09B23/30Anatomical models
    • G09B23/32Anatomical models with moving parts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/42Detecting, measuring or recording for evaluating the gastrointestinal, the endocrine or the exocrine systems
    • A61B5/4205Evaluating swallowing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C11/00Dental articulators, i.e. for simulating movement of the temporo-mandibular joints; Articulation forms or mouldings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C19/00Dental auxiliary appliances
    • A61C19/04Measuring instruments specially adapted for dentistry
    • A61C19/045Measuring instruments specially adapted for dentistry for recording mandibular movement, e.g. face bows
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects

Definitions

  • the present invention relates to a swallowing simulation apparatus and method. Specifically, a swallowing simulation device that analyzes the behavior of fluids and bolus when passing through the oral cavity and throat using the particle method, dynamic three-dimensional head and neck model, swallowing simulation method, computer-readable program, ingestion
  • the present invention relates to a product development support device, an orally ingested product development method, an ingested product manufacturing method, a food education support device, a food education method, and a diagnosis support device.
  • the present invention provides, firstly, a swallowing simulation apparatus, a motion that can easily reproduce an actual phenomenon related to swallowing, that is, behavior of an orally ingested product including a head and neck organ, food and drink, pharmaceuticals, and quasi drugs.
  • 3D head and neck model, swallowing simulation method, computer-readable program, ingestion product development support device, ingestion product development method, ingestion product manufacturing method, food education support device, food education method, and diagnosis support device The purpose is to do.
  • the inventors of the present application proposed a swallowing simulation apparatus and a swallowing simulation method for setting physical properties of oral organ movement, food and drink, etc., and analyzing the behavior of the oral organ and food and drink two-dimensionally using a particle method.
  • Japanese Patent Application No. 2011-146780 and Japanese Patent Application No. 2011-14681 are both unpublished.
  • this device and method it is possible to approximately reproduce the actual phenomenon related to swallowing compared to the conventional case, and to visualize the swallowing phenomenon.
  • the present invention can accurately represent the behavior of head and neck organs and food and drink during swallowing, and can quantify physical quantities related to physical properties and behavior of orally ingested products including food and drink, pharmaceuticals, and quasi drugs.
  • An object is to provide a diagnosis support apparatus.
  • a swallowing simulation apparatus 100A according to the first aspect of the present invention, as shown in FIG. 2, for example (see FIG. 3 as appropriate for specific organs), Head and neck modeling unit 10 that forms a typical three-dimensional head and neck model 10a, an organ motion setting unit 30 that sets the motion of each head and neck organ in the dynamic three-dimensional head and neck model 10a, and foods and beverages and pharmaceuticals to be analyzed Orally ingested product including quasi-drugs and oral ingested product property setting unit 40 for setting physical properties thereof, and pseudo-orally ingested product 20 modeling oral ingested products including foods and drinks, pharmaceuticals or quasi-drugs Motion that analyzes the motion of each head and neck organ in the dynamic three-dimensional head and neck model 10a and the behavior of the simulated oral ingestion product 20 during swallowing in a three-dimensional space using the particle method It comprises a analyzing unit 50, a display unit 82 for displaying the analysis result of the behavior during swallowing motion and pseudo orally ingested
  • “dynamic three-dimensional” of the head and neck model means that it changes over time in a three-dimensional space.
  • the three-dimensional space may be formed as a virtual three-dimensional space in the computer.
  • the head and neck organ is composed of the tongue 11, the larynx 12, the epiglottis 12a, the trachea 13, the pharynx 14, the palate 15 (consisting of the hard palate 15a and the soft palate 15b), the jaw 16, the esophagus 18 and the like (see FIG. 3).
  • each organ concerning the oral cavity 17, the pharynx 14 and the larynx 12c is included.
  • the dynamic three-dimensional head and neck model 10a includes the head and neck organs.
  • the esophagus 18 and the trachea 13 need only include the entrance portion.
  • the dynamic three-dimensional head and neck model 10a is preferably formed in accordance with the actual movement of the oral organ. However, as the number of particles increases, the load on the computer PC that performs the analysis in the three-dimensional space increases. For simplicity and ease, the movable parts may be limited.
  • a polygon a wall boundary created by the polygon distance function, and a wall that does not move even when receiving external force from fluid etc. is placed in space as a distance function. By defining the boundary, the head and neck organ may not be calculated as particles.
  • each head and neck organ can be defined as a particle (rigid, elastic, plastic or elastoplastic) (Seiichi Koshizuka, Computational Mechanics Lecture Series 5, (See Particle Method, edited by Japan Society for Computational Engineering, pp. 51-68).
  • the head and neck organs may be overlapped in the three-dimensional space as long as there is no problem in the analysis.
  • the movement of each head and neck organ includes movement, rotation, periodic movement, and the like.
  • the orally ingested product may be liquid, semi-solid (having plasticity but not fluidity), or solid.
  • Physical properties of orally ingested products include density, viscosity, surface tension, contact angle, heat capacity, thermal conductivity, dynamic friction coefficient, and the like. However, it is not necessary to set all these physical properties, and any physical property may be set.
  • the swallowing behavior of the simulated oral ingestion product 20 is typically the behavior of moving from the oral cavity through the pharynx 14 to the esophagus 18, but when returning to the oral cavity 17 without reaching the pharynx 14 or the esophagus 18, 12 or the nasal cavity.
  • the physical quantity related to the behavior of the simulated oral ingestion product 20 during swallowing includes time, position coordinates, speed, pressure, temperature, shear rate, normal stress, shear stress, and the like. However, the analysis need not be performed using all of these physical quantities, and the analysis may be performed using any of the physical quantities. These physical properties and physical quantities are preferably quantified, but relative values may be used.
  • the input unit 81 includes, for example, a mouse and a keyboard, and by dragging and dropping a cursor with the mouse inside the oral cavity of the dynamic three-dimensional head and neck model 10a, a pseudo-oral intake product (pseudo-food product, pseudo-pharmaceutical product or pseudo-drug) (Including quasi-drugs) 20 is entered.
  • a pseudo-oral intake product prseudo-food product, pseudo-pharmaceutical product or pseudo-drug
  • the position of the simulated oral ingestion product 20 to be introduced is specified by dragging and dropping the mouse.
  • an oral ingestion product input setting unit 45 (see FIG. 24) is provided, and the simulated oral ingestion product, its input place and input time are set in advance so that the simulated oral ingestion product 20 is automatically input. Also good.
  • the motion analysis unit 50 performs analysis using a particle method, and for example, an MPS (Moving Particle-Semi-implicit) method can be used.
  • the “display on the moving image surface” of the display unit 82 typically uses display on the moving image surface such as a liquid crystal display.
  • diagnosis a case where a doctor or a dentist performs a simulation in a health check or a medical practice and evaluates an analysis result
  • diagnosis is distinguished from evaluation performed by a general person. That is, in this specification, the evaluation does not include diagnosis.
  • the evaluator or the diagnostician it is useful for the evaluator or the diagnostician to observe or evaluate or diagnose the moving image surface.
  • the pseudo screen display unit 82A ( 24) is provided in the storage unit 83 with an evaluation diagnosis condition storage unit 83A (see FIG. 24), and the analysis result is dynamically displayed on the virtual moving image plane of the pseudo screen display unit 82A.
  • Evaluation or diagnosis is performed by the evaluation diagnosis unit 60 (see FIG. 24) in the computer in comparison with the evaluation condition or diagnosis condition.
  • such an image may be dynamically displayed on the virtual moving image surface of the pseudo screen display unit 82A.
  • the pseudo screen display unit 82A is included in both the personal computer PC and the display unit 82.
  • the dynamic three-dimensional head and neck model 10a is preferably displayed by changing the color for each head and neck organ and making it semi-transparent because the movement of each head and neck organ can be easily seen.
  • the movement of the head and neck organ, the physical properties of the orally ingested product are set for the dynamic three-dimensional head and neck model 10a, and the behavior of the orally ingested product is analyzed using the particle method. It is possible to provide a swallowing simulation apparatus that can easily reproduce an actual phenomenon approximately. In addition, by quantitatively setting and analyzing physical quantities related to the physical properties of orally ingested products and the behavior of ingested products as dimensional numerical values, the behavior of head and neck organs and ingested products during swallowing can be accurately represented, It is possible to provide a swallowing simulation apparatus capable of quantifying a physical quantity related to behavior during swallowing for each hour.
  • the head and neck modeling unit 10 converts the head and neck organ into polygons or particles (rigid body, powder, elastic body, plastic body, elastic plastic).
  • the motion analysis unit 50 treats the simulated oral intake product 20 as particles.
  • the dynamic three-dimensional head and neck model 10a is formed in accordance with the actual movement of the oral cavity, pharynx, larynx, and esophagus, and is preferably deformed with time in order to perform highly accurate analysis. It is better to treat the entire model as particles. However, as the number of particles increases, the load on the computer PC that performs analysis in three-dimensional space increases. It is efficient to set a polygon and analyze.
  • a head and neck organ is set to a polygon and a particle (rigid body, an elastic body, a plastic body, an elastic-plastic body), and the pseudo oral intake product 20 is set to a particle (fluid, rigid body).
  • a particle rigid body
  • the swallowing simulation apparatus 100A is the same as that shown in FIG. 4 (see FIG. 2 for the configuration) in the second aspect.
  • the structure is such that the chin portion 16a of the mandible where the genioglossus muscle 11f starts in the back direction is divided into n (n is an integer of 2 or more) fan-shaped portions 11a to 11e.
  • n is an integer of 2 or more fan-shaped portions 11a to 11e.
  • Each of the fan-shaped portions 11a to 11e vibrates in cooperation with a predetermined phase difference in the radial direction to set a traveling wave wave motion so as to transport the simulated oral ingestion product 20 in the back direction.
  • the division number n of the tongue 11 is 3 or more, smooth traveling wave motion can be expressed, and if it exceeds 7, the calculation load becomes large. Therefore, 4 to 6 is preferable. As a result, the traveling wave motion of the tongue during swallowing can be approximately reproduced.
  • the tongue is divided into n fan-shaped portions in the front-rear direction, and the above-described cooperative vibration is performed, so that the behavior of the tongue at the time of swallowing can be approximately reproduced. Nearly efficient analysis is possible.
  • the shape of the tongue 11 is formed of particles in accordance with the actual movement, and it is possible to read a shape deformed every time for each calculation.
  • the swallowing simulation apparatus 100A according to the fourth aspect of the present invention is the same as that of the third aspect, as shown in FIGS. 6 and 7, for example, as shown in FIGS.
  • the surface portions of the sectoral portions 11a to 11e overlap each other so that there is no gap between the sectoral portions 11a to 11e due to the vibrations, and the left and right sides extend in the radial direction, and a depression is formed in the central portion.
  • the tongue surface portion 19 is overlapped with the surface portions of the fan-shaped portions 11a to 11e, and the fan-shaped portions 11a to 11e vibrate in the radial direction in the recesses of the stationary tongue surface portion 11g. No.
  • the predetermined angle is preferably 15 °, but is not limited to this and may be 10 to 20 °.
  • the overlap portion is preferably 5 mm, but is not limited to this, and may be 3 to 7 mm. According to this configuration, there is no gap between the fan-shaped portions 11a to 11e, the flow path of the orally ingested product 20 is formed in the recess, and the orally ingested product 20 is smoothly transferred to the back side of the oral cavity. Therefore, the behavior of the tongue 11 during swallowing can be reproduced more approximately.
  • the swallowing simulation apparatus 100A according to the fifth aspect of the present invention is, as shown in FIGS. 9 and 10, for example, the head and neck modeling unit 10 has a dynamic three-dimensional structure.
  • the head and neck model 10a is divided into the tongue 11, the palate 15, the pharynx 14, the larynx 12c, the trachea 13 and the esophagus 18, the larynx 12c is divided into the epiglottis 12a and the larynx 12, and the esophagus entrance of the esophagus unit 18 before the start of swallowing.
  • the esophageal entrance 18a expands and the pharynx 14 contracts during swallowing, and the organ motion setting unit 30 moves the larynx 12 toward the chin portion 16a of the mandible 16 during swallowing.
  • the pharynx 14 contracts, and then the epiglottis 12a is rotated inward by a predetermined angle to set the larynx 12 to be occluded.
  • a predetermined angle 135 degrees is most suitable for the predetermined angle rotation because it is close to the actual phenomenon, but its vicinity (for example, within ⁇ 15 degrees) is also suitable.
  • the pharynx contracts specifically means that the pharynx shortens in the upward direction and the lumen contracts, but includes such contents.
  • the behavior of the larynx 12c at the time of swallowing and the opening and closing of the esophagus 18 can be approximately reproduced.
  • the movements of these organs can be moved in combination with the movements of muscles attached to these organs, in addition to being forcibly moved by giving numerical values from the organ movement setting unit 30. Furthermore, it is possible to read a model of each organ that changes with time for each analysis and to give a smoother motion.
  • the swallowing simulation apparatus 100A is, as shown in FIG. 22, for example (see FIG. 2 for the configuration) in any of the first to fifth aspects, orally ingested goods.
  • the sex setting unit 40 sets a plurality of liquid, semi-solid or solid simulated oral ingestions 20 having different physical properties as analysis targets, and the motion analysis unit 50 sets the free surface and the plurality of pseudo ingestions for the plurality of pseudo oral ingestions 20.
  • the boundary between the orally ingested products 20 is determined, and the interlocking behavior of the plurality of pseudo ingested products 20 is analyzed. If comprised in this way, about the some simulated ingestion product 20, the interlocking behavior of an ingestion product can be reproduced so that it may be close to a real phenomenon, and it is effective for the analysis of interlocking behavior.
  • the swallowing simulation apparatus 100B according to the seventh aspect of the present invention is the swallowing simulation device 100B according to any one of the first to sixth aspects, for example, as shown in FIG.
  • the evaluation and diagnosis unit 60 evaluates or diagnoses the ease of eating and / or the ease of drinking of the ingested product from the behavior of the head and neck organ motion analyzed by the motion analysis unit 50 and the simulated oral intake.
  • This is a virtual moving image plane formed in the virtual space by the swallowing simulation apparatus in order to display the analysis result of the behavior of the item 20 during swallowing, and the evaluation diagnosis unit 60 performs the pseudo oral intake product 20 on the virtual moving image plane. Is evaluated or diagnosed based on whether or not the behavior of the condition satisfies a predetermined condition.
  • the virtual moving image plane refers to a virtual moving image surface formed in the virtual space of the personal computer PC, but is a moving image surface having the same content as the moving image surface displayed on the display unit 82.
  • a pseudo screen display unit 82A is provided in the computer
  • an evaluation diagnosis condition storage unit 83A is provided in the storage unit 83
  • the analysis result is dynamically displayed on the virtual moving image plane of the pseudo screen display unit 82A.
  • the evaluation or diagnosis is performed by collating with the evaluation condition or diagnosis condition of the evaluation diagnosis condition storage unit 83A. Note that such dynamic display on the virtual moving surface is also included in “display on moving image”.
  • the predetermined condition is, for example, that the larynx 12 does not enter, the pharynx 14 is not clogged, does not adhere to the tongue 11 or the pharynx 14, and the time from introduction into the mouth to passage through the esophagus entrance 18a is within a predetermined range.
  • the shear stress in the oral cavity wall surface is less than or equal to a predetermined value, the shear stress around the epiglottis 12a is within a predetermined range, and the like.
  • the predetermined range is, for example, that the time from introduction into the oral cavity 17 to passage through the esophagus entrance 18a is 0.8 to 1.0 sec, and the shear stress at 0.8 sec around the epiglottis 12a is 0.25 to 0.45 N / m. 2nd magnitude. If comprised like this aspect, the virtual animation surface and the evaluation conditions or diagnostic conditions memorize
  • the swallowing simulation apparatus 100B is based on the analysis result of the behavior during swallowing of the simulated oral ingestion product 20 in the first aspect or the seventh aspect, for example, as shown in FIG.
  • the evaluation diagnosis result recording unit 83B for recording the evaluation diagnosis result relating to the ease of eating and / or the ease of drinking of the ingested product, and the appropriateness based on the evaluation result or the diagnosis result recorded in the evaluation diagnosis result recording unit 83B
  • a physical property determining unit 70 for determining physical properties of the oral ingested product.
  • the physical property determination is automatically determined by the swallowing simulation apparatus 100B based on the evaluation result or the diagnosis result.
  • a mode in which a person (for example, an evaluator or a diagnostician) determines is possible, but at this time, the physical property determination unit 70 may not be used, but it is not used or the determination result is displayed on the display unit 82 and the evaluator is displayed. Or it will be used as a reference for the diagnostician.
  • a dynamic three-dimensional head and neck model 10a is a dynamic three-dimensional head and neck model 10a composed of a head and neck organ, for example, as shown in FIG.
  • the tongue 11 is divided into n pieces (n is an integer of 2 or more) of fan-shaped portions 11a to 11e that require the chin portion 16a of the mandible, which is the origin of the genioglossus muscle 11f in the anterior-posterior direction,
  • Each fan-shaped portion 11a to 11e is set to perform a traveling wave wave motion for transporting the simulated oral ingestion product 20 in the back direction by vibrating in cooperation with a predetermined phase difference in the radial direction. If comprised in this way, the dynamic three-dimensional head-and-neck model 10a which can approximately reproduce the behavior of the tongue 11 and the throat during swallowing can be provided.
  • the dynamic three-dimensional head and neck model 10a is similar to the ninth aspect in that each sector part is caused by the vibration of each sector part 11a to 11e as shown in FIGS.
  • the tongue portions 11g have a structure in which the surface portions of the sector portions 11a to 11e overlap each other so that there is no gap between the portions 11a to 11e, and the tongue surface portion 11g has a recess in the central portion extending in the radial direction on both the left and right sides.
  • the fan-shaped portions 11a to 11e are overlapped with the surface portions of the fan-shaped portions 11a to 11e so that the fan-shaped portions 11a to 11e vibrate in the circumferential direction in the recesses of the stationary tongue surface portion 19.
  • the larynx 12c and the esophagus 18, 12c is the epiglottis 2a and the larynx 12 are divided, the esophageal entrance 18a of the esophagus 18 is closed before the start of swallowing, the esophageal entrance 18a is expanded at the time of swallowing, and the pharynx 14 is contracted, and at the time of swallowing, the larynx 12 is a mental part of the mandible
  • the esophageal entrance 18a is opened by moving in the direction 16a, the pharynx 14 is contracted, and then the epiglottis 12a is rotated to the back side by a predetermined angle to set the esophageal entrance 18a.
  • a swallowing simulation method is a dynamic three-dimensional head and neck composed of a head and neck organ, for example, as shown in FIG. 23 (see FIG. 2 for the device configuration).
  • a head and neck modeling step (S010) for forming the model 10a an organ motion setting step (S030) for setting the motion of each head and neck organ in the dynamic three-dimensional head and neck model 10a, an ingested product as an analysis target, and
  • the movement of the head and neck organ, the physical properties of the orally ingested product are set for the dynamic three-dimensional head and neck model 10a, and the behavior of the orally ingested product is analyzed using the particle method. It is possible to provide a swallowing simulation method that can easily reproduce the above.
  • the swallowing simulation method is that, in the eleventh aspect, as shown in FIG. 25, for example, as shown in FIG. An evaluation step (S080) for evaluating the ease and / or ease of drinking, and a physical property determination step for determining physical properties of an orally ingested product that is considered appropriate based on the evaluation results evaluated in the evaluation step (S080) (S090).
  • S080 for evaluating the ease and / or ease of drinking
  • S090 physical property determination step for determining physical properties of an orally ingested product that is considered appropriate based on the evaluation results evaluated in the evaluation step (S080) (S090).
  • a program according to a thirteenth aspect of the present invention is a computer-readable program for causing a computer to execute the swallowing simulation method according to the eleventh aspect or the twelfth aspect.
  • the program may be stored in a storage unit built in the computer, downloaded from the Internet, or stored in a computer-readable recording medium.
  • the computer according to this aspect includes a computer (for example, a personal computer PC) of an apparatus including a computer, such as a swallowing simulation apparatus.
  • the ingestible product development support device 200A according to the fourteenth aspect of the present invention has been determined to be appropriate by the swallowing simulation apparatus 100B according to the eighth aspect and the physical property determination unit 70, for example, as shown in FIG.
  • Oral ingestion product prototyping result recording unit 83C that records the results of trial production by appropriately setting the manufacturing conditions so as to have physical properties, and ingestion based on the prototyping results recorded in oral ingestion product prototyping result recording unit 83C
  • a manufacturing condition determining unit 84 that determines manufacturing conditions that make the physical properties of the product the physical properties determined to be appropriate by the physical property determining unit 70.
  • the ingestible product development support apparatus 200A sets the motion of the head and neck organ and the physical properties of the ingested product for the dynamic three-dimensional head and neck model 10a, and the behavior of the ingested product using the particle method. It is easy to reproduce the actual phenomenon related to swallowing. In addition, since a swallowing simulation device that can easily reproduce the actual phenomenon related to swallowing is used to evaluate or diagnose an orally ingested product, an easily ingested and easily swallowed ingested product is developed with high certainty. it can.
  • the ingestible product development support device 200A is based on the behavior during swallowing of the simulated oral ingestion product 20 on the moving image plane as shown in FIG. 26, for example.
  • An evaluation / diagnosis unit 60 for evaluating or diagnosing the ease of eating and / or the ease of drinking of the ingested product is provided, and the animation screen shows the movement of each head and neck organ analyzed by the motion analyzing unit 50 and the swallowing of the simulated oral ingested product 20.
  • the orally ingested product development support apparatus 200A automatically compares the behavior of the orally ingested product with the virtual animation plane and the evaluation condition or diagnosis condition stored in the evaluation diagnosis condition storage unit 83A. Therefore, it is possible to efficiently develop an easy-to-eat or easy-to-drink product.
  • the ingestible product development method according to the sixteenth aspect of the present invention comprises the swallowing simulation method according to the twelfth aspect as shown in FIG. 27, for example, in the oral ingestion product property setting step (S040).
  • Change and set the physical properties of the ingested product repeat the subsequent physical property determination step (S090), or change the physical properties of the ingested product in the oral ingested product property setting step (S040),
  • the subsequent evaluation step (S080) is repeated, and then the physical property determination step (S090) is performed in a lump, and the manufacturing conditions are appropriately set so as to have the physical properties determined to be appropriate in the physical property determination step (S090).
  • the physical properties of the oral ingestion product are determined.
  • a production condition determining step of determining the production conditions for the proper and determined physical properties (S090) (S120).
  • the dynamic three-dimensional head and neck model 10a the movement of a head and neck organ, the physical property of an orally ingested product are set, and the behavior of the orally ingested product is analyzed using the particle method. It is easy to reproduce the elephant. Since an orally ingested product is evaluated using a swallowing simulation method that can easily reproduce the actual phenomenon related to swallowing, it is possible to reliably develop an orally ingested product that is easy to eat and easy to drink.
  • the method for developing an orally ingested product according to the seventeenth aspect of the present invention includes a moving image plane for each head and neck organ analyzed in the motion analysis step (S060). Is a virtual moving image plane formed in the virtual space by the swallowing simulation apparatus 100B in order to display the analysis result of the movement of the simulated oral intake product 20 and the behavior during swallowing in a simulated manner, and the display step (S070) Is a virtual display step for displaying the virtual moving image on the virtual moving image surface.
  • the behavior of the simulated oral ingestion product 20 on the virtual moving image surface displayed in the virtual displaying step is predetermined.
  • the ingestible product development support device 200A compares the virtual animation plane with the evaluation condition or diagnosis condition stored in the evaluation diagnosis condition storage unit 83A, and the ease of eating the ingestible product, Since the ease of drinking is automatically evaluated or diagnosed, and the evaluation result or diagnosis result is linked to the development of an orally ingested product, it is possible to efficiently develop an easily ingested or easily ingested product.
  • the method for producing an orally ingested product according to the eighteenth aspect of the present invention includes the manufacturing condition determining step (S120) of the ingestible product developing method of the sixteenth aspect or the seventeenth aspect.
  • the ingestible product is manufactured using the manufacturing conditions determined in the above.
  • the ingestion product is typically developed by repeatedly conducting simulations, confirming the proper physical properties, and determining the manufacturing conditions so as to achieve the proper physical properties.
  • the manufacturing conditions determined in the manufacturing condition determining step (S120) of the ingestible product development method are used in any of the manufacturing processes (for example, the raw material blending step and the baking step). If it manufactures, it will correspond to the said aspect. If comprised in this way, the oral intake product excellent in the ease of eating and the ease of drinking can be developed reliably.
  • a dietary education support apparatus 300A is, as shown in FIG. 29, for example, a swallowing simulation apparatus 100A (or 100B) according to the first aspect or the seventh aspect.
  • the evaluation diagnosis result recording unit 83 ⁇ / b> B that records the evaluation result or the diagnosis result of the ease of eating, the ease of drinking of the oral ingestion product, and the display unit 82
  • a teaching unit 85 that explains the behavior of the simulated oral ingestion product 20 displayed on the screen during swallowing in association with the evaluation result or diagnosis result of the oral ingestion product recorded in the evaluation diagnosis result recording unit 83B.
  • This aspect is a food education support apparatus 300A to which the swallowing simulation apparatus 100A according to the first aspect is applied.
  • teaching may be performed by a teacher using a moving image or / and teaching materials, and what should be taught to the food education support apparatus is incorporated so as to be able to output sound in conjunction with a moving image. This may be done automatically through audio output.
  • the teaching contents may be automatically created by the teaching unit 85 based on the evaluation result or the diagnosis result, but it is preferable that the educator edits and supplements the information more easily.
  • the swallowing simulation apparatus 100B according to the seventh aspect may be applied instead of the swallowing simulation apparatus 100A according to the first aspect. With this configuration, the swallowing phenomenon is displayed using a swallowing simulation device that can easily reproduce the actual phenomenon related to swallowing. It is valid.
  • a food education method includes, for example, as shown in FIG. 30, a swallowing simulation method according to the eleventh aspect, and a simulated oral ingestible product 20 during swallowing.
  • the evaluation step (S080) for evaluating the ease of eating and / or the ease of drinking of the orally ingested product, and the swallowing of the simulated orally ingested product 20 displayed on the video screen in the display step (S070)
  • a teaching step (S082) for explaining the behavior of the time in relation to the evaluation result of the orally ingested product evaluated in the evaluation step (S080).
  • This aspect is a food education method corresponding to the food education support apparatus 300A according to the nineteenth aspect.
  • the swallowing phenomenon is displayed using a swallowing simulation method that makes it easy to reproduce the actual phenomenon related to swallowing. It is easy and effective for food education.
  • a swallowing simulation apparatus 400A according to the twenty-first aspect of the present invention is set by the organ motion setting unit 30 in the swallowing simulation apparatuses 100A and 100B according to the first to eighth aspects, for example, as shown in FIG.
  • an organ motion determination unit 75 is provided for determining organ motion parameters that match the symptoms of the diagnosis subject from the analysis results analyzed by the motion analysis unit 50. If comprised in this way, the part in which the function of each head-and-neck organ was reduced can be discovered, and it is useful for diagnosis.
  • a diagnosis support apparatus includes the swallowing simulation apparatus according to the twenty-first aspect. If comprised in this way, the rapid diagnosis which considered the swallowing phenomenon will be attained using a swallowing simulation apparatus.
  • a swallowing simulation device a dynamic three-dimensional head and neck model, a swallowing model that can easily reproduce actual phenomena related to swallowing, that is, behaviors of head and neck organs and ingested products
  • a simulation method a computer-readable program, an ingestible product development support device, an ingestion product development method, an ingestion product manufacturing method, a food education support device, a food education method, and a diagnosis support device can be provided.
  • swallowing simulation device dynamic three-dimensional head and neck model, swallowing simulation that can accurately represent the behavior of head and neck organs and orally ingested products during swallowing, and can quantify physical quantities related to physical properties and behavior of ingested products
  • a method, a computer-readable program, an ingestible product development support device, an ingestible product development method, an oral ingestion product manufacturing method, a food education support device, a food education method, and a diagnosis support device can be provided.
  • FIG. 3 is a diagram illustrating a configuration example of a dynamic three-dimensional head and neck model in Embodiment 1.
  • FIG. It is a figure which shows the structural example of a tongue model. It is a figure which shows another structural example (initial structural example) of a tongue model. It is a figure for demonstrating the overlap of a tongue structure. It is a figure for demonstrating the tongue structure which has a channel depressed in the center.
  • 3 is a diagram illustrating a configuration example of a pharyngeal model in Embodiment 1.
  • FIG. 1 is illustrating a configuration example of a pharyngeal model in Embodiment 1.
  • FIG. 1 It is a figure which shows the movement of the larynx and opening of an esophageal entrance in a dynamic three-dimensional head and neck model. It is a figure which shows the rotational motion of the epiglottis in a larynx model. It is a figure which shows the example of an interlocking exercise
  • FIG. 6 is a diagram showing a change over time in shear stress in a region A.
  • FIG. 6 is a diagram illustrating a change with time in shear stress in a region B.
  • FIG. 6 is a diagram showing a change over time in the flow speed in region B. It is a figure which shows the analysis area
  • FIG. It is a figure which shows the analysis result of the three-dimensional simulation in the case of a non-Newtonian fluid. It is a figure which shows the example of the coupled analysis of a solid and a fluid.
  • FIG. 10 is a diagram illustrating a configuration example of a swallowing simulation apparatus in Example 7.
  • FIG. 10 is a diagram illustrating an example of a diagnosis support process flow according to the seventh embodiment.
  • particle method simulation is performed using a particle method in which a liquid or solid to be analyzed is treated as particles as an analysis method capable of expressing large deformation or splashing of the liquid surface. First, the particle method will be described.
  • FIG. 1 shows the difference between the lattice method, which is a conventional analysis method, and the particle method, which is a new analysis method.
  • FIG. 1A shows a conceptual diagram of the lattice method
  • FIG. 1B shows a conceptual diagram of the particle method.
  • the lattice method an analysis region is divided by a lattice, and a physical quantity is calculated for each lattice. That is, the change in the liquid level follows the shape of the lattice, and it is difficult to analyze when the droplets or the liquid level is greatly deformed.
  • the particle method in particular MPS (Moving Particle-Semi-implicit) method is a relatively new analysis method developed in 1995 (Koshizuka et al, Comput. Fluid Dynamics J, 4, 29-46). 1995). Replace the fluid with particles and calculate the physical quantity for each particle. As a result, it is possible to analyze a subtle change in the liquid level, and it is possible to perform an analysis when the droplets or the liquid level is greatly deformed. However, the analysis of the fluid and bolus inside the living body using the particle method has not been found so far. Therefore, the inventors have developed a simulation apparatus and a simulation method that apply the particle method to the estimation of in vivo fluid and bolus behavior.
  • the inventors developed a three-dimensional swallowing simulator.
  • the two-dimensional swallowing simulator was able to analyze with a simplified structure on a single plane.
  • the three-dimensional simulator also reproduced the exact structure and behavior of the oral cavity, pharynx, and larynx based on medical knowledge.
  • the 3D swallowing simulator has physical properties (density, viscosity, surface tension, contact angle, heat capacity, heat conductivity, Dynamic friction coefficient, etc.) can be set as a dimensional numerical value, and the physical quantity (time, position coordinates, speed, pressure, temperature, shear rate, normal stress, shear stress, etc.) of the bolus during swallowing Therefore, it is possible to perform quantitative evaluation or diagnosis by improving the extraction to a numerical value having a dimension.
  • FIG. 2 shows a configuration example of the swallowing simulation apparatus 100A according to the first embodiment.
  • Example 1 an example will be described in which an evaluator or a diagnostician inputs an orally ingested product and performs a swallowing evaluation or a swallowing diagnosis by looking at a moving image.
  • FIG. 3 for a configuration example of the dynamic three-dimensional head and neck model 10a.
  • the swallowing simulation apparatus 100A includes a head and neck modeling unit 10 that forms a dynamic three-dimensional head and neck model 10a including a head and neck organ, and each head and neck in the dynamic three-dimensional head and neck model 10a (hereinafter also simply referred to as a head and neck model).
  • a head and neck modeling unit 10 that forms a dynamic three-dimensional head and neck model 10a including a head and neck organ, and each head and neck in the dynamic three-dimensional head and neck model 10a (hereinafter also simply referred to as a head and neck model).
  • An organ movement setting unit 30 for setting the movement of the organ, an oral intake product as an analysis target and an oral intake product property setting unit 40 for setting the physical properties thereof, and a pseudo oral intake product (pseudo food / drink product) modeling the oral intake product
  • the input unit 81 for inputting 20 into the oral cavity, the movement of each head and neck organ in the head and neck model 10a, and the behavior of the simulated oral ingestion product 20 during swallowing using the particle method
  • the motion analysis unit 50 used for analysis in a three-dimensional space, the motion analysis of the head and neck organs analyzed by the motion analysis unit 50, and the analysis results of the behavior of the simulated oral ingestion product 20 during swallowing
  • a display unit 82 to display, and a physical property determination unit that determines an appropriate physical property of the orally ingested product based on an evaluation result or an evaluation result obtained by evaluating or diagnosing the orally ingested product by observing a moving image surface by an evaluator or a diagnostician 70, a control
  • the display unit 82 also displays the head and neck model 10a, setting conditions (organ movements, physical properties of orally ingested products, etc.), evaluation results, diagnosis results, and the like on the screen.
  • the head and neck modeling unit 10, the organ motion setting unit 30, the oral intake physical property setting unit 40, the motion analysis unit 50, the physical property determination unit 70, and the control unit 90 can be realized by a personal computer PC and are provided in the personal computer PC. It is done.
  • An evaluator or a diagnostician observes the moving image surface of the display unit 82 to perform evaluation or diagnosis, and inputs an evaluation result or a diagnostic result from the input unit 81.
  • the input evaluation result or diagnosis result is recorded in the evaluation diagnosis result recording unit 83B of the storage unit 83.
  • diagnosis a case where a doctor or a dentist performs a simulation in a medical examination or a medical practice and evaluates an analysis result
  • diagnosis a case where a doctor or a dentist performs a simulation in a medical examination or a medical practice and evaluates an analysis result
  • the evaluation does not include diagnosis.
  • the oral ingested product physical property setting unit 40 shows the physical properties such as liquid volume, viscosity, surface tension, specific gravity, thermal conductivity, specific heat, etc.
  • the orally ingested product is semi-solid (plastic, but not fluid)
  • the quantity, viscosity, specific gravity, yield point, yield point stress, viscosity dependence on shear rate dynamics Physical properties such as static viscoelasticity, static viscoelasticity, compressive stress, adhesion, and cohesion.
  • the dynamic three-dimensional head and neck model 10a is formed in accordance with the actual movement of the oral organ, and is preferably deformed every time in order to perform highly accurate analysis.
  • the entire model is made of particles (rigid bodies, (Powder, elastic body, plastic body, elasto-plastic body) is good, but as the number of particles increases, the load on the computer PC that performs the analysis in the three-dimensional space increases, making the analysis simple and easy For this purpose, it is efficient to set the head and neck organ as a polygon and analyze it.
  • the input unit 81 includes input devices such as a mouse and a keyboard, and inputs the simulated oral intake 20 to be input into the oral cavity. For example, when the cursor is dragged and dropped into the oral cavity with a mouse, the placement position of the simulated oral ingestion product 20 into the oral cavity is, for example, in the vicinity of the tooth in the oral cavity (for example, within twice the length of the simulated oral ingestion product). The time immediately after drag and drop is defined as the input time.
  • the motion analysis unit 50 analyzes the behavior during swallowing of the simulated oral intake product 20 (hereinafter also simply referred to as an oral intake product) accompanying the movement of the head and neck organ.
  • the orally ingested product put into the head and neck is moved by the traveling wave motion of the tongue 11, the rotational movement of the epiglottis 12a, the reciprocating movement of the larynx 12, and the like.
  • the movement of ingested products is analyzed by particle method. Ingested products can be handled as polygons or particles as solids, semi-solids, and liquids (sometimes handled as polygons to reduce computational load).
  • the display unit 82 displays the analysis result of the behavior of the orally ingested product on the moving image surface. It is also possible to display one frame of a moving image as a still image, and it is also possible to rewind and display in reverse.
  • the storage unit 83 stores the head and neck model 10a, organ characteristics, setting conditions, analysis results, evaluation results, diagnosis results, and the like.
  • Evaluation or diagnosis is performed by the evaluator or the diagnosing person looking at the moving image surface of the display unit 82. For example, XX, rank, score, etc. are input to the cells of the evaluation table or diagnosis table displayed on the display unit 82.
  • the evaluation result or diagnosis result is recorded in the evaluation diagnosis result recording unit 83B.
  • An appropriate physical property value of an orally ingested product can be obtained by changing or evaluating the property value of the orally ingested product in the ingested product property setting unit 40.
  • the physical property determination unit 70 automatically determines a physical property of an orally ingested product that is appropriate based on the evaluation result or the diagnosis result recorded in the evaluation diagnosis result recording unit 83B. In addition, when a person determines, it shows in Example 4.
  • the physical property number may be singular or plural. Appropriate physical properties may be shown, for example, by creating a map of the appropriate range, or by dividing the appropriate range into a plurality of levels (rank A to rank C, etc.) or indicating a plurality of points. It is also possible to indicate an optimal point. When there are many types of physical properties to be obtained, an appropriate range of physical properties may be obtained using multidimensional principal component analysis.
  • the control unit 90 controls the swallowing simulation device 100A and each unit thereof to execute various functions of the swallowing simulation device 100A.
  • the control unit 90 has a swallowing simulator (analysis software) in the built-in memory.
  • FIG. 3 shows a configuration example of the head and neck model 10a according to the present embodiment.
  • 3A is a perspective view of the head and neck model 10a
  • FIG. 3B is a front view
  • FIG. 3C is a side view
  • FIG. 3D is a cross-sectional view along AA.
  • 11 is a tongue (including the genioglossus muscle 11f (see FIG.
  • 12 is the larynx
  • 12a is the epiglottis
  • 13 is the trachea
  • 14 is the pharynx (14a is the pharyngeal tube wall
  • 14b is the pharyngeal mucosa)
  • 15 is the palate (15a is the hard palate, 15b is the soft palate)
  • 16 is the chin (including the chin portion 16a)
  • 17 is the oral cavity
  • 18 is the esophagus (18a is the esophageal entrance
  • 18b is the esophageal tube wall
  • 20 is the pseudooral A spherical bolus as an ingested product.
  • the burden on the computer increases and analysis takes time.
  • the orally ingested product is expressed as particles (fluid), and each oral organ is arranged in the space using a wall boundary created by a polygon distance function (a wall that does not move even if it receives external force from fluid etc.)
  • the head and neck model 10a is simplified and the burden on the computer is reduced.
  • the motion of each head and neck organ (travelling wave motion, rotational motion, reciprocating motion, etc.) is set by the organ motion setting unit 30.
  • the form of the soft palate 15b and the tongue 11 that can be roughly read from the computed tomography (CT) image, and the form of the trachea 13
  • CT computed tomography
  • the positions of the pharynx 14 and the esophageal entrance 18a were estimated.
  • the structures of the tongue 11, soft palate 15b, pharynx 14 and esophagus entrance 18a, epiglottis 12a and larynx 12 were modeled using software for CG (Computer Graphics) (Autodesk 3ds Max, etc.).
  • the three-dimensional structure is corrected by superimposing a swallowing contrast image (front and side views) on the obtained dynamic three-dimensional head and neck model 10a by VF (Videofluorescence examination of swallowing).
  • VF Videofluorescence examination of swallowing
  • an outline of the three-dimensional change of the spatial region was given with reference to a moving image of swine cine MRI (cine magnetic resonance image: Cine Magnetic Resonance Imaging).
  • Cine MRI is an advanced form of the principle of cardiac imaging (synchronous sampling method) based on heartbeat synchronization.
  • an MRI moving image having a plurality of cross sections is obtained by inputting a trigger to the MRI apparatus at regular intervals and repeating swallowing movements synchronized with the trigger.
  • a four-dimensional reconstructed image is obtained by constructing this three-dimensionally and arranging it on the time axis.
  • the swallowing motion was simulated using the head and neck model 10a of FIG.
  • the head and neck model 10a was expressed using a distance function.
  • the organ at the shortest distance acts most strongly on the ingested product (particle) at the spatial point (three-dimensional coordinates), and the action becomes weaker as the distance increases.
  • the distance function is a function defined by the shortest distance to the head and neck model 10a with respect to a spatial point (three-dimensional coordinates).
  • the distance function By using the distance function, the head and neck model 10a can be easily superimposed. Yes (minimum distance from all head and neck organs is defined as a spatial point). Since it is easy to superimpose the head and neck model 10a, the swallowing motion can be reproduced by individually setting the movement amount for each divided head and neck organ and superposing them later.
  • FIG. 4 shows a configuration example of the tongue model 10b.
  • FIG. 4A shows the arrangement of the muscles of the tongue 11 (the genioglossus muscle 11f extending from the chin portion 16a of the mandible), and
  • FIG. 4B shows the tongue model 10b divided into a fan shape along the genioglossus muscle 11f. Indicates.
  • the tongue model 10 b is formed by the head and neck modeling unit 10, and the movement of the tongue is set by the organ movement setting unit 30.
  • the tongue model 10b needs to reproduce the transportation of the bolus by the tongue 11.
  • the tongue model 10b has a structure in which the genital portion 16a of the mandible, which is the origin of the genioglossus muscle, is the main part of the fan, and the tongue 11 is divided into a sector along the genital tongue muscle 11f extending from the origin.
  • the divided parts are referred to as sector parts 11a to 11e.
  • the transportation of the orally ingested product by the movement of the tongue 11 is achieved by vibrating the sector portions 11a to 11e in the radial direction and shifting the vibration phase from the front to the rear.
  • the vibration is caused to vibrate at a frequency of 1.1 Hz with an amplitude of 5 mm around the genioglossus muscle 11f, and each fan-shaped portion 11a to 11e sequentially vibrates at a timing (phase) of 0.1 s from the near side toward the far side.
  • a timing (phase) of 0.1 s from the near side toward the far side was set to delay.
  • FIG. 5 shows another configuration example (initial configuration example) of the tongue model.
  • FIG. 5A shows a tongue model before division
  • FIG. 5B shows a tongue model after division.
  • FIG. 6 is a diagram for explaining the overlap of the tongue structure.
  • Fig. 6 (a) shows the tongue structure before overlap
  • Fig. 6 (b) shows the tongue structure after overlap
  • Fig. 6 (c) shows details of the overlap. If the fan-shaped portions 11a to 11e of the tongue 11 are simply oscillated and moved before the overlap, the cut surfaces appear outside the gaps between the fan-shaped portions 11a to 11e as shown in FIG. 6 (b) and FIG. 6 (c), for example, a dome shape having a height of 5 mm is created on the cut surface of each of the fan-shaped portions 11a to 11e, and the two structures are overlapped so that no cut appears. I made it.
  • FIG. 7 is a view for explaining a tongue structure having a channel recessed in the center.
  • FIG. 7A is a perspective view showing a model in which a tongue structure (tongue surface portion) 11g having a depressed center is overlapped with a tongue structure in a normal state
  • FIG. 7B is a tongue structure having a depressed center (tongue surface).
  • (Part) 11g is a diagram for explaining the movement of the tongue structure (fan portion) 11a to 11e in a normal state relative to 11g. In the part shown as the tongue 11 in FIG. 7B, the fan-shaped parts 11a to 11e are overlapped in the front-rear direction.
  • the tongue structures 11a to 11e in the normal state are the tongue structures shown in FIGS.
  • the tongue structure (tongue surface portion) 11g having a depressed center extends radially in the left and right sides and is formed in the center portion. It is a structure which has a hollow.
  • the tongue structure 11g having a depressed center is overlapped with the tongue structures 11a to 11e at normal times. Then, the left and right sides of the tongue structure 11g having a depressed center extend in the radial direction to form a wall surface, and the surfaces of the normal tongue structures (fan-shaped portions) 11a to 11e are the depressions of the tongue structure 11g having a depressed center. It vibrates in the radial direction (in FIG. 7B, it vibrates up and down).
  • the tongue 11 is transported by collecting and pouring the bolus 20 into the center of the tongue 11, adding the tongue structure 11g in which the center immediately before swallowing is depressed, the bolus 11 (pseudo-orally ingested product) 20 A flow path is secured.
  • each of the sector portions 11a to 11e is set to 10 to 15 mm, for example.
  • a rotational motion of, for example, 15 ° (rotating a total of 15 ° centering on the main part of the fan while vibrating) was imparted to each of the sector portions 11a to 11e on the back side in the circumferential direction.
  • the bolus is transported by the vibration and rotational movement of the fan-shaped portions 11a to 11e that are out of phase.
  • the amplitude, vibration frequency, vibration timing, overlap height, and rotation angle are only examples, and can be freely set within a suitable range (for example, ⁇ 20%).
  • the pseudo-oral intake product 20 is pushed in.
  • the specific push-in movement of the fan-shaped part 11e is as follows, for example. Until the timing of swallowing, it rotates at the same time while vibrating with an amplitude of 10 mm as in the other fan-shaped portions 11a to 11d. However, the other sector parts 11a to 11d rotate 15 degrees over 0.3 seconds, whereas the innermost sector part 11e stops rotating in 0.1 seconds (rotates only 5 degrees). Then, reverse rotation of 15 degrees takes 0.2 seconds. During this reverse rotation, the oscillating motion centered on the fan shape shows a behavior that gradually falls to the rotation center side with the maximum amplitude at the start of the reverse rotation.
  • the fan-shaped portion 11e rotates 10 degrees in 0.2 seconds, returns almost to the state before swallowing, and waits for the next swallowing motion.
  • the pseudo oral intake product 20 is pushed in at the time of this return.
  • analysis was performed by changing the direction of gravity, and it was confirmed that transportation of the bolus (here, water property) 20 by movement of the tongue 11 was achieved.
  • the larynx model 10 c realizes opening and closing of the esophagus 18 and the larynx 12 by the movement of the epiglottis 12 a and the larynx 12.
  • the larynx model 10 c is formed by the head and neck modeling unit 10, and its movement is set by the organ movement setting unit 30.
  • FIG. 8 shows a configuration example of the larynx model 10c.
  • the larynx model 10c is composed of the epiglottis 12a and the larynx 12.
  • the epiglottis 12a has a hole connected to the larynx 12.
  • the larynx 12 is tubular, and the epiglottis 12a is a bank-like bulge around the tube at the entrance (laryngeal mouth) of the larynx 12.
  • a reciprocating motion that moves in the direction of the mandible rotator 16a and the opposite side and a rotational motion in which the epiglottis 12a rotates on the larynx 12 are performed.
  • the movement of the larynx 12 and the rotation of the epiglottis 12a proceed simultaneously.
  • the pharynx 14 shortens upward and the lumen contracts.
  • FIG. 9 shows the movement of the larynx 12 and the opening of the esophageal entrance 18a in the dynamic three-dimensional head and neck model 10a.
  • FIG. 9A shows a state where the esophageal entrance 18a is closed before the larynx 12 is moved (normal time)
  • FIG. 9B shows a state where the esophageal entrance 18a is opened after the larynx 12 is moved.
  • FIG. 9C is a view showing a cross section of the larynx model 10c in a normal state (when the esophagus entrance 18a is in a closed state). As shown in FIGS.
  • the larynx 12 is in the obliquely downward direction of the chin portion 16a of the mandible during normal times, and in the direction of the chin portion 16a of the mandible that is obliquely upward during swallowing. It has moved to open the esophagus entrance 18a.
  • the arrow in FIG. 9A indicates the moving direction of the larynx 12c.
  • the esophageal entrance 18a is normally closed by the upper esophageal sphincter, and the front wall of the esophagus 18 is in contact with the rear wall of the trachea 13.
  • FIG. 10 shows the rotational movement of the epiglottis 12a in the larynx model 10c.
  • FIG. 10A shows a state before rotation
  • FIG. 10B shows a state after rotation.
  • the movement direction of the larynx 12 and the rotation direction of the epiglottis 12a are indicated by arrows.
  • the angle of rotation was set to, for example, 135 degrees in light of realistic movement.
  • the larynx 12 moves to the chin portion 16a side of the mandible, the esophageal entrance 18a is opened, and the entrance of the larynx 12 is blocked by the rotational movement of the epiglottis 12a.
  • FIG. 11 shows an example of interlocking movement of the larynx 12 and the epiglottis 12a in the larynx model 10c (the larynx is 12c).
  • 11 (a) is 0.0 sec, (b) is 0.2 sec, (c) is 0.4 sec, (d) is 0.5 sec, (e) is 0.6 sec, (f) is 0.7 sec, (G) shows the state at 0.8 sec, (h) at 0.9 sec, and (i) at 1.0 sec.
  • the epiglottis 12a begins to tilt at 0.2 sec, lays down at 0.6 sec, reaches a maximum of 135 degrees at 0.7 sec, then reversely rotates, and returns to the original at 1.0 sec.
  • the larynx 12 starts moving at 0.6 sec, reaches a maximum at 0.7 sec, and returns to the original at 0.9 sec.
  • the arrow in the figure indicates the portion of the tongue (fan portion) 11 that is at the top.
  • the movement which the innermost part 11e of a tongue (fan-shaped part) pushes in 5 mm was integrated in the moment of the fall of the epiglottis 12a mentioned above.
  • the simulator for executing the swallowing simulation method according to the present embodiment performs modeling of the head and neck organs, and analyzes the behavior of the fluid and bolus when passing through the oral cavity and throat using the particle method. Is what you do.
  • the swallowing simulator was created using 3D particle method analysis software.
  • This analysis software has the feature that the physical property value and time of the fluid can be directly input as numerical values, each physical quantity can be appropriately changed, and quantitative analysis can be performed.
  • water was taken up as a simulated oral ingestion product 20, and the physical properties of water were substituted for analysis.
  • Table 1 shows the physical properties of water used in the analysis. Unlike analysis by a two-dimensional simulator, a numerical value with a unit is substituted for a physical property value.
  • the particle diameter of the particles used for the analysis was 1 mm, and about 3 ml of food bolus was added. The particle diameter of the particles can be arbitrarily set by the motion analysis unit 50.
  • FIG. 12 shows the analysis result of the three-dimensional simulation when the bolus is water.
  • FIGS. 12 (a1) to (a3) show the behavior of the bolus on the tongue 11
  • FIGS. 12 (b1) to (b3) show the behavior of the bolus around the epiglottis 12a.
  • (a3 ) Shows the behavior of water at t 0.8 sec.
  • FIG. 13 shows the analysis results of the three-dimensional simulation in the case where the orally ingested products (bodies) are water, milk A, and milk B.
  • the behavior of the bolus around the epiglottis 12a in FIG. 13 (a1) and (b1) show the behavior of water
  • FIGS. 13 (a2) and (b2) show the behavior of milk A
  • FIGS. 13 (a3) and (b3) show the behavior of milk B. It was found from the simulation that the behavior differs at the same time depending on the physical properties of the orally ingested product.
  • Fig. 14 shows the analysis area for shear stress and flow velocity.
  • Region A is a region on the tongue 11 in the oral cavity, and the shear stress was obtained.
  • Region B is the region of the esophagus entrance 18a in the pharyngeal space, and the shear stress and flow velocity were determined.
  • FIG. 15 shows the change over time in shear stress in region A (output every 0.1 sec).
  • the average shear stress in the region A is obtained by the average value of the stress ( ⁇ YZ component of the stress tensor) when a force in the Z direction is applied to the surface of the particle in the region A having the normal line in the Y direction. be able to.
  • the shear stress was set to 0 at the time when the particles in the region A became 15 or less due to the transport of the bolus by the tongue 11. From this figure, it can be seen that there are two shear stress peaks on the tongue 11.
  • the first peak of shear stress is the shear stress generated when the bolus spreads in the oral cavity when the bolus is introduced, and is considered to be an index of the spread in the oral cavity.
  • the second peak of shear stress is the shear stress on the tongue 11 that is generated when the bolus 11 is transported by the tongue 11 during swallowing, and is considered to be a value that serves as one index of throat.
  • Time course of the shear stress in the region B in FIG. 16 (output per 0.1 sec), showing the change with time of flow-down speed (v Y component of the velocity) in the region B in FIG. 17 (output every 0.1 sec).
  • the average shear stress in the region B is the average value of the stress ( ⁇ ZY component of the stress tensor) when a force in the Y direction is applied to the particles in the region A with respect to the surface having the normal line in the Z direction. Can be obtained.
  • the shear stress and the flow velocity were set to zero.
  • FIG. 18 shows analysis areas for the remaining rate and the aspiration rate.
  • the remaining rate was obtained in the region on the tongue 11 in the oral cavity 17.
  • the remaining rate was obtained in the region around the epiglottis 12a.
  • Region E is the region of the larynx 12 exit and the aspiration rate was determined.
  • FIG. 19 shows the remaining rate in region C and region D (total of both regions), and FIG. 20 shows the aspiration rate in region E.
  • the particle method tracks the position of each particle, there is an advantage that the amount of particles existing in the space can be easily obtained. Therefore, the number of particles remaining on the tongue 11 and around the epiglottis 12a after the swallowing operation was counted and evaluated or diagnosed as an index (residual rate) of the remaining throat. Furthermore, by covering the outlet of the larynx 12 (shown by a broken line in FIG. 18), the particles mixed on the larynx 12 side were counted, and the risk of aspiration (aspiration rate) was also evaluated or diagnosed.
  • the evaluation method or the diagnostic method for counting particles is a method that can be performed by a two-dimensional swallowing simulator, the three-dimensional advantage is that the physical property value of the input bolus can be defined numerically.
  • FIG. 21 shows the analysis result of the three-dimensional simulation when the bolus is a non-Newtonian fluid.
  • FIG. 22 shows an example of a coupled analysis of a solid and a fluid (water).
  • the behavior of the bolus around the epiglottis 12a in FIG. 22 (a1) and (b1) are solid (8 mm sphere) only, FIGS. 22 (a2) and (b2) are only solid (4 mm sphere), and FIGS. 22 (a3) and (b3) are solid (4 mm sphere).
  • FIG. 22 (a3) and (b3) are solid (4 mm sphere).
  • the solid sphere of 8 mm was too large to be transported from the tongue 11 to the pharynx 14 side. In the case of an actual human body, there is a possibility that it can be swallowed if it is impossible, but on the structure in the oral cavity 17 , it is expected that a size of about 8 mm cannot be smoothly transported. Further, from FIG. 22 (b2), it was confirmed that the 4 mm sphere was transported without any problem, and as shown in FIG. 22 (b3), the coupled calculation with water could be performed without any problem.
  • the physical properties of solid and fluid can be set as numerical values.
  • FIG. 23 shows a processing flow example of the swallowing simulation method in the first embodiment.
  • a dynamic three-dimensional head and neck model 10a composed of head and neck organs is formed (S010: head and neck modeling process).
  • the movement of each head and neck organ in the head and neck model 10a is set (S030: organ movement setting step).
  • an orally ingested product as an analysis target and its physical properties (physical property type and physical property value) are set (S040: oral ingested product physical property setting step). These settings can be freely selected according to the situation.
  • the setting contents are stored in the storage unit 83.
  • the simulated oral ingestion product 20 that models the ingestion product is input to the oral cavity (S050: input step).
  • the evaluator or the diagnostician performs the input by dragging and dropping the cursor into the oral cavity with the mouse.
  • the movement of each head and neck organ in the head and neck model 10a and the behavior related to swallowing the simulated oral ingestion product 20 are analyzed in a three-dimensional space using a particle method (S060: motion analysis step).
  • the MPS method can be used.
  • the analysis result obtained in the motion analysis step (S060) is displayed (S070: display step).
  • evaluation or diagnosis process when only one is Evaluation process or diagnosis process.
  • Evaluation or diagnosis is performed by an evaluator or a diagnostician looking at the moving image surface of the display unit 82. For example, XX, rank, score, etc. are input to the cells of the evaluation table or diagnosis table displayed on the display unit 82.
  • the process returns to the orally ingested product physical property setting step (S040), the physical property value of the ingested product is changed and set, and the subsequent evaluation and diagnosis steps are repeated.
  • the physical property value to be changed can be freely selected by the evaluator or the examiner. However, if appropriate physical properties are found at the first time, subsequent setting and evaluation or diagnosis may be omitted.
  • the physical property of the orally ingested product determined as appropriate in the evaluation diagnosis step (S080) is determined (S090: physical property determination step). Here, a range of appropriate physical properties may be shown, appropriate physical properties may be ranked, and an optimum value may be selected.
  • the evaluation item or the diagnosis item is, for example, as follows.
  • A Whether there is a risk of swallowing / aspiration / swallowing / suffocation (attached to the palatal wall, etc., difficult to peel off, block the throat and esophagus 18, enter the larynx 12),
  • B how long swallowing time exceeds the threshold,
  • C how much stress on the pharyngeal wall, and how much shear stress is over the threshold,
  • D Based on (a) to (c), taking into account the correlation with sensory evaluation or sensory diagnosis (delicious, refreshing feeling, etc.) obtained separately, comprehensive ease of drinking, ease of eating, drinking Evaluate or diagnose difficulty / eating difficulty.
  • the sensory evaluation or sensory diagnosis is stored in the evaluation diagnosis result recording unit 83B in association with the orally ingested product and its physical properties.
  • the sensory evaluation or sensory diagnosis of this ingested product is read out, for example, swallowing time, shear stress, etc. Consider the correlation.
  • organ characteristics, movement of the head and neck organ, physical properties of the orally ingested product are set, and the behavior of the orally ingested product is analyzed using the particle method. Therefore, it is possible to provide a swallowing simulation apparatus and a swallowing simulation method that can easily reproduce the actual phenomenon related to swallowing, that is, the behavior of the head and neck organ and the ingested product approximately.
  • the swallowing simulator to quantify and analyze the physical properties and physical quantities of the bolus, the behavior of the head and neck organs and the orally ingested product during swallowing can be accurately represented, and the physical quantities related to the physical properties and behavior of the orally ingested product Swallowing simulation apparatus and swallowing simulation method can be provided.
  • an evaluator or a diagnostician inputs an ingested product and describes a swallowing evaluation or a swallowing diagnosis by looking at a moving image.
  • the swallowing simulation apparatus is based on the setting. An example will be described in which an ingested product or the like is automatically input and the swallowing simulation apparatus automatically performs swallowing evaluation or swallowing diagnosis. The differences from the first embodiment will be mainly described (the differences will be mainly described in the following embodiments as well).
  • FIG. 24 shows a configuration example of the swallowing simulation apparatus 100B in the second embodiment.
  • a pseudo screen display unit 82A for displaying the analysis result of the behavior during swallowing of the simulated oral ingested product on the virtual moving image plane and the simulated oral ingestion
  • An ingestible product input setting unit 45 for setting product input conditions is added, and the ease of eating the ingested product automatically with reference to the evaluation conditions or diagnosis conditions stored in the evaluation diagnosis condition storage unit 83A
  • an evaluation diagnosis unit 60 evaluation unit or diagnosis unit in the case of only one
  • Other configurations are the same as those of the first embodiment.
  • FIG. 25 shows a processing flow example of the swallowing simulation method.
  • an oral ingestion product input setting step (S045) for setting an input condition of an oral ingestion product is added before the input step (S050), and a moving image is displayed on the display unit 83.
  • the display step (S070) for surface display replaces the step (S075) for display on the virtual moving image surface of the pseudo screen display unit 82A.
  • the evaluation diagnosis step (S080) the evaluation diagnosis unit 60 automatically evaluates or diagnoses. Other steps are the same as those in the first embodiment.
  • Example 2 the pouring position and pouring timing of an orally ingested product are set in advance in the orally ingested product input setting unit 45 (S045: Orally ingested product input setting step).
  • the input position of the simulated oral intake product into the oral cavity is, for example, in the vicinity of the teeth in the oral cavity (for example, within twice the length of the simulated oral intake product).
  • the simulated oral ingestion product 20 is introduced into the oral cavity (S050: oral ingestion product input step).
  • the evaluation condition or diagnosis condition is stored in advance in the evaluation diagnosis condition storage unit 83A, and the simulation analysis result is displayed on the virtual moving image surface of the pseudo screen display unit 82A in the personal computer PC.
  • the behavior of the head and neck model 10a and the simulated oral ingestion product 20 is displayed, and the evaluation diagnosis unit 60 verifies the display of the pseudo screen display unit 82A with the evaluation condition or diagnosis condition of the evaluation diagnosis condition storage unit 83A. To evaluate or diagnose.
  • the evaluation item or the diagnosis item is, for example, as follows.
  • A Whether there is a risk of swallowing / aspiration / swallowing / suffocation (attached to the palatal wall, etc., difficult to peel off, block the throat and esophagus 18, enter the larynx 12),
  • B how long swallowing time exceeds the threshold,
  • C how much stress on the pharyngeal wall, and how much shear stress is over the threshold,
  • D Based on (a) to (c), taking into account the correlation with sensory evaluation or sensory diagnosis (delicious, refreshing feeling, etc.) obtained separately, comprehensive ease of drinking, ease of eating, drinking Evaluate or diagnose difficulty / eating difficulty.
  • A) to (c) and sensory evaluation or sensory diagnosis are digitized, respectively, and weighted coefficients are respectively multiplied to automatically perform total evaluation or total diagnosis by the total number. Note that (c) and / or (d) may be omitted.
  • the evaluation result or diagnosis result (part or whole) of the swallowing simulation apparatus May be displayed, and evaluation or diagnosis may be requested from the evaluator or diagnostician.
  • the evaluation diagnosis step (S080) of the second embodiment the evaluation result or diagnosis result (part or all) of the swallowing simulation apparatus is displayed on the display unit 82 together with the evaluation table or the diagnosis table.
  • the evaluator or the diagnostician refers to the evaluation result or the diagnostic result of the swallowing simulation apparatus, and inputs his own evaluation result or the diagnostic result into the evaluation table or the diagnostic table.
  • the oral intake product input step (S050) may be manual input or automatic input.
  • Other apparatus configurations and processing flows are the same as those in the second embodiment, and as in the second embodiment, it is possible to provide a swallowing simulation apparatus and a swallowing simulation method that can easily reproduce actual phenomena related to swallowing.
  • the physical property determination unit 70 automatically determines the physical property of an orally ingested product.
  • the physical property determination unit 70 of FIG. 2 in the first embodiment is typically deleted.
  • FIG. 23 can be used as an example of the processing flow.
  • the physical property determining unit 70 may be provided, and in this case, the physical property determining unit 70 is not used, or the determination result of the physical property determining unit 70 is shown to the determiner (for example, an evaluator or a diagnostician) for reference.
  • FIG. 26 shows a configuration example of the ingestible product development support apparatus 200A.
  • the swallowing simulation apparatus 100A of FIG. 2 includes an oral ingestion product trial result recording unit 83C, a determined manufacturing condition recording unit 83D, and a manufacturing condition determining unit 84.
  • Orally ingested product trial result recording unit 83C belongs to storage unit 83, and results of trial production (including physical property values) where production conditions are appropriately set so as to have physical properties determined to be appropriate by physical property determining unit 70 Record.
  • the manufacturing condition determining unit 84 is provided in the personal computer PC, and based on the trial result recorded in the oral ingestion product trial result recording unit 83C, the physical property of the ingested product is determined to be appropriate by the physical property determining unit 70. Determine manufacturing conditions.
  • the determined manufacturing condition is recorded in the determined manufacturing condition recording unit 83D of the storage unit 83.
  • the manufacturing conditions for making the physical properties determined appropriate by the physical property determining unit 70 are clarified, and an oral intake product having physical properties that are easy to eat and / or easy to drink can be reliably developed.
  • FIG. 27 shows an example of a processing flow of the method for developing an orally ingested product.
  • an oral ingestion product trial production step (S110) and a manufacturing condition determination step (S120) are added.
  • the oral ingestion product trial production step (S110) the trial production is performed by appropriately setting the production conditions so as to have the physical properties determined to be appropriate in the physical property determination step (S090).
  • the mixing conditions mixing ratio, stirring, etc.
  • baking conditions temperature, time, atmosphere, etc.
  • cooling conditions temperature, time, atmosphere, etc.
  • the result of the trial production is recorded in the oral ingestion product trial result recording unit 83C of the storage unit 83 in association with the obtained physical properties with the manufacturing conditions.
  • the manufacturing condition determination step (S120) the physical properties of the orally ingested product are determined based on the prototype result in the ingestion product prototype step (S110), that is, the prototype result recorded in the oral ingestion product prototype result recording unit 83C ( The manufacturing conditions for obtaining the physical properties determined to be appropriate in S090) are determined. For example, in the oral ingestion product prototyping step (S110), if the result indicates that the physical properties determined to be appropriate are obtained at the mixing ratio A of raw materials and the firing temperature B, the physical properties determined to be appropriate are obtained.
  • the raw material blending ratio A and the firing temperature B are determined.
  • This manufacturing condition may be one point, but a range may be designated. Further, an optimum value may be determined, and an appropriate range may be ranked. Further, this determination may be made by a person or automatically based on the trial production result recorded in the oral ingestion product trial production result recording unit 83C by the manufacturing condition determination unit 84.
  • the result determined in the manufacturing condition determining step (S120) is recorded in, for example, the determined manufacturing condition recording unit 83D of the storage unit 83. In addition, when a person decides, you may record on a notebook.
  • FIG. 28 shows an example of the processing flow of the method for producing an orally ingested product.
  • an oral intake preparation process S130
  • the first is the AA process and the last is the ZZ process.
  • This orally ingested product preparation step (S130) is determined to be a manufacturing condition for making the physical properties determined to be appropriate in the physical property determining step (S090) in the manufacturing condition determining step (S120) of the ingested product development method in FIG.
  • Orally ingested products are prepared using the manufactured conditions. Any step in the manufacturing process may be used.
  • an orally ingested product in the manufacture of confectionery, can be prepared in steps such as a raw material blending step and a baking step. You may prepare combining two or more processes.
  • the manufacturing conditions in the oral ingestion product preparation step (S130) are those determined in the manufacturing condition determination step (S120), this corresponds to the embodiment.
  • the result determined in the manufacturing condition determining step (S120) is recorded in, for example, the determined manufacturing condition recording unit 83D of the storage unit 83. This makes it possible to reliably produce a developed orally ingested product that is easy to eat and / or easy to drink.
  • the organ characteristics, the movement of the head and neck organ, the physical properties of the ingested product are set, and the behavior of the ingested product is analyzed using the particle method.
  • the swallowing phenomenon can be analyzed using a swallowing simulation method that can easily reproduce the actual phenomenon, and an easily ingestible or easy to swallow ingestible product can be developed.
  • FIG. 29 shows a configuration example of a food education support apparatus 300A in the present embodiment.
  • the teaching unit 85 is added and the physical property determination unit 70 is deleted.
  • the teaching unit 85 relates the behavior during swallowing of the simulated oral ingestion product 20 displayed on the moving image screen on the display unit 82 in association with the evaluation result or diagnosis result of the oral ingestion product recorded in the evaluation diagnosis result recording unit 83B.
  • the teaching content is based on the evaluation result or diagnosis result of the orally ingested product recorded in the evaluation diagnosis result recording unit 83B, and the explanation content is created and recorded in advance.
  • the explanation content may be automatically created by the teaching unit 85 based on the evaluation result or the diagnosis result, but it is preferable that the educator edits and supplements more easily.
  • the physical property determination unit 70 is deleted. However, the physical property determination unit 70 may be provided to explain the physical property determination.
  • the teaching unit 85 stores the explanation contents (teaching contents) and also displays the analysis results of the movements of the head and neck organs analyzed by the motion analysis unit 50 and the behavior of the simulated oral ingestion product 20 during swallowing.
  • the video content is displayed on the moving image surface, and the commentary content is output as a voice to the speaker of the display unit 82.
  • FIG. 30 shows a processing flow example of the food education method in the present embodiment.
  • the teaching step (S082) is added after the evaluation diagnosis step (S080), and the physical property determination step (S090) is deleted.
  • the teaching step (S082) the swallowing behavior of the simulated oral ingestion product displayed on the moving image in the display step (S070) is evaluated or diagnosed in the evaluation diagnosis step (S080). Teach in relation to the results.
  • the physical property determination unit 70 and the physical property determination step (S090) are deleted, but the physical property determination unit 70 and the physical property determination step (S090) may be included to explain the physical property determination.
  • the swallowing phenomenon is displayed using a swallowing simulation method that makes it easy to reproduce the actual phenomenon related to swallowing, so it is easy to understand the ease of eating or the ease of swallowing of orally ingested products, and it is very effective for food education .
  • FIG. 31 shows a configuration of a swallowing simulation apparatus 400A in the present embodiment.
  • a vessel movement determining unit 75 and a determined organ movement condition recording unit 83E are added to the swallowing simulation apparatus 100A of the first embodiment (see FIG. 2).
  • the organ movement setting part 30 is used more frequently.
  • the vessel movement setting unit 30 sets movement characteristics of each head and neck organ related to swallowing movement. For example, the reaction speed of the genioglossus muscle 11f and other muscles related to swallowing, the timing of contraction and relaxation, the contraction distance Then, elasticity (flexibility) or the like is set as a motion parameter, and the organ motion determination unit 75 determines the organ motion parameter of each head and neck organ from the simulation result, that is, from the analysis result analyzed by the motion analysis unit 50.
  • the determined organ motion condition recording unit 83E records the organ motion parameters obtained by the organ motion determining unit 75.
  • the swallowing diagnosis support apparatus has a medical diagnosis result database that stores diagnosis results of patients and health check subjects, the evaluation diagnosis recorded in the evaluation diagnosis result recording unit 83B of the swallowing simulation apparatus 400A. By comparing with the results, it is possible to find a portion where the function of each head and neck organ has deteriorated and to proceed with a quick diagnosis.
  • FIG. 32 shows a processing flow example of the simulation method in the present embodiment.
  • a loop in which organ movement parameters are changed is added. That is, after the loop process in which the physical property parameter is changed, the loop process in which the vessel motion parameter is changed is performed.
  • the physical property determination and organ characteristic determination are not used to find physical properties and organ movements that are appropriate for swallowing, but are used as a loop to search for organ movement parameters that match the symptoms of the patient and the person being diagnosed in the health checkup. .
  • the simulation is performed by sequentially changing the parameters, and the processing flow is terminated when physical properties and organ characteristics that match the behavior and symptoms of each head and neck organ of the patient or the person to be diagnosed by the medical examination are found. However, it is possible to predict the parameters after treatment and continue the simulation to obtain the improvement effect of treatment.
  • the present invention can be realized as a computer-readable program for causing a computer to execute the above swallowing simulation method, and also as a storage medium for storing the program.
  • the program may be accumulated and used in the control unit 90 of the swallowing simulation apparatus, may be accumulated and used in a built-in or external storage device, or may be downloaded from the Internet and used.
  • each organ that changes with time can be read at every analysis time to simulate a smoother motion, or to perform analysis by freely changing parameters such as the number of divisions and frequency.
  • each of these organs can be moved in conjunction with the associated muscle.
  • the example of the food education device / food education method of Example 6 was mainly described in combination with the simulation device of Example 2, but Example 1 and Example 3. You may combine with the simulation apparatus of Example 4.
  • diagnosis support of the seventh embodiment is mainly described in combination with the simulation apparatus of the first embodiment, but may be combined with the simulation apparatus of the second to fourth embodiments.
  • two orally ingested products have been exemplified, it is possible to analyze the behavior by linking three or more, and solids having different physical properties such as chocolate wrapped in peanuts (solid -Solid) coupled analysis, liqueur-wrapped chocolate (solid-liquid) coupled analysis, and liquids (oil-vinegar) with different physical properties such as dressing (liquid-liquid) Analysis is also possible.
  • saliva for example, it is possible to analyze by setting the time (multiple times) and the amount to be added in advance and taking in that the orally ingested product is dissolved by saliva.
  • the number of divisions of the tongue model, the size of the overlap portion, the movement amount and movement timing of each part, and other parameters can be changed within an appropriate range.
  • the present invention is used for analyzing swallowing conditions of orally ingested products.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Physics (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Algebra (AREA)
  • Computational Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Mathematical Optimization (AREA)
  • Medical Informatics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Educational Administration (AREA)
  • Educational Technology (AREA)
  • Theoretical Computer Science (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

 嚥下に関する実現象を近似的に再現することが容易で、経口摂取品の物性及び挙動に係る物理量を定量化できる嚥下シミュレーション装置を提供する。 本発明による嚥下シミュレーション装置(100A)は、頭頸部器官からなる動的三次元頭頸部モデル(10a)を形成する頭頸部モデリング部(10)と、頭頸部モデル(10a)における各頭頸部器官の運動を設定する器官運動設定部(30)と、解析対象としての経口摂取品及びその物性を設定する経口摂取品物性設定部(40)と、経口摂取品をモデル化した擬似経口摂取品(20)を口腔に入力する入力部(81)と、頭頸部モデル(10a)における各頭頸部器官の運動と擬似経口摂取品(20)の嚥下時の挙動を、粒子法を用いて三次元空間で解析する運動解析部(50)と、運動解析部(50)で解析された各頭頸部器官の運動と擬似経口摂取品(20)の嚥下時の挙動の解析結果を動画面に表示する表示部(82)とを備える。

Description

嚥下シミュレーション装置及び方法
 本発明は嚥下シミュレーション装置及び方法に関する。詳しくは、口腔ならびに咽喉を通過する際の流体・食塊の挙動について粒子法を用いて解析を行う嚥下シミュレーション装置、動的三次元頭頸部モデル、嚥下シミュレーション方法、コンピュータ読み取り可能なプログラム、経口摂取品開発支援装置、経口摂取品開発方法、経口摂取品製造方法、食育支援装置、食育方法及び診断支援装置に関する。
 嚥下動作、特に嚥下時の食品物性と頭頸部器官の運動との関係は複雑であり、現象そのものを正確に把握することは非常に困難である。しかし医療や介護の現場では、高齢者や障害者の誤嚥、誤飲を防ぐため、さまざまな試行錯誤を繰り返し、誤嚥・誤飲リスクの低減に努めている。また、昨今のこんにゃくゼリーによる窒息事故を踏まえ、食品全般において客観的な数値や指標をもって飲食品の安全性を保証することが必要となってきた。
 嚥下現象の解明には、嚥下造影や筋電位測定などの生体情報を直接入手する方法と、嚥下ロボットや数値シミュレーションなどを用いて間接的に情報を入手する方法の二つがある。これらは、被験者に多大な負担がかかる、ロボットの頭頸部器官の挙動や構造を変更するのが大掛かりになるなど、多くの問題を抱えていた。
 また、これまで生体内での流体・固形物など食塊の挙動に関する数値解析が行われている。流体に関しては解析対象領域内をメッシュと呼ばれる格子で区切り、その格子点や格子内部における物理量(速度、温度、圧力)を解析する格子法を用いた計算が行われている(非特許文献1参照)。また食塊を半固体としてあつかう場合は、有限要素法など、機械部品の構造解析手法を用いた計算が行われている(非特許文献2参照)。
神津ら,化学工学会秋季大会講演要旨集41回,2009,P09 水沼ら,日本機械学会年次大会講演論文集,2005(2),83-84
 しかし、従来の数値解析の主流である格子法では、実際の嚥下時の流体・食塊に見られる、表面の大変形や飛沫化などの現象を捉えることが難しく、実現象を再現することが困難であった。
 本発明は、第1に、嚥下に関する実現象、すなわち、頭頸部器官及び飲食品、医薬品、医薬部外品を含む経口摂取品の挙動を近似的に再現することが容易な嚥下シミュレーション装置、動的三次元頭頸部モデル、嚥下シミュレーション方法、コンピュータ読み取り可能なプログラム、経口摂取品開発支援装置、経口摂取品開発方法、経口摂取品製造方法、食育支援装置、食育方法及び診断支援装置を提供することを目的とする。
 本願の発明者らは、口腔器官の運動、飲食品等の物性を設定し、粒子法を用いて二次元的に口腔器官及び飲食品の挙動を解析する嚥下シミュレーション装置及び嚥下シミュレーション方法を提案した(特願2011-146780、特願2011-146781、共に未公開)。この装置及び方法では、従来と比較して、嚥下に関する実現象を近似的に再現することが可能となり、嚥下現象を可視化することが可能となった。しかしながら、二次元空間でのシミュレーションよりも、嚥下時における口腔器官及び飲食品の挙動をさらに三次元的に正確に表現したいという要請があった。また、使用プログラムの制約により経口摂取品の物性及び挙動に係る物理量を定量化し難いという問題があった。
 本発明は、第2に、嚥下時における頭頸部器官及び飲食品の挙動を正確に表現でき、飲食品、医薬品、医薬部外品を含む経口摂取品の物性及び挙動に係る物理量を定量化できる嚥下シミュレーション装置、動的三次元頭頸部モデル、嚥下シミュレーション方法、コンピュータ読み取り可能なプログラム、経口摂取品開発支援装置、経口摂取品開発方法、経口摂取品製造方法、食育支援装置、食育方法及び診断支援装置を提供することを目的とする。
 上記課題を解決するために、本発明の第1の態様に係る嚥下シミュレーション装置100Aは、例えば図2に示すように(具体的な器官については適宜図3を参照)、頭頸部器官からなる動的三次元頭頸部モデル10aを形成する頭頸部モデリング部10と、動的三次元頭頸部モデル10aにおける各頭頸部器官の運動を設定する器官運動設定部30と、解析対象としての飲食品、医薬品又は医薬部外品を含む経口摂取品及びその物性を設定する経口摂取品物性設定部40と、飲食品、医薬品又は医薬部外品を含む経口摂取品をモデル化した擬似経口摂取品20を口腔に入力する入力部81と、動的三次元頭頸部モデル10aにおける各頭頸部器官の運動と擬似経口摂取品20の嚥下時の挙動を、粒子法を用いて三次元空間で解析する運動解析部50と、運動解析部50で解析された各頭頸部器官の運動と擬似経口摂取品20の嚥下時の挙動の解析結果を動画面に表示する表示部82とを備える。
 ここにおいて、頭頸部モデルの「動的三次元」は、三次元空間において時間の経過と共に変化することを意味するものである。なお、三次元空間はコンピュータ内に仮想三次元空間として形成されても良い。また、頭頸部器官は舌11、喉頭12、喉頭蓋12a、気管13、咽頭14、口蓋15(硬口蓋15aと軟口蓋15bから成る)、顎16、食道18等で構成される(図3参照)。また、口腔17、咽頭14及び喉頭部12c(喉頭蓋12aと喉頭12から成る)に係る各器官を含むものとする。動的三次元頭頸部モデル10aは上記各頭頸部器官を含んで構成される。食道18及び気管13は入り口部分だけ含めば良い。動的三次元頭頸部モデル10aは口腔器官の実際の運動に合わせて形成されるのが好ましいが、粒子数が増加すると三次元空間での解析を行なうコンピュータPCの負荷が増大するので、解析を簡素・容易にするため可動部分を限定しても良く、各頭頸部器官についてポリゴン(ポリゴン距離関数によって作成した壁境界で、流体などから外力を受けても移動しない壁を距離関数として空間に配位した境界)を定義することで頭頸部器官を粒子として計算しなくて済むようにしても良い。より詳細な検討を行なうためには、各頭頸部器官を粒子(剛体、弾性体、塑性体又は弾塑性体)として定義して計算することも可能である(越塚誠一,計算力学レクチャーシリーズ5,粒子法,日本計算工学会編,pp.51-68参照)。
 動的三次元頭頸部モデル10aは仮想空間に形成するので、解析に支障がなければ、各頭頸部器官が三次元空間で重複し合う構造としても良い。各頭頸部器官の運動には、移動、回転、周期的運動等が含まれる。経口摂取品は液体、半固体(塑性を有するが、流動性を有さない)、固体のいずれでも良い。経口摂取品の物性には、密度、粘度、表面張力、接触角、熱容量、熱伝導率、動摩擦係数等が含まれる。ただし、これら全ての物性が設定される必要はなく、いずれかの物性が設定されれば良い。擬似経口摂取品20の嚥下時の挙動とは、典型的には口腔から咽頭14を経て食道18に移動する挙動をいうが、咽頭14や食道18に到らず口腔17に戻る場合や、喉頭12や鼻腔に入ってしまう場合もあり得る。擬似経口摂取品20の嚥下時の挙動に係る物理量には時間、位置座標、速度、圧力、温度、ずり速度、垂直応力、せん断応力等が含まれる。ただし、これら全ての物理量を用いて解析が行なわれる必要はなく、いずれかの物理量を用いて解析が行なわれれば良い。これらの物性及び物理量は定量化することが好ましいが、相対値を用いても良い。
 入力部81は、例えばマウスやキーボードを含み、動的三次元頭頸部モデル10aの口腔内部にマウスでカーソルをドラッグ・アンド・ドロップすることにより、擬似経口摂取品(擬似飲食品、擬似医薬品又は擬似医薬部外品を含む)20を入力する。マウスのドラッグ・アンド・ドロップによって投入する疑似経口摂取品20の位置が指定される。また、経口摂取品入力設定部45(図24参照)を設け、予め擬似経口摂取品とその投入場所と投入時間を設定しておき、自動的に擬似経口摂取品20が投入されるようにしても良い。運動解析部50は、粒子法を用いて解析するが、例えばMPS(Moving Particle-Semi-implicit)法を使用できる。表示部82の「動画面に表示」は、典型的には液晶ディスプレイ等の動画面への表示が用いられる。また、ここでは、医師や歯科医師が健康診断や医療行為においてシミュレーションを行い解析結果を評価する場合を診断と称し、一般人が行う評価と区別することとする。すなわち、本明細書においては評価は診断を含まないものとする。動画面を表示することにより、評価者又は診断者が動画面を観察して評価又は診断するのに役立つが、自動的に評価又は診断を行う場合には、コンピュータ内に擬似画面表示部82A(図24参照)を、記憶部83に評価診断条件記憶部83A(図24参照)を設け、解析結果を擬似画面表示部82Aの仮想動画面に動的に表示し、評価診断条件記憶部83Aの評価条件又は診断条件と照合してコンピュータ内の評価診断部60(図24参照)にて評価又は診断を行うが、このような擬似画面表示部82Aの仮想動画面に動的に表示する場合も「動画面に表示」に含まれるものとし、擬似画面表示部82AはパーソナルコンピュータPCと表示部82の両者に含まれるものとする。また、動的三次元頭頸部モデル10aの表示は、頭頸部器官毎に色彩を変えて半透明にして表示すると、頭頸部器官毎の動きを見易くできるので好適である。
 本態様のように構成すると、動的三次元頭頸部モデル10aについて、頭頸部器官の運動、経口摂取品の物性を設定し、粒子法を用いて経口摂取品の挙動を解析するので、嚥下に関する実現象を近似的に再現することが容易な嚥下シミュレーション装置を提供できる。また、経口摂取品の物性及び経口摂取品の挙動に関する物理量を次元のある数値として定量的に設定して解析することにより、嚥下時における頭頸部器官や経口摂取品の挙動を正確に表現でき、嚥下時の挙動に係る物理量を時間毎に定量化できる嚥下シミュレーション装置を提供できる。
 また、本発明の第2の態様に係る嚥下シミュレーション装置100Aは、第1の態様において、頭頸部モデリング部10は頭頸部器官をポリゴン又は粒子(剛体、粉体、弾性体、塑性体、弾塑性体)に設定し、運動解析部50は、擬似経口摂取品20を粒子として取り扱う。
 ここにおいて、動的三次元頭頸部モデル10aは、口腔、咽頭、喉頭、食道の実際の運動に合わせて形成され、時間毎に変形することが精度の高い解析を行なう上で好ましく、このためにはモデル全体を粒子として取扱うのが良いのであるが、粒子数が増加すると三次元空間での解析を行なうコンピュータPCの負荷が増大するので、解析を簡素・容易にするためには頭頸部器官をポリゴンに設定して解析するのが効率的である。
 本態様のように構成すると、三次元解析を行うに際して、頭頸部器官をポリゴン、粒子(剛体、弾性体、塑性体、弾塑性体)に設定し、擬似経口摂取品20を粒子(流体、剛体、弾性体、塑性体、弾塑性体)として取扱うので、頭頸部器官ならびに擬似経口摂取品20の設定を任意に設定することで目的・状況に応じた多様な解析ができる
 また、本発明の第3の態様に係る嚥下シミュレーション装置100Aは、第2の態様において、例えば図4に示すように(構成については図2参照)、頭頸部モデリング部10は、舌11を前奥方向にオトガイ舌筋11fの起始である下顎骨のオトガイ部16aを要とするn個(nは2以上の整数)の扇形部11a~11eに分割する構造とし、器官運動設定部30は、各扇形部11a~11eが半径方向に所定の位相差を持って連携して振動することにより擬似経口摂取品20を奥方向に輸送するように進行波的波動運動を設定する。
 ここにおいて、舌11の分割数nは、3個以上でスムーズな進行波的波動運動を表現でき、7個を超えると計算の負荷が大きくなる。よって、4個~6個が好適である。これによって、嚥下時の舌の進行波的波動動作を近似的に再現することが可能となった。
 本態様のように構成すると、舌を前奥方向にn個の扇形部に分割し、上記の連携振動をさせることにより、嚥下時の舌の挙動を近似的に再現できるので、より実現象に近く効率的な解析ができる。なお、舌11の形状は実際の運動に合わせて粒子で形成され、時間毎に変形させたものを計算毎に読み込むことも可能である。
 また、本発明の第4の態様に係る嚥下シミュレーション装置100Aは、第3の態様において、例えば図6及び図7に示すように、頭頸部モデリング部10は、各扇形部11a~11eの半径方向の振動により各扇形部11a~11eの間に隙間ができないように各扇形部11a~11eの表面部分が相互に重複し合う構造とし、さらに、左右両側が半径方向に延びて中央部分に窪みを有する舌表面部19を各扇形部11a~11eの表面部分に重複させ、静止状態の舌表面部11gの窪みの中で各扇形部11a~11eが半径方向に振動する構造とし、器官運動設定部30は、嚥下時に各扇形部11a~11eが円周方向奥側に所定の角度回転し、嚥下最終時には舌11の最奥の扇形部11eで擬似経口摂取品20を押し込むように設定する。
 ここにおいて、所定の角度は15°が好適であるが、これに限定されず、10~20°でも良い。また、オーバーラップ部分は5mmが好適であるが、これに限定されず、3~7mmでも良い。本態様のように構成すると、各扇形部11a~11eの間に隙間ができず、経口摂取品20の流路が窪みの中に形成され、経口摂取品20が口腔の奥側にスムーズに移送されるので、嚥下時の舌11の挙動を一層近似的に再現できる。
 また、本発明の第5の態様に係る嚥下シミュレーション装置100Aは、第3の態様又は第4の態様において、例えば図9及び図10に示すように、頭頸部モデリング部10は、動的三次元頭頸部モデル10aを舌11、口蓋15、咽頭14、喉頭部12c、気管13と食道18に分割し、喉頭部12cを喉頭蓋12aと喉頭12に分割し、嚥下開始前に食道部18の食道入口18aを閉塞し、嚥下時には食道入口18aが拡張し、咽頭14が収縮する構造とし、器官運動設定部30は、嚥下時に、喉頭12を下顎骨16のオトガイ部16a方向に移動して食道入口18aを開放し、咽頭14が収縮し、次いで喉頭蓋12aを奥側に所定の角度回転させることにより、喉頭12を閉塞するように設定する。
 ここにおいて、所定の角度回転は135度が実現象に近く最も好適であるが、その近傍(例えば±15度内)も好適である。また、「咽頭が収縮」とは、具体的には咽頭が上方向に短縮すると共にその内腔が収縮するのであるが、かかる内容を含むものである。このように構成すると、嚥下時の喉頭部12cの挙動と食道18の開閉を近似的に再現できる。なお、これらの器官の動きは器官運動設定部30から数値を与えて強制的に動かすことのほか、これらの器官に付随した筋肉の動きと連動させて動かすことも可能である。さらに、時間毎に変化する各器官のモデルを解析毎に読み込み、よりスムーズな運動を与えることも可能である。
 また、本発明の第6の態様に係る嚥下シミュレーション装置100Aは、第1の態様ないし第5の態様のいずれかにおいて、例えば図22に示すように(構成については図2参照)、経口摂取品物性設定部40は、解析対象として異なる物性の液体、半固体又は固体の複数の擬似経口摂取品20を設定し、運動解析部50は、複数の擬似経口摂取品20について自由表面と複数の擬似経口摂取品20間の境界を定め、複数の擬似経口摂取品20の連動挙動の解析を行なう。
 このように構成すると、複数の擬似経口摂取品20について、経口摂取品の連動挙動を実現象に近いように再現することができ、連動挙動の解析に有効である。
 また、本発明の第7の態様に係る嚥下シミュレーション装置100Bは、第1の態様ないし第6の態様のいずれかにおいて、例えば図24に示すように、動画面における擬似経口摂取品20の嚥下時の挙動から、経口摂取品の食べ易さ及び/又は飲み易さを評価又は診断する評価診断部60を備え、動画面は、運動解析部50で解析された頭頸部器官の運動と擬似経口摂取品20の嚥下時の挙動の解析結果を模擬的に表示するために嚥下シミュレーション装置により仮想空間に形成された仮想動画面であり、評価診断部60は、仮想動画面での擬似経口摂取品20の挙動が予め定められた条件を満たすか否かで評価又は診断する。
 ここにおいて、仮想動画面とは、パーソナルコンピュータPCの仮想空間に形成される仮想的な動画面をいうが、表示部82に表示した場合の動画面と同じ内容の動画面となる。自動的に評価又は診断を行う場合には、コンピュータ内に擬似画面表示部82Aを、記憶部83に評価診断条件記憶部83Aを設け、解析結果を擬似画面表示部82Aの仮想動画面に動的に表示し、評価診断条件記憶部83Aの評価条件又は診断条件と照合して評価又は診断を行う。なお、このような仮想動画面に動的に表示する場合も「動画面に表示」に含まれるものとする。また、予め定められた条件とは、例えば、喉頭12に入らない、咽頭14に詰まらない、舌11上や咽頭14に付着しない、口腔内導入から食道入口18a通過までの時間が所定の範囲内である、口腔壁面におけるせん断応力が所定の値以下である、喉頭蓋12a周辺でのせん断応力が所定の範囲内である等である。所定の範囲は、例えば、口腔17内導入から食道入口18a通過までの時間が0.8~1.0sec、喉頭蓋12a周辺での0.8secでのせん断応力が0.25~0.45N/m等である。
 本態様のように構成すると、仮想動画面と評価診断条件記憶部83Aに記憶された評価条件又は診断条件とを照合して、経口摂取品の食べ易さ及び/又は飲み易さを自動的に評価又は診断できる。
 また、本発明の第8の態様に係る嚥下シミュレーション装置100Bは、第1の態様又は第7の態様において、例えば図2に示すように、擬似経口摂取品20の嚥下時の挙動の解析結果から、経口摂取品の食べ易さ及び/又は飲み易さに係る評価診断結果を記録する評価診断結果記録部83Bと、評価診断結果記録部83Bに記録された評価結果又は診断結果に基づいて適正とされる経口摂取品の物性を決定する物性決定部70とを備える。
 ここにおいて、物性決定は嚥下シミュレーション装置100Bが評価結果又は診断結果に基づいて自動的に決定する。人(たとえば評価者又は診断者)が決定する態様も可能であるが、この時は物性決定部70が無くても良く、あっても使用されない又は決定結果が表示部82に表示されて評価者又は診断者の参考に供されることとなる。
 上記課題を解決するために、本発明の第9の態様に係る動的三次元頭頸部モデル10aは、例えば図4に示すように、頭頸部器官からなる動的三次元頭頸部モデル10aであって、舌11を前奥方向にオトガイ舌筋11fの起始である下顎骨のオトガイ部16aを要とするn個(nは2以上の整数)の扇形部11a~11eに分割する構造とし、各扇形部11a~11eが半径方向に所定の位相差を持って連携して振動することにより擬似経口摂取品20を奥方向に輸送する進行波的波動運動を行なうように設定されている。
 このように構成すると、嚥下時の舌11及び咽喉の挙動を近似的に再現できる動的三次元頭頸部モデル10aを提供できる。
 また、本発明の第10の態様に係る動的三次元頭頸部モデル10aは、第9の態様において、例えば図6及び図7に示すように、各扇形部11a~11eの振動により各扇形部11a~11eの間に隙間ができないように各扇形部11a~11eの表面部分が相互に重複し合う構造とし、さらに、左右両側が半径方向に延びて中央部分に窪みを有する舌表面部11gを各扇形部11a~11eの表面部分に重複させ、静止状態の舌表面部19の窪みの中で各扇形部11a~11eが円周方向に振動する構造とし、嚥下時に各扇形部11a~11eが円周方向奥側に所定の角度回転し、次いで舌11の最奥の扇形部11eで擬似経口摂取品20を押し込むように設定され、咽頭14、喉頭部12cと食道18に分割され、喉頭部12cは喉頭蓋12aと喉頭12に分割し、嚥下開始前に食道18の食道入口18aを閉塞し、嚥下時には食道入口18aが拡張し、咽頭14が収縮する構造とし、嚥下時に、喉頭12を下顎骨のオトガイ部16a方向に移動して食道入口18aを開放し、咽頭14が収縮し、次いで喉頭蓋12aを奥側に所定の角度回転させることにより、食道入口18aを閉塞するように設定されている。
 このように構成すると、各扇形部11a~11eの間に隙間ができず、擬似経口摂取品20の流路が窪みの中に形成され、擬似経口摂取品20が奥側にスムーズに移送されるので、嚥下時の舌11、咽頭14、喉頭12と食道18の挙動を近似的に再現できる動的三次元頭頸部モデルを提供できる。
 上記課題を解決するために、本発明の第11の態様に係る嚥下シミュレーション方法は、例えば図23に示すように(装置構成については図2参照)、頭頸部器官からなる動的三次元頭頸部モデル10aを形成する頭頸部モデリング工程(S010)と、動的三次元頭頸部モデル10aにおける各頭頸部器官の運動を設定する器官運動設定工程(S030)と、解析対象としての経口摂取品、及びその物性を設定する経口摂取品物性設定工程(S040)と、経口摂取品をモデル化した擬似経口摂取品20を口腔に入力する入力工程(S050)と、頭頸部モデル10aにおける各頭頸部器官の運動と擬似経口摂取品20の嚥下時の挙動を、粒子法を用いて解析する運動解析工程(S060)と、運動解析工程(S060)で三次元空間で解析された頭頸部器官の運動と擬似経口摂取品20の嚥下時の挙動の解析結果を動画面に表示する表示工程(S070)とを備える。
 このように構成すると、動的三次元頭頸部モデル10aについて、頭頸部器官の運動、経口摂取品の物性を設定し、粒子法を用いて経口摂取品の挙動を解析するので、嚥下に関する実現象を近似的に再現することが容易な嚥下シミュレーション方法を提供できる。
 また、本発明の第12の態様に係る嚥下シミュレーション方法は、第11の態様において、例えば図25に示すように、擬似経口摂取品20の嚥下時の挙動の解析結果から、経口摂取品の食べ易さ及び/又は飲み易さに係る評価を行う評価工程(S080)と、評価工程(S080)にて評価された評価結果に基づいて適正とされる経口摂取品の物性を決定する物性決定工程(S090)とを備える。
 本態様のように構成すると、嚥下に関する実現象を近似的に且つ容易に再現するシミュレーションを通して、経口摂取品の食べ易さ及び/又は飲み易さが適正な経口摂取品の物性を高精度で効率的に導き出すことができる。
 また、本発明の第13の態様に係るプログラムは、第11の態様又は第12の態様に係る嚥下シミュレーション方法をコンピュータに実行させるためのコンピュータ読み取り可能なプログラムである。
 ここにおいて、プログラムは、コンピュータ内蔵の記憶部に格納しても良く、インターネットからダウンロードしても良く、コンピュータ読み取り可能な記録媒体に格納しても良い。なお、本態様に係るコンピュータには、嚥下シミュレーション装置のように、コンピュータを含んで構成される装置のコンピュータ(例えばパーソナルコンピュータPC)も含まれるものとする。
 また、本発明の第14の態様に係る経口摂取品開発支援装置200Aは、例えば図26に示すように、第8の態様にかかる嚥下シミュレーション装置100Bと、物性決定部70で適正と決定された物性を有するように製造条件を適宜に設定して試作を行なった結果を記録する経口摂取品試作結果記録部83Cと、経口摂取品試作結果記録部83Cに記録された試作結果に基づき、経口摂取品の物性を物性決定部70で適正と決定された物性にする製造条件を決定する製造条件決定部84とを備える。
 このように構成すると、経口摂取品開発支援装置200Aは、動的三次元頭頸部モデル10aについて、頭頸部器官の運動、経口摂取品の物性を設定し、粒子法を用いて経口摂取品の挙動を解析するので、嚥下に関する実現象を再現することが容易である。そして、かかる嚥下に関する実現象を再現することが容易な嚥下シミュレーション装置を利用して経口摂取品を評価又は診断するので、食べ易さ、飲み易さが優れた経口摂取品を高い確実性をもって開発できる。
 また、本発明の第15の態様に係る経口摂取品開発支援装置200Aは、第14の態様において、例えば図26に示すように、動画面における擬似経口摂取品20の嚥下時の挙動から、経口摂取品の食べ易さ及び/又は飲み易さを評価又は診断する評価診断部60を備え、動画面は、運動解析部50で解析された各頭頸部器官の運動と擬似経口摂取品20の嚥下時の挙動の解析結果を模擬的に表示するために嚥下シミュレーション装置100Bにより仮想空間に形成された仮想動画面であり、評価診断部60は、仮想動画面での擬似経口摂取品の挙動が予め定められた条件を満たすか否かで評価又は診断する。
 本態様のように構成すると、経口摂取品開発支援装置200Aは、経口摂取品の挙動を仮想動画面と評価診断条件記憶部83Aに記憶された評価条件又は診断条件とを照合して、自動的に評価又は診断し、評価結果又は診断結果を経口摂取品開発に結び付けるので、効率的に、食べ易い又は飲み易い経口摂取品を開発することができる。
 また、本発明の第16の態様に係る経口摂取品開発方法は、例えば図27に示すように、第12の態様にかかる嚥下シミュレーション方法を備え、経口摂取品物性設定工程(S040)において、経口摂取品の物性を変更して設定し、それ以降の物性決定工程(S090)までを繰り返し行ない、又は、経口摂取品物性設定工程(S040)において、経口摂取品の物性を変更して設定し、それ以降の評価工程(S080)までを繰り返し行ない、その後に一括して物性決定工程(S090)を行ない、さらに、物性決定工程(S090)で適正と決定された物性を有するように製造条件を適宜に設定して試作を行なう経口摂取品試作工程(S110)と、経口摂取品試作工程(S110)の結果に基づき、経口摂取品の物性を物性決定工程(S090)で適正と決定された物性にする製造条件を決定する製造条件決定工程(S120)とを備える。
 このように構成すると、動的三次元頭頸部モデル10aについて、頭頸部器官の運動、飲経口摂取品の物性を設定し、粒子法を用いて経口摂取品の挙動を解析するので、嚥下に関する実現象を再現することが容易である。そして、かかる嚥下に関する実現象を再現することが容易な嚥下シミュレーション方法を利用して経口摂取品を評価するので、食べ易さ、飲み易さが優れた飲経口摂取品を確実に開発できる。
 また、本発明の第17の態様に係る経口摂取品開発方法は、第16の態様において、例えば図27に示すように、動画面は、運動解析工程(S060)で解析された各頭頸部器官の運動と擬似経口摂取品20の嚥下時の挙動の解析結果を模擬的に表示するために嚥下シミュレーション装置100Bにより仮想空間に形成された仮想動画面であり、表示工程(S070)は、解析結果を仮想動画面に模擬的に表示する仮想表示工程であり、評価工程(S060)は、仮想表示工程で模擬的に表示された仮想動画面での擬似経口摂取品20の挙動が予め定められた条件を満たすか否かで評価する。
 本態様のように構成すると、経口摂取品開発支援装置200Aは、仮想動画面と評価診断条件記憶部83Aに記憶された評価条件又は診断条件とを照合して、経口摂取品の食べ易さ、飲み易さを自動的に評価又は診断し、評価結果又は診断結果を経口摂取品の開発に結び付けるので、効率的に、食べ易い又は飲み易い経口摂取品を開発することができる。
 また、本発明の第18の態様に係る経口摂取品製造方法は、例えば図28に示すように、第16の態様又は第17の態様の経口摂取品開発方法の製造条件決定工程(S120)にて決定された製造条件を用いて経口摂取品を製造する。
 経口摂取品開発方法では、典型的にはシミュレーションを繰り返し行なって、適正な物性を確認し、そして適正な物性にするように製造条件を決定することにより、経口摂取品を開発していくのであるが、経口摂取品製造方法においては、製造工程中のいずれかの工程(例えば原料配合工程や焼成工程)で、経口摂取品開発方法の製造条件決定工程(S120)において決定された製造条件を用いて製造すれば、当該態様に該当することになる。
 このように構成すると、食べ易さ、飲み易さが優れた経口摂取品を確実に開発できる。
 上記課題を解決するために、本発明の第19の態様に係る食育支援装置300Aは、例えば図29に示すように、第1の態様又は第7の態様の嚥下シミュレーション装置100A(又は100B)と、擬似経口摂取品20の嚥下時の挙動の解析結果から、経口摂取品の食べ易さ、飲み易さの評価結果又は診断結果を記録する評価診断結果記録部83Bと、表示部82で動画面に表示された擬似経口摂取品20の嚥下時の挙動を、評価診断結果記録部83Bに記録された経口摂取品の評価結果又は診断結果と関連させて解説する教示部85とを備える。
 本態様は第1の態様に係る嚥下シミュレーション装置100Aを応用した食育支援装置300Aである。ここにおいて、教示は教師が動画面又は/及び教材を用いて行っても良く、食育支援装置に教示すべきことが動画像と連動して音声出力可能に組み込まれ、食育支援装置300Aが音声出力を通して自動的に行っても良い。また、教示内容は評価結果又は診断結果に基づいて教示部85で自動的に作成しても良いが、教育者が更にわかり易く編集・補充するのが好適である。なお、第1の態様に係る嚥下シミュレーション装置100Aに代えて第7の態様に係る嚥下シミュレーション装置100Bを応用しても良い。
 このように構成すると、嚥下に関する実現象を再現することが容易な嚥下シミュレーション装置を用いて嚥下現象を表示するので、飲経口摂取品の食べ易さ又は飲み易さを理解しやすく、食育に有効である。
 上記課題を解決するために、本発明の第20の態様に係る食育方法は、例えば図30に示すように、第11に態様に係る嚥下シミュレーション方法と、擬似経口摂取品20の嚥下時の挙動の解析結果から、経口摂取品の食べ易さ及び/又は飲み易さに係る評価を行う評価工程(S080)と、表示工程(S070)で動画面に表示された擬似経口摂取品20の嚥下時の挙動を、評価工程(S080)で評価された経口摂取品の評価結果と関連させて解説する教示工程(S082)とを備える。
 本態様は第19の態様に係る食育支援装置300Aに対応する食育方法である。このように構成すると、嚥下に関する実現象を再現することが容易な嚥下シミュレーション方法を用いて嚥下現象を表示するので、教示を受ける者が飲経口摂取品の食べ易さ又は飲み易さを理解し易く、食育に有効である。
 本発明の第21の態様に係る嚥下シミュレーション装置400Aは、例えば図31に示すように、第1の態様ないし第8に態様に係る嚥下シミュレーション装置100A,100Bにおいて、器官運動設定部30で設定された器官運動パラメータについて、運動解析部50で解析された解析結果から、被診断者の症状に合う器官運動パラメータを決定する器官運動決定部75を備える。
 このように構成すると、各頭頸部器官の機能低下した部分を発見でき、診断に役立てられる。
 本発明の第22の態様に係る診断支援装置は、第21の態様に係る嚥下シミュレーション装置を備える。
 このように構成すると、嚥下シミュレーション装置を利用して、嚥下現象を考慮した迅速な診断が可能になる。
 本発明によれば、第1に、嚥下に関する実現象、すなわち、頭頸部器官及び飲経口摂取品の挙動を近似的に再現することが容易な嚥下シミュレーション装置、動的三次元頭頸部モデル、嚥下シミュレーション方法、コンピュータ読み取り可能なプログラム、経口摂取品開発支援装置、経口摂取品開発方法、経口摂取品製造方法、食育支援装置、食育方法及び診断支援装置を提供できる。
 第2に、嚥下時における頭頸部器官及び経口摂取品の挙動を正確に表現でき、経口摂取品の物性及び挙動に係る物理量を定量化できる嚥下シミュレーション装置、動的三次元頭頸部モデル、嚥下シミュレーション方法、コンピュータ読み取り可能なプログラム、経口摂取品開発支援装置、経口摂取品開発方法、経口摂取品製造方法、食育支援装置、食育方法及び診断支援装置を提供できる。
格子法と粒子法の違いを説明するための図である。 実施例1における嚥下シミュレーション装置の構成例を示す図である。 実施例1における動的三次元頭頸部モデルの構成例を示す図である。 舌モデルの構成例を示す図である。 舌モデルの別の構成例(初期の構成例)を示す図である。 舌構造のオーバーラップを説明するための図である。 中央に窪んだ流路を持つ舌構造を説明するための図である。 実施例1における咽頭モデルの構成例を示す図である。 動的三次元頭頸部モデルにおける喉頭の移動と食道入口の開放を示す図である。 喉頭部モデルにおける喉頭蓋の回転運動を示す図である。 喉頭と喉頭蓋の連動運動例を示す図である。 水の場合の三次元シミュレーションの解析結果を示す図である。 水、牛乳の場合の三次元シミュレーションの解析結果を示す図である。 せん断応力と流下速度についての解析領域を示す図である。 領域Aにおけるせん断応力の経時変化を示す図である。 領域Bにおけるせん断応力の経時変化を示す図である。 領域Bにおける流下速度の経時変化を示す図である。 残存率と誤嚥率についての解析領域を示す図である。 領域C及び領域D(合計)における残存率を示す図である。 領域Eにおける誤嚥率を示す図である。 非ニュートン流体の場合の三次元シミュレーションの解析結果を示す図である。 固体と流体の連成解析の例を示す図である。 実施例1における嚥下シミュレーション方法の処理フロー例を示す図である。 実施例2における嚥下シミュレーション装置の構成例を示す図である。 実施例2における嚥下シミュレーション方法の処理フロー例を示す図である。 実施例5における経口摂取品開発支援装置の構成例を示す図である。 実施例5における経口摂取品開発方法の処理フロー例を示す図である。 実施例5における経口摂取品製造方法の処理フロー例を示す図である。 実施例6における食育支援装置の構成例を示す図である。 実施例6における食育方法の処理フロー例を示す図である。 実施例7における嚥下シミュレーション装置の構成例を示す図である。 実施例7における診断支援の処理フロー例を示す図である。
 この出願は、日本国で2012年3月27日に出願された特願2012-072178号に基づいており、その内容は本出願の内容として、その一部を形成する。本発明は以下の詳細な説明によりさらに完全に理解できるであろう。本発明のさらなる応用範囲は、以下の詳細な説明により明らかとなろう。しかしながら、詳細な説明及び特定の実例は、本発明の望ましい実施の形態であり、説明の目的のためにのみ記載されているものである。この詳細な説明から、種々の変更、改変が、本発明の精神と範囲内で、当業者にとって明らかであるからである。出願人は、記載された実施の形態のいずれをも公衆に献上する意図はなく、改変、代替案のうち、特許請求の範囲内に文言上含まれないかもしれないものも、均等論下での発明の一部とする。
 以下に図面に基づき本発明の実施の形態について説明する。なお、各図において、互いに同一又は相当する部分には同一符号を付し、重複した説明は省略する。
[粒子法]
 本実施の形態では、液面の大変形や飛沫などの表現が可能な解析方法として、解析対象の液体や固体を粒子として扱う粒子法を用いてシミュレーションを行なう。そこで、まず、粒子法について説明する。
 図1に従来の解析手法である格子法と新しい解析手法である粒子法の違いを示す。図1(a)に格子法の概念図を、図1(b)に粒子法の概念図を示す。格子法では解析領域を格子で分割し、格子毎に物理量を計算する。すなわち、液面の変化は格子の形に沿うものとなり、飛沫や液面が大きく変形する場合の解析は困難である。これに対して、粒子法、特にMPS(Moving Particle-Semi-implicit)法は1995年に開発された比較的新しい解析手法である(Koshizuka et al,Comput.Fluid Dynamics J,4,29-46,1995)。流体を粒子で置き換え、粒子毎に物理量を計算する。その結果、液面の微妙な変化の解析が可能となり、飛沫や液面が大きく変形する場合の解析が可能になる。しかしながら、粒子法を用いた生体内部の流体・食塊の解析はこれまで見出されていない。そこで、発明者達は、生体内流体・食塊挙動の推定に粒子法を応用したシミュレーション装置とシミュレーション方法とを開発した。
 発明者達が提案した粒子法による二次元嚥下シミュレータ(特願2011-146780、特願2011-146781)では、解析手法として粒子法を採用することによって従来の技術では困難であった食塊表面の大変形や飛沫化を再現できるようになった。
 しかしながら、二次元空間でのシミュレーションよりも、嚥下時における口腔器官、咽喉器官などの頭頸部器官及び飲食品等の挙動をさらに三次元的に正確に表現したいという要請があった。また、使用プログラムの制約により経口摂取品の物性及び挙動に係る物理量を定量化し難いという問題があった。
 上記問題を解決するために、発明者達は三次元嚥下シミュレータを開発した。二次元嚥下シミュレータでは単一平面上に単純化した構造での解析ができた。三次元シミュレータでは、さらに、医学的知見に基づいて口腔、咽頭、喉頭部の正確な構造や挙動を再現した。また、三次元嚥下シミュレータは、二次元嚥下シミュレータでは無次元の相対的値として設定していた経口摂取品(食塊)の物性(密度、粘度、表面張力、接触角、熱容量、熱伝導率、動摩擦係数など)を次元のある数値として設定可能とするように、また、嚥下中の食塊の物理量(時間、位置座標、速度、圧力、温度、ずり速度、垂直応力、せん断応力など)についても、次元のある数値として抽出するように改善し、定量的な評価又は診断をすることが可能となった。
[装置構成]
 図2に実施例1における嚥下シミュレーション装置100Aの構成例を示す。実施例1では、評価者又は診断者が経口摂取品の入力を行い、動画像を見て嚥下評価又は嚥下診断を行なう例を説明する。なお、動的三次元頭頸部モデル10aの構成例については図3を参照されたい。
 嚥下シミュレーション装置100Aは、頭頸部器官からなる動的三次元頭頸部モデル10aを形成する頭頸部モデリング部10と、動的三次元頭頸部モデル10a(以下単に頭頸部モデルともいう)における各頭頸部器官の運動を設定する器官運動設定部30と、解析対象としての経口摂取品及びその物性を設定する経口摂取品物性設定部40と、経口摂取品をモデル化した擬似経口摂取品(擬似飲食品、擬似医薬品又は擬似医薬部外品を含む)20を口腔に入力する入力部81と、頭頸部モデル10aにおける各頭頸部器官の運動と擬似経口摂取品20の嚥下時の挙動を、粒子法を用いて三次元空間で解析する運動解析部50と、運動解析部50で解析された各頭頸部器官の運動と擬似経口摂取品20の嚥下時の挙動の解析結果を動画面に表示する表示部82と、評価者又は診断者が動画面を観察して経口摂取品について評価又は診断した評価結果又は診断結果に基づいて適正とされる経口摂取品の物性を決定する物性決定部70と、嚥下シミュレーション装置100A及びその各部を制御して、嚥下シミュレーション装置100Aの諸機能を実行させる制御部90と、動的三次元頭頸部モデル10a、設定条件(器官運動、経口摂取品の物性等)、解析結果、評価結果又は診断結果を記憶する記憶部83とで構成される。また、表示部82は頭頸部モデル10a、設定条件(器官運動、経口摂取品の物性等)、評価結果又は診断結果等も画面に表示する。このうち、頭頸部モデリング部10、器官運動設定部30、経口摂取品物性設定部40、運動解析部50、物性決定部70、制御部90はパーソナルコンピュータPCで実現でき、パーソナルコンピュータPC内に設けられる。評価者又は診断者は表示部82の動画面を観察して評価又は診断を行ない、評価結果又は診断結果を入力部81から入力する。入力された評価結果又は診断結果は記憶部83の評価診断結果記録部83Bに記録される。ここでは、医師や歯科医師が健康診断や医療行為においてシミュレーションを行い解析結果を評価する場合を診断と称し、一般人が行う評価と区別することとする。すなわち、本明細書においては評価は診断を含まないものとする。
 嚥下シミュレーションの対象として、飲食品の他に医薬品、医薬部外品を含む経口摂取品を扱うことが可能である。また、場合によっては、経口摂取しない物質(例えばビー玉など)も誤飲、窒息の検証のために嚥下シミュレーションの対象として取扱うことも可能である。経口摂取品物性設定部40は経口摂取品が液体であれば、液量・粘度・表面張力・比重・熱伝道率・比熱等の物性を、経口摂取品が固体であれば、形状・寸法・弾性係数・引っ張り強さ・降伏点・降伏点応力・粘度のずり速度依存性・動的粘弾性・静的粘弾性・圧縮応力・破断応力・破断ひずみ・硬度・付着性・凝集性・熱伝導率・比熱等の物性を、経口摂取品が半固体(可塑性があるが、流動性はない)であれば、量・粘度・比重・降伏点・降伏点応力・粘度のずり速度依存性・動的粘弾性・静的粘弾性・圧縮応力・付着性・凝集性等の物性を設定する。
 動的三次元頭頸部モデル10aは、口腔器官の実際の運動に合わせて形成され、時間毎に変形することが精度の高い解析を行なう上で好ましく、このためにはモデル全体を粒子(剛体、粉体、弾性体、塑性体、弾塑性体)として取扱うのが良いのであるが、粒子数が増加すると三次元空間での解析を行なうコンピュータPCの負荷が増大するので、解析を簡素・容易にするためには頭頸部器官をポリゴンとして設定して解析するのが効率的である。
 入力部81は、マウス、キーボード等の入力機器で構成され、投入すべき擬似経口摂取品20を口腔内に投入する。例えばマウスでカーソルを口腔内にドラッグ・アンド・ドロップし、擬似経口摂取品20の口腔内への投入位置は例えば口腔内で歯の近傍(例えば擬似経口摂取品の長さの2倍以内)とし、ドラッグ・アンド・ドロップ直後の時間を投入時間とする。
 運動解析部50では、頭頸部器官の運動に伴う擬似経口摂取品20(以下、単に経口摂取品ともいう)の嚥下時の挙動を解析する。舌11の進行波的波動運動、喉頭蓋12aの回転運動、喉頭12の往復運動等により、頭頸部内部に投入された経口摂取品が動かされる。経口摂取品の動きは粒子法により解析される。経口摂取品は固体・半固体・液体のいずれでもポリゴン又は粒子として取り扱われる(計算負荷軽減のためポリゴンとして取扱うこともある)。
 表示部82は経口摂取品の挙動の解析結果を動画面に表示する。動画像の1コマを静止画像として表示することも可能であり、時間を逆に辿り巻き戻し表示することも可能である。
 記憶部83は、頭頸部モデル10a、器官特性、設定条件、解析結果、評価結果又は診断結果等を記憶する。
 評価又は診断は評価者又は診断者が表示部82の動画面を見て行なう。例えば表示部82に表示された評価表又は診断表のセルに○×、ランク、点数等を入力する。評価結果又は診断結果は評価診断結果記録部83Bに記録される。経口摂取品物性設定部40で経口摂取品の物性値を変化させて評価又は診断を行なうことにより、経口摂取品の適正な物性値を求めることができる。物性決定部70は、評価診断結果記録部83Bに記録された評価結果又は診断結果に基づいて適正とされる経口摂取品の物性を自動的に決定する。なお、人が決定する場合は実施例4に示す。物性数は単数でも複数でも良い。適正な物性は例えば、適正な範囲のマップを作成して示しても良く、適正な範囲を複数のレベルに分けて(ランクA~ランクC等)示しても良く、複数の点を示しても良く、最適な1点を示しても良い。求めるべき物性が多種類の時には、多次元の主成分分析を用いて、適正な物性の範囲を求めても良い。
 制御部90は、嚥下シミュレーション装置100A及びその各部を制御して、嚥下シミュレーション装置100Aの諸機能を実行させる。制御部90は内蔵メモリに嚥下シミュレーター(解析用ソフトウェア)を保有する。
[頭頸部モデル]
 図3に本実施例に係る頭頸部モデル10aの構成例を示す。図3(a)に頭頸部モデル10aの斜視図を、図3(b)に正面図を、図3(c)に側面図を、図3(d)にA-A断面図を示す。図において、11は舌(オトガイ舌筋11f(図4参照)を含む)、12は喉頭、12aは喉頭蓋、13は気管、14は咽頭(14aは咽頭の管壁、14bは咽頭の粘膜)、15は口蓋(15aは硬口蓋、15bは軟口蓋)、16は顎(オトガイ部16aを含む)、17は口腔、18は食道(18aは食道入口、18bは食道の管壁)、20は疑似経口摂取品としての球状食塊である。
 粒子法では粒子数が増加するとコンピュータの負担が増加し、解析に時間がかかる。本実施例では、経口摂取品を粒子(流体)として表現し、各口腔器官を、ポリゴン距離関数によって作成した壁境界(流体などから外力を受けても移動しない壁を距離関数として空間に配位した境界)として表現することにより、頭頸部モデル10aを簡素化し、コンピュータの負担を軽減した。各頭頸部器官の運動(進行波的波動運動、回転運動、往復運動等)は器官運動設定部30で設定される。
 頭頸部モデル10aの作成に際して、解剖で理解されている構造の知見及び、CT(コンピュータ断層撮影:Computed Tomography)画像より大まかに読み取ることの出来る軟口蓋15bや舌11の形態、及び気管13の形態から、咽頭14と食道入口18aの位置を推定した。舌11、軟口蓋15b、咽頭14と食道入口18a、喉頭蓋12aと喉頭12の構造を、CG(コンピュータグラフィックス:Computer Graphics)用ソフトウェア(Autodesk 3ds Max等)を用いてモデリングした。次に、得られた動的三次元頭頸部モデル10aに対して、VF(嚥下造影検査:Videofluoroscopic examination of swallowing)による嚥下時の造影画像(正面及び側面図)を重ね合わせて、立体構造を修正させた。さらに、空間領域の三次元的な変化の概略を、嚥下のシネMRI(シネ磁気共鳴画像:Cine Magnetic Resonance Imaging)の動画を参照して、動きを付与した。なお、シネMRIは、心拍同期による心臓撮影法の原理(同期サンプリング法)の発展形である。まず、MRI装置へのトリガーの一定間隔での入力とトリガーに同期した嚥下運動の繰り返しによって、複数の断面のMRI動画を得る。これを立体構築し、さらに時間軸上に配置することで4次元の再構築画像が得られる。
 図3の頭頸部モデル10aを用いて嚥下運動をシミュレーションした。シミュレーションに際して頭頸部モデル10aを距離関数を用いて表現した。粒子法では空間点(三次元座標)にある経口摂取品(粒子)に対して、最短距離にある器官が最も強く作用し、距離が遠くなるにつれて作用が弱くなる。距離関数とは空間点(三次元座標)に対して、頭頸部モデル10aまでの最短の距離で定義される関数であり、距離関数を用いると頭頸部モデル10aの重ね合わせを容易に行うことができる(全ての頭頸部器官からの距離の最小値が空間点に定義される)。頭頸部モデル10aの重ね合わせが容易であるため、分割した各頭頸部器官に対して個別に移動量を設定し、後に重ね合わせることによって、嚥下運動を再現することができる。
[舌モデル] 
 図4に舌モデル10bの構成例を示す。図4(a)は舌11の筋肉(下顎骨のオトガイ部16aから延びるオトガイ舌筋11f)の配置を示し、図4(b)はオトガイ舌筋11fに沿って扇形に分割された舌モデル10bを示す。舌モデル10bは頭頸部モデリング部10で形成し、舌の運動は器官運動設定部30で設定する。舌モデル10bは、舌11による食塊の輸送を再現する必要がある。舌モデル10bは、オトガイ舌筋の起始である下顎骨のオトガイ部16aを扇の要とし、起始から延びるオトガイ舌筋11fに沿って舌11を扇形に分割した構造とした。分割は例えば口唇を前、咽喉を後としたときの前後方向にn分割(本実施例ではn=5)とし、横方向には分割しなかった。分割された各部を扇形部11a~11eと称することとする。舌11の運動による経口摂取品の輸送については、各扇形部11a~11eを半径方向に振動させ、前方から後方に向かって振動の位相をずらしていくことで達成される。振動は、例えば、オトガイ舌筋11fを中心に振幅5mmで振動数1.1Hzで振動させ、各扇形部11a~11eは手前側から奥側に向かって順次0.1sずつ振動のタイミング(位相)を遅らせるように設定した。
 図5に舌モデルの別の構成例(初期の構成例)を示す。図5(a)に分割前の舌モデル、図5(b)に分割後の舌モデルを示す。図5(b)に示すように、当初は舌11を6×6=36分割するモデルを検討したが、予想していたよりも滑らかな舌11の運動を再現できず、さらに36分割としたことによってPC(Personal Computer)への負荷が増大し、解析が正常に行なわれなかった。このため、分割を最小にすることを考え、図4のモデルに想到した。ただし、PCの処理能力が向上した場合にはかかる36分割などの多分割モデルも使用可能性がある。
 また、今回の実施例では計算負荷を低減するために舌11を分割したモデルを使用しているが、分割せずに、形状が変化した舌モデルを各計算時間毎に読み込み、より滑らかな進行波的波動運動を模擬することも可能である。
 図6は舌構造のオーバーラップを説明するための図である。図6(a)にオーバーラップ前の舌構造、図6(b)にオーバーラップ後の舌構造、図6(c)にオーバーラップの細部を示す。オーバーラップ前に単純に舌11の各扇形部11a~11eを振動運動させると、図6(a)に示すように各扇形部11a~11eの隙間で切断面が外に現れてしまうため、図6(b)及び図6(c)に示すように、各扇形部11a~11eの切断面に例えば高さ5mmのドーム形状を作成し、2つの構造をオーバーラップさせることで切れ目が出現しないようにした。
 図7は中央に窪んだ流路を持つ舌構造を説明するための図である。図7(a)は平常時の舌構造に中央が窪んだ舌構造(舌表面部)11gをオーバーラップさせたモデルを示す斜視図、図7(b)は中央が窪んだ舌構造(舌表面部)11gに対する平常時の舌構造(扇形部)11a~11eの動きを説明する図である。図7(b)では舌11として示す部分は各扇型部11a~11eが前後方向に重なり合っている。平常時の舌構造11a~11eは、図6(b)、(c)の舌構造であり、中央が窪んだ舌構造(舌表面部)11gは、左右両側が半径方向に延びて中央部分に窪みを有する構造である。かかる中央が窪んだ舌構造11gを平常時の舌構造11a~11eと重複させる。そうすると、中央が窪んだ舌構造11gの左右両側が半径方向に延びて壁面を構成し、平常時の舌構造(各扇形部)11a~11eの表面は、中央が窪んだ舌構造11gの窪みの中で半径方向に振動する(図7(b)では上下に振動する)。舌11の輸送は舌11の中心に食塊20を集めて流し込むという医学的な知見から、嚥下直前の中央が窪んでいる舌構造11gを加えることで、食塊(擬似経口摂取品)20の流路を確保している。
 さらに、各扇形部11a~11eの半径方向の振幅を例えば10~15mmとした。また、嚥下時に振動運動に加えて、各扇形部11a~11eに円周方向奥側に例えば15°の回転運動(振動しながら扇の要を中心にトータル15°回転する)を付与した。位相をずらした扇形部11a~11eの振動と回転運動により、食塊の輸送が行なわれる。なお、上記の振幅、振動数、振動のタイミング、オーバーラップ高さ、回転角度は1例であり、好適な範囲で(例えば±20%)自由に設定できる。
 さらに、舌11の最奥の扇形部11eでは、擬似経口摂取品20を押し込むようにした。扇形部11eの具体的な押し込みの動きは、例えば次のようである。嚥下のタイミングまではその他の扇形部11a~11dと同様に振幅10mmで振動しながら、同時に回転していく。ただし、他の扇形部11a~11dは0.3秒掛けて15度回転する運動をするのに対して、最奥の扇形部11eは0.1秒で回転を停止し(5度だけ回転)、その後、0.2秒掛けて15度逆回転する。この逆回転中は扇形の要を中心とした振動運動は、逆回転開始時を最大振幅として、徐々に回転中心側に落ち込んでいく挙動を示す。その後、扇形部11eは0.2秒で10度回転し、ほぼ嚥下前の状態に戻り、次の嚥下運動を待つ。この戻りの時に擬似経口摂取品20が押し込まれる。
 この舌モデル10bを用いて、重力方向を変えて解析を行い、舌11の運動による食塊(ここでは水物性)20の輸送が達成されることを確認できた。
[喉頭部モデル]
 食道18の入口は平常時には閉じており、嚥下時に食道18が開放する様子を再現しなくてはならない。喉頭部モデル10cは、喉頭蓋12aと喉頭12の動きにより、食道18と喉頭12の開放と閉塞を実現する。喉頭部モデル10cは頭頸部モデリング部10で形成し、その運動は器官運動設定部30で設定する。
 図8に喉頭部モデル10cの構成例を示す。喉頭部モデル10cは喉頭蓋12aと喉頭12で構成される。喉頭蓋12aには喉頭12に連なる穴があり、喉頭12は管状で、喉頭蓋12aは喉頭12の入り口(喉頭口)の管の周りの堤防状の隆起である。喉頭12が喉頭蓋12aを搭載した状態で下顎骨オトガイ部16a方向とその反対側に移動する往復運動と喉頭蓋12aが喉頭12上で回転する回転運動を行なう。ここで、喉頭12の移動と喉頭蓋12aの回転は同時に進行する。この間に咽頭14は上方向に短縮すると共に内腔は収縮する。
 図9に動的三次元頭頸部モデル10aにおける喉頭12の移動と食道入口18aの開放を示す。図9(a)は喉頭12移動前(平常時)の食道入口18aが閉塞された状態を、図9(b)は喉頭12移動後の食道入口18aが開放された状態を示す。また、図9(c)は平常時(食道入口18aが閉塞状態の時)の喉頭部モデル10cの断面を示す図である。図9(a),(b)に示すように、平常時は、喉頭12は下顎骨のオトガイ部16aの斜下方向にあり、嚥下時には斜上方向である下顎骨のオトガイ部16aの方向に移動して食道入口18aを開放している。図9(a)の矢印は喉頭部12cの移動方向を示す。また、図9(c)に示すように、平常時に食道入口18aは上食道括約筋によって閉鎖し、食道18の前壁は気管13の後壁に接している。
 図10に喉頭部モデル10cにおける喉頭蓋12aの回転運動を示す。図10(a)は回転前、図10(b)は回転後の状態を示す。図10(b)には喉頭12の移動方向と喉頭蓋12aの回転方向を矢印で示す。回転の角度は現実的な動きと照らし合わせて例えば135度に設定した。嚥下時には喉頭12が下顎骨のオトガイ部16a側に移動し、食道入口18aが開放されると共に、喉頭蓋12aの回転運動により喉頭12の入口が塞がれる。
 図11に喉頭部モデル10c(喉頭部は12c)における喉頭12と喉頭蓋12aの連動運動例を示す。図11(a)は0.0sec、(b)は0.2sec、(c)は0.4sec、(d)は0.5sec、(e)は0.6sec、(f)は0.7sec、(g)は0.8sec、(h)は0.9sec、(i)は1.0secにおける状態を示す。喉頭蓋12aは0.2secで傾き始め、0.6secで横倒しになり、0.7secで最大135度になり、その後逆回転し、1.0secで元に戻る。喉頭12は0.6secで移動を開始し、0.7secで最大になり、0.9secで元に戻る。図中の矢印は舌(扇形部)11の最も上に出ている部分を示す。なお、前述の、喉頭蓋12aの倒れ込みの瞬間に、舌(扇形部)の最奥部11eが5mm押し込みを行なう運動を組み込んだ。
[嚥下シミュレーター]
 本実施の形態に係る嚥下シミュレーション方法を実行するためのシミュレーター(解析ソフトウェア)は頭頸部器官のモデリングを行い、口腔ならびに咽喉を通過する際の流体・食塊の挙動について粒子法を用いて解析を行うものである。
 シミュレーターによる解析結果から、例えば、
(a)経口摂取品の物性値の違いによる、嚥下・誤嚥・誤飲・窒息リスクの推定、
(b)経口摂取品の物性値の違いによる、嚥下時間の推定、
(c)経口摂取品の物性値の違いによる、咽喉壁(気管や咽頭の管璧)にかかる力、およびせん断応力の推定、
(d)上記データと官能評価又は官能診断との相関から、経口摂取品の飲み易さ・食べ易さ、飲み難さ・食べ難さの評価又は診断を行う。
 評価又は診断は、評価者又は診断者が行なう場合と、嚥下シミュレーション装置が自動的に行なう場合がある。本実施例では評価者又は診断者が行なう。
 嚥下シミュレーターは三次元粒子法解析ソフトを用いて作成した。本解析ソフトは流体の物性値や時間などを数値として直接入力でき、それぞれの物理量を適宜変えることができ、定量的な解析を行えるという特徴を有する。
[解析事例1]
 組み込んだ嚥下運動に様々な物性の経口摂取品(食塊)を投入することによって、嚥下時の食塊の挙動を解析する。まず、疑似経口摂取品20として水を取り上げ、水の物性値を代入して解析を行った。
 表1に解析に用いた水の物性値を示す。二次元シミュレーターによる解析とは違い、物性値に単位のある数値を代入している。解析に用いた粒子の粒子径を1mmとし、約3mlの食塊を投入した。なお、粒子の粒子径は運動解析部50で任意に設定可能である。
Figure JPOXMLDOC01-appb-T000001
 図12に食塊が水の場合の三次元シミュレーションの解析結果を示す。図12(a1)~(a3)に舌11上の食塊の挙動を、図12(b1)~(b3)に喉頭蓋12a周辺での食塊の挙動を示す。(a1)はt=0sec、(a2)はt=0.4sec、(b1)はt=0.5sec、(b2)はt=0.6sec、(b3)はt=0.7sec、(a3)はt=0.8secにおける水の挙動を示す。これらの図より、舌11による輸送、喉頭蓋12aの倒れこみによる食道18への食塊の投入が再現できていることが判る。また、一部の粒子は舌11上や喉頭蓋12a周辺に残留し、食道18に流下せずに喉頭12側に流入した。これらの現象について粒子法による解析では粒子の数によって数値化することが可能であり、喉残り、誤嚥のリスクなどを定量的に評価又は診断できる可能性がある。
[解析事例2]
 次に、経口摂取品として、3種類の液体、水、牛乳A(通常の牛乳)、牛乳B(明治社製:おいしい牛乳(株式会社明治の登録商標です))を投入して挙動を解析した。
 表2に、これら3種類の液体の物性を示す。
Figure JPOXMLDOC01-appb-T000002
 図13に、経口摂取品(食塊)が水、牛乳A、牛乳Bの場合の三次元シミュレーションの解析結果を示す。図13(a1)~(a3)はt=0.5sec(同一時刻)における舌11上の食塊の挙動であり、図13(b1)~(b3)はt=0.7sec(同一時刻)における喉頭蓋12a周辺での食塊の挙動である。また、図13(a1),(b1)は水、図13(a2),(b2)は牛乳A、図13(a3),(b3)は牛乳Bの挙動である。経口摂取品の物性の違いで同一時間に挙動が異なることがシミュレーションから観察できることが判った。
[せん断応力および流下速度による評価又は診断]
 次に、表2の物性の経口摂取品(食塊)について、せん断応力と流下速度の解析を行ない、定量的な解析結果を得ることとした。
 図14にせん断応力と流下速度についての解析領域を示す。領域Aは口腔内の舌11上の領域で、せん断応力を求めた。領域Bは咽頭空間内の食道入口18aの領域で、せん断応力と流下速度を求めた。
 図15に、領域Aにおけるせん断応力の経時変化(0.1sec毎に出力)を示す。領域Aでの平均せん断応力は、領域A内にある粒子にY方向の法線を持つ面に対してZ方向の力が加わった際の応力(応力テンソルのσYZ成分)の平均値によって求めることができる。舌11による食塊の輸送によって領域A内の粒子が15以下になった時間でせん断応力を0とした。同図より舌11上のせん断応力のピークが2つあることが判る。ここで1つ目のせん断応力のピークは食塊投入時に食塊が口腔内に広がる際に生じたせん断応力であり、口腔内での広がりの指標となると考えられる。2つ目のせん断応力のピークは嚥下時の舌11による食塊の輸送の際に生じる舌11上でのせん断応力であり、のど越しの1つの指標となる値であると考えられる。
 図16に領域Bにおけるせん断応力の経時変化(0.1sec毎に出力)を、図17に領域Bにおける流下速度(速度のv成分)の経時変化(0.1sec毎に出力)を示す。領域B内での平均せん断応力は、領域A内にある粒子に、Z方向の法線を持つ面に対してY方向の力が加わった際の応力(応力テンソルのσZY成分)の平均値によって求めることができる。粒子が領域内で15以下になった時間は、せん断応力および流下速度を0とした。
 図16より水と牛乳とでせん断応力に違いがあることが判る。また、牛乳Aと牛乳Bでは嚥下終了タイミング(t=0.8sec)で大きな違いが現れた。この原因は図17に示したように、牛乳Bの方がt=0.8secでの流下速度が大きいためと考えられる。牛乳Bと牛乳Aとの物性値に大きな違いはないが、液を流し込むタイミングでの挙動(液切れ、最後の数滴の飲み込み)に違いがある可能性が示唆された。
 このようにして嚥下シミュレータでは微小な物性値の違いでの食塊の喉に及ぼす影響を数値化することが可能であり、これらを官能検査などの結果と比較することで、官能に及ぼす要因を考察することが可能となる。さらにせん断応力や流速などの視点から既存製品の物性による影響をマッピングすることができる。
[残存率と誤嚥率による評価又は診断]
 次に、表2の物性の経口摂取品(食塊)について、残存率と誤嚥率の解析を行ない、定量的な解析結果を得ることができた。
 図18に残存率と誤嚥率についての解析領域を示す。領域Cは口腔17内の舌11上の領域で残存率を求めた。領域Dは喉頭蓋12a周辺の領域で残存率を求めた。領域Eは喉頭12出口の領域で、誤嚥率を求めた。
 図19に領域C及び領域D(両領域の合計)における残存率を、図20に領域Eにおける誤嚥率を示す。粒子法は、粒子1つ1つの位置を追跡しているため、空間に存在する粒子の量を容易に求める事ができるという利点がある。そこで、嚥下動作後の舌11上や喉頭蓋12a周辺に残存した粒子の数を計数し、喉残りの指標(残存率)として評価又は診断した。さらに、喉頭12の出口(図18に破線で示す)に蓋をすることで喉頭12側に混入した粒子についても計数し、誤嚥するリスク(誤嚥率)についても評価又は診断した。ただし、粒子を数えての評価方法又は診断方法については二次元嚥下シミュレータでも可能な手法であるため、三次元の利点は投入する食塊の物性値を数値で定義できるという点である。
 図19で解るように、牛乳が水よりも口腔内に残る割合が低いという結果となった。これは主に粘度が高いことによって塊を形成しやすいためと考えられた。また図20において、牛乳Bの誤嚥率が低い結果となったが、この要因については未だ特定できていない。
[非ニュートン流体の解析]
 図21に食塊が非ニュートン流体の場合の三次元シミュレーションの解析結果を示す。図21(a1)~(a3)はt=0.5sec(同一時刻)における舌11上の食塊の挙動であり、図21(b1)~(b3)はt=0.7sec(同一時刻)における喉頭蓋12a周辺での食塊の挙動である。また、図21(a1),(b1)は濃度(水溶液中のとろみ調整食品の濃度)C=1%、図21(a2),(b2)は濃度C=2%、図21(a3),(b3)は濃度C=3%の食塊の挙動である。
 誤嚥率などの測定ができるようになると、とろみ調整食品の評価又は診断を行うことが可能となる。とろみ調整食品のような非ニュートン流体のレオロジー特性を持つものについても三次元嚥下シミュレータによって解析することが可能である。ここでは、とろみ調整食品(トロメイク(株式会社明治の登録商標です)SP(明治社製))について濃度1.0、1.5、2.0、3.0、3.5%(重量%)の水溶液のレオロジー特性および表面張力を測定し、その物性値での解析を行った。
[連成解析]
 図22に固体と流体(水)の連成解析の例を示す。図22(a1)~(a3)はt=0.4sec(同一時刻)における舌11上の食塊の挙動であり、図22(b1)~(b3)はt=0.5sec(同一時刻)における喉頭蓋12a周辺での食塊の挙動である。また、図22(a1),(b1)は固体(8mm球)のみ、図22(a2),(b2)は固体(4mm球)のみ、図22(a3),(b3)は固体(4mm球)と水との連成時の挙動である。
 二次元シミュレータと同様にシミュレータ内に固体と流体を投入し、連成解析することも可能である。ここでは8mm球、4mm球および4mm球-水の連成計算を行った。剛体球の密度は11,00kg/mとし、喉壁面と剛体球の摩擦係数を0とした。
 図22(b1)で解るように8mmの固体球は大きすぎるために舌11から咽頭14側への輸送ができなかった。実際の人体の場合は無理をすれば飲み込める可能性があるが、口腔17内の構造上は8mm程度の大きさのものはスムーズには輸送できないことが予想される。また、図22(b2)より4mm球に対しては問題なく輸送され、図22(b3)で解るように水との連成計算も問題なく実施できることが確認された。固体と流体の連成解析についても、固体や流体の物性を数値として設定可能となった。
 図23に実施例1における嚥下シミュレーション方法の処理フロー例を示す。まず、頭頸部器官からなる動的三次元頭頸部モデル10aを形成する(S010:頭頸部モデリング工程)。次に、頭頸部モデル10aにおける各頭頸部器官の運動を設定する(S030:器官運動設定工程)。次に、解析対象としての経口摂取品及びその物性(物性の種類及び物性値)を設定する(S040:経口摂取品物性設定工程)。これらの設定内容は状況に応じて自由に選定できる。設定内容は記憶部83に記憶される。次に、経口摂取品をモデル化した擬似経口摂取品20を口腔に入力する(S050:入力工程)。入力は例えば評価者又は診断者がマウスでカーソルを口腔内にドラッグ・アンド・ドロップして行う。次に頭頸部モデル10aにおける各頭頸部器官の運動と擬似経口摂取品20の嚥下に係る挙動を、粒子法を用いて三次元空間で解析する(S060:運動解析工程)。例えばMPS法を使用できる。次に、運動解析工程(S060)で得られた解析結果を表示する(S070:表示工程)。次に、嚥下時の擬似経口摂取品20の挙動の解析結果から、経口摂取品の食べ易さ及び/又は飲み易さの評価又は診断を行う(S080:評価診断工程、一方だけのときは、評価工程又は診断工程)。評価又は診断は評価者又は診断者が表示部82の動画面を見て行なう。例えば表示部82に表示された評価表又は診断表のセルに○×、ランク、点数等を入力する。評価又は診断を行なったら、経口摂取品物性設定工程(S040)に戻り、経口摂取品の物性値を変更して設定し、それ以降の評価診断工程までを繰り返し行う。変更すべき物性値は評価者又は診断者の判断で自由に選択できる。尤も1回目で適性な物性が見出されれば、その後の設定と評価又は診断を省略しても良い。次に、評価診断工程(S080)にて適正とされた経口摂取品の物性を決定する(S090:物性決定工程)。ここでは、適正な物性の範囲を示しても良く、適正な物性をランク分けしても良く、最適値を選定しても良い。
 評価項目又は診断項目は、例えば次のようなものである。
(a)嚥下・誤嚥・誤飲・窒息リスク(口蓋壁等に付着して剥れ難い、咽喉や食道18を塞ぐ、喉頭12に入る)が有るか否か、
(b)嚥下時間がどの位か、閾値を超えるか、
(c)咽頭壁にかかる応力、およびせん断応力がどの位か、閾値を超えるか、
(d)(a)~(c)に基づき、別にデータ取得した官能評価又は官能診断(美味しい、爽快感等)との相関性を考慮して、総合的に飲み易さ・食べ易さ、飲み難さ・食べ難さを評価又は診断する。
 官能評価又は官能診断は、経口摂取品及びその物性と対応付けられて評価診断結果記録部83Bに保存されており、この経口摂取品の官能評価又は官能診断を読み出して例えば嚥下時間、せん断応力等との相関性を考慮する。
 以上説明したように、本実施例によれば、頭頸部モデル10aについて、器官特性、頭頸部器官の運動、経口摂取品の物性を設定し、粒子法を用いて経口摂取品の挙動を解析するので、嚥下に関する実現象、すなわち、頭頸部器官及び経口摂取品の挙動を近似的に再現することが容易な嚥下シミュレーション装置及び嚥下シミュレーション方法を提供できる。また、嚥下シミュレータを用いて食塊の物性や物理量を数値化して解析することにより、嚥下時における頭頸部器官及び経口摂取品の挙動を正確に表現でき、経口摂取品の物性及び挙動に係る物理量を定量化できる嚥下シミュレーション装置及び嚥下シミュレーション方法を提供できる。
 実施例1では、評価者又は診断者が経口摂取品の入力を行い、動画像を見て嚥下評価又は嚥下診断を行なう例を説明したが、実施例2では、嚥下シミュレーション装置が設定に基づいて経口摂取品等の入力を自動的に行ない、嚥下シミュレーション装置が自動的に嚥下評価又は嚥下診断を行なう例を説明する。実施例1と異なる点を主に説明する(以下の実施例についても同様に異なる点を主に説明する)。
 図24に実施例2における嚥下シミュレーション装置100Bの構成例を示す。実施例1(図2参照)に比して、パーソナルコンピュータ(PC)内に、、擬似経口摂取品の嚥下時の挙動の解析結果を仮想動画面に表示する擬似画面表示部82Aと擬似経口摂取品の入力条件を設定する経口摂取品入力設定部45が追加され、さらに、評価診断条件記憶部83A内に記憶された評価条件又は診断条件を参照して自動的に経口摂取品の食べ易さ及び/又は飲み易さを評価又は診断する評価診断部60(一方だけのときは、評価部又は診断部)が追加されている。その他の構成は実施例1と同様である。
 図25に嚥下シミュレーション方法の処理フロー例を示す。実施例1(図23参照)に比して、入力工程(S050)の前に経口摂取品の入力条件を設定する為の経口摂取品入力設定工程(S045)が追加され、表示部83に動画面表示する表示工程(S070)が、擬似画面表示部82Aの仮想動画面に表示する工程(S075)に代わっている。また、評価診断工程(S080)では、評価診断部60が自動的に評価又は診断する。その他の工程は実施例1と同様である。
 実施例2では、経口摂取品入力設定部45に予め経口摂取品の投入位置と投入タイミングを設定しておく(S045:経口摂取品入力設定工程)。擬似経口摂取品の口腔内への投入位置は例えば口腔内で歯の近傍(例えば擬似経口摂取品の長さの2倍以内)とする。次に設定条件(場所、タイミング)に従って口腔内に擬似経口摂取品20が投入される(S050:経口摂取品入力工程)。また、自動評価又は自動診断する場合には、予め評価条件又は診断条件を評価診断条件記憶部83Aに記憶しておき、パーソナルコンピュータPC内の擬似画面表示部82Aの仮想動画面にシミュレーションの解析結果としての頭頸部モデル10aと擬似経口摂取品20の挙動を表示して、評価診断部60にて、擬似画面表示部82Aの表示を評価診断条件記憶部83Aの評価条件又は診断条件と照合することにより、評価又は診断を行なう。
 評価項目又は診断項目は、例えば次のようなものである。
(a)嚥下・誤嚥・誤飲・窒息リスク(口蓋壁等に付着して剥れ難い、咽喉や食道18を塞ぐ、喉頭12に入る)が有るか否か、
(b)嚥下時間がどの位か、閾値を超えるか、
(c)咽頭壁にかかる応力、およびせん断応力がどの位か、閾値を超えるか、
(d)(a)~(c)に基づき、別にデータ取得した官能評価又は官能診断(美味しい、爽快感等)との相関性を考慮して、総合的に飲み易さ・食べ易さ、飲み難さ・食べ難さを評価又は診断する。
(a)~(c)と官能評価又は官能診断をそれぞれ数値化しておき、それぞれ重み係数を掛けて合計数で自動的に総合評価又は総合診断する。なお、(c)及び/又は(d)を省略しても良い。
 その他の構成及び処理フローは実施例1と同様であり、実施例1と同様に、嚥下に関する実現象を再現することが容易な嚥下シミュレーション装置及び嚥下シミュレーション方法を提供できる。
 また、入力と評価又は診断の一方を人手で、他方をコンピュータで行なう場合でも、同様に実施可能であり、同様の効果を奏する。
 以上の実施例では、評価又は診断を評価者又は診断者が行なう例と嚥下シミュレーション装置が自動評価又は自動診断を行なう例を説明したが、嚥下シミュレーション装置の評価結果又は診断結果(一部又は全体について)を表示して、さらに評価者又は診断者に評価又は診断を求めるようにしても良い。この場合、処理フローについては実施例2の評価診断工程(S080)において、表示部82に評価表又は診断表と共に嚥下シミュレーション装置の評価結果又は診断結果(一部又は全体について)を表示する。評価者又は診断者は嚥下シミュレーション装置の評価結果又は診断結果を参照して、評価表又は診断表に自己の評価結果又は診断結果を入力する。経口摂取品入力工程(S050)は人手入力でも自動入力でも良い。その他の装置構成及び処理フローは実施例2と同様であり、実施例2と同様に、嚥下に関する実現象を再現することが容易な嚥下シミュレーション装置及び嚥下シミュレーション方法を提供できる。
 以上の実施例では、物性決定部70で適正とされる経口摂取品の物性を自動的に決定する例を説明したが、本実施例では人が決定する例を説明する。本実施例の装置構成については、典型的には実施例1における図2の物性決定部70が削除される。処理フロー例については図23を使用できる。なお、物性決定部70があっても良く、この場合は使用しないか、物性決定部70での決定結果を決定者(例えば評価者又は診断者)に参考として示す。決定は適正とされる経口摂取品の物性を人が決定するが、評価結果又は診断結果に基づいて行なうことに差異はないので、思考過程で多少変更される可能性はあるが、ほぼ同様な結果が予測される。その他の装置構成及び処理フローは実施例1と同様であり、実施例1と同様に、嚥下に関する実現象を再現することが容易な嚥下シミュレーション装置及び嚥下シミュレーション方法を提供できる。実施例2及び実施例3に対しても人が決定する場合、実施例1と同様のことがいえる。
[経口摂取品の開発]
 次に、物性値を変化させてシミュレーションを行ない、シミュレーション結果を経口摂取品の開発に結びつける例を説明する。
 図26に経口摂取品開発支援装置200Aの構成例を示す。図2の嚥下シミュレーション装置100Aに、経口摂取品試作結果記録部83C、決定製造条件記録部83Dと製造条件決定部84が追加されている。経口摂取品試作結果記録部83Cは、記憶部83に属し、物性決定部70で適正と決定された物性を有するように製造条件を適宜に設定して試作を行なった結果(物性値を含む)を記録する。製造条件決定部84は、パーソナルコンピュータPC内に設けられ、経口摂取品試作結果記録部83Cに記録された試作結果に基づき、経口摂取品の物性を物性決定部70で適正と決定された物性にする製造条件を決定する。決定された製造条件は記憶部83の決定製造条件記録部83Dに記録される。これにより、物性決定部70で適正と決定された物性にする製造条件が明確になり、食べ易い及び/又は飲み易い物性の経口摂取品を確実に開発することができる。
 図27に経口摂取品開発方法の処理フロー例を示す。図23の嚥下シミュレーション方法の処理フロー例の後に経口摂取品試作工程(S110)及び製造条件決定工程(S120)が追加されている。経口摂取品試作工程(S110)では、物性決定工程(S090)で適正と決定された物性を有するように製造条件を適宜に設定して試作を行なうものである。例えば、菓子について、原料の配合条件(配合比、攪拌等)、焼成条件(温度、時間、雰囲気等)、冷却条件(温度、時間、雰囲気等)、寸法等を適宜に設定して試作を行なう。試作の結果は、得られた物性を製造条件と関連付けて記憶部83の経口摂取品試作結果記録部83Cに記録される。製造条件決定工程(S120)では、経口摂取品試作工程(S110)での試作結果、すなわち経口摂取品試作結果記録部83Cに記録された試作結果に基づき、経口摂取品の物性を物性決定工程(S090)で適正と決定された物性にする製造条件を決定する。例えば、経口摂取品試作工程(S110)で、原料の配合比A、焼成温度Bのときに、適正と決定された物性になるとの結果が得られていれば、適正と決定された物性にする製造条件として、原料の配合比A、焼成温度Bと決定する。この製造条件は、1点でも良いが、範囲を指定しても良い。また、最適値を定めても良く、適正な範囲をランク分けしても良い。また、この決定は人が行なっても良く、製造条件決定部84で経口摂取品試作結果記録部83Cに記録された試作結果に基づいて自動的に行なっても良い。製造条件決定工程(S120)で決定された結果は、例えば記憶部83の決定製造条件記録部83Dに記録される。なお、人が決定する場合はノートに記録しても良い。
[経口摂取品の製造方法]
 図28に経口摂取品製造方法の処理フロー例を示す。経口摂取品製造工程の中に経口摂取品調製工程(S130)がある。最初をAA工程、最後をZZ工程とする。この経口摂取品調製工程(S130)は、図27における経口摂取品開発方法の製造条件決定工程(S120)において、物性決定工程(S090)で適正と決定された物性にする製造条件であると決定された製造条件を用いて経口摂取品を調製するものである。製造工程の中のいずれの工程でも良い。例えば菓子の製造では、原料配合工程や焼成工程等の工程で経口摂取品を調製することができる。2以上の工程を組み合わせて調製しても良い。このとき、この経口摂取品調製工程(S130)における製造条件が、製造条件決定工程(S120)において決定されたものである場合には、当該実施例に該当することとなる。製造条件決定工程(S120)で決定された結果は、例えば記憶部83の決定製造条件記録部83Dに記録される。これにより、食べ易い及び/又は飲み易い物性の開発経口摂取品を確実に製造することができる。
 以上により、本実施例によれば、頭頸部モデル10aについて、器官特性、頭頸部器官の運動、経口摂取品の物性を設定し、粒子法を用いて経口摂取品の挙動を解析するので、嚥下に関する実現象を再現することが容易な嚥下シミュレーション方法を用いて嚥下現象を解析し、食べ易い又は飲み易い経口摂取品を開発することができる。
[食育装置・食育方法]
 本実施例では本発明による嚥下シミュレータを食育に適用する例を説明する。
 図29に本実施例における食育支援装置300Aの構成例を示す。実施例1のシミュレーション装置100A(図2参照)に比して、教示部85が追加され、物性決定部70が削除されている。教示部85は、表示部82で動画面に表示された擬似経口摂取品20の嚥下時の挙動を、評価診断結果記録部83Bに記録された経口摂取品の評価結果又は診断結果と関連させて解説する。本実施例では、教示内容は評価診断結果記録部83Bに記録された経口摂取品の評価結果又は診断結果に基づくもので、解説内容が予め作成され記録されている。解説内容は評価結果又は診断結果に基づいて教示部85で自動的に作成しても良いが、教育者が更にわかり易く編集・補充するのが好適である。また、本実施例では、物性決定部70が削除されているが、物性決定部70を有し、物性決定について解説しても良い。なお、教示部85は解説内容(教示内容)を記憶すると共に、運動解析部50で解析された各頭頸部器官の運動と擬似経口摂取品20の嚥下時の挙動の解析結果を表示部82の動画面に表示させ、解説内容を表示部82のスピーカ等に音声出力する。
 図30に本実施例における食育方法の処理フロー例を示す。実施例1のシミュレーション方法(図23参照)に比して、評価診断工程(S080)の後に教示工程(S082)が追加され、物性決定工程(S090)が削除されている。教示工程(S082)では、表示工程(S070)で動画面に表示された擬似経口摂取品の嚥下時の挙動を、評価診断工程(S080)で評価又は診断された経口摂取品の評価結果又は診断結果と関連させて教示する。本実施例では、物性決定部70及び物性決定工程(S090)が削除されているが、、物性決定部70及び物性決定工程(S090)を有し、物性決定について解説しても良い。これにより、嚥下に関する実現象を再現することが容易な嚥下シミュレーション方法を用いて嚥下現象を表示するので、経口摂取品の食べ易さ又は飲み易さを理解しやすく、食育に大変有効である。
[診断支援]
 本実施例では本発明による嚥下シミュレータを嚥下診断の支援に適用する例を説明する。
 図31に本実施例における嚥下シミュレーション装置400Aの構成を示す。実施例1(図2参照)の嚥下シミュレーション装置100Aに器管運動決定部75及び決定器官運動条件記録部83Eが追加されている。また、器管運動設定部30がより多く使用される。器管運動設定部30では、嚥下運動に関連する各頭頸部器官の運動特性を設定するが、例えばオトガイ舌筋11fやその他の嚥下に関連する筋肉の反応速度、収縮と弛緩のタイミング、収縮距離、弾力性(しなやかさ)等を運動パラメータとして設定し、器官運動決定部75では、シミュレーションの結果から、すなわち、運動解析部50で解析された解析結果から、各頭頸部器官の器官運動パラメータを決定する。例えば、舌の進行波的波動運動が遅くなれば、嚥下に到るまでの時間がかかる。喉頭蓋12aの反応が遅れれば、経口摂取品が喉頭12aを経て気管13に入り込み、誤嚥が生じるおそれがある。これにより、患者や健康診断の被診断者の各頭頸部器官の挙動や症状に良く合う各頭頸部器官の器官運動パラメータを求めることができる。決定器官運動条件記録部83Eには、器官運動決定部75で求められた器官運動パラメータが記録される。
 そして、頭頸部モデル10aと嚥下シミュレーションの結果から、患者や健康診断対象者について、嚥下に関して機能が低下した筋肉がないか等の診断を行ない、治療に役立てることができる。なお、診断では、経口摂取品の物性より器官機能を重視するので、物性についてはループ処理行わずに固定としても良い。かかるシミュレーション装置を嚥下診断支援装置に組み込むことも可能である。例えば、患者や健康診断対象者についての診断結果を保存した医療診断結果データベースを有する嚥下診断支援装置とすれば、医療診断結果を嚥下シミュレーション装置400Aの評価診断結果記録部83Bに記録された評価診断結果と比較することにより各頭頸部器官の機能低下した部分を発見して、迅速な診断を進めることも可能になる。
 図32に本実施例におけるシミュレーション方法の処理フロー例を示す。実施例1(図23参照)の嚥下シミュレーション方法に、器管運動パラメータを変化させたループが追加されている。すなわち、物性のパラメータを変えたループ処理の後に、器管運動パラメータを変化させたループ処理が行われる。なお、ここでの物性決定や器官特性決定は、嚥下に適正な物性や器官運動を見出すのではなく、患者や健康診断の被診断者の症状に合う器管運動パラメータを探すループとして使用される。順次パラメータを変えてシミュレーションを行ない、患者や健康診断の被診断者の各頭頸部器官の挙動や症状に合う物性や器官特性が見出された時点で処理フローを終了する。尤も治療後のパラメータを予測してシミュレーションを継続し、治療の改善効果を求めることもできる。
[プログラム]
 また、本発明は、以上の嚥下シミュレーション方法をコンピュータに実行させるためのコンピュータ読み取り可能なプログラムとしても、また、当該プログラムを記憶する記憶媒体としても実現可能である。プログラムは嚥下シミュレーション装置の制御部90に蓄積して使用してもよく、内蔵又は外付けの記憶装置に蓄積して使用してもよく、インターネットからダウンロードして使用しても良い。
 以上、本発明の実施の形態について説明したが、実施の形態は以上の例に限られるものではなく、本発明の趣旨を逸脱しない範囲で、種々の変更を加え得ることは明白である。
 例えば、以上の実施例では、舌モデル、喉頭蓋モデルについて一例を示したが、これらの例に限られず、多様なモデルが可能である。例えば、時間毎に変化する各器官の形状を解析時間毎に読み込み、よりスムーズな運動を模擬したり、分割数や振動数等のパラメータを自由に変更した解析が可能である。さらに、これらの各器官は付随する筋肉と連動させて動かすことも可能である。また、実施例5の経口摂取品の開発、製造方法、実施例6の食育装置・食育方法については、主として実施例2のシミュレーション装置と組み合わせる例を説明したが、実施例1、実施例3、実施例4のシミュレーション装置と組み合わせても良い。また、実施例7お診断支援については、主として実施例1のシミュレーション装置と組み合わせる例を説明したが、実施例2ないし実施例4のシミュレーション装置と組み合わせても良い。また、経口摂取品は2個までを例示したが、3個以上を連動させて挙動を解析することも可能であり、また、ピーナッツを包んだチョコレートのように異なる物性値を持つ固体同士(固―固)の連成解析、リキュールを包んだチョコレート(固―液)の連成解析、さらにドレッシングのような液体同士(オイルと酢)の物性値が異なる(液―液)混合液の連成解析も可能である。また、唾液が加わる場合は、例えば予め加わる時期(複数回)と量を設定しておくこと及び経口摂取品が唾液により溶解することを取り込むことにより解析可能である。また、舌モデルの分割数、オーバーラップ部分の寸法、各部の移動量や移動時期、その他のパラメータ等を適切な範囲で変更可能である。
 本発明は、経口摂取品の嚥下状況の解析に利用される。
 本発明の説明に関連して(特に以下の請求項に関連して)用いられる名詞及び同様な指示語の使用は、本明細書中で特に指摘したり、明らかに文脈と矛盾したりしない限り、単数および複数の両方に及ぶものと解釈される。語句「備える」、「有する」、「含む」および「包含する」は、特に断りのない限り、オープンエンドターム(すなわち「~を含むが限らない」という意味)として解釈される。本明細書中の数値範囲の具陳は、本明細書中で特に指摘しない限り、単にその範囲内に該当する各値を個々に言及するための略記法としての役割を果たすことだけを意図しており、各値は、本明細書中で個々に列挙されたかのように、明細書に組み込まれる。本明細書中で説明されるすべての方法は、本明細書中で特に指摘したり、明らかに文脈と矛盾したりしない限り、あらゆる適切な順番で行うことができる。本明細書中で使用するあらゆる例または例示的な言い回し(例えば「など」)は、特に主張しない限り、単に本発明をよりよく説明することだけを意図し、本発明の範囲に対する制限を設けるものではない。明細書中のいかなる言い回しも、請求項に記載されていない要素を、本発明の実施に不可欠であるものとして示すものとは解釈されないものとする。
 本明細書中では、本発明を実施するため本発明者が知っている最良の形態を含め、本発明の好ましい実施の形態について説明している。当業者にとっては、上記説明を読めば、これらの好ましい実施の形態の変形が明らかとなろう。本発明者は、熟練者が適宜このような変形を適用することを期待しており、本明細書中で具体的に説明される以外の方法で本発明が実施されることを予定している。従って本発明は、準拠法で許されているように、本明細書に添付された請求項に記載の内容の修正および均等物をすべて含む。さらに、本明細書中で特に指摘したり、明らかに文脈と矛盾したりしない限り、すべての変形における上記要素のいずれの組合せも本発明に包含される。
10 頭頸部モデリング部
10a 動的三次元頭頸部モデル
10b 舌モデル
10c 喉頭部モデル
11 舌
11a~11e 舌の扇形部
11f オトガイ舌筋
11g 舌表面部
12 喉頭
12a 喉頭蓋
12c 喉頭部
13 気管
14 咽頭
14a 咽頭の璧
14b 咽頭の粘膜
15 口蓋
15a 硬口蓋
15b 軟口蓋
16 顎
16a オトガイ部
17 口腔
18 食道
18a 食道入口部
20 擬似経口摂取品
30 器官運動設定部
40 経口摂取品物性設定部
45 経口摂取品入力設定部
50 運動解析部
60 評価診断部
70 物性決定部
75 器官運動決定部
81 入力部
82 表示部
82A 擬似画面表示部
83 記憶部
83A 評価診断条件記憶部
83B 評価診断結果記録部
83C 経口摂取品試作結果記録部
83D 決定製造条件記録部
83E 決定器官運動条件記録部
84 製造条件決定部
85 教示部
90 制御部
100A,100B 嚥下シミュレーション装置
200A 経口摂取品開発支援装置
300A 食育支援装置
400A 嚥下シミュレーション装置
PC パーソナルコンピュータ

Claims (22)

  1.  頭頸部器官からなる動的三次元頭頸部モデルを形成する頭頸部モデリング部と;
     前記動的三次元頭頸部モデルにおける各頭頸部器官の運動を設定する器官運動設定部と;
     解析対象としての経口摂取品及びその物性を設定する経口摂取品物性設定部と; 
     前記経口摂取品をモデル化した擬似経口摂取品を口腔に入力する入力部と; 
     前記動的三次元頭頸部モデルにおける各前記頭頸部器官の運動と前記擬似経口摂取品の嚥下時の挙動を、粒子法を用いて三次元空間で解析する運動解析部と;
     前記運動解析部で解析された各前記頭頸部器官の運動と前記擬似経口摂取品の前記嚥下時の挙動の解析結果を動画面に表示する表示部とを備える;
     嚥下シミュレーション装置。
  2.  前記頭頸部モデリング部は、前記頭頸部器官をポリゴン又は粒子に設定し; 
     前記運動解析部は、前記擬似経口摂取品をポリゴン又は粒子として取り扱う; 
     請求項1に記載の嚥下シミュレーション装置。
  3.  前記頭頸部モデリング部は、舌を前奥方向にオトガイ舌筋の起始である下顎骨のオトガイ部を要とするn個(nは2以上の整数)の扇形部に分割する構造とし; 
     前記器官運動設定部は、各扇形部が半径方向に所定の位相差を持って連携して振動することにより前記擬似経口摂取品を奥方向に輸送するように進行波的波動運動を設定する;
     請求項2に記載の嚥下シミュレーション装置。
  4.  前記頭頸部モデリング部は、前記各扇形部の振動により前記各扇形部の間に隙間ができないように前記各扇形部の表面部分が相互に重複し合う構造とし、さらに、左右両側が半径方向に延びて中央部分に窪みを有する舌表面部を前記各扇形部の表面部分に重複させ、静止状態の舌表面部の前記窪みの中で前記各扇形部が半径方向に振動する構造とし;
     前記器官運動設定部は、嚥下時に各扇形部が円周方向奥側に所定の角度回転し、嚥下最終時には前記舌の最奥の扇形部で前記擬似経口摂取品を押し込むように設定する;
     請求項3に記載の嚥下シミュレーション装置。
  5.  前記頭頸部モデリング部は、前記動的三次元頭頸部モデルを咽頭、喉頭部と食道に分割し、前記喉頭部を喉頭蓋と喉頭に分割し、嚥下開始前には前記食道の食道入口を閉塞し、嚥下時には前記食道入口が拡張し、咽頭が収縮する構造とし;
     前記器官運動設定部は、嚥下時に、前記喉頭を下顎骨のオトガイ部方向に移動して前記食道入口を開放し、咽頭が収縮し、次いで前記喉頭蓋を奥側に所定の角度回転させることにより、喉頭入口を閉塞するように設定する;
     請求項3又は請求項4に記載の嚥下シミュレーション装置。
  6.  前記経口摂取品物性設定部は、解析対象として異なる物性の液体、半固体又は固体の複数の擬似経口摂取品を設定し; 
     前記運動解析部は、前記複数の擬似経口摂取品について自由表面と前記複数の擬似経口摂取品間の境界を定め、前記複数の擬似経口摂取品の連動挙動の解析を行なう;
     請求項1ないし請求項5のいずれか1項に記載の嚥下シミュレーション装置。
  7.  前記動画面における前記擬似経口摂取品の前記嚥下時の挙動から、前記経口摂取品の食べ易さ及び/又は飲み易さを評価又は診断する評価診断部を備え;
     前記動画面は、前記運動解析部で解析された各前記頭頸部器官の運動と前記擬似経口摂取品の嚥下時の挙動の解析結果を模擬的に表示するために嚥下シミュレーション装置により仮想空間に形成された仮想動画面であり;
     前記評価診断部は、前記仮想動画面での擬似経口摂取品の挙動が予め定められた条件を満たすか否かで評価又は診断する;
     請求項1ないし請求項6のいずれか1項に記載の嚥下シミュレーション装置。
  8.  前記擬似経口摂取品の前記嚥下時の挙動の解析結果から、前記経口摂取品の食べ易さ及び/又は飲み易さに係る評価結果又は診断結果を記録する評価診断結果記録部と;、
     前記評価診断結果記録部に記録された評価又は診断結果に基づいて適正とされる経口摂取品の物性を決定する物性決定部とを備える;
     請求項1又は請求項7に記載の嚥下シミュレーション装置。
  9.  頭頸部器官からなる動的三次元頭頸部モデルであって;
     舌を前奥方向にオトガイ舌筋の起始である下顎骨のオトガイ部を要とするn個(nは2以上の整数)の扇形部に分割する構造とし;
     各扇形部が半径方向に所定の位相差を持って連携して振動することにより前記擬似経口摂取品を奥方向に輸送する進行波的波動運動を行なうように設定されている;
     動的三次元頭頸部モデル。
  10.  前記各扇形部の振動により前記各扇形部の間に隙間ができないように前記各扇形部の表面部分が相互に重複し合う構造とし、さらに、左右両側が半径方向に延びて中央部分に窪みを有する舌表面部を前記各扇形部の表面部分に重複させ、静止状態の舌表面部の前記窪みの中で前記各扇形部が円周方向に振動する構造とし:
     嚥下時に各扇形部が円周方向奥側に所定の角度回転し、次いで前記舌の最奥の扇形部で前記擬似経口摂取品を押し込むように設定され;
     咽頭、喉頭部と食道に分割され、喉頭部は喉頭蓋と喉頭に分割され、嚥下開始前に前記食道の食道入口を閉塞し、嚥下時には食道入口が拡張し、咽頭が収縮する構造とし;
     嚥下時に、前記喉頭を下顎骨のオトガイ部方向に移動して食道入口を開放し、咽頭が収縮し、次いで前記喉頭蓋を奥側に所定の角度回転させることにより、食道入口を閉塞するように設定されている;
     請求項9に記載の動的三次元頭頸部モデル。
  11.  頭頸部器官からなる動的三次元頭頸部モデルを形成する頭頸部モデリング工程と;
     前記動的三次元頭頸部モデルにおける各頭頸部器官の運動を設定する器官運動設定工程と;
     解析対象としての経口摂取品、及びその物性を設定する経口摂取品物性設定工程と; 
     前記経口摂取品をモデル化した擬似経口摂取品を前記口腔に入力する入力工程と;
     前記動的三次元頭頸部モデルにおける各前記頭頸部器官の運動と前記擬似経口摂取品の嚥下時の挙動を、粒子法を用いて解析する運動解析工程と;
     前記運動解析工程で三次元空間で解析された各前記頭頸部器官の運動と前記擬似経口摂取品の前記嚥下時の挙動の解析結果を動画面に表示する表示工程とを備える;
     嚥下シミュレーション方法。
  12.  前記擬似経口摂取品の前記嚥下時の挙動の解析結果から、前記経口摂取品の食べ易さ及び/又は飲み易さに係る評価を行う評価工程と;
     前記評価工程にて評価された評価結果に基づいて適正とされる経口摂取品の物性を決定する物性決定工程とを備える;
     請求項11に記載の嚥下シミュレーション方法。
  13.  請求項11又は請求項12に記載の嚥下シミュレーション方法をコンピュータに実行させるためのコンピュータ読み取り可能なプログラム。
  14.  請求項8に記載の嚥下シミュレーション装置と;
     前記物性決定部で適正と決定された物性を有するように製造条件を適宜に設定して試作を行なった結果を記録する経口摂取品試作結果記録部と;
     前記経口摂取品試作結果記録部に記録された試作結果に基づき、前記経口摂取品の物性を前記物性決定部で適正と決定された物性にする製造条件を決定する製造条件決定部とを備える;
     経口摂取品開発支援装置。
  15.  前記動画面における前記擬似経口摂取品の前記嚥下時の挙動から、前記経口摂取品の食べ易さ及び/又は飲み易さを評価又は診断する評価診断部を備え;
     前記動画面は、前記運動解析部で解析された各前記頭頸部器官の運動と前記擬似経口摂取品の嚥下時の挙動の解析結果を模擬的に表示するために嚥下シミュレーション装置により仮想空間に形成された仮想動画面であり;
     前記評価診断部は、前記仮想動画面での擬似経口摂取品の挙動が予め定められた条件を満たすか否かで評価又は診断する;
     請求項14に記載の経口摂取品開発支援装置。
  16.  請求項12に記載の嚥下シミュレーション方法を備え;
     前記経口摂取品物性設定工程において、前記経口摂取品の物性を変更して設定し、それ以降の物性決定工程までを繰り返し行ない;
     又は、前記経口摂取品物性設定工程において、前記経口摂取品の物性を変更して設定し、それ以降の評価工程までを繰り返し行ない、その後に一括して物性決定工程を行ない;
     さらに、前記物性決定工程で適正と決定された物性を有するように製造条件を適宜に設定して試作を行なう経口摂取品試作工程と;
     前記経口摂取品試作工程の結果に基づき、前記経口摂取品の物性を前記物性決定工程で適正と決定された物性にする製造条件を決定する製造条件決定工程とを備える;
     経口摂取品開発方法。                  
  17.  前記動画面は、前記運動解析工程で解析された各前記頭頸部器官の運動と前記擬似経口摂取品の嚥下時の挙動の解析結果を模擬的に表示するために嚥下シミュレーション装置により仮想空間に形成された仮想動画面であり;
     前記表示工程は、前記解析結果を前記仮想動画面に模擬的に表示する仮想表示工程であり;
     前記評価診断工程は、前記仮想表示工程で模擬的に表示された仮想動画面での擬似経口摂取品の挙動が予め定められた条件を満たすか否かで評価する;
     請求項16に記載の経口摂取品開発方法。
  18.  請求項16又は請求項17に記載の経口摂取品開発方法の製造条件決定工程にて決定された製造条件を用いて前記経口摂取品を製造する;
     経口摂取品製造方法。
  19.  請求項1又は請求項7に記載の嚥下シミュレーション装置と;
     前記擬似経口摂取品の前記嚥下時の挙動の解析結果から、前記経口摂取品の食べ易さ、飲み易さの評価結果又は診断結果を記録する評価診断結果記録部と;
     前記表示部で動画面に表示された前記擬似経口摂取品の嚥下時の挙動を、前記評価診断結果記録部に記録された経口摂取品の評価結果又は診断結果と関連させて解説する教示部とを備える;
     食育支援装置。
  20.  請求項11に記載の嚥下シミュレーション方法と;
     前記擬似経口摂取品の前記嚥下時の挙動の解析結果から、前記経口摂取品の食べ易さ及び/又は飲み易さに係る評価を行う評価工程と; 
     前記表示工程で動画面に表示された前記擬似経口摂取品の嚥下時の挙動を、前記評価工程で評価された経口摂取品の評価結果と関連させて解説する教示工程とを備える;
     食育方法。
  21.  前記器官運動設定部で設定された器官運動パラメータについて、前記運動解析部で解析された前記解析結果から、前記被診断者の器官の挙動又は症状に合う器官運動パラメータを決定する器官運動決定部を備える;
     請求項1ないし請求項8のいずれか1項に記載の嚥下シミュレーション装置。
  22.  請求項21に記載の嚥下シミュレーション装置を備える;
     診断支援装置。
PCT/JP2013/057718 2012-03-27 2013-03-18 嚥下シミュレーション装置及び方法 WO2013146436A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
SG11201406037PA SG11201406037PA (en) 2012-03-27 2013-03-18 Swallowing simulation apparatus and method
CN201380017017.1A CN104302228B (zh) 2012-03-27 2013-03-18 咽下模拟装置及方法
EP13767280.4A EP2832293A4 (en) 2012-03-27 2013-03-18 DEVICE AND METHOD FOR SIMULATING SWEEPING PROCESSES
US14/387,531 US10049602B2 (en) 2012-03-27 2013-03-18 Swallowing simulation apparatus and method
HK15106591.3A HK1205905A1 (en) 2012-03-27 2015-07-10 Deglutition simulation device and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-072178 2012-03-27
JP2012072178A JP6022789B2 (ja) 2012-03-27 2012-03-27 嚥下シミュレーション装置及び方法

Publications (1)

Publication Number Publication Date
WO2013146436A1 true WO2013146436A1 (ja) 2013-10-03

Family

ID=49259697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/057718 WO2013146436A1 (ja) 2012-03-27 2013-03-18 嚥下シミュレーション装置及び方法

Country Status (7)

Country Link
US (1) US10049602B2 (ja)
EP (1) EP2832293A4 (ja)
JP (1) JP6022789B2 (ja)
CN (1) CN104302228B (ja)
HK (1) HK1205905A1 (ja)
SG (1) SG11201406037PA (ja)
WO (1) WO2013146436A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107154208A (zh) * 2017-07-03 2017-09-12 江南大学 一种模拟食物吞咽的机械装置
CN109567816A (zh) * 2018-11-08 2019-04-05 山东大学 一种基于单目视觉的颈椎活动度测量系统及方法
US10753839B2 (en) 2015-08-07 2020-08-25 Meiji Co., Ltd. Measurement device and method for estimating mouthfeel and behavior of alimentary bolus during eating and swallowing
WO2021225081A1 (ja) * 2020-05-08 2021-11-11 マクセル株式会社 生体検査装置および生体情報分析方法
CN117064344A (zh) * 2023-10-16 2023-11-17 中国人民解放军总医院第二医学中心 一种多模态刺激的吞咽障碍治疗方法及其系统

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015152147A1 (ja) * 2014-03-31 2015-10-08 シャープ株式会社 調理機器
US10102770B2 (en) * 2016-06-20 2018-10-16 The Procter & Gamble Company Method and model for visual demonstration of bacteria removal on simulated tongue material
KR102217155B1 (ko) * 2016-07-01 2021-02-18 가꼬우호우징 효고 이카다이가쿠 연하 훈련 장치
TW201804143A (zh) * 2016-07-28 2018-02-01 澤井製藥股份有限公司 具有口腔內崩解性之檢測樣本的口感評價方法以及口感評價裝置
FR3071347B1 (fr) * 2017-09-19 2021-10-22 Protip Medical Conduit anatomique et banc de simulation comprenant un tel conduit
CN108236465A (zh) * 2018-01-18 2018-07-03 上海肌颜齿科科技有限公司 一种吞咽行为的检测方法及装置
JP7082000B2 (ja) * 2018-06-29 2022-06-07 株式会社明治 経口摂取品開発支援方法及び経口摂取品開発支援システム
CN110136524B (zh) * 2019-05-10 2024-07-09 中南大学湘雅医院 一种可辨音启动的人体咽喉部诊疗模拟装置
CN110299057B (zh) * 2019-07-03 2024-03-01 江南大学 一种食物模拟吞咽装置和食物模拟吞咽方法
JP7401225B2 (ja) * 2019-08-29 2023-12-19 株式会社明治 嚥下シミュレーション装置及び嚥下シミュレーション方法
CN112587233B (zh) * 2020-12-10 2021-10-08 华中科技大学 一种模拟气管内插管术的方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005117617A1 (en) * 2004-06-01 2005-12-15 Prophagia Inc. Index and method of use of adapted food compositions for dysphagic persons
JP2011146781A (ja) 2010-01-12 2011-07-28 Panasonic Corp 携帯無線機
JP2011146780A (ja) 2010-01-12 2011-07-28 Of Networks:Kk 通信遅延の緩和方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6192329B1 (en) * 1998-08-12 2001-02-20 Risk Analysis & Management Method and apparatus for assessing risks of injury
US7160110B2 (en) * 1999-11-30 2007-01-09 Orametrix, Inc. Three-dimensional occlusal and interproximal contact detection and display using virtual tooth models
US9421074B2 (en) * 2001-04-13 2016-08-23 Orametrix, Inc. Unified three dimensional virtual craniofacial and dentition model and uses thereof
CN100507975C (zh) * 2007-01-11 2009-07-01 重庆工学院 一种消化道系统模拟装置
WO2010009393A2 (en) * 2008-07-17 2010-01-21 Idea International, Inc. Dental training system and method of use
CN101716394B (zh) * 2009-12-21 2012-11-14 四川大学 治疗吞咽障碍的低频脉冲电磁仪
CN102933171B (zh) * 2010-02-25 2016-01-13 3形状股份有限公司 动态虚拟咬合架
US8352060B2 (en) * 2010-05-05 2013-01-08 Hankookin, LLC. Computer-aided fabrication of a removable dental prosthesis
CN201993970U (zh) * 2010-10-22 2011-09-28 刘韦淞 咽、喉部病变操作模拟训练器
CN103597510B (zh) * 2011-06-30 2016-11-09 株式会社明治 食品开发支援装置、食品开发方法、食品制造方法、饮食教育支援装置及饮食教育方法
WO2013002374A1 (ja) * 2011-06-30 2013-01-03 株式会社明治 嚥下シミュレーション装置及び方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005117617A1 (en) * 2004-06-01 2005-12-15 Prophagia Inc. Index and method of use of adapted food compositions for dysphagic persons
JP2011146781A (ja) 2010-01-12 2011-07-28 Panasonic Corp 携帯無線機
JP2011146780A (ja) 2010-01-12 2011-07-28 Of Networks:Kk 通信遅延の緩和方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
HIROSHI MIZUNUMA ET AL.: "Ekijo Shokkai no Enge no Simulation", DAI 34 KAI JAPANESE SOCIETY OF BIORHEOLOGY NENKAI PROGRAM - SHOROKUSHU, 3 June 2011 (2011-06-03), pages 99, XP008175016 *
KAMIZU ET AL., THE SOCIETY OF CHEMICAL ENGINEERS 41ST AUTUMN MEETING PRESENTATION ABSTRACTS, 2009, pages 09
KOSHIZUKA ET AL., COMPUT.FLUID DYNAMICS J, vol. 4, 1995, pages 29 - 46
KOSHIZUKA SEIICHI: "Computational Mechanics Lecture Series 5, Particle Method", JAPAN SOCIETY FOR COMPUTATIONAL ENGINEERING AND SCIENCE, pages: 51 - 68
MIZUNUMA ET AL., THE JAPAN SOCIETY OF MECHANICAL ENGINEERS ANNUAL CONFERENCE PROCEEDINGS, 2005, pages 83 - 84
See also references of EP2832293A4 *
SHUN'ICHI ISHIDA ET AL.: "Numerical simulation of swallowing based on videofluorography", DAI 23 KAI BIOENGINEERING KOEN RONBUNSHU, no. 10-74, 7 January 2011 (2011-01-07), pages 559 - 560, XP008172795 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10753839B2 (en) 2015-08-07 2020-08-25 Meiji Co., Ltd. Measurement device and method for estimating mouthfeel and behavior of alimentary bolus during eating and swallowing
CN107154208A (zh) * 2017-07-03 2017-09-12 江南大学 一种模拟食物吞咽的机械装置
CN109567816A (zh) * 2018-11-08 2019-04-05 山东大学 一种基于单目视觉的颈椎活动度测量系统及方法
CN109567816B (zh) * 2018-11-08 2020-08-25 山东大学 一种基于单目视觉的颈椎活动度测量系统及方法
WO2021225081A1 (ja) * 2020-05-08 2021-11-11 マクセル株式会社 生体検査装置および生体情報分析方法
JP7477358B2 (ja) 2020-05-08 2024-05-01 マクセル株式会社 生体検査装置および生体情報分析方法
CN117064344A (zh) * 2023-10-16 2023-11-17 中国人民解放军总医院第二医学中心 一种多模态刺激的吞咽障碍治疗方法及其系统
CN117064344B (zh) * 2023-10-16 2023-12-22 中国人民解放军总医院第二医学中心 一种多模态刺激的吞咽障碍治疗方法及其系统

Also Published As

Publication number Publication date
EP2832293A4 (en) 2015-10-28
US20150079570A1 (en) 2015-03-19
CN104302228A (zh) 2015-01-21
HK1205905A1 (en) 2015-12-31
EP2832293A1 (en) 2015-02-04
CN104302228B (zh) 2018-01-23
JP2013202119A (ja) 2013-10-07
SG11201406037PA (en) 2014-11-27
JP6022789B2 (ja) 2016-11-09
US10049602B2 (en) 2018-08-14

Similar Documents

Publication Publication Date Title
JP6022789B2 (ja) 嚥下シミュレーション装置及び方法
JP6060076B2 (ja) 嚥下シミュレーション装置及び方法
Bates et al. Assessing the relationship between movement and airflow in the upper airway using computational fluid dynamics with motion determined from magnetic resonance imaging
Kikuchi et al. Numerical simulation of interaction between organs and food bolus during swallowing and aspiration
Kikuchi et al. Human swallowing simulation based on videofluorography images using Hamiltonian MPS method
JP5946829B2 (ja) 食品開発支援装置、食品開発方法、食品製造方法、食育支援装置及び食育方法
Chang et al. Fluid structure interaction simulations of the upper airway in obstructive sleep apnea patients before and after maxillomandibular advancement surgery
Ho et al. Inferring the effects of saliva on liquid bolus flow using computer simulation
Michiwaki et al. Realistic computer simulation of bolus flow during swallowing
Alharbi et al. Predicting the outcome of transcatheter mitral valve implantation using image-based computational models
Papenkort et al. A geometry model of the porcine stomach featuring mucosa and muscle layer thicknesses
Farazi et al. A 3D dynamic biomechanical swallowing model for training and diagnosis of dysphagia
Delson et al. Parametrically adjustable intubation mannequin with real-time visual feedback
JP7401225B2 (ja) 嚥下シミュレーション装置及び嚥下シミュレーション方法
JP7082000B2 (ja) 経口摂取品開発支援方法及び経口摂取品開発支援システム
Almeida et al. Review of research studies on biomechanics of swallowing and dysphagia
Farazi 3D biomechanical oropharyngeal model for training and diagnosis of dysphagia
Duanmu et al. A Review of In Vitro and In Silico Swallowing Simulators: Design and Applications
Hosseini Subject-Specific Models of Gastric Motility Patterns and Flow Derived from Dynamic MRI
Ho A Novel SPH Method for Investigating the Role of Saliva in Swallowing using 4D CT images
Qin et al. Three-Dimensional Model Construction of Swallowing
Kuruppumullage Biomechanical models of human upper and tracheal airway functionality
Burzdzius Effect of orthognathic surgery on the upper airway system
Silva et al. Designing a software for qualitative and quantitative analysis of oropharyngeal swallowing by videofluoroscopy
Sumpter Development of a finite element based three-dimensional simulation of esophageal motility with the potential to explain the physiological effects of weightlessness

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13767280

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14387531

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013767280

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE