WO2013145983A1 - Method for manufacturing optical control panel - Google Patents

Method for manufacturing optical control panel Download PDF

Info

Publication number
WO2013145983A1
WO2013145983A1 PCT/JP2013/054548 JP2013054548W WO2013145983A1 WO 2013145983 A1 WO2013145983 A1 WO 2013145983A1 JP 2013054548 W JP2013054548 W JP 2013054548W WO 2013145983 A1 WO2013145983 A1 WO 2013145983A1
Authority
WO
WIPO (PCT)
Prior art keywords
light control
control panel
manufacturing
post
slit
Prior art date
Application number
PCT/JP2013/054548
Other languages
French (fr)
Japanese (ja)
Inventor
誠 大坪
Original Assignee
株式会社アスカネット
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アスカネット filed Critical 株式会社アスカネット
Publication of WO2013145983A1 publication Critical patent/WO2013145983A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/34Stereoscopes providing a stereoscopic pair of separated images corresponding to parallactically displaced views of the same object, e.g. 3D slide viewers
    • G02B30/35Stereoscopes providing a stereoscopic pair of separated images corresponding to parallactically displaced views of the same object, e.g. 3D slide viewers using reflective optical elements in the optical path between the images and the observer

Definitions

  • the present invention relates to a method for manufacturing a light control panel used in an optical imaging apparatus that forms a stereoscopic image in the air.
  • a transparent synthetic resin plate or glass plate having a certain thickness with a metal reflecting surface formed on one side is arranged so that the metal reflecting surface is arranged on one side.
  • Each surface side of the optical control panel has a step of arranging the plane light reflecting portions formed of metal reflecting surfaces formed in the respective light control panels so as to be orthogonal to each other (for example, close contact arrangement), The production of the light control panel is very complicated.
  • the maximum dimension of one side of the light control panel is in the range of 500 to 700 mm.
  • the thickness is 1000 mm or more (for example, the maximum dimension is in the range of 5000 to 10000 mm), there is a problem that the production becomes very difficult.
  • the present invention has been made in view of such circumstances, and provides a method for manufacturing a light control panel used in a large optical imaging apparatus capable of simultaneously viewing a stereoscopic image displayed in the air by a large number of spectators. With the goal.
  • a method for manufacturing a light control panel comprising: a pair of light control panels each having a planar reflecting portion in a parallel state and provided over a plurality of rows; In a state where the plane reflecting portions are crossed, they are arranged close to or in contact with each other, and light emitted from an object or an image arranged on one side of the paired light control panel is transmitted to the paired light control panel.
  • a method of manufacturing the light control panel for use in an optical imaging apparatus that reflects and converges toward the other side to form a solid image of the object or the image in the air A first step of immersing a light-reflecting substrate having a flat plate in which through slits are formed side by side, and a weir member that covers the lower part of each through slit from both sides in a post-curing liquid; A second step in which the light-reflective substrate is released from the soaking state of the post-curing liquid, and the post-curing liquid that has accumulated in the damming member is cured while maintaining its surface flatness; And a third step of performing a mirror surface treatment on the surface of the cured post-curing liquid.
  • the manufacturing method of the light control panel according to the second aspect of the present invention is the method of manufacturing a light control panel according to claim 1, wherein the damming member is located below the through slit.
  • the upper plate has a vertical width that covers a part of the upper side from both sides, and after the second step, the plane plate is turned upside down, and then the second plate is placed under the through slit surrounded by the damming member.
  • Injecting the curable liquid, and having the surface horizontal so as to cure the second post-curing liquid, the post-curing mold is cured in the third step.
  • the mirror surface treatment is performed on the surface of the liquid and the second post-curing liquid to form mirror surfaces (that is, first and second mirror surfaces) facing the inside of the through slit.
  • the interval between the opposing mirror surfaces formed inside the through slit is in the range of 0.2 to 0.5 times the width of the opposing mirror surfaces. Is preferred.
  • the post curing liquid (and the second post curing type)
  • the liquid is an ultraviolet curable resin
  • the ultraviolet curable resin accumulated in the damming member is preferably irradiated with ultraviolet rays to be cured.
  • the post-curing curable liquid (and the second post-curing curable liquid) is molten glass, and in the second step, the molten material accumulated in the damming member. It is preferable to cool and harden the glass.
  • the post-curing curable liquid (and the second post-curing curable liquid) is a molten thermoplastic resin, and in the second step, in the damming member.
  • the accumulated thermoplastic resin is preferably cooled and cured.
  • the mirror treatment can be performed by a metal vapor deposition method.
  • the paired light control panels formed with the through slits arranged in parallel are each an isosceles trapezoid in a plan view, and are mirror surfaces of the light control panels.
  • the treated surface i.e., mirror surface
  • the light control panel manufacturing method according to the present invention preferably further includes a fourth step of filling a light-transmitting substance (for example, post-curing resin) into the through slit.
  • a light-transmitting substance for example, post-curing resin
  • the post-curing liquid that has accumulated under the through slits formed side by side on the flat plate is cured while maintaining its surface flatness, and this surface is Since it is mirror-finished to form a planar reflection part, it is not affected by the processing accuracy (surface roughness) of each through slit, and is parallel to each other and the same incident toward each through slit. It is possible to simultaneously form a planar reflection portion that reflects light incident at an angle at the same reflection angle.
  • a plane plate having a large dimension is prepared, a long through slit can be formed, so that a light control panel used in a large optical imaging apparatus can be easily manufactured.
  • a mirror surface facing the surfaces on both sides of the through slit is formed, so that the light enters the facing mirror surface from a wide range.
  • the bright light can be reflected a plurality of times (and odd times) to form a brighter image.
  • the post-curing liquid is an ultraviolet curable resin
  • the ultraviolet curable resin accumulated in the damming member is irradiated with ultraviolet rays to be cured.
  • the post-curing liquid is molten glass
  • the post-curing liquid is a molten thermoplastic resin.
  • the thermoplastic resin collected in the damming member is cooled and cured, it can be easily cured while maintaining the surface flatness of the post-curing liquid.
  • the paired light control panels formed by arranging the through slits in parallel are each an isosceles trapezoid in a plan view, and each light control panel is mirror-finished.
  • the plane intersects the center line of each light control panel at an angle of 45 degrees one light control panel of the paired light control panels is rotated 180 degrees around the center line (turn over. )
  • the plane reflecting portions formed on the light control panels adjacent to each other are in an orthogonal state, and the optical imaging device can be easily Can be configured.
  • a light control panel when the through slit is filled with a light-transmitting substance (for example, plastic or glass), foreign matter can be prevented from entering the through slit.
  • a light-transmitting substance for example, plastic or glass
  • foreign matter can be prevented from entering the through slit.
  • FIG. 1 It is a perspective view which shows a part of optical imaging device using the light control panel produced by the manufacturing method of the light control panel which concerns on 1st Example of this invention. It is a top view of the light control panel produced by the manufacturing method of the same light control panel.
  • (A)-(D) is explanatory drawing of the manufacturing method of the same light control panel. It is a partial top view of the optical imaging installation comprised by the optical imaging device using the same light control panel. It is a top view of the optical imaging device using the light control panel produced by the manufacturing method of the light control panel concerning the 2nd example of the present invention.
  • (A) and (B) are respectively a side view and a plan view of an optical imaging apparatus using a light control panel manufactured by a method for manufacturing a light control panel according to a third embodiment of the present invention. It is explanatory drawing of the manufacturing method.
  • the light control panel manufacturing method allows light emitted from an object M to be incident from one side and reflected toward the air on the other side. And a pair of light control panels 11 and 12 used in the optical imaging apparatus 10 that converges and forms a three-dimensional image M ′ of the object M in the air.
  • the light control panel manufacturing method includes a flat plate 13 made of a light-impermeable material in which through slits 14 are arranged in parallel, for example, and each through slit 14.
  • a third step of performing a mirror surface treatment on the surface of the cured ultraviolet curable resin liquid 22 Details will be described below.
  • the plane plate 13 is supported by setting the direction so that the through slit 14 is horizontal, and both side surfaces of each through slit 14 formed in the supported plane plate 13
  • damming members 19 and 20 e.g., along the longitudinal direction of the side surface 16 on both sides of the side surface 16 in the width direction (thickness direction with respect to the flat plate 13), for example, Aluminum or synthetic resin strips
  • damming members 19 and 20 are placed in contact with each other via an adhesive to cover the lower part of the through slit 14 to form the light reflecting base material 13a.
  • the light reflecting base material 13a is immersed in an opaque UV curable resin liquid stored in the tank (first step).
  • the flat plate 13 in which the through slits 14 are formed in parallel is made of, for example, an opaque acrylic resin (or other resin, metal plate), and isosceles trapezoidal in plan view.
  • the longitudinal direction of each through slit 14 and the center line P of the flat plate 13 intersect at an angle of 45 degrees.
  • the length of the upper bottom portion of the flat plate 13 is, for example, 100 to 2000 mm
  • the length of the lower bottom portion is, for example, 500 to 6000 mm
  • the height is, for example, 900 to 7500 mm. Is, for example, 1 to 50 mm.
  • the width of the through slit 14 formed in the flat plate 13 is, for example, 1 to 50 mm, and the distance between the through slits 14 (pitch of the through slit 14) is, for example, 1 to 50 mm.
  • the ratio of the thickness of the flat plate 13 to the distance between the through slits 14 is, for example, 0.3 to 5, more preferably 0.7 to 3.
  • the through slit 14 is formed by machining, laser, water jet or the like, and does not form a light reflecting surface with a smooth surface.
  • the flat plate 13 is taken out from the ultraviolet curable resin liquid, and gas (for example, compressed air) is blown onto the flat plate 13 through a nozzle (not shown).
  • gas for example, compressed air
  • the ultraviolet curable resin liquid 22 accumulated in the space 21 surrounded by the side surface 16 of each through slit 14 and the damming members 19 and 20 is irradiated with ultraviolet rays while maintaining the surface flatness of the ultraviolet curable resin liquid 22.
  • the surface flat layer 17 made of the cured ultraviolet curable resin liquid 22 is formed on the side surface 16 side of each through slit 14 provided in the flat plate 13.
  • the flat plate 13 taken out from the ultraviolet curable resin liquid is placed upright (the thickness direction of the flat plate 13 is changed).
  • the flat plate 13 may be supported by setting the direction so that each through slit 14 formed in the flat plate 13 is horizontal. Accordingly, the depth of the ultraviolet curable resin liquid 22 accumulated in the space 21 is kept substantially constant, the surface of the ultraviolet curable resin liquid 22 is leveled by the action of gravity, and the surface flatness is maintained.
  • Each through slit 14 does not have to be strictly horizontal, and when the depth of the ultraviolet curable resin liquid 22 accumulated in the space 21 is D and the length of the through slit 14 is L, each through slit 14
  • the angle ⁇ between the slit 14 and the horizontal direction may be set in a range of ⁇ (360 / 2 ⁇ ) tan ⁇ 1 (D / L) ⁇ ⁇ ⁇ (360 / 2 ⁇ ) tan ⁇ 1 (D / L). (The above is the second step).
  • the surface flat layer 17 is formed on the side surface 16 side of each through slit 14 provided on the flat plate 13, as shown in FIG. 3C, on both sides in the width direction of the side surface 16 of each through slit 14.
  • the damming members 19 and 20 arranged respectively are removed, and the planar reflecting portion 18 made of, for example, an aluminum vapor deposition layer is formed on the surface of the surface flat layer 17 by a metal vapor deposition method which is an example of mirror surface treatment.
  • the flat plate 13 is placed in a vacuum vessel (not shown), and the aluminum charged in the metal melting vessel installed in the vacuum vessel is heated and evaporated. The generated aluminum vapor is adhered to the surface of the surface flat layer 17.
  • a general heating method such as an electron beam, high frequency induction heating, or an electric heater can be used.
  • the flat plate 13 is moved in the vacuum container so that each through slit 14 passes at a constant speed above the metal melting container. Thereby, aluminum vapor can be uniformly attached to the surface of the surface flat layer 17 formed in each through slit 14.
  • the optical imaging apparatus 10 intersects a pair of light control panels 11 and 12 with a plane reflection unit 18 formed in a plurality of rows in parallel with the light control panels 11 and 12, respectively.
  • a plane reflection unit 18 formed in a plurality of rows in parallel with the light control panels 11 and 12, respectively.
  • the optical imaging apparatus 10 is configured to be close or in contact with each other in an orthogonal state. Since the surface flat layer 17 is formed so that the surface of the surface flat layer 17 is orthogonal to the surface of the flat plate 13, the flat reflecting portion 18 is formed on the surface of the flat plate 13, that is, the light control panels 11 and 12. The state becomes orthogonal.
  • the light emitted from the object M arranged on one side (the side not facing the light control panel 12) of the light control panel 11 constituting the optical imaging apparatus 10 is emitted from one side of the light control panel 11.
  • the incident light travels through the through slit 14 and is reflected at the point R 1 of the plane reflecting portion 18.
  • a part of the reflected light reflected at the point R 1 travels through the through slit 14 of the light control panel 11 and is emitted from the other side of the through slit 14, and from the one side of the light control panel 12 to the light control panel 12. Is incident obliquely into the through slit 14.
  • a part of the reflected light is reflected at the R 2 point of the planar reflecting portion 18 and travels through the through slit 14 of the light control panel 12 to pass through the slit. 14 from the other side.
  • the planar reflecting portion 18 formed in the through slit 14 of the light control panel 11 and the planar reflecting portion 18 formed in the through slit 14 of the light control panel 12 are arranged orthogonally, the light control is performed. Incident light that is obliquely incident into the through slit 14 from one side of the panel 11 and is reflected at the R 1 point of the planar reflecting portion 18, and R of the planar reflecting portion 18 that is formed in the through slit 14 of the light control panel 12. Reflected light that is reflected at two points and emitted to the outside from the other side of the through slit 14 of the light control panel 12 is parallel in plan view.
  • the reflected light continuously reflected by the planar reflection unit 18 of the light control panel 11 and the planar reflection unit 18 of the light control panel 12 is optically imaged.
  • the apparatus 10 is focused at a position symmetrical to the object M with the apparatus 10 interposed therebetween, and a stereoscopic image M ′ is generated at a position symmetrical to the object M with the optical imaging apparatus 10 interposed therebetween.
  • the thickness of the flat plate 13 is set in a range of 1 to 5 times (preferably 2 to 4 times) the distance between the flat reflecting portions 18. As a result, it is possible to increase the proportion of the light that has entered the through slit 14 and that passes through the light control panels 11 and 12 after being reflected by the planar reflecting portion 18 once. ) A three-dimensional image M ′ can be formed.
  • the thickness of the flat plate 13 exceeds five times the distance between the flat reflecting portions 18, the reflected light reflected once by the flat reflecting portion 18 is reflected by the other side end surface of the through slit 14, and 1 It is repeated that the light is incident again on the plane reflecting portion 18 where the second reflection occurs and is reflected, and a clear stereoscopic image cannot be obtained.
  • the thickness of the flat plate 13 is less than 1 times the distance between the flat reflecting portions 18, the light reflected by the flat reflecting portion 18 is reduced and a clear stereoscopic image cannot be obtained.
  • the plane plate 13 in which the through slits 14 are arranged in parallel is an isosceles trapezoid in plan view, and each through slit 14 and the center line P of the plane plate 13 are 45 degrees. Therefore, the center line of the manufactured light control panels 11 and 12 and the center line P of the flat plate 13 are the same. For this reason, in the paired light control panels 11 and 12, one light control panel 11 is rotated 180 degrees around the center line P (turned over), and each of the paired light control panels 11 and 12 corresponds.
  • the planar reflecting portions 18 formed on the light control panels 12 and 11 adjacent to each other in the vertical direction are in an orthogonal state, and the optical imaging apparatus 10 can be easily configured.
  • the through slit 14 is omitted in order to clearly show the arrangement relationship of the planar reflecting portions 18 of the light control panels 11 and 12 constituting the optical imaging apparatus 10.
  • the optical imaging device 10 in plan view has the same external shape as the light control panels 11 and 12 (the same isosceles trapezoidal shape as the light control panels 11 and 12). Is set to a value obtained by 90 ⁇ (180 / N), where N is an integer equal to or greater than 4, N optical imaging devices 10 are connected to the center line P (plane plate 13) of the optical imaging device 10. Are aligned on a plane so that the center line P of the optical line intersects at a single point, and a regular N-gonal optical imaging equipment 24 having a regular N-gonal hole 23 at the center is constructed. Yes (see FIG. 4). For this reason, if the spectator is positioned outside the regular N-angle optical imaging equipment 24, a large number of spectators can view a stereoscopic image displayed in the air at the same time.
  • the light shielding member 25 when the light shielding member 25 is inserted into the hole 23 and an object (not shown) is disposed on one side of the light shielding member 25, the light reflected from the object is reflected by the planar reflecting portion 18 of the light control panels 11 and 12. Without passing through the optical imaging equipment 24 (non-reflective passing light). Further, in the light from the object, the light is incident on the optical imaging equipment 24 (each optical imaging device 10) at a small incident angle, and is reflected only once by the planar reflecting portion 18 of the light control panels 11 and 12, and optically reflected. Light passing through the imaging equipment 24 can also be effectively blocked. Thereby, it is possible to suppress the appearance of a mirror image of the object due to the reflected light once reflected by the planar reflecting portion 18 of the light control panels 11 and 12 as a ghost or noise with respect to the stereoscopic image.
  • the proportion of the planar reflecting portions 18 that are orthogonal to each other on the center line P in plan view in the planar reflecting portions 18 of the light control panels 11 and 12 is improved. Therefore, the ratio of the light that is reflected only once by the planar reflecting portion 18 of the light control panels 11 and 12 and passes through the optical imaging equipment 24 can be relatively reduced.
  • the three-dimensional image can be brightened by focusing on the same place, and the appearance of the mirror image of the object can be suppressed.
  • the surface flat layer 17 is formed on one side surface 16 of the side surfaces 15 and 16 of the plurality of through slits 14 formed in parallel with the flat plate 13.
  • the surface of the surface flat layer 17 is mirror-finished to form a plane reflecting portion 18. For this reason, when each through slit 14 is formed, the processing accuracy (surface roughness) of the side surfaces 15 and 16 is not strongly restricted. Therefore, if a large-sized flat plate 13 is prepared, a long through slit is prepared. 14 can be formed, and the size of the optical imaging apparatus 10 can be easily increased.
  • the flat plate 13 is supported so that the through slit 14 is horizontal, and the lower side of each through slit 14 is formed so as to cover a part of the lower side of each through slit 14 formed in the supported flat plate 13.
  • weir members 19 and 20 are arranged in contact with each other along the longitudinal direction of the side surface 16 to form a light reflecting base material 13a.
  • the light reflecting base material 13a is made of an ultraviolet curable resin. After being immersed in the liquid and taken out, the light reflecting base material 13a is erected and supported so that the through slit 14 is horizontal, so that it is surrounded by the side surface 16 and the dam members 19 and 20.
  • the surface of the ultraviolet curable resin liquid 22 accumulated in the space 21 can be flattened by the action of gravity.
  • the surface flat layer 17 is formed by irradiating and curing the ultraviolet rays while maintaining the surface flatness of the surface of the ultraviolet curable resin liquid 22 accumulated in the space 21.
  • a surface flat layer 17 having a surface orthogonal to the side surface (surface) of the flat plate 13 can be simultaneously and rapidly formed on the side surface 16.
  • the planar reflecting portion 18 is formed by forming a metal vapor deposition layer of, for example, aluminum on the surface of the surface flat layer 17 using a metal vapor deposition method as a mirror surface treatment of the surface flat layer 17. For this reason, when the light control panels 11 and 12 are manufactured, the planar reflection unit 18 has a characteristic of reflecting light incident at the same incident angle at a right angle and orthogonal to the surfaces of the light control panels 11 and 12. Can be formed efficiently.
  • the light control panels 11 and 12 are isosceles trapezoidal in plan view, and the plane reflecting portion 18 of the light control panels 11 and 12 and the center line of the light control panels 11 and 12 intersect at an angle of 45 degrees. Therefore, one of the light control panels 11 and 12 is rotated 180 degrees around the center line (turned over), and the corresponding sides of the two light control panels 11 and 12 are connected to each other. If they are arranged close to or in contact with each other, the planar reflecting portions 18 formed on the light control panels 12 and 11 adjacent to each other in the vertical direction are in an orthogonal state, and the optical imaging apparatus 10 can be easily configured.
  • the paired light control panels 26 and 27 produced by this method have a linear penetration as compared with the paired light control panels 11 and 12 produced by the light control panel manufacturing method according to the first embodiment.
  • the flat plate 29 in which the slits 28 are formed in parallel is formed in a rectangular shape.
  • the third step of forming the plane reflecting portion 33 by applying a mirror finish to the surface of the surface flat layer 32 is the same as the first to third steps of the light control panel manufacturing method according to the first embodiment. For this reason, only the features of the flat plate 29 and the light control panels 26 and 27 resulting from the flat plate 29 will be described.
  • the flat plate 29 is made of, for example, an impermeable acrylic resin and is formed in a rectangular shape in plan view, and the longitudinal direction of each through slit 28 and the center line Q of the flat plate 29 (for example, the center of the flat plate 29). And the center line that passes through the bisector of the long side facing each other) at an angle of 45 degrees.
  • the length of one side of the flat plate 29 is, for example, 1000 to 10000 mm, and the thickness of the flat plate 29 is, for example, 1 to 50 mm.
  • the width of the through slit 28 formed in the flat plate 29 is, for example, 1 to 50 mm, and the distance between the through slits 28 (pitch of the through slit 28) is, for example, 1 to 50 mm.
  • the ratio of the thickness of the flat plate 29 to the distance between the through slits 28 is, for example, 0.3 to 3, and preferably 0.7 to 1.5.
  • the thickness of the flat plate 29 is set in a range of 0.1 to 10 times the distance between the flat reflecting portions 33.
  • the plane plate 29 formed with the through slits 28 arranged in parallel is rectangular in plan view, and each through slit 28 and the center line Q of the plane plate 29 intersect at an angle of 45 degrees.
  • the center line of the manufactured light control panels 26 and 27 and the center line Q of the flat plate 29 are the same. Therefore, of the light control panels 26 and 27, one of the light control panels 26 is rotated 180 degrees around the center line (turned over) so that the corresponding sides of the two light control panels 26 and 27 are aligned with each other.
  • the planar reflecting portions 33 formed on the light control panels 26 and 27 adjacent to each other in the vertical direction are in an orthogonal state, and the optical imaging device 34 can be easily configured.
  • a method for manufacturing a light control panel according to a third embodiment of the present invention will be described with reference to FIGS.
  • a light-shielding flat plate 37 in which a plurality of vertically long rectangular through slits 36 are arranged in parallel is prepared.
  • the through slit 36 in this case is processed by machining, laser processing, water jet or the like.
  • the flat plate 37 is preferably rectangular (for example, square), and the material is preferably opaque plastic or metal.
  • weir members 39 and 40 are vertically adjacent through slits 36, below the upper through slit 36 and above the lower through slit 36. It is provided so that a part may be covered from both sides.
  • the distance c (gap) between the top and bottom dam members 39 and 40 is in the range of, for example, 0.3 to 0.8 times the vertical distance (interval) h of the through slit 36.
  • the flat plate 37 is placed in a vertical state and immersed in the post-curing liquid A.
  • the post-curing liquid A in this case, molten glass, ultraviolet curable resin, plastic (which is opaque or transparent), molten metal, etc. are preferable (the same applies to the manufacturing methods of the first and second embodiments). ).
  • the flat plate 37 is pulled up from the post-curing type liquid A with the through slit 36 being horizontal and the post-curing type liquid A is cured, the surface (upper surface) of the post-curing type liquid A becomes horizontal. Thus, the surface flat layer 42 is formed.
  • the flat plate 37 is inverted upside down, and an appropriate amount of the second post-curing liquid B is filled into the container-like interior formed by the damming members 39 and 40.
  • the second post-curing liquid B is preferably made of an impermeable (or transparent) material having a melting point lower than that of the post-curing liquid A so as not to dissolve the post-curing liquid A. It is preferable to fill with post-curing liquid B.
  • Excess adhering post-curing liquid may be removed by blowing compressed gas or using mechanical means.
  • the second post-curing liquid B is cured to form the surface flat layer 43 having a flat upper surface.
  • the second post-curing liquid B may be, for example, an ultraviolet curable resin, molten glass, a molten thermoplastic resin, or a molten metal.
  • the surface flat layers 42 and 43 parallel to the both side walls of the through slit 36 are formed, and this surface is mirror-finished to form mirror surfaces 44 and 45 (see FIG. 6).
  • the height (interval) s of the mirror surfaces 44 and 45 is preferably 0.2 to 0.5 times the depth W of the through slit 36 (the width of the mirror surfaces 44 and 45, the thickness of the flat plate 37). . This makes it possible to obtain a brighter image by reflecting incident light to the mirror surfaces 44 and 45 an odd number of times (and a plurality of times).
  • the optical imaging device 49 is manufactured by bringing the optical imaging device 49 close to or in contact with each other.
  • the optical imaging device 49 may be used as it is, but as shown by a one-dot chain line in FIG. 6, the optical imaging device 49 is cut into an isosceles trapezoidal shape or a sector shape and combined to form another optical imaging device. May be.
  • the center line of the isosceles trapezoid is 40 to 50 degrees (for example, 45 degrees) with respect to the through slits 36 of the light control panels 46 and 47, as shown in FIG.
  • Another method for manufacturing the light control panel is to prepare an opaque block body having a thickness n times that of the flat plate described above, and to provide a plurality of through slits k parallel to the block body at predetermined intervals.
  • weir members j and f that partially cover the upper and lower through slits k are provided (see FIG. 7), and the through slits k are held so as to be horizontal so that the post-curing liquid x Immersion is performed to form a hardened layer (surface flat layer) g having a flat upper surface in a space formed by the damming members j and f.
  • the block body is turned upside down, and the second post-curing liquid y is put into the portion surrounded by the blocking members j and f to be cured, and a hardened layer (surface flat layer) r having a flat surface is formed.
  • a hardened layer (surface flat layer) r having a flat surface is formed.
  • the surface of the hardened layers g and r is mirror-finished to form mirror surfaces p and q facing in parallel.
  • a transparent resin (which may be glass) is filled between the mirror surfaces p and q, and the block body is thinly cut with a cutting device (for example, band saw) to form a plurality of planar materials.
  • a transparent adhesive and a thin plate with the same refractive index as that of the transparent adhesive can be pasted on this to produce a light control panel with a flat surface on which the slit can be seen.
  • An optical imaging device can be configured using the control panel.
  • the present invention has been described above with reference to the embodiments. However, the present invention is not limited to the configurations described in the above-described embodiments, and is within the scope of the matters described in the claims. Other possible embodiments and modifications are also included. Further, the present invention includes a combination of components included in the present embodiment and other embodiments and modifications.
  • the material of the flat plate may be ceramics (for example, fused quartz), and the post-curing liquid may be a low melting point molten glass (melting point is, for example, about 800 ° C.).
  • the material of the damming member is, for example, ceramics such as mullite and alumina, and in the third step, the molten glass accumulated in the space surrounded by the one side end surface of each through slit and the damming member is cooled. Then, a flat surface layer is formed by curing.
  • ceramics for the material of the flat plate and the surface flat layer the change in thermal expansion of the light control panel can be reduced, and a stable three-dimensional image can be formed even if temperature fluctuation occurs in the light control panel. Become.
  • the material of the flat plate may be a metal or ceramic
  • the post-curing liquid may be a molten thermoplastic resin (for example, polyethylene, polycarbonate, etc.) that exhibits fluidity by heating.
  • the material of the damming member is metal or ceramics
  • the thermoplastic resin accumulated in the space surrounded by the one side end surface of each through slit and the damming member is cooled and cured.
  • a surface flat layer is formed.
  • a thermosetting resin can be used instead of the thermoplastic resin.
  • the molten thermosetting resin is placed in a space covered on both sides by a damming member, and excess resin is added.
  • thermosetting resin is heated to be cured. Thereafter, a mirror surface treatment (for example, plating, vapor deposition) or the like is performed on the horizontal surface. Further, in the above embodiment, when the both sides of the post-curing liquid before curing become non-planar due to surface tension or the like, both sides of the flat plate may be machined to remove the non-planar portion.
  • the size and shape of the light control panel can be freely selected, and the size and shape can be arbitrarily selected according to the situation of the installation location of the optical imaging apparatus.
  • the light control panel can be a square of various sizes. , Rectangle, triangle, polygon, and circle.
  • the flat plate can be formed by stacking K (integer of 2 or more) flat plates.
  • the interval (pitch) between the through slits formed on each flat plate is 1 / K of the interval between the through slits formed on the flat plate.
  • the flat reflective portion may be formed on the other side end surface in the longitudinal direction of the through slit.
  • an object is arranged on one side of the paired light control panel (optical imaging device) and a three-dimensional image of the object is formed on the other side of the light control panel.
  • You may use the stereo image which becomes the basis of the stereo image to form.
  • a stereoscopic image see Japanese Patent Application Publication No. 2005-500578 that is directly displayed in a space (a physically deep space) in the display can be used as the image.
  • a light-transmitting substance may be filled in the through slit after the mirror finish.
  • the light-transmitting substance for example, an ultraviolet curable synthetic resin (for example, an acrylic resin) or the like can be used. Thereby, the strength of each light control panel can be improved.
  • a light control panel having parallel planar reflecting portions can be manufactured with high precision, and in particular, it can be widely used for manufacturing a large optical imaging apparatus. .
  • Optical imaging device 11, 12: Light control panel, 13: Planar plate, 13a: Light reflecting substrate, 14: Through slit, 15, 16: Side surface, 17: Surface flat layer, 18: Plane reflecting portion, 19, 20: Damping member, 21: space, 22: UV curable resin liquid, 23: hole, 24: optical imaging equipment, 25: light shielding member, 26, 27: light control panel, 28: through slit, 29 : Planar plate, 30, 31: Side surface, 32: Surface flat layer, 33: Planar reflecting portion, 34: Optical imaging device, 36: Through slit, 37: Planar plate, 38: Connecting portion, 39, 40: Damping Member, 42, 43: surface flat layer, 44, 45: mirror surface, 46, 47: light control panel, 49: optical imaging device, A: post-curing curable liquid, B: second post-curing curable liquid

Abstract

The purpose of the present invention is to provide a method for manufacturing optical control panels (11, 12) which are used for an optical imaging device (10) for forming a stereoscopic image of an object or an image in the air by reflecting the light emitted from the object or the image disposed on one side of the optical control panels to the other side. The method comprises: a first step of immersing in a post-curable liquid an optical reflection base material (13a) which comprises a flat plate (13) having penetrating slits (14) formed parallel to each other and dam members (19, 20) for covering a part of the lower portion of each penetrating slit (14) from both sides; a second step of releasing the optical reflection base material (13a) from immersion in the post-curable liquid and curing the post-curable liquid (22) pooled inside the dam members (19, 20) while maintaining the surface flatness thereof; and a third step of applying a mirror finish to the surface of the cured post-curable liquid (22).

Description

光制御パネルの製造方法Manufacturing method of light control panel
本発明は、空中に立体像を形成する光学結像装置に使用する光制御パネルの製造方法に関する。 The present invention relates to a method for manufacturing a light control panel used in an optical imaging apparatus that forms a stereoscopic image in the air.
従来、表示器内に形成される2次元画像から立体像を視認する装置や方法が提案されているが、立体像が視認できる視野が狭く、立体像を視認するためには特殊な眼鏡が必要になる等の問題を有している。
そこで、例えば特許文献1には、物体の立体像を空中に、大きさに制約がなく(例えば、物体と同一サイズで)手で触れること(実際は、実体が無いので、手はすり抜けてしまう)が可能な状態で表示する光結像装置に使用する光制御パネルの製造方法が開示されている。
Conventionally, an apparatus and a method for visually recognizing a stereoscopic image from a two-dimensional image formed in a display device have been proposed. However, a field of view for viewing a stereoscopic image is narrow, and special glasses are necessary for visually recognizing the stereoscopic image. It has the problem of becoming.
Therefore, for example, in Patent Document 1, a stereoscopic image of an object is touched with a hand in the air with no size restriction (for example, with the same size as the object) (in fact, there is no entity, so the hand slips through). A method for manufacturing a light control panel used in an optical imaging apparatus that displays images in a state where the image can be displayed is disclosed.
特開2011-175297号公報JP 2011-175297 A
しかしながら、特許文献1に記載の光制御パネルの製造方法では、金属反射面が一面に形成された一定厚みの透明合成樹脂板又はガラス板を、金属反射面が一方側に配置されるようにして、多数枚積層して積層体を作製する工程と、積層体を金属反射面に対して垂直な切り出し面が形成されるように切り出して光制御パネルを加工する工程と、2枚の光制御パネルのそれぞれの一面側を、各光制御パネル内に形成された金属反射面からなる平面光反射部を直交させて、向かい合わせに配置(例えば、密着配置)する工程とを有しているため、光制御パネルの作製は非常に煩雑となっている。
このため、例えば、平面視して矩形状の光制御パネルを作製する場合、光制御パネルの一辺の最大寸法が500~700mmの範囲であれば作製可能であるが、光制御パネルの一辺の寸法が1000mm以上(例えば最大寸法が5000~10000mmの範囲)になると作製が非常に困難となるという問題がある。
However, in the method for manufacturing a light control panel described in Patent Document 1, a transparent synthetic resin plate or glass plate having a certain thickness with a metal reflecting surface formed on one side is arranged so that the metal reflecting surface is arranged on one side. A step of stacking a large number of sheets to produce a laminated body, a step of cutting the laminated body so that a cut surface perpendicular to the metal reflecting surface is formed, and processing the light control panel, and two light control panels Each surface side of the optical control panel has a step of arranging the plane light reflecting portions formed of metal reflecting surfaces formed in the respective light control panels so as to be orthogonal to each other (for example, close contact arrangement), The production of the light control panel is very complicated.
For this reason, for example, when a rectangular light control panel is produced in plan view, it can be produced if the maximum dimension of one side of the light control panel is in the range of 500 to 700 mm. When the thickness is 1000 mm or more (for example, the maximum dimension is in the range of 5000 to 10000 mm), there is a problem that the production becomes very difficult.
本発明はかかる事情に鑑みてなされたもので、空中に表示された立体像を多数の観客が同時に見ることが可能な大型の光学結像装置に使用する光制御パネルの製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and provides a method for manufacturing a light control panel used in a large optical imaging apparatus capable of simultaneously viewing a stereoscopic image displayed in the air by a large number of spectators. With the goal.
前記目的に沿う第1の発明に係る光制御パネルの製造方法は、平面反射部が平行状態で複数列に亘ってそれぞれ設けられた対となる光制御パネルを、該対となる光制御パネルの前記平面反射部を交差させた状態で、近接又は当接配置し、前記対となる光制御パネルの一方側に配置された物体又は画像から放射された光を、前記対となる光制御パネルの他方側に向けて反射して収束させ、空中に前記物体又は前記画像の立体像を形成する光学結像装置に使用する前記光制御パネルの製造方法であって、
貫通スリットが並べて形成された平面板と、前記各貫通スリットの下側一部を両側から覆う堰止め部材とを有する光反射基材を、爾後硬化型液体に浸漬する第1工程と、
前記光反射基材を前記爾後硬化型液体の浸漬状態から解いて、前記堰止め部材内に溜まった前記爾後硬化型液体を、その表面平面性を維持しながら硬化させる第2工程と、
硬化した前記爾後硬化型液体の表面に鏡面処理を行う第3工程とを有している。
According to a first aspect of the present invention, there is provided a method for manufacturing a light control panel, comprising: a pair of light control panels each having a planar reflecting portion in a parallel state and provided over a plurality of rows; In a state where the plane reflecting portions are crossed, they are arranged close to or in contact with each other, and light emitted from an object or an image arranged on one side of the paired light control panel is transmitted to the paired light control panel. A method of manufacturing the light control panel for use in an optical imaging apparatus that reflects and converges toward the other side to form a solid image of the object or the image in the air,
A first step of immersing a light-reflecting substrate having a flat plate in which through slits are formed side by side, and a weir member that covers the lower part of each through slit from both sides in a post-curing liquid;
A second step in which the light-reflective substrate is released from the soaking state of the post-curing liquid, and the post-curing liquid that has accumulated in the damming member is cured while maintaining its surface flatness;
And a third step of performing a mirror surface treatment on the surface of the cured post-curing liquid.
また、前記目的に沿う第2の発明に係る光制御パネルの製造方法は、請求項1記載の光制御パネルの製造方法において、前記堰止め部材は前記貫通スリットの下側に位置する前記貫通スリットの上側一部を両側から覆う上下幅を有し、前記第2工程の後に、前記平面板を上下逆にした後、前記堰止め部材で囲まれた前記貫通スリットの下側に第2の爾後硬化型液体を注入して、その表面が水平になるようにして、前記第2の爾後硬化型液体を硬化させる工程Aを備え、この後に、前記第3工程で、それぞれ硬化した前記爾後硬化型液体及び前記第2の爾後硬化型液体の表面にそれぞれ前記鏡面処理を行い、前記貫通スリットの内部に対向する鏡面(即ち、第1、第2の鏡面)を形成している。 Moreover, the manufacturing method of the light control panel according to the second aspect of the present invention is the method of manufacturing a light control panel according to claim 1, wherein the damming member is located below the through slit. The upper plate has a vertical width that covers a part of the upper side from both sides, and after the second step, the plane plate is turned upside down, and then the second plate is placed under the through slit surrounded by the damming member. Injecting the curable liquid, and having the surface horizontal so as to cure the second post-curing liquid, the post-curing mold is cured in the third step. The mirror surface treatment is performed on the surface of the liquid and the second post-curing liquid to form mirror surfaces (that is, first and second mirror surfaces) facing the inside of the through slit.
第2の発明に係る光制御パネルの製造方法において、前記貫通スリットの内部に形成された前記対向する鏡面の間隔は、該対向する鏡面の幅の0.2~0.5倍の範囲にするのが好ましい。 In the method for manufacturing a light control panel according to the second aspect of the invention, the interval between the opposing mirror surfaces formed inside the through slit is in the range of 0.2 to 0.5 times the width of the opposing mirror surfaces. Is preferred.
以上の第1、第2の発明に係る光制御パネルの製造方法(以下、単に「本発明に係る光制御パネルの製造方法」という)において、前記爾後硬化型液体(及び第2の爾後硬化型液体)は紫外線硬化型樹脂であって、前記第2工程では、前記堰止め部材内に溜まった前記紫外線硬化型樹脂に紫外線を照射して硬化させることが好ましい。 In the manufacturing method of the light control panel according to the first and second inventions described above (hereinafter simply referred to as “the manufacturing method of the light control panel according to the present invention”), the post curing liquid (and the second post curing type) The liquid is an ultraviolet curable resin, and in the second step, the ultraviolet curable resin accumulated in the damming member is preferably irradiated with ultraviolet rays to be cured.
本発明に係る光制御パネルの製造方法において、前記爾後硬化型液体(及び第2の爾後硬化型液体)は溶融ガラスであって、前記第2工程では、前記堰止め部材内に溜まった前記溶融ガラスを冷却して硬化させることが好ましい。 In the method for manufacturing a light control panel according to the present invention, the post-curing curable liquid (and the second post-curing curable liquid) is molten glass, and in the second step, the molten material accumulated in the damming member. It is preferable to cool and harden the glass.
本発明に係る光制御パネルの製造方法において、前記爾後硬化型液体(及び第2の爾後硬化型液体)は溶融状態の熱可塑性樹脂であって、前記第2工程では、前記堰止め部材内に溜まった前記熱可塑性樹脂を冷却して硬化させることが好ましい。 In the method for manufacturing a light control panel according to the present invention, the post-curing curable liquid (and the second post-curing curable liquid) is a molten thermoplastic resin, and in the second step, in the damming member. The accumulated thermoplastic resin is preferably cooled and cured.
本発明に係る光制御パネルの製造方法において、前記鏡面処理は、金属蒸着法によって行うことができる。 In the method for manufacturing a light control panel according to the present invention, the mirror treatment can be performed by a metal vapor deposition method.
本発明に係る光制御パネルの製造方法において、前記貫通スリットが平行に並べて形成された前記対となる光制御パネルは、平面視してそれぞれ等脚台形であって、前記各光制御パネルの鏡面処理された面(即ち、鏡面)は、該各光制御パネルの中心線と45度の角度で交差していることが好ましい。 In the method for manufacturing a light control panel according to the present invention, the paired light control panels formed with the through slits arranged in parallel are each an isosceles trapezoid in a plan view, and are mirror surfaces of the light control panels. The treated surface (i.e., mirror surface) preferably intersects the center line of each light control panel at an angle of 45 degrees.
本発明に係る光制御パネルの製造方法において、更に前記貫通スリット内に光透過性を有する物質(例えば、爾後硬化型樹脂)を充填する第4工程を有しているのが好ましい。 The light control panel manufacturing method according to the present invention preferably further includes a fourth step of filling a light-transmitting substance (for example, post-curing resin) into the through slit.
第1の発明に係る光制御パネルの製造方法においては、平面板に並べて形成した各貫通スリットの下側に溜まった爾後硬化型液体をその表面平面性を維持しながら硬化させて、この表面を鏡面処理して平面反射部とするので、各貫通スリットの加工精度(表面粗度)に影響されずに、各貫通スリット内に、互いに平行となって、かつ各貫通スリットに向けて同一の入射角度で入射する光を同一の反射角度で反射する平面反射部を同時に形成することができる。 In the method for manufacturing a light control panel according to the first aspect of the present invention, the post-curing liquid that has accumulated under the through slits formed side by side on the flat plate is cured while maintaining its surface flatness, and this surface is Since it is mirror-finished to form a planar reflection part, it is not affected by the processing accuracy (surface roughness) of each through slit, and is parallel to each other and the same incident toward each through slit. It is possible to simultaneously form a planar reflection portion that reflects light incident at an angle at the same reflection angle.
そして、大きな寸法の平面板を準備すれば、長さの長い貫通スリットを形成することができるので、大型の光学結像装置に使用する光制御パネルを容易に製造することが可能になる。 If a plane plate having a large dimension is prepared, a long through slit can be formed, so that a light control panel used in a large optical imaging apparatus can be easily manufactured.
更に、第2の発明に係る光制御パネルの製造方法においては、以上に記載した効果の他、貫通スリットの両側の面に対向する鏡面を形成しているので、対向する鏡面に広い範囲から入射した光を複数回(かつ、奇数回)反射させて、より明るい像を形成できる。 Furthermore, in the method for manufacturing a light control panel according to the second invention, in addition to the effects described above, a mirror surface facing the surfaces on both sides of the through slit is formed, so that the light enters the facing mirror surface from a wide range. The bright light can be reflected a plurality of times (and odd times) to form a brighter image.
本発明に係る光制御パネルの製造方法において、爾後硬化型液体が紫外線硬化型樹脂であって、第2工程で、堰止め部材内に溜まった紫外線硬化型樹脂に紫外線を照射して硬化させる場合、爾後硬化型液体が溶融ガラスであって、第2工程で、堰止め部材内に溜まった溶融ガラスを冷却して硬化させる場合、また、爾後硬化型液体が溶融状態の熱可塑性樹脂であって、第2工程で、堰止め部材内に溜まった熱可塑性樹脂を冷却して硬化させる場合、爾後硬化型液体の表面平面性を維持しながら、容易に硬化させることができる。 In the method for manufacturing a light control panel according to the present invention, the post-curing liquid is an ultraviolet curable resin, and in the second step, the ultraviolet curable resin accumulated in the damming member is irradiated with ultraviolet rays to be cured. The post-curing liquid is molten glass, and when the molten glass accumulated in the damming member is cooled and cured in the second step, the post-curing liquid is a molten thermoplastic resin. In the second step, when the thermoplastic resin collected in the damming member is cooled and cured, it can be easily cured while maintaining the surface flatness of the post-curing liquid.
本発明に係る光制御パネルの製造方法において、鏡面処理を金属蒸着法によって行う場合、複数の平面反射部を効率的に形成することができる。 In the method for manufacturing a light control panel according to the present invention, when the mirror surface treatment is performed by a metal vapor deposition method, a plurality of planar reflection portions can be efficiently formed.
本発明に係る光制御パネルの製造方法において、貫通スリットが平行に並べて形成された対となる光制御パネルが、平面視してそれぞれ等脚台形であって、各光制御パネルの鏡面処理された面が、各光制御パネルの中心線と45度の角度で交差している場合、対となる光制御パネルのうち、一方の光制御パネルを中心線の周りで180度回転させて(裏返して)、各光制御パネルの対応する各辺同士を対向させて近接又は当接配置すると、上下に隣り合う光制御パネルにそれぞれ形成された平面反射部は直交状態となり、光学結像装置を容易に構成することができる。 In the method for manufacturing a light control panel according to the present invention, the paired light control panels formed by arranging the through slits in parallel are each an isosceles trapezoid in a plan view, and each light control panel is mirror-finished. When the plane intersects the center line of each light control panel at an angle of 45 degrees, one light control panel of the paired light control panels is rotated 180 degrees around the center line (turn over. ) When the corresponding sides of each light control panel are opposed to each other or in close proximity or in contact with each other, the plane reflecting portions formed on the light control panels adjacent to each other are in an orthogonal state, and the optical imaging device can be easily Can be configured.
本発明に係る光制御パネルの製造方法において、更に、貫通スリット内に光透過性を有する物質(例えば、プラスチック、ガラス)が充填されている場合、貫通スリット内に異物が侵入することを防止でき、異物による反射光の散乱による反射光量の低下を防止して、鮮明な立体像を得ることができると共に、光制御パネルのメンテナンスが容易になる。 In the method for manufacturing a light control panel according to the present invention, when the through slit is filled with a light-transmitting substance (for example, plastic or glass), foreign matter can be prevented from entering the through slit. In addition, it is possible to prevent a decrease in the amount of reflected light due to scattering of reflected light by a foreign object, thereby obtaining a clear stereoscopic image and facilitating maintenance of the light control panel.
本発明の第1の実施例に係る光制御パネルの製造方法により作製された光制御パネルを使用した光学結像装置の一部を示す斜視図である。It is a perspective view which shows a part of optical imaging device using the light control panel produced by the manufacturing method of the light control panel which concerns on 1st Example of this invention. 同光制御パネルの製造方法により作製された光制御パネルの平面図である。It is a top view of the light control panel produced by the manufacturing method of the same light control panel. (A)~(D)は同光制御パネルの製造方法の説明図である。(A)-(D) is explanatory drawing of the manufacturing method of the same light control panel. 同光制御パネルを用いた光学結像装置によって構成される光学結像設備の部分平面図である。It is a partial top view of the optical imaging installation comprised by the optical imaging device using the same light control panel. 本発明の第2の実施例に係る光制御パネルの製造方法により作製された光制御パネルを使用した光学結像装置の平面図である。It is a top view of the optical imaging device using the light control panel produced by the manufacturing method of the light control panel concerning the 2nd example of the present invention. (A)、(B)はそれぞれ本発明の第3の実施例に係る光制御パネルの製造方法により作製された光制御パネルを使用した光学結像装置の側面図と平面図である。(A) and (B) are respectively a side view and a plan view of an optical imaging apparatus using a light control panel manufactured by a method for manufacturing a light control panel according to a third embodiment of the present invention. 同製造方法の説明図である。It is explanatory drawing of the manufacturing method.
続いて、添付した図面を参照しつつ、本発明を具体化した実施例につき説明し、本発明の理解に供する。
本発明の第1の実施例に係る光制御パネルの製造方法は、図1、図2に示すように、物体Mから放射された光を一方側から入射させ、他方側の空中に向けて反射して収束させ、空中に物体Mの立体像M´を形成する光学結像装置10に使用される対となる光制御パネル11、12を製造する方法である。この光制御パネルの製造方法は、図3(A)~(D)に示すように、貫通スリット14が例えば平行に並べて形成された不透光性材料からなる平面板13と、各貫通スリット14の下側一部を両側から覆う堰止め部材19、20とを有する光反射基材(中間製品)13aを、爾後硬化型液体の一例である紫外線硬化型樹脂液に浸漬する第1工程と、光反射基材13aを紫外線硬化型樹脂液の浸漬状態から解いて、堰止め部材19、20内に溜まった紫外線硬化型樹脂液22を、その表面平面性を維持しながら硬化させる第2工程と、硬化した紫外線硬化型樹脂液22の表面に鏡面処理を行う第3工程とを有している。以下、詳細に説明する。
Subsequently, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
As shown in FIGS. 1 and 2, the light control panel manufacturing method according to the first embodiment of the present invention allows light emitted from an object M to be incident from one side and reflected toward the air on the other side. And a pair of light control panels 11 and 12 used in the optical imaging apparatus 10 that converges and forms a three-dimensional image M ′ of the object M in the air. As shown in FIGS. 3A to 3D, the light control panel manufacturing method includes a flat plate 13 made of a light-impermeable material in which through slits 14 are arranged in parallel, for example, and each through slit 14. A first step of immersing a light-reflecting base material (intermediate product) 13a having damming members 19 and 20 covering a part of the lower side from both sides in an ultraviolet curable resin liquid which is an example of a post-curing liquid; A second step in which the light-reflecting base material 13a is released from the immersion state of the ultraviolet curable resin liquid, and the ultraviolet curable resin liquid 22 accumulated in the damming members 19 and 20 is cured while maintaining its surface flatness; And a third step of performing a mirror surface treatment on the surface of the cured ultraviolet curable resin liquid 22. Details will be described below.
図3(A)に示すように、例えば、貫通スリット14が水平になるように方向を定めて平面板13を支持し、支持された平面板13に形成されている各貫通スリット14の両側面15、16の下側に配置される、例えば側面16の幅方向(平面板13に対しては厚さ方向)の両側に、側面16の長手方向に沿って堰止め部材19、20(例えば、アルミニウム製、又は合成樹脂製の帯状材)を、接着剤を介してそれぞれ当接配置して、貫通スリット14の下側一部を覆って、光反射基材13aを形成する。次いで、光反射基材13aを、槽内に貯留されている不透光性の紫外線硬化型樹脂液中に浸漬する(以上、第1工程)。 As shown in FIG. 3A, for example, the plane plate 13 is supported by setting the direction so that the through slit 14 is horizontal, and both side surfaces of each through slit 14 formed in the supported plane plate 13 For example, damming members 19 and 20 (e.g., along the longitudinal direction of the side surface 16 on both sides of the side surface 16 in the width direction (thickness direction with respect to the flat plate 13), for example, Aluminum or synthetic resin strips) are placed in contact with each other via an adhesive to cover the lower part of the through slit 14 to form the light reflecting base material 13a. Next, the light reflecting base material 13a is immersed in an opaque UV curable resin liquid stored in the tank (first step).
ここで、図2に示すように、貫通スリット14が平行に並べて形成された平面板13は、例えば、不透明のアクリル樹脂製(又はその他の樹脂、金属板)で、平面視して等脚台形に成形されており、各貫通スリット14の長手方向と平面板13の中心線Pとは45度の角度で交差している。そして、平面板13の上底部分の長さは、例えば100~2000mm、下底部分の長さは、例えば500~6000mm、及び高さは、例えば900~7500mmであり、平面板13の厚さは、例えば1~50mmである。 Here, as shown in FIG. 2, the flat plate 13 in which the through slits 14 are formed in parallel is made of, for example, an opaque acrylic resin (or other resin, metal plate), and isosceles trapezoidal in plan view. The longitudinal direction of each through slit 14 and the center line P of the flat plate 13 intersect at an angle of 45 degrees. The length of the upper bottom portion of the flat plate 13 is, for example, 100 to 2000 mm, the length of the lower bottom portion is, for example, 500 to 6000 mm, and the height is, for example, 900 to 7500 mm. Is, for example, 1 to 50 mm.
また、平面板13に形成する貫通スリット14の幅は、例えば1~50mm、貫通スリット14間の距離(貫通スリット14のピッチ)は、例えば1~50mmである。なお、貫通スリット14間の距離に対する平面板13の厚さの比は、例えば、0.3~5、より好好ましくは0.7~3である。ここで、貫通スリット14は機械加工、レーザー、ウォータジェット等によって形成され、表面が平滑な光反射面を形成していない。 Further, the width of the through slit 14 formed in the flat plate 13 is, for example, 1 to 50 mm, and the distance between the through slits 14 (pitch of the through slit 14) is, for example, 1 to 50 mm. The ratio of the thickness of the flat plate 13 to the distance between the through slits 14 is, for example, 0.3 to 5, more preferably 0.7 to 3. Here, the through slit 14 is formed by machining, laser, water jet or the like, and does not form a light reflecting surface with a smooth surface.
次いで、図3(B)に示すように、平面板13を紫外線硬化型樹脂液中から取り出し、平面板13に図示しないノズルを介してガス(例えば、圧縮空気)を吹き付けて、平面板13の周囲に付着した紫外線硬化型樹脂液を除去する。そして、各貫通スリット14の側面16と堰止め部材19、20で囲まれた空間21内に溜まった紫外線硬化型樹脂液22を、紫外線硬化型樹脂液22の表面平坦性を維持しながら、紫外線を照射して紫外線硬化型樹脂液22を硬化させる。これによって、平面板13に設けた各貫通スリット14の側面16側に、硬化した紫外線硬化型樹脂液22からなる表面平坦層17が形成される。 Next, as shown in FIG. 3B, the flat plate 13 is taken out from the ultraviolet curable resin liquid, and gas (for example, compressed air) is blown onto the flat plate 13 through a nozzle (not shown). Remove the UV curable resin liquid adhering to the surroundings. The ultraviolet curable resin liquid 22 accumulated in the space 21 surrounded by the side surface 16 of each through slit 14 and the damming members 19 and 20 is irradiated with ultraviolet rays while maintaining the surface flatness of the ultraviolet curable resin liquid 22. To cure the ultraviolet curable resin liquid 22. Thereby, the surface flat layer 17 made of the cured ultraviolet curable resin liquid 22 is formed on the side surface 16 side of each through slit 14 provided in the flat plate 13.
ここで、紫外線硬化型樹脂液22の表面平坦性を維持するには、例えば、紫外線硬化型樹脂液中から取り出した平面板13を、立設状態にすると共に(平面板13の厚さ方向を水平方向に一致させると共に)、平面板13に形成された各貫通スリット14が水平となるように方向を定めて平面板13を支持すればよい。これによって、空間21内に溜まった紫外線硬化型樹脂液22の深さを略一定に保って、紫外線硬化型樹脂液22の表面は重力の作用で水平となり、表面平坦性が維持される。なお、各貫通スリット14を、厳密に水平状態にする必要はなく、空間21内に溜まった紫外線硬化型樹脂液22の深さをD、貫通スリット14の長さをLとした場合、各貫通スリット14と水平方向とのなす角度θ度を、-(360/2π)tan-1(D/L)≦θ≦(360/2π)tan-1(D/L)の範囲に設定すればよい(以上、第2工程)。 Here, in order to maintain the surface flatness of the ultraviolet curable resin liquid 22, for example, the flat plate 13 taken out from the ultraviolet curable resin liquid is placed upright (the thickness direction of the flat plate 13 is changed). The flat plate 13 may be supported by setting the direction so that each through slit 14 formed in the flat plate 13 is horizontal. Accordingly, the depth of the ultraviolet curable resin liquid 22 accumulated in the space 21 is kept substantially constant, the surface of the ultraviolet curable resin liquid 22 is leveled by the action of gravity, and the surface flatness is maintained. Each through slit 14 does not have to be strictly horizontal, and when the depth of the ultraviolet curable resin liquid 22 accumulated in the space 21 is D and the length of the through slit 14 is L, each through slit 14 The angle θ between the slit 14 and the horizontal direction may be set in a range of − (360 / 2π) tan −1 (D / L) ≦ θ ≦ (360 / 2π) tan −1 (D / L). (The above is the second step).
そして、平面板13に設けた各貫通スリット14の側面16側に表面平坦層17が形成されると、図3(C)に示すように、各貫通スリット14の側面16の幅方向の両側にそれぞれ配置した堰止め部材19、20を取り外し、表面平坦層17の表面に鏡面処理の一例である金属蒸着法によって、例えば、アルミニウム蒸着層からなる平面反射部18を形成する。 When the surface flat layer 17 is formed on the side surface 16 side of each through slit 14 provided on the flat plate 13, as shown in FIG. 3C, on both sides in the width direction of the side surface 16 of each through slit 14. The damming members 19 and 20 arranged respectively are removed, and the planar reflecting portion 18 made of, for example, an aluminum vapor deposition layer is formed on the surface of the surface flat layer 17 by a metal vapor deposition method which is an example of mirror surface treatment.
ここで、表面平坦層17の表面にアルミニウム蒸着層を形成するには、平面板13を図示しない真空容器内に装入し、真空容器内に設置した金属溶融容器内に投入したアルミニウムを加熱蒸発させ、発生したアルミニウム蒸気を表面平坦層17の表面に付着させることにより行う。なお、アルミニウムの加熱には、電子ビーム、高周波誘導加熱、電気ヒータ等の一般的な加熱方法を利用できる。また、金属溶融容器の上方を各貫通スリット14が一定の速度で通過するように、平面板13を真空容器内で移動させる。これによって、各貫通スリット14内に形成した表面平坦層17の表面に、アルミニウム蒸気を一様に付着させることができる。 Here, in order to form an aluminum vapor deposition layer on the surface of the surface flat layer 17, the flat plate 13 is placed in a vacuum vessel (not shown), and the aluminum charged in the metal melting vessel installed in the vacuum vessel is heated and evaporated. The generated aluminum vapor is adhered to the surface of the surface flat layer 17. For heating aluminum, a general heating method such as an electron beam, high frequency induction heating, or an electric heater can be used. Further, the flat plate 13 is moved in the vacuum container so that each through slit 14 passes at a constant speed above the metal melting container. Thereby, aluminum vapor can be uniformly attached to the surface of the surface flat layer 17 formed in each through slit 14.
平面板13においては、表面平坦層17の表面以外の部位にもアルミニウム蒸気が付着することになるが、光制御パネル11、12の作用に悪影響を及ぼすことはない。なお、アルミニウム蒸着層を形成する際、平面板13の表面平坦層17を除いた部位にマスクを設けることにより、平面板13の表面平坦層17を除いた部位にアルミニウム蒸気が付着することを防止できる(以上、第3工程)。 In the flat plate 13, aluminum vapor adheres to portions other than the surface of the surface flat layer 17, but does not adversely affect the operation of the light control panels 11 and 12. In addition, when forming an aluminum vapor deposition layer, it prevents that aluminum vapor | steam adheres to the site | part except the surface flat layer 17 of the plane plate 13 by providing a mask in the site | part except the surface flat layer 17 of the plane plate 13. Yes (third step).
図1に示すように、光学結像装置10は、対となる光制御パネル11、12を、光制御パネル11、12にそれぞれ平行状態で複数列に亘って形成した平面反射部18を交差、例えば直交させた状態で近接又は当接配置して構成されている。表面平坦層17は、表面平坦層17の表面が平面板13の表面に直交する状態となるように形成されるので、平面反射部18は平面板13、即ち光制御パネル11、12の表面に直交する状態となる。 As shown in FIG. 1, the optical imaging apparatus 10 intersects a pair of light control panels 11 and 12 with a plane reflection unit 18 formed in a plurality of rows in parallel with the light control panels 11 and 12, respectively. For example, it is configured to be close or in contact with each other in an orthogonal state. Since the surface flat layer 17 is formed so that the surface of the surface flat layer 17 is orthogonal to the surface of the flat plate 13, the flat reflecting portion 18 is formed on the surface of the flat plate 13, that is, the light control panels 11 and 12. The state becomes orthogonal.
このため、光学結像装置10を構成している光制御パネル11の一方側(光制御パネル12と対向しない側)に配置した物体Mから放射された光が、光制御パネル11の一方側から貫通スリット14内に斜めに入射すると、入射した光は貫通スリット14内を進行し平面反射部18のR点で反射される。そして、R点で反射された反射光の一部は、光制御パネル11の貫通スリット14内を進行し貫通スリット14の他方側から放出され、光制御パネル12の一方側から光制御パネル12の貫通スリット14内に斜めに入射する。光制御パネル12の貫通スリット14内に進入した反射光の中で、一部の反射光は平面反射部18のR点で反射され、光制御パネル12の貫通スリット14内を進行し貫通スリット14の他方側から放出される。 For this reason, the light emitted from the object M arranged on one side (the side not facing the light control panel 12) of the light control panel 11 constituting the optical imaging apparatus 10 is emitted from one side of the light control panel 11. When the light is incident obliquely into the through slit 14, the incident light travels through the through slit 14 and is reflected at the point R 1 of the plane reflecting portion 18. A part of the reflected light reflected at the point R 1 travels through the through slit 14 of the light control panel 11 and is emitted from the other side of the through slit 14, and from the one side of the light control panel 12 to the light control panel 12. Is incident obliquely into the through slit 14. Among the reflected light that has entered the through slit 14 of the light control panel 12, a part of the reflected light is reflected at the R 2 point of the planar reflecting portion 18 and travels through the through slit 14 of the light control panel 12 to pass through the slit. 14 from the other side.
ここで、光制御パネル11の貫通スリット14内に形成した平面反射部18と、光制御パネル12の貫通スリット14内に形成した平面反射部18は、直交して配置されているので、光制御パネル11の一方側から貫通スリット14内に斜めに入射し平面反射部18のR点で反射される入射光と、光制御パネル12の貫通スリット14内に形成された平面反射部18のR点で反射されて光制御パネル12の貫通スリット14の他方側から外部に放出される反射光とは、平面視して平行になる。従って、物体Mから光学結像装置10に入射した光の中で、光制御パネル11の平面反射部18と光制御パネル12の平面反射部18で連続して反射した反射光は、光学結像装置10を挟んで物体Mと対称位置に集束し、光学結像装置10を挟んで物体Mと対称位置に立体像M´が生成する。 Here, since the planar reflecting portion 18 formed in the through slit 14 of the light control panel 11 and the planar reflecting portion 18 formed in the through slit 14 of the light control panel 12 are arranged orthogonally, the light control is performed. Incident light that is obliquely incident into the through slit 14 from one side of the panel 11 and is reflected at the R 1 point of the planar reflecting portion 18, and R of the planar reflecting portion 18 that is formed in the through slit 14 of the light control panel 12. Reflected light that is reflected at two points and emitted to the outside from the other side of the through slit 14 of the light control panel 12 is parallel in plan view. Therefore, in the light incident on the optical imaging device 10 from the object M, the reflected light continuously reflected by the planar reflection unit 18 of the light control panel 11 and the planar reflection unit 18 of the light control panel 12 is optically imaged. The apparatus 10 is focused at a position symmetrical to the object M with the apparatus 10 interposed therebetween, and a stereoscopic image M ′ is generated at a position symmetrical to the object M with the optical imaging apparatus 10 interposed therebetween.
また、平面板13の厚さは、平面反射部18間の距離の、1~5倍(好ましくは、2~4倍)の範囲に設定している。これによって、貫通スリット14内に入射した光の中で、平面反射部18で1回ずつ反射して光制御パネル11、12を通過する光の割合を増加させることができ、鮮明な(精細な)立体像M´を形成することができる。なお、平面板13の厚さが、平面反射部18間の距離の5倍を超えると、平面反射部18で1回反射した反射光が貫通スリット14の他方の側端面で反射されて、1回目の反射が生じた平面反射部18に再入射して反射されることが繰り返され、鮮明な立体像が得られない。一方、平面板13の厚さが、平面反射部18間の距離の1倍未満の場合、平面反射部18で反射される光が少なくなって鮮明な立体像が得られない。 The thickness of the flat plate 13 is set in a range of 1 to 5 times (preferably 2 to 4 times) the distance between the flat reflecting portions 18. As a result, it is possible to increase the proportion of the light that has entered the through slit 14 and that passes through the light control panels 11 and 12 after being reflected by the planar reflecting portion 18 once. ) A three-dimensional image M ′ can be formed. When the thickness of the flat plate 13 exceeds five times the distance between the flat reflecting portions 18, the reflected light reflected once by the flat reflecting portion 18 is reflected by the other side end surface of the through slit 14, and 1 It is repeated that the light is incident again on the plane reflecting portion 18 where the second reflection occurs and is reflected, and a clear stereoscopic image cannot be obtained. On the other hand, when the thickness of the flat plate 13 is less than 1 times the distance between the flat reflecting portions 18, the light reflected by the flat reflecting portion 18 is reduced and a clear stereoscopic image cannot be obtained.
更に、図2に示すように、貫通スリット14が平行に並べて形成された平面板13が平面視して等脚台形であって、各貫通スリット14と平面板13の中心線Pとは45度の角度で交差しているので、製造した光制御パネル11、12の中心線と平面板13の中心線Pは同一となる。このため、対となる光制御パネル11、12において、一方の光制御パネル11を中心線Pの周りで180度回転させて(裏返して)、対となる光制御パネル11、12の対応する各辺同士を対向させて近接又は当接配置すると、上下に隣り合う光制御パネル12、11にそれぞれ形成された平面反射部18は直交状態となり、光学結像装置10を容易に構成することができる。
なお、図4では、光学結像装置10を構成する光制御パネル11、12の平面反射部18の配置関係を明示するため、貫通スリット14は省略している。
Further, as shown in FIG. 2, the plane plate 13 in which the through slits 14 are arranged in parallel is an isosceles trapezoid in plan view, and each through slit 14 and the center line P of the plane plate 13 are 45 degrees. Therefore, the center line of the manufactured light control panels 11 and 12 and the center line P of the flat plate 13 are the same. For this reason, in the paired light control panels 11 and 12, one light control panel 11 is rotated 180 degrees around the center line P (turned over), and each of the paired light control panels 11 and 12 corresponds. When the sides are arranged close to each other or in contact with each other, the planar reflecting portions 18 formed on the light control panels 12 and 11 adjacent to each other in the vertical direction are in an orthogonal state, and the optical imaging apparatus 10 can be easily configured. .
In FIG. 4, the through slit 14 is omitted in order to clearly show the arrangement relationship of the planar reflecting portions 18 of the light control panels 11 and 12 constituting the optical imaging apparatus 10.
ここで、平面視した光学結像装置10は、光制御パネル11、12と同一外形(光制御パネル11、12と同一の等脚台形)となるので、光学結像装置10の下底と斜辺のなす角度を、Nを4以上の整数として90-(180/N)で求められる値に設定すると、N個の光学結像装置10を、光学結像装置10の中心線P(平面板13の中心線Pと同じ)が1点で交わるように平面上で並べて、中央部に正N角形の孔23を備えた、平面視して正N角形の光学結像設備24を構築することができる(図4参照)。このため、観客が、正N角形の光学結像設備24の外側に位置するようにすると、空中に表示された立体像を多数の観客が同時に見ることが可能になる。 Here, the optical imaging device 10 in plan view has the same external shape as the light control panels 11 and 12 (the same isosceles trapezoidal shape as the light control panels 11 and 12). Is set to a value obtained by 90− (180 / N), where N is an integer equal to or greater than 4, N optical imaging devices 10 are connected to the center line P (plane plate 13) of the optical imaging device 10. Are aligned on a plane so that the center line P of the optical line intersects at a single point, and a regular N-gonal optical imaging equipment 24 having a regular N-gonal hole 23 at the center is constructed. Yes (see FIG. 4). For this reason, if the spectator is positioned outside the regular N-angle optical imaging equipment 24, a large number of spectators can view a stereoscopic image displayed in the air at the same time.
そして、孔23に遮光部材25を嵌入し、物体(図示せず)を遮光部材25の一方側に配置すると、物体からの光の中で、光制御パネル11、12の平面反射部18で反射せずに光学結像設備24を通過する光(無反射の通過光)を遮断することができる。また、物体からの光の中で、光学結像設備24(各光学結像装置10)に小さな入射角度で入射して光制御パネル11、12の平面反射部18で1回だけ反射して光学結像設備24を通過する光も効率的に遮断することができる。これによって、光制御パネル11、12の平面反射部18で1回反射した反射光による物体の鏡像が、立体像に対してゴースト又はノイズとして出現するのを抑制することができる。 Then, when the light shielding member 25 is inserted into the hole 23 and an object (not shown) is disposed on one side of the light shielding member 25, the light reflected from the object is reflected by the planar reflecting portion 18 of the light control panels 11 and 12. Without passing through the optical imaging equipment 24 (non-reflective passing light). Further, in the light from the object, the light is incident on the optical imaging equipment 24 (each optical imaging device 10) at a small incident angle, and is reflected only once by the planar reflecting portion 18 of the light control panels 11 and 12, and optically reflected. Light passing through the imaging equipment 24 can also be effectively blocked. Thereby, it is possible to suppress the appearance of a mirror image of the object due to the reflected light once reflected by the planar reflecting portion 18 of the light control panels 11 and 12 as a ghost or noise with respect to the stereoscopic image.
なお、光学結像設備24においては、Nが大きいほど、光制御パネル11、12の平面反射部18の中で、平面視して中心線P上で直交する平面反射部18の割合が向上するので、光制御パネル11、12の平面反射部18で1回だけ反射して光学結像設備24を通過する光の割合を相対的に減少させることができ、N個の光学結像装置10で、同一箇所に結像させ、立体像を明るくすることができると共に、物体の鏡像の出現を抑制することができる。 In the optical imaging equipment 24, as N increases, the proportion of the planar reflecting portions 18 that are orthogonal to each other on the center line P in plan view in the planar reflecting portions 18 of the light control panels 11 and 12 is improved. Therefore, the ratio of the light that is reflected only once by the planar reflecting portion 18 of the light control panels 11 and 12 and passes through the optical imaging equipment 24 can be relatively reduced. The three-dimensional image can be brightened by focusing on the same place, and the appearance of the mirror image of the object can be suppressed.
続いて、本実施例に係る光制御パネルの製造方法の作用について説明する。
本実施例に係る光制御パネルの製造方法では、平面板13に平行に並べて形成した複数の貫通スリット14の両側面15、16の一方の側面16の上に表面平坦層17を形成し、この表面平坦層17の表面を鏡面処理して平面反射部18としている。このため、各貫通スリット14を形成する際に、側面15、16の加工精度(表面粗度)の制約を強く受けないため、大きな寸法の平面板13を準備すれば、長さの長い貫通スリット14を形成することができ、光学結像装置10の大型化を容易に行うことができる。
Then, the effect | action of the manufacturing method of the light control panel based on a present Example is demonstrated.
In the method of manufacturing the light control panel according to the present embodiment, the surface flat layer 17 is formed on one side surface 16 of the side surfaces 15 and 16 of the plurality of through slits 14 formed in parallel with the flat plate 13. The surface of the surface flat layer 17 is mirror-finished to form a plane reflecting portion 18. For this reason, when each through slit 14 is formed, the processing accuracy (surface roughness) of the side surfaces 15 and 16 is not strongly restricted. Therefore, if a large-sized flat plate 13 is prepared, a long through slit is prepared. 14 can be formed, and the size of the optical imaging apparatus 10 can be easily increased.
そして、貫通スリット14が水平になるように平面板13を支持し、支持した平面板13に形成されている各貫通スリット14の下側一部を覆うように、各貫通スリット14の下側に配置される側面16の両側に、側面16の長手方向に沿って堰止め部材19、20をそれぞれ当接配置して光反射基材13aを形成し、この光反射基材13aを紫外線硬化型樹脂液中に浸漬して取り出した後、光反射基材13aを立設状態で、しかも、貫通スリット14が水平になるように支持することにより、側面16と堰止め部材19、20で囲まれた空間21内に溜まった紫外線硬化型樹脂液22の表面を、重力の作用で平坦にすることができる。そして、表面平坦層17の形成は、空間21内に溜まった紫外線硬化型樹脂液22の表面の表面平坦性を維持しながら、紫外線を照射して硬化させることにより行うので、各貫通スリット14の側面16の上に、平面板13の側面(表面)に対して直交する表面を備えた表面平坦層17を同時に、かつ迅速に形成することができる。 Then, the flat plate 13 is supported so that the through slit 14 is horizontal, and the lower side of each through slit 14 is formed so as to cover a part of the lower side of each through slit 14 formed in the supported flat plate 13. On both sides of the side surface 16 to be disposed, weir members 19 and 20 are arranged in contact with each other along the longitudinal direction of the side surface 16 to form a light reflecting base material 13a. The light reflecting base material 13a is made of an ultraviolet curable resin. After being immersed in the liquid and taken out, the light reflecting base material 13a is erected and supported so that the through slit 14 is horizontal, so that it is surrounded by the side surface 16 and the dam members 19 and 20. The surface of the ultraviolet curable resin liquid 22 accumulated in the space 21 can be flattened by the action of gravity. The surface flat layer 17 is formed by irradiating and curing the ultraviolet rays while maintaining the surface flatness of the surface of the ultraviolet curable resin liquid 22 accumulated in the space 21. A surface flat layer 17 having a surface orthogonal to the side surface (surface) of the flat plate 13 can be simultaneously and rapidly formed on the side surface 16.
更に、平面反射部18の形成は、表面平坦層17の鏡面処理として、表面平坦層17の表面に金属蒸着法を用いて、例えばアルミニウムの金属蒸着層を形成することにより行う。このため、光制御パネル11、12を作製する際、光制御パネル11、12の表面に直交し、かつ同一の入射角度で入射する光を同一の反射角度で反射する特性を有する平面反射部18を効率的に形成することができる。 Further, the planar reflecting portion 18 is formed by forming a metal vapor deposition layer of, for example, aluminum on the surface of the surface flat layer 17 using a metal vapor deposition method as a mirror surface treatment of the surface flat layer 17. For this reason, when the light control panels 11 and 12 are manufactured, the planar reflection unit 18 has a characteristic of reflecting light incident at the same incident angle at a right angle and orthogonal to the surfaces of the light control panels 11 and 12. Can be formed efficiently.
そして、光制御パネル11、12が平面視して等脚台形であって、光制御パネル11、12の平面反射部18と光制御パネル11、12の中心線とは45度の角度で交差しているので、光制御パネル11、12のうち、一方の光制御パネル11を中心線の周りで180度回転させて(裏返して)、2枚の光制御パネル11、12の対応する各辺同士を対向させて近接又は当接配置すると、上下に隣り合う光制御パネル12、11にそれぞれ形成された平面反射部18は直交状態となり、光学結像装置10を容易に構成することができる。 The light control panels 11 and 12 are isosceles trapezoidal in plan view, and the plane reflecting portion 18 of the light control panels 11 and 12 and the center line of the light control panels 11 and 12 intersect at an angle of 45 degrees. Therefore, one of the light control panels 11 and 12 is rotated 180 degrees around the center line (turned over), and the corresponding sides of the two light control panels 11 and 12 are connected to each other. If they are arranged close to or in contact with each other, the planar reflecting portions 18 formed on the light control panels 12 and 11 adjacent to each other in the vertical direction are in an orthogonal state, and the optical imaging apparatus 10 can be easily configured.
次に、図5に示すように、本発明の第2の実施例に係る光制御パネルの製造方法について説明する。
この方法によって作製した対となる光制御パネル26、27は、第1の実施例に係る光制御パネルの製造方法により作製した対となる光制御パネル11、12と比較して、直線状の貫通スリット28が平行に並べて形成される平面板29の形状を矩形にしたことが特徴となっている。
Next, as shown in FIG. 5, a method for manufacturing a light control panel according to the second embodiment of the present invention will be described.
The paired light control panels 26 and 27 produced by this method have a linear penetration as compared with the paired light control panels 11 and 12 produced by the light control panel manufacturing method according to the first embodiment. The flat plate 29 in which the slits 28 are formed in parallel is formed in a rectangular shape.
そして、平面板29に平行に並べて設けられた直線状の複数の貫通スリット28の両側面30、31の一方、例えば側面31の上に表面平坦層32を形成する第1及び第2工程と、表面平坦層32の表面に鏡面処理を施して平面反射部33を形成する第3工程は、第1の実施例に係る光制御パネルの製造方法の第1~第3工程とそれぞれ同一である。このため、平面板29と、平面板29に起因した光制御パネル26、27の特徴についてのみ説明する。 And the 1st and 2nd process of forming the surface flat layer 32 on one of the both side surfaces 30, 31 of the plurality of linear through slits 28 provided in parallel with the flat plate 29, for example, the side surface, The third step of forming the plane reflecting portion 33 by applying a mirror finish to the surface of the surface flat layer 32 is the same as the first to third steps of the light control panel manufacturing method according to the first embodiment. For this reason, only the features of the flat plate 29 and the light control panels 26 and 27 resulting from the flat plate 29 will be described.
平面板29は、例えば、不透性のアクリル樹脂製で、平面視して矩形に成形されており、各貫通スリット28の長手方向と平面板29の中心線Q(例えば、平面板29の中心と対向する長辺の二等分点をそれぞれ通過する中心線)とは45度の角度で交差している。そして、平面板29の一辺の長さは、例えば1000~10000mm、平面板29の厚さは、例えば1~50mmである。 The flat plate 29 is made of, for example, an impermeable acrylic resin and is formed in a rectangular shape in plan view, and the longitudinal direction of each through slit 28 and the center line Q of the flat plate 29 (for example, the center of the flat plate 29). And the center line that passes through the bisector of the long side facing each other) at an angle of 45 degrees. The length of one side of the flat plate 29 is, for example, 1000 to 10000 mm, and the thickness of the flat plate 29 is, for example, 1 to 50 mm.
また、平面板29に形成する貫通スリット28の幅は、例えば1~50mm、貫通スリット28間の距離(貫通スリット28のピッチ)は、例えば1~50mmである。なお、貫通スリット28間の距離に対する平面板29の厚さの比は、例えば、0.3~3であり、好ましくは0.7~1.5である。また、平面板29の厚さは平面反射部33間の距離の0.1~10倍の範囲に設定する。 Further, the width of the through slit 28 formed in the flat plate 29 is, for example, 1 to 50 mm, and the distance between the through slits 28 (pitch of the through slit 28) is, for example, 1 to 50 mm. Note that the ratio of the thickness of the flat plate 29 to the distance between the through slits 28 is, for example, 0.3 to 3, and preferably 0.7 to 1.5. Further, the thickness of the flat plate 29 is set in a range of 0.1 to 10 times the distance between the flat reflecting portions 33.
また、貫通スリット28が平行に並べて形成された平面板29が平面視して矩形であって、各貫通スリット28と平面板29の中心線Qとは45度の角度で交差しているので、製造した光制御パネル26、27の中心線と平面板29の中心線Qは同一となる。このため、光制御パネル26、27のうち、一方の光制御パネル26を中心線の回りで180度回転させて(裏返して)、2枚の光制御パネル26、27の対応する各辺同士を対向させて近接又は当接配置すると、上下に隣り合う光制御パネル26、27にそれぞれ形成された平面反射部33は直交状態となり、光学結像装置34を容易に構成することができる。 In addition, the plane plate 29 formed with the through slits 28 arranged in parallel is rectangular in plan view, and each through slit 28 and the center line Q of the plane plate 29 intersect at an angle of 45 degrees. The center line of the manufactured light control panels 26 and 27 and the center line Q of the flat plate 29 are the same. Therefore, of the light control panels 26 and 27, one of the light control panels 26 is rotated 180 degrees around the center line (turned over) so that the corresponding sides of the two light control panels 26 and 27 are aligned with each other. When placed close to each other or in contact with each other, the planar reflecting portions 33 formed on the light control panels 26 and 27 adjacent to each other in the vertical direction are in an orthogonal state, and the optical imaging device 34 can be easily configured.
続いて、図6、図7を参照しながら、本発明の第3の実施例に係る光制御パネルの製造方法について説明する。
図6に示すように、複数の縦長長方形の貫通スリット36が平行に配置された遮光性を有する平面板37を用意する。この場合の貫通スリット36は機械加工、レーザー加工、ウォータジェット等で加工される。この実施例では、平面板37は矩形(例えば、正方形)となって、材料は不透光性のプラスチック、又は金属であるのが好ましい。
Subsequently, a method for manufacturing a light control panel according to a third embodiment of the present invention will be described with reference to FIGS.
As shown in FIG. 6, a light-shielding flat plate 37 in which a plurality of vertically long rectangular through slits 36 are arranged in parallel is prepared. The through slit 36 in this case is processed by machining, laser processing, water jet or the like. In this embodiment, the flat plate 37 is preferably rectangular (for example, square), and the material is preferably opaque plastic or metal.
この貫通スリット36の中間にある連結部38の前後両側には堰止め部材39、40が上下に隣り合う貫通スリット36で、上側の貫通スリット36の下側及び下側の貫通スリット36の上側の一部を両側から覆うように設けられている。上下に隣り合う堰止め部材39、40の間隔c(隙間)は、貫通スリット36の上下の距離(間隔)hの例えば0.3~0.8倍の範囲にある。この状態で、平板37を垂直状態にして、爾後硬化型液体A内に浸漬する。この場合の爾後硬化型液体Aとして、溶融ガラス、紫外線硬化型樹脂、プラスチック(これらは不透光性又は透明)、溶融金属等がよい(第1、第2の実施例の製造方法においても同じ)。 On both front and rear sides of the connecting portion 38 in the middle of the through slit 36, weir members 39 and 40 are vertically adjacent through slits 36, below the upper through slit 36 and above the lower through slit 36. It is provided so that a part may be covered from both sides. The distance c (gap) between the top and bottom dam members 39 and 40 is in the range of, for example, 0.3 to 0.8 times the vertical distance (interval) h of the through slit 36. In this state, the flat plate 37 is placed in a vertical state and immersed in the post-curing liquid A. As the post-curing liquid A in this case, molten glass, ultraviolet curable resin, plastic (which is opaque or transparent), molten metal, etc. are preferable (the same applies to the manufacturing methods of the first and second embodiments). ).
この後、貫通スリット36を水平にした状態で、爾後硬化型液体Aから平面板37を引き上げて、爾後硬化型液体Aを硬化させると、爾後硬化型液体Aの表面(上面)が水平となって表面平坦層42が形成される。
この状態で、平面板37を上下逆に倒立させて、堰止め部材39、40によって形成される容器状の内部に第2の爾後硬化型液体Bを適当量充填する。第2の爾後硬化型液体Bは、好ましくは、爾後硬化型液体Aより融点の低い不透性(又は透明)の材料を用いて、爾後硬化型液体Aを溶かさないようにして、第2の爾後硬化型液体Bを充填するのがよい。余分に付着した爾後硬化型液体は圧縮ガスを吹き付けて、又は機械的手段を用いて除去してもよい。これによって、第2の爾後硬化型液体Bが硬化して上面が平面性を有する表面平坦層43が形成される。ここで、第2の爾後硬化型液体Bは例えば、紫外線硬化型樹脂、溶融ガラス、溶融状態の熱可塑性樹脂、溶融金属でもよい。
Thereafter, when the flat plate 37 is pulled up from the post-curing type liquid A with the through slit 36 being horizontal and the post-curing type liquid A is cured, the surface (upper surface) of the post-curing type liquid A becomes horizontal. Thus, the surface flat layer 42 is formed.
In this state, the flat plate 37 is inverted upside down, and an appropriate amount of the second post-curing liquid B is filled into the container-like interior formed by the damming members 39 and 40. The second post-curing liquid B is preferably made of an impermeable (or transparent) material having a melting point lower than that of the post-curing liquid A so as not to dissolve the post-curing liquid A. It is preferable to fill with post-curing liquid B. Excess adhering post-curing liquid may be removed by blowing compressed gas or using mechanical means. As a result, the second post-curing liquid B is cured to form the surface flat layer 43 having a flat upper surface. Here, the second post-curing liquid B may be, for example, an ultraviolet curable resin, molten glass, a molten thermoplastic resin, or a molten metal.
以上の作業により、貫通スリット36の両側壁に平行な表面平坦層42、43が形成されるので、この面を鏡面処理し、鏡面44、45(図6参照)を形成する。このとき、堰止め部材39、40は除去するのが好ましい。この鏡面44、45の高さ(間隔)sは、貫通スリット36の深さW(鏡面44、45の幅、平面板37の厚み)の例えば0.2~0.5倍とするのがよい。これによって、入射光が鏡面44、45に奇数回(かつ複数回)反射してより明るい像を得ることも可能となる。
このように各貫通スリット36の対向する面が鏡面44、45となった光制御パネル46、47を一組用意し、それぞれの貫通スリット36が直交するようにして、光制御パネル46、47を近接又は当接させて、光学結像装置49を造る。
By the above operation, the surface flat layers 42 and 43 parallel to the both side walls of the through slit 36 are formed, and this surface is mirror-finished to form mirror surfaces 44 and 45 (see FIG. 6). At this time, it is preferable to remove the blocking members 39 and 40. The height (interval) s of the mirror surfaces 44 and 45 is preferably 0.2 to 0.5 times the depth W of the through slit 36 (the width of the mirror surfaces 44 and 45, the thickness of the flat plate 37). . This makes it possible to obtain a brighter image by reflecting incident light to the mirror surfaces 44 and 45 an odd number of times (and a plurality of times).
In this way, a set of light control panels 46 and 47 in which the opposing surfaces of the through slits 36 are mirror surfaces 44 and 45 are prepared, and the light control panels 46 and 47 are arranged so that the through slits 36 are orthogonal to each other. The optical imaging device 49 is manufactured by bringing the optical imaging device 49 close to or in contact with each other.
そして、この光学結像装置49はそのまま使用してもよいが、図6の1点鎖線で示すように、等脚台形又は扇形に切断して、組み合わせて、別の光学結像装置を構成してもよい。この場合の等脚台形の中心線は、図6に示すように、光制御パネル46、47の各貫通スリット36に対して40~50度(例えば45度)にする。ここで、鏡面44、45間には透明樹脂、ガラス等を配置するのが好ましい。 The optical imaging device 49 may be used as it is, but as shown by a one-dot chain line in FIG. 6, the optical imaging device 49 is cut into an isosceles trapezoidal shape or a sector shape and combined to form another optical imaging device. May be. In this case, the center line of the isosceles trapezoid is 40 to 50 degrees (for example, 45 degrees) with respect to the through slits 36 of the light control panels 46 and 47, as shown in FIG. Here, it is preferable to arrange a transparent resin, glass or the like between the mirror surfaces 44 and 45.
また、別の光制御パネルの製造方法は、以上に説明した平面板のn倍の厚みの不透明のブロック体を用意し、このブロック体に平行な貫通スリットkを所定間隔で複数設け、貫通スリットkの両開放側に、上下の貫通スリットkを部分的に覆う堰止め部材j、fを設け(図7参照)、貫通スリットkが水平になるように保持して、爾後硬化型液体xに浸漬し、堰止め部材j、fによって形成される空間に上面が平坦な硬化層(表面平坦層)gを形成する。 Another method for manufacturing the light control panel is to prepare an opaque block body having a thickness n times that of the flat plate described above, and to provide a plurality of through slits k parallel to the block body at predetermined intervals. On both open sides of k, weir members j and f that partially cover the upper and lower through slits k are provided (see FIG. 7), and the through slits k are held so as to be horizontal so that the post-curing liquid x Immersion is performed to form a hardened layer (surface flat layer) g having a flat upper surface in a space formed by the damming members j and f.
この後、このブロック体を上下逆にして、堰止め部材j、fで囲まれる部分に第2の爾後硬化型液体yを入れて硬化させ、表面が平坦な硬化層(表面平坦層)rを形成する。次に、硬化層g、r表面に鏡面処理を行い、平行に対向する鏡面p、qを形成する。鏡面p、qの間には、透明樹脂(ガラスでもよい)を充填し、このブロック体を切断装置(例えば、バンドソウ)等で薄く切断し、複数の平面素材を造る。この上に透明接着剤と、この透明接着剤と同一の屈折率の薄板を貼り付けて、平面素材のスリットが見える面を平面とした光制御パネルが製造できるので、このうちの2枚の光制御パネルを用いて、光学結像装置が構成できる。 Thereafter, the block body is turned upside down, and the second post-curing liquid y is put into the portion surrounded by the blocking members j and f to be cured, and a hardened layer (surface flat layer) r having a flat surface is formed. Form. Next, the surface of the hardened layers g and r is mirror-finished to form mirror surfaces p and q facing in parallel. A transparent resin (which may be glass) is filled between the mirror surfaces p and q, and the block body is thinly cut with a cutting device (for example, band saw) to form a plurality of planar materials. A transparent adhesive and a thin plate with the same refractive index as that of the transparent adhesive can be pasted on this to produce a light control panel with a flat surface on which the slit can be seen. An optical imaging device can be configured using the control panel.
以上、本発明を、実施例を参照して説明してきたが、本発明は何ら上記した実施例に記載した構成に限定されるものではなく、請求の範囲に記載されている事項の範囲内で考えられるその他の実施例や変形例も含むものである。
更に、本実施例とその他の実施例や変形例にそれぞれ含まれる構成要素を組合わせたものも、本発明に含まれる。
例えば、平面板の材質をセラミックス(例えば、溶融石英)とし、爾後硬化型液体を低融点の溶融ガラス(融点が、例えば800℃前後)とすることもできる。この場合、堰止め部材の材質は、例えば、ムライト、アルミナ等のセラミックスとし、第3工程では、各貫通スリットの一方の側端面と堰止め部材で囲まれた空間内に溜まった溶融ガラスを冷却して硬化させることにより表面平坦層を形成する。平面板及び表面平坦層の材質をセラミックスとすることにより、光制御パネルの熱膨張変化を小さくすることができ、光制御パネルに温度変動が生じても安定した立体像を形成することが可能になる。
The present invention has been described above with reference to the embodiments. However, the present invention is not limited to the configurations described in the above-described embodiments, and is within the scope of the matters described in the claims. Other possible embodiments and modifications are also included.
Further, the present invention includes a combination of components included in the present embodiment and other embodiments and modifications.
For example, the material of the flat plate may be ceramics (for example, fused quartz), and the post-curing liquid may be a low melting point molten glass (melting point is, for example, about 800 ° C.). In this case, the material of the damming member is, for example, ceramics such as mullite and alumina, and in the third step, the molten glass accumulated in the space surrounded by the one side end surface of each through slit and the damming member is cooled. Then, a flat surface layer is formed by curing. By using ceramics for the material of the flat plate and the surface flat layer, the change in thermal expansion of the light control panel can be reduced, and a stable three-dimensional image can be formed even if temperature fluctuation occurs in the light control panel. Become.
また、平面板の材質を金属又はセラミックスとし、爾後硬化型液体を、加熱により流動性を発現させた溶融状態の熱可塑性樹脂(例えば、ポリエチレン、ポリカーボネイト等)とすることもできる。この場合、堰止め部材の材質は、金属又はセラミックスとし、第3工程では、各貫通スリットの一方の側端面と堰止め部材で囲まれた空間内に溜まった熱可塑性樹脂を冷却して硬化させることにより表面平坦層を形成する。
また、場合によっては、熱可塑性樹脂の代わりに熱硬化性樹脂とすることもでき、この場合は溶融状態の熱硬化性樹脂を両側を堰止め部材によって覆われた空間に入れて、余分な樹脂を溢れさせ、更に熱硬化性樹脂を加熱して硬化させることになる。この後、水平面に鏡面処理(例えば、めっき、蒸着)等をすることになる。
また、以上の実施例において、硬化前の爾後硬化型液体が表面張力等によって両端部が非平面となる場合は、平面板の両面を機械加工して非平面部分を除去してもよい。
Further, the material of the flat plate may be a metal or ceramic, and the post-curing liquid may be a molten thermoplastic resin (for example, polyethylene, polycarbonate, etc.) that exhibits fluidity by heating. In this case, the material of the damming member is metal or ceramics, and in the third step, the thermoplastic resin accumulated in the space surrounded by the one side end surface of each through slit and the damming member is cooled and cured. Thus, a surface flat layer is formed.
Also, in some cases, a thermosetting resin can be used instead of the thermoplastic resin. In this case, the molten thermosetting resin is placed in a space covered on both sides by a damming member, and excess resin is added. And the thermosetting resin is heated to be cured. Thereafter, a mirror surface treatment (for example, plating, vapor deposition) or the like is performed on the horizontal surface.
Further, in the above embodiment, when the both sides of the post-curing liquid before curing become non-planar due to surface tension or the like, both sides of the flat plate may be machined to remove the non-planar portion.
更に、光制御パネルの寸法及び形状は自由であり、光学結像装置の設置場所の状況に合わせて任意に寸法及び形状を選択することができ、光制御パネルを、例えば、種々のサイズの正方形、矩形、三角形、多角形、円形とすることができる。 Furthermore, the size and shape of the light control panel can be freely selected, and the size and shape can be arbitrarily selected according to the situation of the installation location of the optical imaging apparatus. For example, the light control panel can be a square of various sizes. , Rectangle, triangle, polygon, and circle.
また、平面板を、K(2以上の整数)枚の平板を積層して構成することもできる。この場合、各平板にそれぞれ形成する貫通スリットの間隔(ピッチ)は、平面板に形成する貫通スリットの間隔の1/Kとし、奇数層の平板に形成された貫通スリットでは、貫通スリットの長手方向の一方の側端面に平面反射部を、偶数層の平板に形成された貫通スリットでは、貫通スリットの長手方向の他方の側端面に平面反射部をそれぞれ形成するようにしてもよい。
K枚の平板を用いて一つの光制御パネルを形成すると、光制御パネル内では、各平板に設けられた平面反射部が、1枚の平面板で構成した光制御パネル内に設けられた平面反射部の間隔より小さな間隔で平行にずれて存在することになって、物体の表面の1点から放射される放射角度差の小さな光同士を、また物体の表面の近接した点から放射される光同士を、それぞれ反射することができる。その結果、高解像度の立体像を結像することができる。
Further, the flat plate can be formed by stacking K (integer of 2 or more) flat plates. In this case, the interval (pitch) between the through slits formed on each flat plate is 1 / K of the interval between the through slits formed on the flat plate. In the through slit formed on the flat plate of the even number layer, the flat reflective portion may be formed on the other side end surface in the longitudinal direction of the through slit.
When one light control panel is formed by using K flat plates, the plane reflecting portion provided on each flat plate is provided in the light control panel constituted by one flat plate in the light control panel. Lights having a small difference in radiation angle emitted from one point on the surface of the object are emitted from adjacent points on the surface of the object. Each light can be reflected. As a result, a high-resolution stereoscopic image can be formed.
そして、本実施例では、対となる光制御パネル(光学結像装置)の一方側に物体を配置し、光制御パネルの他方側に物体の立体像を形成したが、物体の代わりに画像(形成しようとする立体像の基になる立体像)を用いてもよい。ここで、画像には、例えば、表示器内の空間(物理的に奥行きのある空間)に直接表示される立体像(特表2005-500578号公報参照)を使用することができる。 In this embodiment, an object is arranged on one side of the paired light control panel (optical imaging device) and a three-dimensional image of the object is formed on the other side of the light control panel. You may use the stereo image which becomes the basis of the stereo image to form. Here, for example, a stereoscopic image (see Japanese Patent Application Publication No. 2005-500578) that is directly displayed in a space (a physically deep space) in the display can be used as the image.
なお、第1~第3の実施例において、鏡面処理を施した後、貫通スリット内に光透過性を有する物質を充填してもよい。ここで、光透過性を有する物質としては、例えば、紫外線硬化型の合成樹脂(例えば、アクリル樹脂)等を使用することができる。これによって、各光制御パネルの強度を向上させることができる。 In the first to third embodiments, a light-transmitting substance may be filled in the through slit after the mirror finish. Here, as the light-transmitting substance, for example, an ultraviolet curable synthetic resin (for example, an acrylic resin) or the like can be used. Thereby, the strength of each light control panel can be improved.
本発明に係る光学結像装置に使用する光制御パネルの製造方法においては、平行な平面反射部を有する光制御パネルが精度よく製造でき、特に、大型の光学結像装置の製造に広く利用できる。 In the method for manufacturing a light control panel used in the optical imaging apparatus according to the present invention, a light control panel having parallel planar reflecting portions can be manufactured with high precision, and in particular, it can be widely used for manufacturing a large optical imaging apparatus. .
10:光学結像装置、11、12:光制御パネル、13:平面板、13a:光反射基材、14:貫通スリット、15、16:側面、17:表面平坦層、18:平面反射部、19、20:堰止め部材、21:空間、22:紫外線硬化型樹脂液、23:孔、24:光学結像設備、25:遮光部材、26、27:光制御パネル、28:貫通スリット、29:平面板、30、31:側面、32:表面平坦層、33:平面反射部、34:光学結像装置、36:貫通スリット、37:平面板、38:連結部、39、40:堰止め部材、42、43:表面平坦層、44、45:鏡面、46、47:光制御パネル、49:光学結像装置、A:爾後硬化型液体、B:第2の爾後硬化型液体 10: Optical imaging device, 11, 12: Light control panel, 13: Planar plate, 13a: Light reflecting substrate, 14: Through slit, 15, 16: Side surface, 17: Surface flat layer, 18: Plane reflecting portion, 19, 20: Damping member, 21: space, 22: UV curable resin liquid, 23: hole, 24: optical imaging equipment, 25: light shielding member, 26, 27: light control panel, 28: through slit, 29 : Planar plate, 30, 31: Side surface, 32: Surface flat layer, 33: Planar reflecting portion, 34: Optical imaging device, 36: Through slit, 37: Planar plate, 38: Connecting portion, 39, 40: Damping Member, 42, 43: surface flat layer, 44, 45: mirror surface, 46, 47: light control panel, 49: optical imaging device, A: post-curing curable liquid, B: second post-curing curable liquid

Claims (9)

  1. 平面反射部が平行状態で複数列に亘ってそれぞれ設けられた対となる光制御パネルを、該対となる光制御パネルの前記平面反射部を交差させた状態で、近接又は当接配置し、前記対となる光制御パネルの一方側に配置された物体又は画像から放射された光を、前記対となる光制御パネルの他方側に向けて反射して収束させ、空中に前記物体又は前記画像の立体像を形成する光学結像装置に使用する前記光制御パネルの製造方法であって、
    貫通スリットが並べて形成された平面板と、前記各貫通スリットの下側一部を両側から覆う堰止め部材とを有する光反射基材を、爾後硬化型液体に浸漬する第1工程と、
    前記光反射基材を前記爾後硬化型液体の浸漬状態から解いて、前記堰止め部材内に溜まった前記爾後硬化型液体を、その表面平面性を維持しながら硬化させる第2工程と、
    硬化した前記爾後硬化型液体の表面に鏡面処理を行う第3工程とを有する光制御パネルの製造方法。
    A pair of light control panels that are respectively provided across a plurality of rows in a parallel state with the planar reflection part are arranged close to or in contact with the planar reflection part of the pair of light control panels, Light emitted from an object or image disposed on one side of the paired light control panel is reflected and converged toward the other side of the paired light control panel, and the object or image is in the air. A method of manufacturing the light control panel used in the optical imaging apparatus for forming a stereoscopic image of
    A first step of immersing a light-reflecting substrate having a flat plate in which through slits are formed side by side, and a weir member that covers the lower part of each through slit from both sides in a post-curing liquid;
    A second step in which the light-reflective substrate is released from the soaking state of the post-curing liquid, and the post-curing liquid that has accumulated in the damming member is cured while maintaining its surface flatness;
    A light control panel manufacturing method comprising: a third step of performing a mirror surface treatment on the surface of the cured post-curing liquid.
  2. 請求項1記載の光制御パネルの製造方法において、前記爾後硬化型液体は紫外線硬化型樹脂であって、前記第2工程では、前記堰止め部材内に溜まった前記紫外線硬化型樹脂に紫外線を照射して硬化させることを特徴とする光制御パネルの製造方法。 2. The method for manufacturing a light control panel according to claim 1, wherein the post-curing liquid is an ultraviolet curable resin, and in the second step, the ultraviolet curable resin accumulated in the damming member is irradiated with ultraviolet rays. And manufacturing the light control panel.
  3. 請求項1記載の光制御パネルの製造方法において、前記爾後硬化型液体は溶融ガラスであって、前記第2工程では、前記堰止め部材内に溜まった前記溶融ガラスを冷却して硬化させることを特徴とする光制御パネルの製造方法。 The method for manufacturing a light control panel according to claim 1, wherein the post-curing liquid is molten glass, and in the second step, the molten glass accumulated in the damming member is cooled and cured. A method for manufacturing a light control panel.
  4. 請求項1記載の光制御パネルの製造方法において、前記爾後硬化型液体は溶融状態の熱可塑性樹脂であって、前記第2工程では、前記堰止め部材内に溜まった前記熱可塑性樹脂を冷却して硬化させることを特徴とする光制御パネルの製造方法。 The method for manufacturing a light control panel according to claim 1, wherein the post-curing liquid is a thermoplastic resin in a molten state, and in the second step, the thermoplastic resin accumulated in the damming member is cooled. A method of manufacturing a light control panel, characterized by being cured.
  5. 請求項1~4のいずれか1項に記載の光制御パネルの製造方法において、前記鏡面処理は、金属蒸着法によって行うことを特徴とする光制御パネルの製造方法。 5. The method for manufacturing a light control panel according to claim 1, wherein the mirror surface treatment is performed by a metal vapor deposition method.
  6. 請求項1~5のいずれか1項に記載の光制御パネルの製造方法において、前記貫通スリットが平行に並べて形成された前記対となる光制御パネルは、平面視してそれぞれ等脚台形であって、前記各光制御パネルの鏡面処理された面は、該各光制御パネルの中心線と45度の角度で交差していることを特徴とする光制御パネルの製造方法。 6. The method of manufacturing a light control panel according to claim 1, wherein the paired light control panels in which the through slits are formed in parallel are each in an isosceles trapezoidal shape in plan view. The light-control panel manufacturing method is characterized in that the mirror-treated surface of each light control panel intersects the center line of each light control panel at an angle of 45 degrees.
  7. 請求項1~6のいずれか1項に記載の光制御パネルの製造方法において、更に前記貫通スリット内に光透過性を有する物質を充填する第4工程を有することを特徴とする光制御パネルの製造方法。 The light control panel manufacturing method according to any one of claims 1 to 6, further comprising a fourth step of filling the through slit with a light-transmitting substance. Production method.
  8. 請求項1記載の光制御パネルの製造方法において、前記堰止め部材は前記貫通スリットの下側に位置する前記貫通スリットの上側一部を両側から覆う上下幅を有し、前記第2工程の後に、前記平面板を上下逆にした後、前記堰止め部材で囲まれた前記貫通スリットの下側に第2の爾後硬化型液体を注入して、その表面が水平になるようにして、前記第2の爾後硬化型液体を硬化させる工程Aを備え、この後に、前記第3工程で、それぞれ硬化した前記爾後硬化型液体及び前記第2の爾後硬化型液体の表面にそれぞれ前記鏡面処理を行い、前記貫通スリットの内部に対向する鏡面を形成したことを特徴とする光制御パネルの製造方法。 2. The light control panel manufacturing method according to claim 1, wherein the damming member has a vertical width that covers a part of the upper side of the through slit located on the lower side of the through slit from both sides, and after the second step. After the plane plate is turned upside down, a second post-curing liquid is injected into the lower side of the through slit surrounded by the damming member so that the surface is horizontal, Step A for curing the post-curing curable liquid of No. 2, and then performing the mirror treatment on the surfaces of the post-curing curable liquid and the second post-curing curable liquid respectively cured in the third step, A method of manufacturing a light control panel, wherein a mirror surface facing the inside of the through slit is formed.
  9. 請求項8記載の光制御パネルの製造方法において、前記貫通スリットの内部に形成された前記対向する鏡面の間隔は、該対向する鏡面の幅の0.2~0.5倍の範囲にしたことを特徴とする光制御パネルの製造方法。 9. The method for manufacturing a light control panel according to claim 8, wherein an interval between the opposing mirror surfaces formed in the through slit is in a range of 0.2 to 0.5 times a width of the opposing mirror surfaces. A method for manufacturing a light control panel.
PCT/JP2013/054548 2012-03-27 2013-02-22 Method for manufacturing optical control panel WO2013145983A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012071968 2012-03-27
JP2012-071968 2012-03-27

Publications (1)

Publication Number Publication Date
WO2013145983A1 true WO2013145983A1 (en) 2013-10-03

Family

ID=49259263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/054548 WO2013145983A1 (en) 2012-03-27 2013-02-22 Method for manufacturing optical control panel

Country Status (3)

Country Link
JP (1) JPWO2013145983A1 (en)
TW (1) TW201346340A (en)
WO (1) WO2013145983A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015125393A (en) * 2013-12-27 2015-07-06 株式会社アスカネット Stereoscopic image formation device, and method of manufacturing the same
CN110264916A (en) * 2019-06-21 2019-09-20 京东方科技集团股份有限公司 A kind of projection arrangement and air-borne imagery equipment
WO2020235395A1 (en) * 2019-05-21 2020-11-26 株式会社アスカネット Method for manufacturing aerial image forming device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008129136A (en) * 2006-11-17 2008-06-05 Daiso Co Ltd Screen system for displaying three-dimensional image and three-dimensional image display device using the same
JP2011175297A (en) * 2008-04-22 2011-09-08 Askanet:Kk Method of manufacturing light control panel for use in optical imaging device
JP2012163701A (en) * 2011-02-04 2012-08-30 National Institute Of Information & Communication Technology Multi-viewpoint aerial graphic display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008129136A (en) * 2006-11-17 2008-06-05 Daiso Co Ltd Screen system for displaying three-dimensional image and three-dimensional image display device using the same
JP2011175297A (en) * 2008-04-22 2011-09-08 Askanet:Kk Method of manufacturing light control panel for use in optical imaging device
JP2012155345A (en) * 2008-04-22 2012-08-16 Askanet:Kk Optical imaging device
JP2012163701A (en) * 2011-02-04 2012-08-30 National Institute Of Information & Communication Technology Multi-viewpoint aerial graphic display device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015125393A (en) * 2013-12-27 2015-07-06 株式会社アスカネット Stereoscopic image formation device, and method of manufacturing the same
WO2020235395A1 (en) * 2019-05-21 2020-11-26 株式会社アスカネット Method for manufacturing aerial image forming device
CN110264916A (en) * 2019-06-21 2019-09-20 京东方科技集团股份有限公司 A kind of projection arrangement and air-borne imagery equipment

Also Published As

Publication number Publication date
TW201346340A (en) 2013-11-16
JPWO2013145983A1 (en) 2015-12-10

Similar Documents

Publication Publication Date Title
KR101721460B1 (en) Method for fabrication of photo-control panel comprising photo-reflector parts which are positioned in parallel
JP5085767B2 (en) Method for manufacturing optical imaging apparatus
EP3255492B1 (en) Transmission-type screen and head-up-display device using same
JP2010179496A (en) Photo-fabrication apparatus and molding base
JP2012155345A5 (en)
CN112654492B (en) Three-dimensional printing equipment
JP2014521992A (en) Method for manufacturing passive optical component and device comprising passive optical component
KR20180004232A (en) Manufacturing method of optical control panel, optical control panel, optical imaging apparatus and aerial image forming system
KR101493156B1 (en) Manufacturing method of apodizer and optical module
WO2013145983A1 (en) Method for manufacturing optical control panel
KR20120036741A (en) Light irradiation apparatus
KR20200014929A (en) Method of manufacturing three-dimensional imaging device and three-dimensional imaging device
TWI277824B (en) Projection display-use screen and projection display system optical system
JP2018180369A (en) Production method of stereoscopic image formation device
JP2015219422A (en) Optical member and display device
TWI805750B (en) Light control filter
JP2007219337A (en) Method of adhesion and fixing of optical component and laser light source apparatus
CN101799632B (en) Light irradiation device
US20180045863A1 (en) Optical assembly having microlouvers
JPWO2016132984A1 (en) Optical element, reflective aerial imaging element using the same, and manufacturing method thereof
JP2017003766A (en) Optical element and display device
KR101804329B1 (en) 3D image display device and method of manufacturing the same
JP2012525996A (en) Method for making an object with a structured surface
JP6116534B2 (en) Method for manufacturing retroreflector
JP2011081104A (en) Liquid crystal element and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13769816

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014507533

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13769816

Country of ref document: EP

Kind code of ref document: A1