JP2012155345A - Optical imaging device - Google Patents

Optical imaging device Download PDF

Info

Publication number
JP2012155345A
JP2012155345A JP2012108788A JP2012108788A JP2012155345A JP 2012155345 A JP2012155345 A JP 2012155345A JP 2012108788 A JP2012108788 A JP 2012108788A JP 2012108788 A JP2012108788 A JP 2012108788A JP 2012155345 A JP2012155345 A JP 2012155345A
Authority
JP
Japan
Prior art keywords
light
control panel
light control
optical imaging
planar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012108788A
Other languages
Japanese (ja)
Other versions
JP2012155345A5 (en
JP5437436B2 (en
Inventor
Tomohiko Fujishima
智彦 藤島
Makoto Otsubo
誠 大坪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asukanet Co Ltd
Original Assignee
Asukanet Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=41216860&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2012155345(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Asukanet Co Ltd filed Critical Asukanet Co Ltd
Priority to JP2012108788A priority Critical patent/JP5437436B2/en
Publication of JP2012155345A publication Critical patent/JP2012155345A/en
Publication of JP2012155345A5 publication Critical patent/JP2012155345A5/ja
Application granted granted Critical
Publication of JP5437436B2 publication Critical patent/JP5437436B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography
    • G03B35/18Stereoscopic photography by simultaneous viewing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/34Stereoscopes providing a stereoscopic pair of separated images corresponding to parallactically displaced views of the same object, e.g. 3D slide viewers
    • G02B30/35Stereoscopes providing a stereoscopic pair of separated images corresponding to parallactically displaced views of the same object, e.g. 3D slide viewers using reflective optical elements in the optical path between the images and the observer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors

Abstract

PROBLEM TO BE SOLVED: To provide an optical imaging device which can easily form a stereoscopic image in midair on the side of an observer who views an object.SOLUTION: An optical imaging device uses first and second light control panels C and D formed by arranging a plurality of band-shaped flat light reflection parts 22 and 23 at a constant pitch inside a transparent flat plate so that the reflection parts are perpendicular to a surface on one side of the transparent flat plate. One surface of the first light control panel C and one surface of the second light control panel D are opposed to each other with the flat light reflection parts 22 and 23 being perpendicular to each other. Light from an object N is incident on the flat light reflection part 22 of the first light control panel C, reflected light reflected at the flat light reflection part 22 is reflected again at the flat light reflection part 23 of the second light control panel D, and an image N' of the object N is formed on the opposite side of the optical imaging device 21.

Description

本発明は、空中に立体像を形成する光学結像装置に関する。 The present invention relates to an optical imaging apparatus that forms a stereoscopic image in the air.

物体表面から発する光(散乱光)を用いて立体像を形成する光学結像装置として、多数の微小透光部を備えた不透光パネルと、この不透光パネルの背部に配置されて微小透光部に対応する多数の小画像が表示された画像表示パネルとを有する立体像表示装置が提案されている(例えば、特許文献1、2参照)。また、レンズ等の光学手段を使用しない立体像表示装置として、幅が数ミクロンから数十ミクロンの複数本の両面反射帯を隣接する反射面が互いに向かい合うように並べて構成した結像素子が提案されている(例えば、特許文献3参照)。 As an optical imaging device that forms a three-dimensional image using light (scattered light) emitted from the object surface, an opaque panel provided with a large number of minutely transparent parts, and a minutely placed on the back of the opaque panel There has been proposed a stereoscopic image display device having an image display panel on which a large number of small images corresponding to a light transmitting portion are displayed (see, for example, Patent Documents 1 and 2). In addition, as a stereoscopic image display device that does not use optical means such as lenses, there has been proposed an imaging element in which a plurality of double-sided reflection bands having a width of several microns to several tens of microns are arranged so that adjacent reflection surfaces face each other. (For example, refer to Patent Document 3).

また、特許文献4には、相互に直交する2つの鏡面要素を備えた単位光学素子を複数平面上に形成した反射型面対称結像素子からなる光線屈曲面と、この光線屈曲面に向けて配置された鏡面とを具備し、光線屈曲面を挟んで、鏡面とは反対側にある観察側に配置した像を、被投影物から発せられる光が光線屈曲面を透過して鏡面に反射し、更に光線屈曲面を透過することによって、鏡面の光線屈曲面に対する面対称位置に移動させた実態のない仮想鏡に映した位置に結像させる光学システムが提案されている。 Patent Document 4 discloses a light-bending surface composed of a reflection-type plane-symmetric imaging element in which unit optical elements having two mirror elements perpendicular to each other are formed on a plurality of planes, and toward the light-bending surface. An image arranged on the observation side opposite to the mirror surface across the light beam bending surface is transmitted through the light beam bending surface and reflected by the mirror surface. Furthermore, an optical system has been proposed in which an image is formed at a position reflected on a virtual mirror that does not actually exist by being transmitted through a light-bending surface and moved to a plane-symmetrical position with respect to the light-bending surface of the mirror surface.

特開平7−56112号公報JP 7-56112 A 特開平6−160770号公報JP-A-6-160770 特開昭58−21702号公報JP 58-21702 A 特開2008−158114号公報JP 2008-158114 A

しかしながら、特許文献1、2の発明には、予め多数の小画像を記録しておく必要があり、光学像を結像させるために多大の労力を必要とすると共に、特に動いている対象物の光学像を処理する場合には膨大な情報量を必要とするため、データ処理が困難になるという問題がある。また、特許文献3の発明には、物体からの散乱光は、結像素子を通過した後は、必ずしも一点には収束しないという問題がある。
また、特許文献4記載の光学システムにおいては、反射型面対称結像素子からなる光線屈曲面の製造が極めて難しく、実用化に障害があった。
However, in the inventions of Patent Documents 1 and 2, it is necessary to record a large number of small images in advance, and a great deal of labor is required to form an optical image. When an optical image is processed, an enormous amount of information is required, and there is a problem that data processing becomes difficult. Further, the invention of Patent Document 3 has a problem that scattered light from an object does not necessarily converge to one point after passing through the imaging element.
In addition, in the optical system described in Patent Document 4, it is extremely difficult to manufacture a light-bending surface composed of a reflection-type plane-symmetric imaging element, which hinders practical use.

本発明はかかる事情に鑑みてなされたもので、比較的製造が容易で、物体を見る観察者側の空中に立体像を簡便に形成することが可能な光学結像装置及びそれを用いた光学結像方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and is relatively easy to manufacture, and an optical imaging apparatus capable of easily forming a three-dimensional image in the air on the side of an observer viewing an object, and an optical device using the same An object is to provide an imaging method.

前記目的に沿う第1の発明に係る光学結像装置は、透明平板の内部に、該透明平板の一方側の面に垂直に多数かつ帯状の平面光反射部を一定のピッチで並べて形成した第1及び第2の光制御パネルを用い、該第1及び第2の光制御パネルのそれぞれの一面側を、前記平面光反射部を直交させて向かい合わせて構成されている。
なお、第1及び第2の光制御パネルの一面側は向かい合わせて平行に配置するのがよい。
この場合、第1の光制御パネルの細長長方形(短冊状)の平面光反射部と、第2の光制御パネルの細長長方形の平面光反射部とは、長手方向が直交する。かつ第1の光制御パネルの平面光反射部と第2の光制御パネルの平面光反射部も直交面を形成する。
An optical imaging apparatus according to a first invention that meets the above-described object is the first optical image forming apparatus in which a large number of strip-shaped planar light reflecting portions are arranged at a constant pitch perpendicularly to one surface of the transparent flat plate. The first and second light control panels are used, and one surface side of each of the first and second light control panels is configured to face each other with the planar light reflecting portions orthogonal to each other.
It should be noted that one surface side of the first and second light control panels is preferably arranged to face each other in parallel.
In this case, the elongated rectangular (strip-shaped) planar light reflecting portion of the first light control panel and the elongated rectangular planar light reflecting portion of the second light control panel are orthogonal to each other in the longitudinal direction. In addition, the planar light reflecting portion of the first light control panel and the planar light reflecting portion of the second light control panel also form orthogonal surfaces.

第1の発明に係る光学結像装置において、前記第1及び第2の光制御パネルの前記平面光反射部は、金属反射面(例えば、銀又はアルミニウム等の薄板、メッキ層、蒸着層等)であることが好ましい。また、前記平面光反射部は、両面反射板であってもよい。 In the optical imaging apparatus according to the first aspect, the planar light reflecting portion of the first and second light control panels is a metal reflecting surface (for example, a thin plate of silver or aluminum, a plating layer, a vapor deposition layer, or the like). It is preferable that Further, the planar light reflecting portion may be a double-sided reflecting plate.

第1の発明に係る光学結像装置において、前記第1及び第2の光制御パネルが、それぞれ一方側の面から厚み方向に伸びる垂直面を有する溝が前記一定のピッチで形成された透明合成樹脂板を用いて形成され、かつ前記垂直面は該透明合成樹脂板内に斜めに入射する光を反射する前記平面光反射部となって、前記溝間に該平面光反射部から反射された反射光を通過させる光通過面を形成したものでもよい。ここで、前記溝は断面直角三角形となって、該直角三角形の斜辺を形成する面には遮光処理又は散乱光処理が施されていることがより好ましい。 In the optical imaging apparatus according to the first aspect of the present invention, the first and second light control panels are each a transparent composite in which grooves having vertical surfaces extending in the thickness direction from one surface are formed at the constant pitch. The vertical plane is formed using a resin plate, and the vertical surface is the planar light reflecting portion that reflects light incident obliquely into the transparent synthetic resin plate, and is reflected from the planar light reflecting portion between the grooves. What formed the light passage surface which allows reflected light to pass through may be formed. Here, it is more preferable that the groove has a right-angled triangle cross section, and that a surface forming the hypotenuse of the right-angled triangle is subjected to a light shielding process or a scattered light process.

また、前記第1及び第2の光制御パネルは、該第1及び第2の光制御パネルの平面光反射部を直交させた状態で、密着又は一定のギャップを介して配置することができる。ここで、一定のギャップとは、例えば、隣り合う平面光反射部の間隔の0.5〜4倍程度が好ましいが、本発明はこの数値に限定されるものではない。なお、第1、第2の光制御パネルの平面光反射部のピッチを細かくして、平面光反射部の数を多くする程、鮮明な画像が得られる。 In addition, the first and second light control panels can be arranged in close contact with each other with a fixed gap in a state where the planar light reflecting portions of the first and second light control panels are orthogonal to each other. Here, for example, the fixed gap is preferably about 0.5 to 4 times the interval between adjacent planar light reflecting portions, but the present invention is not limited to this value. In addition, a clear image is acquired, so that the pitch of the planar light reflection part of the 1st, 2nd light control panel is made fine and the number of planar light reflection parts is increased.

また、第1の発明に係る光学結像装置において、前記平面光反射部が両面反射板であって、前記第1及び第2の光制御パネル内にそれぞれ配置されている複数の前記平面光反射部の幅が、中央部から周辺部にかけて徐々に大きくなっているものであってもよい。 In the optical imaging apparatus according to the first aspect of the present invention, the planar light reflecting portion is a double-sided reflector, and the plurality of planar light reflecting members respectively disposed in the first and second light control panels. The width of the part may gradually increase from the central part to the peripheral part.

前記目的に沿う第2の発明に係る光学結像方法は、透明平板の内部に、該透明平板の一方側の面に垂直に多数かつ帯状の平面光反射部を並べて形成した第1及び第2の光制御パネルを用い、該第1及び第2の光制御パネルのそれぞれの一面側を、前記平面光反射部を直交させて向かい合わせ、前記第1の光制御パネルの平面光反射部に物体(又は光源)からの光を入射させ、該平面光反射部で反射した反射光を前記第2の光制御パネルの平面光反射部で再度反射させ、前記物体の像を該光学結像装置の反対側に結像させる。 In the optical imaging method according to the second aspect of the present invention, the first and second optical image forming methods according to the present invention are formed by arranging a large number of strip-shaped planar light reflecting portions in the transparent flat plate so as to be perpendicular to one surface of the transparent flat plate. The first light control panel and the first light control panel face each other with the planar light reflecting portion orthogonal to each other, and the planar light reflecting portion of the first light control panel faces the object. (Or a light source) is incident, the reflected light reflected by the planar light reflecting unit is reflected again by the planar light reflecting unit of the second light control panel, and the image of the object is reflected by the optical imaging device. Image on the opposite side.

第2の発明に係る光学結像方法において、前記平面光反射部は一定のピッチで前記第1及び第2の光制御パネルに配置されているのが好ましい。なお、第1及び第2の光制御パネルにそれぞれ配置されている平面光反射部の間隔は一定でない場合であっても本発明は適用される。 In the optical imaging method according to the second aspect of the present invention, it is preferable that the planar light reflecting portions are arranged on the first and second light control panels at a constant pitch. It should be noted that the present invention is applied even when the distance between the planar light reflecting portions arranged in the first and second light control panels is not constant.

第2の発明に係る光学結像方法において、前記平面光反射部は、両面反射板(金属板、金属メッキ層、金属蒸着層を使用するのがよい)からなるのがよい。 In the optical imaging method according to the second aspect of the present invention, the planar light reflecting section may be a double-sided reflecting plate (a metal plate, a metal plating layer, or a metal vapor deposition layer may be used).

そして、第2の発明に係る光学結像方法において、前記物体からの光は、前記第1及び第2の光制御パネルのいずれか一方又は双方の対向する前記両面反射板を奇数回反射して、前記物体の像を結像する場合であっても本発明は適用される。 In the optical imaging method according to the second aspect of the invention, the light from the object is reflected an odd number of times by the double-sided reflecting plate facing one or both of the first and second light control panels. The present invention is applied even when an image of the object is formed.

第1の発明に係る光学結像装置においては、透明平板の内部に、一方側の面に垂直に多数かつ帯状の平面光反射部を一定のピッチで並べて形成した第1及び第2の光制御パネルのそれぞれの一面側を、それぞれの平面光反射部を直交させて向かい合わせているので、この光学結像装置の一側に配置された物体から放射される光は、光学結像装置の他側に収束して結像する。
更に、この光学結像装置は、透明平板の内部に、一方側の面に垂直に多数かつ帯状の平面光反射部を一定のピッチで並べて形成した光制御パネルを2枚用いており、各光制御パネルの製造は容易であるので、安価に製造が可能である。
In the optical imaging apparatus according to the first aspect of the present invention, the first and second light controls are formed by arranging a large number of strip-shaped planar light reflecting portions arranged at a constant pitch inside the transparent flat plate and perpendicular to the surface on one side. Since one surface of each panel faces each other with the respective plane light reflecting portions orthogonal to each other, light emitted from an object arranged on one side of this optical imaging device Converge to the side and form an image.
Further, this optical imaging apparatus uses two light control panels formed by arranging a large number of strip-shaped planar light reflecting portions arranged at a constant pitch perpendicularly to the surface on one side inside a transparent flat plate. Since the control panel is easy to manufacture, it can be manufactured inexpensively.

特に、第1の発明に係る光学結像装置において、第1及び第2の光制御パネルの平面光反射部が金属反射面である場合は、平面光反射部で反射する光の入射角度に制限がなく多くの反射光が得られるので、広い範囲で結像し明るい物体像が得られる。 In particular, in the optical imaging apparatus according to the first invention, when the planar light reflecting portions of the first and second light control panels are metal reflecting surfaces, the incident angle of light reflected by the planar light reflecting portion is limited. Therefore, a lot of reflected light can be obtained, and a bright object image can be obtained by forming an image in a wide range.

第1の発明に係る光学結像装置において、第1及び第2の光制御パネルが、それぞれ一方側の面から厚み方向に伸びる垂直面を有する溝が一定のピッチで形成された透明合成樹脂板を用いて形成され、垂直面は透明合成樹脂板内に斜めに入射する光を反射する平面光反射部となって、溝間に平面光反射部から反射された反射光を通過させる光通過面が形成されている場合、第1、第2の光制御パネルを金型で製造できるので、比較的安価に製造できる。
なお、前記溝が断面直角三角形となって、直角三角形の斜辺を形成する面には遮光処理又は散乱光処理が施されている場合、光の反射面が決められるので、ゴースト又はノイズが低減された状態で物体像を得ることができる。
In the optical imaging apparatus according to the first invention, the first and second light control panels are each a transparent synthetic resin plate in which grooves having vertical surfaces extending in the thickness direction from one surface are formed at a constant pitch. The vertical plane is a planar light reflecting portion that reflects light incident obliquely into the transparent synthetic resin plate, and the light passing surface that allows the reflected light reflected from the planar light reflecting portion to pass between the grooves Since the first and second light control panels can be manufactured with a mold, the first and second light control panels can be manufactured relatively inexpensively.
When the groove has a right-angled triangle cross section and the surface forming the hypotenuse of the right-angled triangle is subjected to a light shielding process or a scattered light process, the light reflection surface is determined, so that ghost or noise is reduced. An object image can be obtained in a state where

更に、第1の発明に係る光学結像装置において、平面光反射部が両面反射板であって、第1及び第2の光制御パネル内にそれぞれ配置されている多数の平面光反射部の幅が、中央部から周辺部にかけて徐々に大きくなっていることによって、第1、第2の光制御パネルの周辺部に当たる光の回収も可能となり、より明るい像を得ることができる。 Furthermore, in the optical imaging apparatus according to the first invention, the planar light reflecting portion is a double-sided reflecting plate, and the widths of a large number of planar light reflecting portions respectively disposed in the first and second light control panels. However, by gradually increasing from the central part to the peripheral part, it is possible to collect the light hitting the peripheral part of the first and second light control panels, and a brighter image can be obtained.

前記目的に沿う第2の発明に係る光学結像方法は、透明平板の内部に、透明平板の一方側の面に垂直に多数かつ帯状の平面光反射部を並べて形成した第1及び第2の光制御パネルを用い、第1及び第2の光制御パネルのそれぞれの一面側を、前記平面光反射部を直交させた状態で向かい合わせ、第1の光制御パネルの平面光反射部に物体からの光を入射させ、この平面光反射部で反射した反射光を第2の光制御パネルの平面光反射部で再度反射させているので、物体の像をこの光学結像装置の反対側に結像させることができる。
この方法によれば、精度の高い第1、第2の光制御パネルの製造が容易であり、より安価に対象物の画像を空間に再生できる。
In the optical imaging method according to the second aspect of the present invention, the first and second optical imaging methods according to the present invention are formed by arranging a large number of strip-shaped planar light reflecting portions in the transparent flat plate so as to be perpendicular to one surface of the transparent flat plate. Using the light control panel, one surface side of each of the first and second light control panels face each other in a state where the planar light reflecting portions are orthogonal to each other, and the planar light reflecting portion of the first light control panel is placed from the object. Since the reflected light reflected by the planar light reflecting portion is reflected again by the planar light reflecting portion of the second light control panel, the object image is connected to the opposite side of the optical imaging device. Can be imaged.
According to this method, it is easy to manufacture the first and second light control panels with high accuracy, and the image of the object can be reproduced in the space at a lower cost.

特に、第2の発明に係る光学結像方法において、平面光反射部を、両面反射板から構成した場合には、入射光(物体からの光)の奇数回反射を行うことができ、再生画像をより明るくすることができる。 In particular, in the optical imaging method according to the second aspect of the invention, when the planar light reflecting portion is constituted by a double-sided reflector, incident light (light from an object) can be reflected an odd number of times, and a reproduced image Can be made brighter.

(A)は本発明の第1の実施の形態に係る光学結像装置の平面図、(B)はF−F断面図、(C)はG−G断面図である。(A) is a plan view of the optical imaging apparatus according to the first embodiment of the present invention, (B) is an FF sectional view, and (C) is a GG sectional view. 同光学結像装置の斜視図である。It is a perspective view of the same optical imaging device. 同光学結像装置の各光制御パネルの平面光反射部で反射して得られた反射光による物体像形成の説明図である。It is explanatory drawing of object image formation by the reflected light obtained by reflecting with the planar light reflection part of each light control panel of the optical imaging device. 本発明の第2の実施の形態に係る光学結像装置の平面図である。It is a top view of the optical imaging device which concerns on the 2nd Embodiment of this invention. 同光学結像装置の斜視図である。It is a perspective view of the same optical imaging device. 同光学結像装置の各光制御パネルの平面光反射部で連続して反射して得られた反射光による物体像形成の説明図である。It is explanatory drawing of the object image formation by the reflected light obtained by continuously reflecting with the planar light reflection part of each light control panel of the optical imaging device. 本発明の第3の実施の形態に係る光学結像装置の説明図である。It is explanatory drawing of the optical imaging device which concerns on the 3rd Embodiment of this invention.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。 Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.

図1、図2に示すように、本発明の第1の実施の形態に係る光学結像装置10は、透明平板の一例であり、厚みが0.5〜10mmの2枚の透明合成樹脂板(例えば、アクリル樹脂板)の内部に、各透明合成樹脂板の一方側の面に垂直に多数かつ帯状の平面光反射部11、12を一定のピッチ(例えば、0.1〜1mm)で並べて形成した第1の光制御パネルA(以下、単に「光制御パネルA」という)及び第2の光制御パネルB(以下、単に「光制御パネルB」という)を用い、光制御パネルA、Bのそれぞれの一面側を、平面光反射部11、12を直交させて向かい合わせて密着させている。以下詳細に説明する。 As shown in FIGS. 1 and 2, the optical imaging apparatus 10 according to the first embodiment of the present invention is an example of a transparent flat plate, and two transparent synthetic resin plates having a thickness of 0.5 to 10 mm. (For example, an acrylic resin plate) A large number of strip-shaped planar light reflecting portions 11 and 12 are arranged at a constant pitch (for example, 0.1 to 1 mm) perpendicular to one surface of each transparent synthetic resin plate. Using the formed first light control panel A (hereinafter simply referred to as “light control panel A”) and second light control panel B (hereinafter simply referred to as “light control panel B”), the light control panels A and B The flat light reflecting portions 11 and 12 are orthogonal to each other and are in close contact with each other. This will be described in detail below.

光制御パネルA、Bには、それぞれ透明合成樹脂板の一方側の面から厚み方向に伸びる垂直面を有する断面直角三角形の溝13、14が、平面光反射部11、12のピッチと同一の所定ピッチで形成されている。なお、溝13、14の垂直面が、光制御パネルA、B内に斜めに入射する光を反射する平面光反射部11、12となっている。溝13間及び溝14間にはそれぞれ、平面光反射部11、12から反射された反射光を通過させる光通過面を構成する光透過部15、16が形成されている。なお、溝13、14の垂直面は金属(例えば、銀)めっき層又は金属蒸着層(金属反射面を構成する)が形成されていてもよい。 In the light control panels A and B, grooves 13 and 14 having a right-angled triangular cross section each having a vertical surface extending in the thickness direction from one surface of the transparent synthetic resin plate are the same as the pitch of the planar light reflecting portions 11 and 12. It is formed at a predetermined pitch. Note that the vertical surfaces of the grooves 13 and 14 are planar light reflecting portions 11 and 12 that reflect light incident obliquely into the light control panels A and B, respectively. Between the grooves 13 and 14, light transmitting portions 15 and 16 constituting light passing surfaces through which the reflected light reflected from the planar light reflecting portions 11 and 12 pass are formed. The vertical surfaces of the grooves 13 and 14 may be formed with a metal (for example, silver) plating layer or a metal vapor deposition layer (which constitutes a metal reflection surface).

光制御パネルA、Bは、金型を用いるプレス成形によって製造することも可能であるが、所定形状の金型内に透明合成樹脂を注入し固化することで製造するのが好ましい。溝13、14は、予め金型にその基形状が形成されていて、光制御パネルA、Bの製造時に、この光制御パネルA、Bの一方側の面に形成される。溝13、14の斜面19、20を形成する金型部分の表面に、例えば、3〜50μmの凹凸部を形成するショットブラスト処理又は梨地処理することにより、溝13、14の斜面19、20には金型の凹凸部が転写された凸凹部が形成されて散乱光処理が施される。
なお、この実施の形態において、光制御パネルAの平面光反射部11の端部と、光制御パネルBの平面光反射部12の端部とはを当接させて配置した。
The light control panels A and B can be manufactured by press molding using a mold, but are preferably manufactured by injecting a transparent synthetic resin into a mold having a predetermined shape and solidifying it. The grooves 13 and 14 have a base shape formed in advance in the mold, and are formed on one surface of the light control panels A and B when the light control panels A and B are manufactured. The surface of the mold part forming the slopes 19 and 20 of the grooves 13 and 14 is subjected to, for example, a shot blasting process or a satin treatment for forming an uneven portion of 3 to 50 μm, thereby forming the slopes 19 and 20 of the grooves 13 and 14. Is formed with convex and concave portions to which the concave and convex portions of the mold are transferred and subjected to the scattered light treatment.
In this embodiment, the end of the planar light reflecting portion 11 of the light control panel A and the end of the planar light reflecting portion 12 of the light control panel B are arranged in contact with each other.

ここで、図2に示すように、平面光反射部11、12の幅wは、平面光反射部11、12(溝13、14)のピッチpに対して、例えば、0.5p以上3p以下(好ましくは0.9p〜1.1p、より好ましくはp)としている。平面光反射部11、12の幅が3pを超えると、平面光反射部11、12で反射した光が斜面19、20で散乱され散乱光の一部が再び平面光反射部11、12で反射することが繰返され鮮明な像が得られない。一方、平面光反射部11、12の幅が0.5p未満の場合、平面光反射部11、12で反射される光が少なくなって鮮明な像が得られない。 Here, as shown in FIG. 2, the width w of the planar light reflecting portions 11 and 12 is, for example, 0.5 p or more and 3 p or less with respect to the pitch p of the planar light reflecting portions 11 and 12 (grooves 13 and 14). (Preferably 0.9p to 1.1p, more preferably p). When the width of the planar light reflecting portions 11 and 12 exceeds 3p, the light reflected by the planar light reflecting portions 11 and 12 is scattered by the slopes 19 and 20, and a part of the scattered light is reflected again by the planar light reflecting portions 11 and 12. Repeatedly, a clear image cannot be obtained. On the other hand, when the width of the planar light reflecting portions 11 and 12 is less than 0.5p, the light reflected by the planar light reflecting portions 11 and 12 is reduced and a clear image cannot be obtained.

続いて、第1の実施の形態に係る光学結像装置10について、図1〜図3を参照してその作用及び動作について説明する。なお、図3では、光学結像装置10の光制御パネルA、Bにおいて光の反射状態を明確に示すため、側面視して、物体M及び物体像M´に対して左側の光制御パネルと右側の光制御パネルでは、左側の光制御パネルA、Bに対して右側の光制御パネルA、Bを同一平面内で90度回転させた状態で示している。なお、光制御パネルAの垂直な平面光反射部11と光制御パネルBの垂直な平面光反射部12で続けて2回反射すると物体像M´が得られるので、光学結像装置の光制御パネルA、Bを側面視して左右に分割し、同一平面内で左側の光制御パネルA、Bに対して右側の光制御パネルA、Bを90度回転した状態で配置しても物体像が得られる。 Next, the operation and operation of the optical imaging apparatus 10 according to the first embodiment will be described with reference to FIGS. In FIG. 3, in order to clearly show the light reflection state in the light control panels A and B of the optical imaging apparatus 10, the light control panel on the left side with respect to the object M and the object image M ′ in a side view is shown. In the right light control panel, the right light control panels A and B are shown rotated by 90 degrees in the same plane with respect to the left light control panels A and B. Since the object image M ′ is obtained when the light is reflected twice in succession by the vertical planar light reflecting portion 11 of the light control panel A and the vertical planar light reflecting portion 12 of the light control panel B, the light control of the optical imaging device is performed. The panels A and B are divided into left and right sides when viewed from the side, and the object image is obtained even when the right light control panels A and B are rotated 90 degrees with respect to the left light control panels A and B in the same plane. Is obtained.

光学結像装置10の光制御パネルAの他方側(平面光反射部11が形成されていない側)に配置した物体Mから放射された光が、光制御パネルAの他方側の面に斜めに入射すると、入射した光は光制御パネルA内に進入し進行する。ここで、断面直角三角形の溝13、14内(垂直面の外側領域)には空気が存在しているので、光制御パネル内(垂直面の内側領域)の光屈折率nmは、垂直面の外側領域、すなわち空気の光屈折率naより大きい。このため、光制御パネルA内を進行した光が垂直面に入射角θで入射する際に、入射角θがsinθc=nm/naの関係を満たす角度θcを超える角度で垂直面内のa点に入射する場合、垂直面内のa点で光の全反射が起こり、このとき垂直面は平面光反射部11となる。 Light emitted from the object M arranged on the other side of the light control panel A of the optical imaging apparatus 10 (the side on which the planar light reflecting portion 11 is not formed) is inclined obliquely on the other surface of the light control panel A. When incident, the incident light enters the light control panel A and travels. Here, since air exists in the grooves 13 and 14 having a right-angled triangular section (outer region of the vertical surface), the light refractive index nm in the light control panel (inner region of the vertical surface) is It is larger than the outer region, that is, the optical refractive index na of air. Therefore, when light traveling in the light control panel A is incident on the vertical surface at an incident angle θ, the point a in the vertical surface is an angle that exceeds the angle θc that satisfies the relationship sin θc = nm / na. In this case, total reflection of light occurs at point a in the vertical plane, and at this time, the vertical plane becomes the planar light reflecting portion 11.

そして、光制御パネルAの垂直面で全反射した光が光透過部15に到達すると、光制御パネルAと光制御パネルBは密着しているので、互いに当接している光通過部15、16を介して光制御パネルAの垂直面で全反射した光の一部は光制御パネルB内に進入し、残部は散乱光処理された斜面19で散乱して減衰する。光制御パネルB内に進入した光は、光制御パネルB内を進行し断面直角三角形の溝14の垂直面に到達する。そして、溝14の垂直面に到達した光のなかで全反射を起こす入射角度で垂直面内のb点に入射した光に対してのみ垂直面は平面光反射部12として作用し、全反射した光は光制御パネルB内を更に進行し、光制御パネルB内の他方側(平面光反射部12が形成されていない側)の面から外部に放出される。 When the light totally reflected by the vertical surface of the light control panel A reaches the light transmission part 15, the light control panel A and the light control panel B are in close contact with each other. A part of the light totally reflected by the vertical surface of the light control panel A enters the light control panel B, and the rest is scattered and attenuated by the slope 19 subjected to the scattered light processing. The light that has entered the light control panel B travels in the light control panel B and reaches the vertical plane of the groove 14 having a right-angled triangular section. The vertical surface acts as the planar light reflecting portion 12 only for the light incident on the point b in the vertical surface at an incident angle causing total reflection among the light reaching the vertical surface of the groove 14 and totally reflected. The light further travels in the light control panel B, and is emitted to the outside from the surface on the other side (the side on which the planar light reflecting portion 12 is not formed) in the light control panel B.

なお、図1、図3に示すように、光制御パネルAの垂直面に入射角がθc未満で入射した光は垂直面で屈折して溝13内に進入し、一部の光は散乱光処理がなされた斜面19で散乱して減衰し、残部は光制御パネルBの光透過部16を通過して光制御パネルBに進入する。そして、光制御パネルBに進入した光のなかで、溝14の垂直面で全反射された光、光制御パネルB内をそのまま進行する光は、光制御パネルBの他方側まで進行し他方側の面から外部に放出される。また、光制御パネルAの溝13の垂直面に入射角がθcで入射した光は、溝13の垂直面で反射してこの垂直面に沿った光となって光制御パネルBの光透過部16から光制御パネルB内に進入する。そして光制御パネルB内に進入した光のなかで、一部は散乱光処理がなされた溝14の斜面20で散乱して減衰し、残部は光制御パネルBの他方側の面から外部に放出される。更に、光通過部15、16を介して光制御パネルAから光制御パネルB内に直接進入し、光制御パネルB内を進行して光制御パネルBの他方側の面から外部に放出される光も存在する。 As shown in FIGS. 1 and 3, light incident on the vertical surface of the light control panel A with an incident angle of less than θc is refracted on the vertical surface and enters the groove 13, and some of the light is scattered light. The light is scattered and attenuated by the slope 19 that has been processed, and the remaining portion passes through the light transmitting portion 16 of the light control panel B and enters the light control panel B. Of the light that has entered the light control panel B, the light that is totally reflected by the vertical surface of the groove 14 and the light that travels in the light control panel B travels to the other side of the light control panel B. It is emitted from the surface of the outside. Further, the light incident on the vertical surface of the groove 13 of the light control panel A with the incident angle θc is reflected by the vertical surface of the groove 13 and becomes light along the vertical surface. 16 enters the light control panel B. Of the light that has entered the light control panel B, a part of the light is scattered and attenuated by the inclined surface 20 of the groove 14 that has been subjected to the scattered light treatment, and the remaining part is emitted from the other surface of the light control panel B to the outside. Is done. Further, the light enters directly into the light control panel B from the light control panel A via the light passing portions 15 and 16, travels through the light control panel B, and is emitted to the outside from the other surface of the light control panel B. There is also light.

ここで、平面光反射部11、12は、直交させて向かい合わせた状態で配置されているため、光制御パネルB内を進行して光制御パネルBの他方側の面から外部に放出される光のなかで、平面光反射部11に入射した入射光が平面光反射部11のa点で1回目の反射をしてその反射光が平面光反射部12のb点で2回目の反射を起こすと、2回目の反射光は、平面光反射部11に入射した入射光の入射角度と同一の角度で放射される。このため、物体Mから光学結像装置10に入射した光のなかで、平面光反射部11、12で連続して反射した反射光は、光学結像装置10を挟んで物体Mと対称位置に収束し、光学結像装置10を挟んで物体Mと対称位置に物体像M´が生成する。 Here, since the planar light reflecting portions 11 and 12 are disposed in a state of being orthogonally opposed to each other, they travel in the light control panel B and are emitted to the outside from the other surface of the light control panel B. Of the light, incident light incident on the planar light reflecting portion 11 is reflected at the point a of the planar light reflecting portion 11 for the first time, and the reflected light is reflected at the point b of the planar light reflecting portion 12 for the second time. When this happens, the second reflected light is radiated at the same angle as the incident angle of the incident light incident on the planar light reflecting portion 11. For this reason, among the light incident on the optical imaging apparatus 10 from the object M, the reflected light continuously reflected by the planar light reflecting portions 11 and 12 is in a symmetrical position with the object M across the optical imaging apparatus 10. It converges and an object image M ′ is generated at a symmetrical position with respect to the object M across the optical imaging apparatus 10.

一方、光制御パネルAの溝13内を通過してから光制御パネルB内に進入し光制御パネルBの他方側まで進行し他方側の面から外部に放出された光、光制御パネルAの溝13の垂直面に入射角θcで入射し、溝13の垂直面に沿った光となって光制御パネルB内に進入し光制御パネルBの他方側まで進行し他方側の面から外部に放出された光、及び光制御パネルAから光制御パネルB内に直接進入し、光制御パネルB内を進行して光制御パネルBの他方側の面から外部に放出される光は、いずれも光制御パネルAに入射する入射光とは同一角度で反射しない。このため、光制御パネルBの他方側の面から外部に放出される光は交わることがなく、像は形成されない。 On the other hand, after passing through the groove 13 of the light control panel A, the light enters the light control panel B, proceeds to the other side of the light control panel B, and is emitted to the outside from the other side surface. The light enters the vertical surface of the groove 13 at an incident angle θc, enters the light control panel B as light along the vertical surface of the groove 13, travels to the other side of the light control panel B, and travels from the other surface to the outside. The emitted light and the light that directly enters the light control panel B from the light control panel A, travels through the light control panel B, and is emitted to the outside from the other surface of the light control panel B are both The incident light entering the light control panel A is not reflected at the same angle. For this reason, the light emitted to the outside from the other surface of the light control panel B does not intersect and an image is not formed.

図4、図5に示すように、本発明の第2の実施の形態に係る光学結像装置21は、2枚の透明平板の内部に、透明平板の厚み方向に渡って垂直に多数かつ帯状で、金属反射面からなる平面光反射部22、23を一定のピッチで並べて形成した第1の光制御パネルC(以下、単に「光制御パネルC」という)及び第2の光制御パネルD(以下、単に「光制御パネルD」という)を用い、光制御パネルC、Dのそれぞれの一面側を、平面光反射部22、23を直交させて向かい合わせて密着させている。以下詳細に説明する。 As shown in FIGS. 4 and 5, the optical imaging device 21 according to the second embodiment of the present invention includes a large number of strips in the vertical direction in the thickness direction of the transparent flat plate inside the two transparent flat plates. The first light control panel C (hereinafter simply referred to as “light control panel C”) and the second light control panel D (which are formed by arranging the planar light reflecting portions 22 and 23 made of metal reflecting surfaces at a constant pitch. Hereinafter, simply referred to as “light control panel D”), one surface side of each of the light control panels C and D is brought into close contact with the planar light reflecting portions 22 and 23 facing each other. This will be described in detail below.

光制御パネルC、Dは、金属の一例であるアルミニウム又は銀等の蒸着層(又はめっき層)からなる金属反射面(従って、両面反射板となる)が、一面側に形成された一定厚みの板状の透明合成樹脂板(例えば、アクリル樹脂板)又はガラス板を、金属反射面が一方側に配置されるように多数枚積層して積層体を作製し、この積層体から各金属反射面に対して垂直な切出し面が形成されるように切出すことにより光制御パネルC、Dを作製する。そして、透明合成樹脂板又はガラス板の厚みが平面光反射部22、23のピッチに相当し、積層体から切出す際の厚みで光制御パネルC、Dの厚みが決定される。 Each of the light control panels C and D has a constant thickness in which a metal reflecting surface (and thus a double-sided reflecting plate) made of a deposited layer (or plating layer) of aluminum or silver, which is an example of a metal, is formed on one surface side. A large number of plate-like transparent synthetic resin plates (for example, acrylic resin plates) or glass plates are laminated so that the metal reflection surface is arranged on one side, and a laminate is produced. The light control panels C and D are manufactured by cutting so that a cut surface perpendicular to the surface is formed. And the thickness of a transparent synthetic resin board or a glass plate is equivalent to the pitch of the plane light reflection parts 22 and 23, and the thickness of the light control panels C and D is determined by the thickness at the time of cutting out from a laminated body.

ここで、切出す際の厚みは、光制御パネルC、Dの強度や光制御パネルC、Dの縦寸法及び横寸法に応じて調整する必要があるが、例えば、0.5〜10mmである。ここで、平面光反射部22、23の幅は、平面光反射部22、23のピッチqに対して、例えば、0.5q以上3q以下(好ましくは0.9q〜1.1q、より好ましくはq)である。平面光反射部22、23の幅が3qを超えると、平面光反射部22、23で反射した光が隣の平面光反射部22、23で反射され、再び平面光反射部22、23で反射することが繰返され鮮明な像が得られない。一方、平面光反射部22、23の幅が0.5q未満の場合、平面光反射部22、23で反射される光が少なくなって鮮明な像が得られない。そして、光制御パネルC、Dは、それぞれの一面側同士が密着して、図示しない拘束部材(例えば、接着剤、熱シール、ねじ等)で固定されている。 Here, the thickness at the time of cutting needs to be adjusted according to the intensity of the light control panels C and D and the vertical and horizontal dimensions of the light control panels C and D, and is, for example, 0.5 to 10 mm. . Here, the width of the planar light reflecting portions 22 and 23 is, for example, 0.5q to 3q (preferably 0.9q to 1.1q, more preferably) with respect to the pitch q of the planar light reflecting portions 22 and 23. q). When the width of the planar light reflecting portions 22 and 23 exceeds 3q, the light reflected by the planar light reflecting portions 22 and 23 is reflected by the adjacent planar light reflecting portions 22 and 23 and again reflected by the planar light reflecting portions 22 and 23. Repeatedly, a clear image cannot be obtained. On the other hand, when the widths of the planar light reflecting portions 22 and 23 are less than 0.5 q, the light reflected by the planar light reflecting portions 22 and 23 is reduced and a clear image cannot be obtained. The light control panels C and D are fixed to each other by a restraining member (for example, an adhesive, a heat seal, a screw, etc.) that is not shown, in close contact with each other.

続いて、本発明の第2の実施の形態に係る光学結像装置21の作用について説明する。
図4〜図6に示すように、光学結像装置21の光制御パネルCの他方側(光制御パネルDとの非当接側)に配置した物体Nから放射された光が光制御パネルCの他方側の面に斜めに入射すると、入射した光は光制御パネルC内に進入し平面光反射部22のc点で反射される。そして、平面光反射部22で反射された反射光は、光制御パネルCの一方側の面から光制御パネルDの一方側(光制御パネルCとの当接側)の面を通過して光制御パネルD内に進入する。ここで、光制御パネルD内に進入した光のなかで、一部の光は光制御パネルDの平面光反射部23のd点で反射されて更に光制御パネルD内を進行し、光制御パネルD内の他方側の面から外部に放出される。また、残部の光の一部は、光制御パネルD内を進行して光制御パネルDの他方側の面から外部に放出される。
Subsequently, the operation of the optical imaging apparatus 21 according to the second embodiment of the present invention will be described.
As shown in FIGS. 4 to 6, the light emitted from the object N arranged on the other side (the non-contact side with the light control panel D) of the light control panel C of the optical imaging device 21 is the light control panel C. Is incident obliquely on the other side surface, the incident light enters the light control panel C and is reflected at the point c of the planar light reflecting portion 22. Then, the reflected light reflected by the planar light reflecting portion 22 passes through the surface on one side of the light control panel D (the contact side with the light control panel C) from the surface on one side of the light control panel C, and the light. Enter the control panel D. Here, of the light that has entered the light control panel D, a part of the light is reflected at the point d of the planar light reflecting portion 23 of the light control panel D and further travels through the light control panel D to control the light. The light is discharged from the other side of the panel D to the outside. Further, a part of the remaining light travels in the light control panel D and is emitted to the outside from the other surface of the light control panel D.

ここで、平面光反射部22、23は、直交させて向かい合わせた状態で配置されているため、光制御パネルD内を進行して光制御パネルDの他方側の面から外部に放出される光のなかで、平面光反射部22に入射した入射光が平面光反射部22のc点で1回目の反射をしてその反射光が平面光反射部23のd点で2回目の反射を起こすと、2回目の反射光は平面光反射部22に入射した入射光と平面視して平行になる(図4参照)。このため、物体Nから光学結像装置21に入射した光のなかで、平面光反射部22、23で連続して反射した反射光は、光学結像装置21を挟んで物体Nと対称位置に収束し、光学結像装置21を挟んで物体Nと対称位置に物体像N´が生成する。 Here, since the planar light reflecting portions 22 and 23 are arranged in a state of being orthogonally opposed to each other, they travel in the light control panel D and are emitted to the outside from the other surface of the light control panel D. Of the light, incident light incident on the planar light reflecting portion 22 is reflected at the point c of the planar light reflecting portion 22 for the first time, and the reflected light is reflected at the point d of the planar light reflecting portion 23 for the second time. When this happens, the second reflected light becomes parallel to the incident light incident on the planar light reflecting portion 22 in plan view (see FIG. 4). For this reason, among the light incident on the optical imaging device 21 from the object N, the reflected light continuously reflected by the planar light reflecting portions 22 and 23 is in a symmetrical position with the object N across the optical imaging device 21. It converges and an object image N ′ is generated at a symmetrical position with respect to the object N across the optical imaging device 21.

一方、光制御パネルCの平面光反射部22で反射されて光制御パネルD内に進入し、光制御パネルD内を進行して他方側の面から外部に放出される光、光制御パネルCに進入し光制御パネルC内を進行して光制御パネルD内に進入し、光制御パネルD内を進行して他方側の面から外部に放出された光は、いずれも光制御パネルCに入射する入射光とは平面視して平行でない。このため、光制御パネルDの他方側の面から外部に放出される光は交わることがなく、像は形成されない。
なお、光学結像装置21では、平面光反射部22、23が金属反射面なので、平面光反射部22、23で反射する光の入射角度に制限がなく光の反射角が任意となる。このため、「物質の全反射」の原理を用いた反射面より広範囲の角度で結像できる。
On the other hand, light that is reflected by the planar light reflecting portion 22 of the light control panel C, enters the light control panel D, travels through the light control panel D, and is emitted to the outside from the other surface, the light control panel C. The light that enters the light control panel C, enters the light control panel D, enters the light control panel D, and travels through the light control panel D and is emitted from the other side to the light control panel C. The incident light is not parallel to the incident light in plan view. For this reason, the light emitted to the outside from the other surface of the light control panel D does not intersect and an image is not formed.
In the optical imaging device 21, since the planar light reflecting portions 22 and 23 are metal reflecting surfaces, the incident angle of light reflected by the planar light reflecting portions 22 and 23 is not limited, and the light reflection angle is arbitrary. For this reason, an image can be formed at a wider range of angles than the reflecting surface using the principle of “total reflection of matter”.

図7には本発明の第3の実施の形態に係る光学結像装置26を示すが、図に示すように、第1の光制御パネルE(以下、単に「光制御パネルE」という)と、これに当接する第2の光制御パネルF(以下、単に光制御パネルF」という)とを有する。光制御パネルEには、両面反射板からなる長尺の平面光反射部27が多数平行に設けられ、光制御パネルFは両面反射板からなる多数の長尺の平面光反射部28が平行に設けられている。そして、平面光反射部27、28は立設されている向きは同じである。従って、光制御パネルEと光制御パネルFとの当接面29に対して、各平面光反射部27、28は垂直に配置されている。 FIG. 7 shows an optical imaging apparatus 26 according to a third embodiment of the present invention. As shown in FIG. 7, a first light control panel E (hereinafter simply referred to as “light control panel E”) and And a second light control panel F (hereinafter simply referred to as a light control panel F) in contact therewith. The light control panel E is provided with a number of long planar light reflecting portions 27 made of double-sided reflectors in parallel, and the light control panel F has a number of long planar light reflecting portions 28 made of double-sided reflectors in parallel. Is provided. The plane light reflecting portions 27 and 28 are erected in the same direction. Accordingly, the planar light reflecting portions 27 and 28 are arranged perpendicular to the contact surface 29 between the light control panel E and the light control panel F.

そして、平面光反射部27の長手方向と、平面光反射部28の長手方向は直交している。これらの平面光反射部27、28は、第2の実施の形態に係る光学結像装置21と同様、透明樹脂(例えば、アクリル)又はガラス等の中に所定ピッチで埋設されている。
そして、この実施の形態では、光制御パネルE、Fにおける平面光反射部27、28は、高さ(幅)が、中央部から周辺部に向けて徐々に高くなって、各光制御パネルE、Fの片側断面は、円弧状となっている。
The longitudinal direction of the planar light reflecting portion 27 and the longitudinal direction of the planar light reflecting portion 28 are orthogonal to each other. These planar light reflecting portions 27 and 28 are embedded at a predetermined pitch in a transparent resin (for example, acrylic) or glass as in the optical imaging device 21 according to the second embodiment.
In this embodiment, the planar light reflecting portions 27 and 28 in the light control panels E and F gradually increase in height (width) from the central portion toward the peripheral portion. , F has a circular cross section on one side.

従って、この実施の形態においては、光源Pから出た光(入射光)は、光制御パネルEの中央にある平面光反射部27では、一回反射で光制御パネルFの平面光反射部28に入り、結像点P’に収束する。また、光制御パネルFの周辺部で、高さの高い部分の平面光反射部27に入射した光は、内部で奇数回反射して光制御パネルFに入り、光制御パネルFで奇数回(一回)反射し、結像点P’又はその近傍に収束する。一方、光制御パネルE又は光制御パネルFで偶数回反射した光は、結像点P’には収束しない。
従って、光学結像装置10、21では、光制御パネルの周辺部の光を集めることは難しいが、この光学結像装置26によって、光制御パネルの周辺部に当たる光の一部を集めることができる。
Therefore, in this embodiment, the light (incident light) emitted from the light source P is reflected once by the planar light reflecting unit 27 in the center of the light control panel E, and the planar light reflecting unit 28 of the light control panel F is reflected once. And converges to the image point P ′. In addition, the light incident on the planar light reflecting portion 27 of the high portion in the peripheral portion of the light control panel F is internally reflected an odd number of times and enters the light control panel F, and the light control panel F has an odd number of times ( Once), the light is reflected and converges at or near the image point P ′. On the other hand, the light reflected by the light control panel E or the light control panel F an even number of times does not converge at the imaging point P ′.
Therefore, although it is difficult for the optical imaging devices 10 and 21 to collect the light at the peripheral portion of the light control panel, the optical imaging device 26 can collect a part of the light hitting the peripheral portion of the light control panel. .

以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載した構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。
例えば、第1の実施の形態で、平面光反射部が形成された第1及び第2の光制御パネルのそれぞれの一面側を平面光反射部が直交するように向かい合わせ密着して光学結像装置を構成したが、第1及び第2の光制御パネルの間にギャップが形成されてもよい。ここで、ギャップの幅は、例えば、帯状の平面光反射部の幅の100倍以下とすることができる。
As described above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the configuration described in the above-described embodiment, and the matters described in the scope of claims. Other embodiments and modifications conceivable within the scope are also included.
For example, in the first embodiment, optical imaging is performed by bringing one surface side of each of the first and second light control panels on which the planar light reflecting portions are formed face to face so that the planar light reflecting portions are orthogonal to each other. Although the apparatus is configured, a gap may be formed between the first and second light control panels. Here, the width of the gap can be, for example, 100 times or less the width of the band-shaped planar light reflecting portion.

また、第2の実施の形態で、透明合成樹脂板の一面側に金属反射面を形成したが、透明合成樹脂板又はガラス板の両側面に金属反射面を形成してもよい。そして、両側面に金属反射面が形成された透明合成樹脂板又はガラス板を多数枚積層して積層体を作製し、この積層体から各金属反射面に対して垂直な切出し面が形成されるように切出して第1及び第2の光制御パネルを形成することもできる。
更に、第1〜第3の実施の形態で、第1の光制御パネルの平面光反射部のピッチと、第2の光制御パネルBの平面光反射部のピッチを同一としたが、第1の光制御パネルの平面光反射部のピッチと第2の光制御パネルの平面光反射部のピッチは異なっていてもよい。
更に、各実施の形態においては、光制御パネル内の平面光反射部の間隔(ピッチ)は必ずしも同一である必要はない。
また、光制御パネルに形成される溝の斜面に遮光処理を施すこともできる。
In the second embodiment, the metal reflection surface is formed on one side of the transparent synthetic resin plate, but the metal reflection surface may be formed on both side surfaces of the transparent synthetic resin plate or the glass plate. And a laminated body is produced by laminating a large number of transparent synthetic resin plates or glass plates having metal reflecting surfaces formed on both side surfaces, and cut-out surfaces perpendicular to the respective metal reflecting surfaces are formed from this laminated body. Thus, the first and second light control panels can be formed by cutting out.
Furthermore, in the first to third embodiments, the pitch of the planar light reflecting portion of the first light control panel and the pitch of the planar light reflecting portion of the second light control panel B are the same. The pitch of the planar light reflecting portions of the light control panel may be different from the pitch of the planar light reflecting portions of the second light control panel.
Furthermore, in each embodiment, the space | interval (pitch) of the planar light reflection part in a light control panel does not necessarily need to be the same.
Further, a light shielding process can be applied to the slope of the groove formed in the light control panel.

本発明に係る光学結像装置及びそれを用いた光学結像方法においては、透明平板の内部に、一方側の面に垂直に多数かつ帯状の平面光反射部を一定のピッチで並べて形成した第1及び第2の光制御パネルのそれぞれの一面側を、それぞれの平面光反射部を直交させて向かい合わせているので、この光学結像装置の一側に配置された物体から放射される光は、光学結像装置の他側に収束して結像する。従って、空間内に立体像を映し出すことができ、立体表示機器、ゲーム機、遊戯機器、広告塔等に応用できる。
更に、構造も簡単であるので、安価な光学結像装置を提供できる。
In the optical imaging device and the optical imaging method using the optical imaging device according to the present invention, a plurality of strip-shaped planar light reflecting portions are formed in a transparent flat plate so as to be arranged perpendicularly to one surface at a constant pitch. Since one surface side of each of the first and second light control panels faces each other with the respective planar light reflecting portions orthogonal to each other, the light emitted from the object disposed on one side of the optical imaging device is Then, it converges on the other side of the optical imaging device and forms an image. Therefore, a stereoscopic image can be projected in the space, and can be applied to a stereoscopic display device, a game machine, a game machine, an advertising tower, and the like.
Furthermore, since the structure is simple, an inexpensive optical imaging apparatus can be provided.

10:光学結像装置、11、12:平面光反射部、13、14:溝、15、16:光透過部、19、20:斜面、21:光学結像装置、22、23:平面光反射部、26:光学結像装置、27、28:平面光反射部、29:当接面、A、C、E:第1の光制御パネル、B、D、F:第2の光制御パネル DESCRIPTION OF SYMBOLS 10: Optical imaging device, 11, 12: Plane light reflection part, 13, 14: Groove, 15, 16: Light transmission part, 19, 20: Slope, 21: Optical imaging device, 22, 23: Plane light reflection Part, 26: optical imaging device, 27, 28: planar light reflecting part, 29: contact surface, A, C, E: first light control panel, B, D, F: second light control panel

本発明は、空中に立体像を形成する光学結像装置に関する。 The present invention relates to an optical imaging apparatus that forms a stereoscopic image in the air.

物体表面から発する光(散乱光)を用いて立体像を形成する光学結像装置として、多数の微小透光部を備えた不透光パネルと、この不透光パネルの背部に配置されて微小透光部に対応する多数の小画像が表示された画像表示パネルとを有する立体像表示装置が提案されている(例えば、特許文献1、2参照)。また、レンズ等の光学手段を使用しない立体像表示装置として、幅が数ミクロンから数十ミクロンの複数本の両面反射帯を隣接する反射面が互いに向かい合うように並べて構成した結像素子が提案されている(例えば、特許文献3参照)。 As an optical imaging device that forms a three-dimensional image using light (scattered light) emitted from the object surface, an opaque panel provided with a large number of minutely transparent parts, and a minutely placed on the back of the opaque panel There has been proposed a stereoscopic image display device having an image display panel on which a large number of small images corresponding to a light transmitting portion are displayed (see, for example, Patent Documents 1 and 2). In addition, as a stereoscopic image display device that does not use optical means such as lenses, there has been proposed an imaging element in which a plurality of double-sided reflection bands having a width of several microns to several tens of microns are arranged so that adjacent reflection surfaces face each other. (For example, refer to Patent Document 3).

また、特許文献4には、相互に直交する2つの鏡面要素を備えた単位光学素子を複数平面上に形成した反射型面対称結像素子からなる光線屈曲面と、この光線屈曲面に向けて配置された鏡面とを具備し、光線屈曲面を挟んで、鏡面とは反対側にある観察側に配置した像を、被投影物から発せられる光が光線屈曲面を透過して鏡面に反射し、更に光線屈曲面を透過することによって、鏡面の光線屈曲面に対する面対称位置に移動させた実態のない仮想鏡に映した位置に結像させる光学システムが提案されている。 Patent Document 4 discloses a light-bending surface composed of a reflection-type plane-symmetric imaging element in which unit optical elements having two mirror elements perpendicular to each other are formed on a plurality of planes, and toward the light-bending surface. An image arranged on the observation side opposite to the mirror surface across the light beam bending surface is transmitted through the light beam bending surface and reflected by the mirror surface. Furthermore, an optical system has been proposed in which an image is formed at a position reflected on a virtual mirror that does not actually exist by being transmitted through a light-bending surface and moved to a plane-symmetrical position with respect to the light-bending surface of the mirror surface.

特開平7−56112号公報JP 7-56112 A 特開平6−160770号公報JP-A-6-160770 特開昭58−21702号公報JP 58-21702 A 特開2008−158114号公報JP 2008-158114 A

しかしながら、特許文献1、2の発明には、予め多数の小画像を記録しておく必要があり、光学像を結像させるために多大の労力を必要とすると共に、特に動いている対象物の光学像を処理する場合には膨大な情報量を必要とするため、データ処理が困難になるという問題がある。また、特許文献3の発明には、物体からの散乱光は、結像素子を通過した後は、必ずしも一点には収束しないという問題がある。
また、特許文献4記載の光学システムにおいては、反射型面対称結像素子からなる光線屈曲面の製造が極めて難しく、実用化に障害があった。
However, in the inventions of Patent Documents 1 and 2, it is necessary to record a large number of small images in advance, and a great deal of labor is required to form an optical image. When an optical image is processed, an enormous amount of information is required, and there is a problem that data processing becomes difficult. Further, the invention of Patent Document 3 has a problem that scattered light from an object does not necessarily converge to one point after passing through the imaging element.
In addition, in the optical system described in Patent Document 4, it is extremely difficult to manufacture a light-bending surface composed of a reflection-type plane-symmetric imaging element, which hinders practical use.

本発明はかかる事情に鑑みてなされたもので、比較的製造が容易で、物体を見る観察者側の空中に立体像を簡便に形成することが可能な光学結像装置を提供することを目的とする。 The present invention has been made in view of such circumstances, a relatively manufacture easily, providing an optical imaging equipment capable of easily forming a three-dimensional image in space of the viewer-side viewing objects Objective.

前記目的に沿う発明に係る光学結像装置は、透明平板の内部に、該透明平板の一方側の面に垂直に多数かつ帯状の平面光反射部を一定のピッチで並べて形成した第1及び第2の光制御パネルを用い、該第1及び第2の光制御パネルのそれぞれの一面側を、前記平面光反射部を直交させて向かい合わせて構成されている。
なお、第1及び第2の光制御パネルの一面側は向かい合わせて平行に配置するのがよい。この場合、第1の光制御パネルの細長長方形(短冊状)の平面光反射部と、第2の光制御パネルの細長長方形の平面光反射部とは、長手方向が直交する。かつ第1の光制御パネルの平面光反射部と第2の光制御パネルの平面光反射部も直交面を形成する。
An optical imaging apparatus according to the present invention that meets the above-described object is provided with a first and a plurality of strip-shaped planar light reflecting portions arranged at a constant pitch perpendicular to one surface of the transparent flat plate inside the transparent flat plate. A second light control panel is used, and one surface side of each of the first and second light control panels is configured to face each other with the planar light reflecting portions orthogonal to each other.
It should be noted that one surface side of the first and second light control panels is preferably arranged to face each other in parallel. In this case, the elongated rectangular (strip-shaped) planar light reflecting portion of the first light control panel and the elongated rectangular planar light reflecting portion of the second light control panel are orthogonal to each other in the longitudinal direction. In addition, the planar light reflecting portion of the first light control panel and the planar light reflecting portion of the second light control panel also form orthogonal surfaces.

発明に係る光学結像装置において、前記第1及び第2の光制御パネルの前記平面光反射部は、金属反射面(例えば、銀又はアルミニウム等の薄板、メッキ層、蒸着層等)であることが好ましい。また、前記平面光反射部は、両面反射板であってもよい。 In the optical imaging apparatus according to the present invention, the planar light reflecting portion of the first and second light control panels is a metal reflecting surface (for example, a thin plate of silver or aluminum, a plating layer, a vapor deposition layer, or the like). It is preferable. Further, the planar light reflecting portion may be a double-sided reflecting plate.

また、前記第1及び第2の光制御パネルは、該第1及び第2の光制御パネルの平面光反射部を直交させた状態で、密着又は一定のギャップを介して配置することができる。ここで、一定のギャップとは、例えば、隣り合う平面光反射部の間隔の0.5〜4倍程度が好ましいが、本発明はこの数値に限定されるものではない。なお、第1、第2の光制御パネルの平面光反射部のピッチを細かくして、平面光反射部の数を多くする程、鮮明な画像が得られる。 In addition, the first and second light control panels can be arranged in close contact with each other with a fixed gap in a state where the planar light reflecting portions of the first and second light control panels are orthogonal to each other. Here, for example, the fixed gap is preferably about 0.5 to 4 times the interval between adjacent planar light reflecting portions, but the present invention is not limited to this value. In addition, a clear image is acquired, so that the pitch of the planar light reflection part of the 1st, 2nd light control panel is made fine and the number of planar light reflection parts is increased.

また、発明に係る光学結像装置において、前記平面光反射部が両面反射板であって、前記第1及び第2の光制御パネル内にそれぞれ配置されている複数の前記平面光反射部の幅が、中央部から周辺部にかけて徐々に大きくなっているものであってもよい。 Further, in the optical imaging apparatus according to the present invention, the planar light reflecting portion is a double-sided reflecting plate, and a plurality of the planar light reflecting portions respectively disposed in the first and second light control panels. The width may gradually increase from the central part to the peripheral part.

発明に係る光学結像装置においては、透明平板の内部に、一方側の面に垂直に多数かつ帯状の平面光反射部を一定のピッチで並べて形成した第1及び第2の光制御パネルのそれぞれの一面側を、それぞれの平面光反射部を直交させて向かい合わせているので、この光学結像装置の一側に配置された物体から放射される光は、光学結像装置の他側に収束して結像する。
更に、この光学結像装置は、透明平板の内部に、一方側の面に垂直に多数かつ帯状の平面光反射部を一定のピッチで並べて形成した光制御パネルを2枚用いており、各光制御パネルの製造は容易であるので、安価に製造が可能である。
In the optical imaging apparatus according to the present invention, the first and second light control panels are formed by arranging a large number of strip-shaped planar light reflecting portions arranged at a constant pitch inside the transparent flat plate perpendicularly to the surface on one side. Since each one surface side faces each other with the respective plane light reflecting portions orthogonal to each other, the light emitted from the object arranged on one side of the optical imaging device is transmitted to the other side of the optical imaging device. It converges and forms an image.
Further, this optical imaging apparatus uses two light control panels formed by arranging a large number of strip-shaped planar light reflecting portions arranged at a constant pitch perpendicularly to the surface on one side inside a transparent flat plate. Since the control panel is easy to manufacture, it can be manufactured inexpensively.

特に、発明に係る光学結像装置において、第1及び第2の光制御パネルの平面光反射部が金属反射面である場合は、平面光反射部で反射する光の入射角度に制限がなく多くの反射光が得られるので、広い範囲で結像し明るい物体像が得られる。 In particular, in the optical imaging apparatus according to the present invention, when the planar light reflecting portions of the first and second light control panels are metal reflecting surfaces, there is no limitation on the incident angle of light reflected by the planar light reflecting portion. Since a lot of reflected light can be obtained, a bright object image is obtained by forming an image in a wide range.

更に、発明に係る光学結像装置において、平面光反射部が両面反射板であって、第1及び第2の光制御パネル内にそれぞれ配置されている多数の平面光反射部の幅が、中央部から周辺部にかけて徐々に大きくなっていることによって、第1、第2の光制御パネルの周辺部に当たる光の回収も可能となり、より明るい像を得ることができる。 Furthermore, in the optical imaging device according to the present invention, the planar light reflecting portion is a double-sided reflector, and the widths of the many planar light reflecting portions respectively disposed in the first and second light control panels are: By gradually increasing from the central part to the peripheral part, it is possible to collect light hitting the peripheral part of the first and second light control panels, and a brighter image can be obtained.

(A)は本発明の参考例に係る光学結像装置の平面図、(B)はF−F断面図、(C)はG−G断面図である。(A) is a plan view of an optical imaging apparatus according to a reference example of the present invention, (B) is an FF sectional view, and (C) is a GG sectional view. 同光学結像装置の斜視図である。It is a perspective view of the same optical imaging device. 同光学結像装置の各光制御パネルの平面光反射部で反射して得られた反射光による物体像形成の説明図である。It is explanatory drawing of object image formation by the reflected light obtained by reflecting with the planar light reflection part of each light control panel of the optical imaging device. 本発明の第1の実施の形態に係る光学結像装置の平面図である。 1 is a plan view of an optical imaging apparatus according to a first embodiment of the present invention. 同光学結像装置の斜視図である。It is a perspective view of the same optical imaging device. 同光学結像装置の各光制御パネルの平面光反射部で連続して反射して得られた反射光による物体像形成の説明図である。It is explanatory drawing of the object image formation by the reflected light obtained by continuously reflecting with the planar light reflection part of each light control panel of the optical imaging device. 本発明の第2の実施の形態に係る光学結像装置の説明図である。It is explanatory drawing of the optical imaging device which concerns on the 2nd Embodiment of this invention.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。 Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.

図1、図2に示すように、本発明の参考例に係る光学結像装置10は、透明平板の一例であり、厚みが0.5〜10mmの2枚の透明合成樹脂板(例えば、アクリル樹脂板)の内部に、各透明合成樹脂板の一方側の面に垂直に多数かつ帯状の平面光反射部11、12を一定のピッチ(例えば、0.1〜1mm)で並べて形成した第1の光制御パネルA(以下、単に「光制御パネルA」という)及び第2の光制御パネルB(以下、単に「光制御パネルB」という)を用い、光制御パネルA、Bのそれぞれの一面側を、平面光反射部11、12を直交させて向かい合わせて密着させている。以下詳細に説明する。 As shown in FIGS. 1 and 2, an optical imaging apparatus 10 according to a reference example of the present invention is an example of a transparent flat plate, and two transparent synthetic resin plates (for example, acrylic resin) having a thickness of 0.5 to 10 mm. A plurality of strip-shaped planar light reflecting portions 11 and 12 arranged at a constant pitch (for example, 0.1 to 1 mm) perpendicularly to one surface of each transparent synthetic resin plate. The light control panel A (hereinafter simply referred to as “light control panel A”) and the second light control panel B (hereinafter simply referred to as “light control panel B”) are used. The flat light reflecting portions 11 and 12 are orthogonal to each other and are in close contact with each other. This will be described in detail below.

光制御パネルA、Bには、それぞれ透明合成樹脂板の一方側の面から厚み方向に伸びる垂直面を有する断面直角三角形の溝13、14が、平面光反射部11、12のピッチと同一の所定ピッチで形成されている。なお、溝13、14の垂直面が、光制御パネルA、B内に斜めに入射する光を反射する平面光反射部11、12となっている。溝13間及び溝14間にはそれぞれ、平面光反射部11、12から反射された反射光を通過させる光通過面を構成する光透過部15、16が形成されている。なお、溝13、14の垂直面は金属(例えば、銀)めっき層又は金属蒸着層(金属反射面を構成する)が形成されていてもよい。 In the light control panels A and B, grooves 13 and 14 having a right-angled triangular cross section each having a vertical surface extending in the thickness direction from one surface of the transparent synthetic resin plate are the same as the pitch of the planar light reflecting portions 11 and 12. It is formed at a predetermined pitch. Note that the vertical surfaces of the grooves 13 and 14 are planar light reflecting portions 11 and 12 that reflect light incident obliquely into the light control panels A and B, respectively. Between the grooves 13 and 14, light transmitting portions 15 and 16 constituting light passing surfaces through which the reflected light reflected from the planar light reflecting portions 11 and 12 pass are formed. The vertical surfaces of the grooves 13 and 14 may be formed with a metal (for example, silver) plating layer or a metal vapor deposition layer (which constitutes a metal reflection surface).

光制御パネルA、Bは、金型を用いるプレス成形によって製造することも可能であるが、所定形状の金型内に透明合成樹脂を注入し固化することで製造するのが好ましい。溝13、14は、予め金型にその基形状が形成されていて、光制御パネルA、Bの製造時に、この光制御パネルA、Bの一方側の面に形成される。溝13、14の斜面19、20を形成する金型部分の表面に、例えば、3〜50μmの凹凸部を形成するショットブラスト処理又は梨地処理することにより、溝13、14の斜面19、20には金型の凹凸部が転写された凸凹部が形成されて散乱光処理が施される。
なお、この参考例において、光制御パネルAの平面光反射部11の端部と、光制御パネルBの平面光反射部12の端部とは当接させて配置した。
The light control panels A and B can be manufactured by press molding using a mold, but are preferably manufactured by injecting a transparent synthetic resin into a mold having a predetermined shape and solidifying it. The grooves 13 and 14 have a base shape formed in advance in the mold, and are formed on one surface of the light control panels A and B when the light control panels A and B are manufactured. The surface of the mold part forming the slopes 19 and 20 of the grooves 13 and 14 is subjected to, for example, a shot blasting process or a satin treatment for forming an uneven portion of 3 to 50 μm, thereby forming the slopes 19 and 20 of the grooves 13 and 14. Is formed with convex and concave portions to which the concave and convex portions of the mold are transferred and subjected to the scattered light treatment.
In this reference example , the end of the planar light reflecting portion 11 of the light control panel A and the end of the planar light reflecting portion 12 of the light control panel B are disposed in contact with each other.

ここで、図2に示すように、平面光反射部11、12の幅wは、平面光反射部11、12(溝13、14)のピッチpに対して、例えば、0.5p以上3p以下(好ましくは0.9p〜1.1p、より好ましくはp)としている。平面光反射部11、12の幅が3pを超えると、平面光反射部11、12で反射した光が斜面19、20で散乱され散乱光の一部が再び平面光反射部11、12で反射することが繰返され鮮明な像が得られない。一方、平面光反射部11、12の幅が0.5p未満の場合、平面光反射部11、12で反射される光が少なくなって鮮明な像が得られない。 Here, as shown in FIG. 2, the width w of the planar light reflecting portions 11 and 12 is, for example, 0.5 p or more and 3 p or less with respect to the pitch p of the planar light reflecting portions 11 and 12 (grooves 13 and 14). (Preferably 0.9p to 1.1p, more preferably p). When the width of the planar light reflecting portions 11 and 12 exceeds 3p, the light reflected by the planar light reflecting portions 11 and 12 is scattered by the slopes 19 and 20, and a part of the scattered light is reflected again by the planar light reflecting portions 11 and 12. Repeatedly, a clear image cannot be obtained. On the other hand, when the width of the planar light reflecting portions 11 and 12 is less than 0.5p, the light reflected by the planar light reflecting portions 11 and 12 is reduced and a clear image cannot be obtained.

続いて、参考例に係る光学結像装置10について、図1〜図3を参照してその作用及び動作について説明する。なお、図3では、光学結像装置10の光制御パネルA、Bにおいて光の反射状態を明確に示すため、側面視して、物体M及び物体像M´に対して左側の光制御パネルと右側の光制御パネルでは、左側の光制御パネルA、Bに対して右側の光制御パネルA、Bを同一平面内で90度回転させた状態で示している。なお、光制御パネルAの垂直な平面光反射部11と光制御パネルBの垂直な平面光反射部12で続けて2回反射すると物体像M´が得られるので、光学結像装置の光制御パネルA、Bを側面視して左右に分割し、同一平面内で左側の光制御パネルA、Bに対して右側の光制御パネルA、Bを90度回転した状態で配置しても物体像が得られる。 Next, the operation and operation of the optical imaging apparatus 10 according to the reference example will be described with reference to FIGS. In FIG. 3, in order to clearly show the light reflection state in the light control panels A and B of the optical imaging apparatus 10, the light control panel on the left side with respect to the object M and the object image M ′ in a side view is shown. In the right light control panel, the right light control panels A and B are shown rotated by 90 degrees in the same plane with respect to the left light control panels A and B. Since the object image M ′ is obtained when the light is reflected twice in succession by the vertical planar light reflecting portion 11 of the light control panel A and the vertical planar light reflecting portion 12 of the light control panel B, the light control of the optical imaging device is performed. The panels A and B are divided into left and right sides when viewed from the side, and the object image is obtained even when the right light control panels A and B are rotated 90 degrees with respect to the left light control panels A and B in the same plane. Is obtained.

光学結像装置10の光制御パネルAの他方側(平面光反射部11が形成されていない側)に配置した物体Mから放射された光が、光制御パネルAの他方側の面に斜めに入射すると、入射した光は光制御パネルA内に進入し進行する。ここで、断面直角三角形の溝13、14内(垂直面の外側領域)には空気が存在しているので、光制御パネル内(垂直面の内側領域)の光屈折率nmは、垂直面の外側領域、すなわち空気の光屈折率naより大きい。このため、光制御パネルA内を進行した光が垂直面に入射角θで入射する際に、入射角θがsinθc=nm/naの関係を満たす角度θcを超える角度で垂直面内のa点に入射する場合、垂直面内のa点で光の全反射が起こり、このとき垂直面は平面光反射部11となる。 Light emitted from the object M arranged on the other side of the light control panel A of the optical imaging apparatus 10 (the side on which the planar light reflecting portion 11 is not formed) is inclined obliquely on the other surface of the light control panel A. When incident, the incident light enters the light control panel A and travels. Here, since air exists in the grooves 13 and 14 having a right-angled triangular section (outer region of the vertical surface), the light refractive index nm in the light control panel (inner region of the vertical surface) is It is larger than the outer region, that is, the optical refractive index na of air. Therefore, when light traveling in the light control panel A is incident on the vertical surface at an incident angle θ, the point a in the vertical surface is an angle that exceeds the angle θc that satisfies the relationship sin θc = nm / na. In this case, total reflection of light occurs at point a in the vertical plane, and at this time, the vertical plane becomes the planar light reflecting portion 11.

そして、光制御パネルAの垂直面で全反射した光が光透過部15に到達すると、光制御パネルAと光制御パネルBは密着しているので、互いに当接している光通過部15、16を介して光制御パネルAの垂直面で全反射した光の一部は光制御パネルB内に進入し、残部は散乱光処理された斜面19で散乱して減衰する。光制御パネルB内に進入した光は、光制御パネルB内を進行し断面直角三角形の溝14の垂直面に到達する。そして、溝14の垂直面に到達した光のなかで全反射を起こす入射角度で垂直面内のb点に入射した光に対してのみ垂直面は平面光反射部12として作用し、全反射した光は光制御パネルB内を更に進行し、光制御パネルB内の他方側(平面光反射部12が形成されていない側)の面から外部に放出される。 When the light totally reflected by the vertical surface of the light control panel A reaches the light transmission part 15, the light control panel A and the light control panel B are in close contact with each other. A part of the light totally reflected by the vertical surface of the light control panel A enters the light control panel B, and the rest is scattered and attenuated by the slope 19 subjected to the scattered light processing. The light that has entered the light control panel B travels in the light control panel B and reaches the vertical plane of the groove 14 having a right-angled triangular section. The vertical surface acts as the planar light reflecting portion 12 only for the light incident on the point b in the vertical surface at an incident angle causing total reflection among the light reaching the vertical surface of the groove 14 and totally reflected. The light further travels in the light control panel B, and is emitted to the outside from the surface on the other side (the side on which the planar light reflecting portion 12 is not formed) in the light control panel B.

なお、図1、図3に示すように、光制御パネルAの垂直面に入射角がθc未満で入射した光は垂直面で屈折して溝13内に進入し、一部の光は散乱光処理がなされた斜面19で散乱して減衰し、残部は光制御パネルBの光透過部16を通過して光制御パネルBに進入する。そして、光制御パネルBに進入した光のなかで、溝14の垂直面で全反射された光、光制御パネルB内をそのまま進行する光は、光制御パネルBの他方側まで進行し他方側の面から外部に放出される。また、光制御パネルAの溝13の垂直面に入射角がθcで入射した光は、溝13の垂直面で反射してこの垂直面に沿った光となって光制御パネルBの光透過部16から光制御パネルB内に進入する。そして光制御パネルB内に進入した光のなかで、一部は散乱光処理がなされた溝14の斜面20で散乱して減衰し、残部は光制御パネルBの他方側の面から外部に放出される。更に、光通過部15、16を介して光制御パネルAから光制御パネルB内に直接進入し、光制御パネルB内を進行して光制御パネルBの他方側の面から外部に放出される光も存在する。 As shown in FIGS. 1 and 3, light incident on the vertical surface of the light control panel A with an incident angle of less than θc is refracted on the vertical surface and enters the groove 13, and some of the light is scattered light. The light is scattered and attenuated by the slope 19 that has been processed, and the remaining portion passes through the light transmitting portion 16 of the light control panel B and enters the light control panel B. Of the light that has entered the light control panel B, the light that is totally reflected by the vertical surface of the groove 14 and the light that travels in the light control panel B travels to the other side of the light control panel B. It is emitted from the surface of the outside. Further, the light incident on the vertical surface of the groove 13 of the light control panel A with the incident angle θc is reflected by the vertical surface of the groove 13 and becomes light along the vertical surface. 16 enters the light control panel B. Of the light that has entered the light control panel B, a part of the light is scattered and attenuated by the inclined surface 20 of the groove 14 that has been subjected to the scattered light treatment, and the remaining part is emitted from the other surface of the light control panel B to the outside. Is done. Further, the light enters directly into the light control panel B from the light control panel A via the light passing portions 15 and 16, travels through the light control panel B, and is emitted to the outside from the other surface of the light control panel B. There is also light.

ここで、平面光反射部11、12は、直交させて向かい合わせた状態で配置されているため、光制御パネルB内を進行して光制御パネルBの他方側の面から外部に放出される光のなかで、平面光反射部11に入射した入射光が平面光反射部11のa点で1回目の反射をしてその反射光が平面光反射部12のb点で2回目の反射を起こすと、2回目の反射光は、平面光反射部11に入射した入射光の入射角度と同一の角度で放射される。このため、物体Mから光学結像装置10に入射した光のなかで、平面光反射部11、12で連続して反射した反射光は、光学結像装置10を挟んで物体Mと対称位置に収束し、光学結像装置10を挟んで物体Mと対称位置に物体像M´が生成する。 Here, since the planar light reflecting portions 11 and 12 are disposed in a state of being orthogonally opposed to each other, they travel in the light control panel B and are emitted to the outside from the other surface of the light control panel B. Of the light, incident light incident on the planar light reflecting portion 11 is reflected at the point a of the planar light reflecting portion 11 for the first time, and the reflected light is reflected at the point b of the planar light reflecting portion 12 for the second time. When this happens, the second reflected light is radiated at the same angle as the incident angle of the incident light incident on the planar light reflecting portion 11. For this reason, among the light incident on the optical imaging apparatus 10 from the object M, the reflected light continuously reflected by the planar light reflecting portions 11 and 12 is in a symmetrical position with the object M across the optical imaging apparatus 10. It converges and an object image M ′ is generated at a symmetrical position with respect to the object M across the optical imaging apparatus 10.

一方、光制御パネルAの溝13内を通過してから光制御パネルB内に進入し光制御パネルBの他方側まで進行し他方側の面から外部に放出された光、光制御パネルAの溝13の垂直面に入射角θcで入射し、溝13の垂直面に沿った光となって光制御パネルB内に進入し光制御パネルBの他方側まで進行し他方側の面から外部に放出された光、及び光制御パネルAから光制御パネルB内に直接進入し、光制御パネルB内を進行して光制御パネルBの他方側の面から外部に放出される光は、いずれも光制御パネルAに入射する入射光とは同一角度で反射しない。このため、光制御パネルBの他方側の面から外部に放出される光は交わることがなく、像は形成されない。 On the other hand, after passing through the groove 13 of the light control panel A, the light enters the light control panel B, proceeds to the other side of the light control panel B, and is emitted to the outside from the other side surface. The light enters the vertical surface of the groove 13 at an incident angle θc, enters the light control panel B as light along the vertical surface of the groove 13, travels to the other side of the light control panel B, and travels from the other surface to the outside. The emitted light and the light that directly enters the light control panel B from the light control panel A, travels through the light control panel B, and is emitted to the outside from the other surface of the light control panel B are both The incident light entering the light control panel A is not reflected at the same angle. For this reason, the light emitted to the outside from the other surface of the light control panel B does not intersect and an image is not formed.

図4、図5に示すように、本発明の第1の実施の形態に係る光学結像装置21は、2枚の透明平板の内部に、透明平板の厚み方向に渡って垂直に多数かつ帯状で、金属反射面からなる平面光反射部22、23を一定のピッチで並べて形成した第1の光制御パネルC(以下、単に「光制御パネルC」という)及び第2の光制御パネルD(以下、単に「光制御パネルD」という)を用い、光制御パネルC、Dのそれぞれの一面側を、平面光反射部22、23を直交させて向かい合わせて密着させている。以下詳細に説明する。 As shown in FIGS. 4 and 5, the optical imaging apparatus 21 according to the first embodiment of the present invention includes a large number of strips vertically in the thickness direction of the transparent flat plate inside the two transparent flat plates. The first light control panel C (hereinafter simply referred to as “light control panel C”) and the second light control panel D (which are formed by arranging the planar light reflecting portions 22 and 23 made of metal reflecting surfaces at a constant pitch. Hereinafter, simply referred to as “light control panel D”), one surface side of each of the light control panels C and D is brought into close contact with the planar light reflecting portions 22 and 23 facing each other. This will be described in detail below.

光制御パネルC、Dは、金属の一例であるアルミニウム又は銀等の蒸着層(又はめっき層)からなる金属反射面(従って、両面反射板となる)が、一面側に形成された一定厚みの板状の透明合成樹脂板(例えば、アクリル樹脂板)又はガラス板を、金属反射面が一方側に配置されるように多数枚積層して積層体を作製し、この積層体から各金属反射面に対して垂直な切出し面が形成されるように切出すことにより光制御パネルC、Dを作製する。そして、透明合成樹脂板又はガラス板の厚みが平面光反射部22、23のピッチに相当し、積層体から切出す際の厚みで光制御パネルC、Dの厚みが決定される。 Each of the light control panels C and D has a constant thickness in which a metal reflecting surface (and thus a double-sided reflecting plate) made of a deposited layer (or plating layer) of aluminum or silver, which is an example of a metal, is formed on one surface side. A large number of plate-like transparent synthetic resin plates (for example, acrylic resin plates) or glass plates are laminated so that the metal reflection surface is arranged on one side, and a laminate is produced. The light control panels C and D are manufactured by cutting so that a cut surface perpendicular to the surface is formed. And the thickness of a transparent synthetic resin board or a glass plate is equivalent to the pitch of the plane light reflection parts 22 and 23, and the thickness of the light control panels C and D is determined by the thickness at the time of cutting out from a laminated body.

ここで、切出す際の厚みは、光制御パネルC、Dの強度や光制御パネルC、Dの縦寸法及び横寸法に応じて調整する必要があるが、例えば、0.5〜10mmである。ここで、平面光反射部22、23の幅は、平面光反射部22、23のピッチqに対して、例えば、0.5q以上3q以下(好ましくは0.9q〜1.1q、より好ましくはq)である。平面光反射部22、23の幅が3qを超えると、平面光反射部22、23で反射した光が隣の平面光反射部22、23で反射され、再び平面光反射部22、23で反射することが繰返され鮮明な像が得られない。一方、平面光反射部22、23の幅が0.5q未満の場合、平面光反射部22、23で反射される光が少なくなって鮮明な像が得られない。そして、光制御パネルC、Dは、それぞれの一面側同士が密着して、図示しない拘束部材(例えば、接着剤、熱シール、ねじ等)で固定されている。 Here, the thickness at the time of cutting needs to be adjusted according to the intensity of the light control panels C and D and the vertical and horizontal dimensions of the light control panels C and D, and is, for example, 0.5 to 10 mm. . Here, the width of the planar light reflecting portions 22 and 23 is, for example, 0.5q to 3q (preferably 0.9q to 1.1q, more preferably) with respect to the pitch q of the planar light reflecting portions 22 and 23. q). When the width of the planar light reflecting portions 22 and 23 exceeds 3q, the light reflected by the planar light reflecting portions 22 and 23 is reflected by the adjacent planar light reflecting portions 22 and 23 and again reflected by the planar light reflecting portions 22 and 23. Repeatedly, a clear image cannot be obtained. On the other hand, when the widths of the planar light reflecting portions 22 and 23 are less than 0.5 q, the light reflected by the planar light reflecting portions 22 and 23 is reduced and a clear image cannot be obtained. The light control panels C and D are fixed to each other by a restraining member (for example, an adhesive, a heat seal, a screw, etc.) that is not shown, in close contact with each other.

続いて、本発明の第1の実施の形態に係る光学結像装置21の作用について説明する。
図4〜図6に示すように、光学結像装置21の光制御パネルCの他方側(光制御パネルDとの非当接側)に配置した物体Nから放射された光が光制御パネルCの他方側の面に斜めに入射すると、入射した光は光制御パネルC内に進入し平面光反射部22のc点で反射される。そして、平面光反射部22で反射された反射光は、光制御パネルCの一方側の面から光制御パネルDの一方側(光制御パネルCとの当接側)の面を通過して光制御パネルD内に進入する。ここで、光制御パネルD内に進入した光のなかで、一部の光は光制御パネルDの平面光反射部23のd点で反射されて更に光制御パネルD内を進行し、光制御パネルD内の他方側の面から外部に放出される。また、残部の光の一部は、光制御パネルD内を進行して光制御パネルDの他方側の面から外部に放出される。
Subsequently, the operation of the optical imaging apparatus 21 according to the first embodiment of the present invention will be described.
As shown in FIGS. 4 to 6, the light emitted from the object N arranged on the other side (the non-contact side with the light control panel D) of the light control panel C of the optical imaging device 21 is the light control panel C. Is incident obliquely on the other side surface, the incident light enters the light control panel C and is reflected at the point c of the planar light reflecting portion 22. Then, the reflected light reflected by the planar light reflecting portion 22 passes through the surface on one side of the light control panel D (the contact side with the light control panel C) from the surface on one side of the light control panel C, and the light. Enter the control panel D. Here, of the light that has entered the light control panel D, a part of the light is reflected at the point d of the planar light reflecting portion 23 of the light control panel D and further travels through the light control panel D to control the light. The light is discharged from the other side of the panel D to the outside. Further, a part of the remaining light travels in the light control panel D and is emitted to the outside from the other surface of the light control panel D.

ここで、平面光反射部22、23は、直交させて向かい合わせた状態で配置されているため、光制御パネルD内を進行して光制御パネルDの他方側の面から外部に放出される光のなかで、平面光反射部22に入射した入射光が平面光反射部22のc点で1回目の反射をしてその反射光が平面光反射部23のd点で2回目の反射を起こすと、2回目の反射光は平面光反射部22に入射した入射光と平面視して平行になる(図4参照)。このため、物体Nから光学結像装置21に入射した光のなかで、平面光反射部22、23で連続して反射した反射光は、光学結像装置21を挟んで物体Nと対称位置に収束し、光学結像装置21を挟んで物体Nと対称位置に物体像N´が生成する。 Here, since the planar light reflecting portions 22 and 23 are arranged in a state of being orthogonally opposed to each other, they travel in the light control panel D and are emitted to the outside from the other surface of the light control panel D. Of the light, incident light incident on the planar light reflecting portion 22 is reflected at the point c of the planar light reflecting portion 22 for the first time, and the reflected light is reflected at the point d of the planar light reflecting portion 23 for the second time. When this happens, the second reflected light becomes parallel to the incident light incident on the planar light reflecting portion 22 in plan view (see FIG. 4). For this reason, among the light incident on the optical imaging device 21 from the object N, the reflected light continuously reflected by the planar light reflecting portions 22 and 23 is in a symmetrical position with the object N across the optical imaging device 21. It converges and an object image N ′ is generated at a symmetrical position with respect to the object N across the optical imaging device 21.

一方、光制御パネルCの平面光反射部22で反射されて光制御パネルD内に進入し、光制御パネルD内を進行して他方側の面から外部に放出される光、光制御パネルCに進入し光制御パネルC内を進行して光制御パネルD内に進入し、光制御パネルD内を進行して他方側の面から外部に放出された光は、いずれも光制御パネルCに入射する入射光とは平面視して平行でない。このため、光制御パネルDの他方側の面から外部に放出される光は交わることがなく、像は形成されない。
なお、光学結像装置21では、平面光反射部22、23が金属反射面なので、平面光反射部22、23で反射する光の入射角度に制限がなく光の反射角が任意となる。このため、「物質の全反射」の原理を用いた反射面より広範囲の角度で結像できる。
On the other hand, light that is reflected by the planar light reflecting portion 22 of the light control panel C, enters the light control panel D, travels through the light control panel D, and is emitted to the outside from the other surface, the light control panel C. The light that enters the light control panel C, enters the light control panel D, enters the light control panel D, and travels through the light control panel D and is emitted from the other side to the light control panel C. The incident light is not parallel to the incident light in plan view. For this reason, the light emitted to the outside from the other surface of the light control panel D does not intersect and an image is not formed.
In the optical imaging device 21, since the planar light reflecting portions 22 and 23 are metal reflecting surfaces, the incident angle of light reflected by the planar light reflecting portions 22 and 23 is not limited, and the light reflection angle is arbitrary. For this reason, an image can be formed at a wider range of angles than the reflecting surface using the principle of “total reflection of matter”.

図7には本発明の第2の実施の形態に係る光学結像装置26を示すが、図に示すように、第1の光制御パネルE(以下、単に「光制御パネルE」という)と、これに当接する第2の光制御パネルF(以下、単に光制御パネルF」という)とを有する。光制御パネルEには、両面反射板からなる長尺の平面光反射部27が多数平行に設けられ、光制御パネルFは両面反射板からなる多数の長尺の平面光反射部28が平行に設けられている。そして、平面光反射部27、28は立設されている向きは同じである。従って、光制御パネルEと光制御パネルFとの当接面29に対して、各平面光反射部27、28は垂直に配置されている。 FIG. 7 shows an optical imaging apparatus 26 according to the second embodiment of the present invention. As shown in FIG. 7, a first light control panel E (hereinafter simply referred to as “light control panel E”) and And a second light control panel F (hereinafter simply referred to as a light control panel F) in contact therewith. The light control panel E is provided with a number of long planar light reflecting portions 27 made of double-sided reflectors in parallel, and the light control panel F has a number of long planar light reflecting portions 28 made of double-sided reflectors in parallel. Is provided. The plane light reflecting portions 27 and 28 are erected in the same direction. Accordingly, the planar light reflecting portions 27 and 28 are arranged perpendicular to the contact surface 29 between the light control panel E and the light control panel F.

そして、平面光反射部27の長手方向と、平面光反射部28の長手方向は直交している。これらの平面光反射部27、28は、第1の実施の形態に係る光学結像装置21と同様、透明樹脂(例えば、アクリル)又はガラス等の中に所定ピッチで埋設されている。
そして、この実施の形態では、光制御パネルE、Fにおける平面光反射部27、28は、高さ(幅)が、中央部から周辺部に向けて徐々に高くなって、各光制御パネルE、Fの片側断面は、円弧状となっている。
The longitudinal direction of the planar light reflecting portion 27 and the longitudinal direction of the planar light reflecting portion 28 are orthogonal to each other. These planar light reflecting portions 27 and 28 are embedded at a predetermined pitch in a transparent resin (for example, acrylic) or glass as in the optical imaging apparatus 21 according to the first embodiment.
In this embodiment, the planar light reflecting portions 27 and 28 in the light control panels E and F gradually increase in height (width) from the central portion toward the peripheral portion. , F has a circular cross section on one side.

従って、この実施の形態においては、光源Pから出た光(入射光)は、光制御パネルEの中央にある平面光反射部27では、一回反射で光制御パネルFの平面光反射部28に入り、結像点P’に収束する。また、光制御パネルFの周辺部で、高さの高い部分の平面光反射部27に入射した光は、内部で奇数回反射して光制御パネルFに入り、光制御パネルFで奇数回(一回)反射し、結像点P’又はその近傍に収束する。一方、光制御パネルE又は光制御パネルFで偶数回反射した光は、結像点P’には収束しない。
従って、光学結像装置10、21では、光制御パネルの周辺部の光を集めることは難しいが、この光学結像装置26によって、光制御パネルの周辺部に当たる光の一部を集めることができる。
Therefore, in this embodiment, the light (incident light) emitted from the light source P is reflected once by the planar light reflecting unit 27 in the center of the light control panel E, and the planar light reflecting unit 28 of the light control panel F is reflected once. And converges to the image point P ′. In addition, the light incident on the planar light reflecting portion 27 of the high portion in the peripheral portion of the light control panel F is internally reflected an odd number of times and enters the light control panel F, and the light control panel F has an odd number of times ( Once), the light is reflected and converges at or near the image point P ′. On the other hand, the light reflected by the light control panel E or the light control panel F an even number of times does not converge at the imaging point P ′.
Therefore, although it is difficult for the optical imaging devices 10 and 21 to collect the light at the peripheral portion of the light control panel, the optical imaging device 26 can collect a part of the light hitting the peripheral portion of the light control panel. .

以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載した構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。
例えば、参考例で、平面光反射部が形成された第1及び第2の光制御パネルのそれぞれの一面側を平面光反射部が直交するように向かい合わせ密着して光学結像装置を構成したが、第1及び第2の光制御パネルの間にギャップが形成されてもよい。ここで、ギャップの幅は、例えば、帯状の平面光反射部の幅の100倍以下とすることができる。
As described above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the configuration described in the above-described embodiment, and the matters described in the scope of claims. Other embodiments and modifications conceivable within the scope are also included.
For example, in the reference example , the optical imaging device is configured by closely contacting one surface side of each of the first and second light control panels on which the planar light reflecting portion is formed so that the planar light reflecting portion is orthogonal to each other. However, a gap may be formed between the first and second light control panels. Here, the width of the gap can be, for example, 100 times or less the width of the band-shaped planar light reflecting portion.

また、第1の実施の形態で、透明合成樹脂板の一面側に金属反射面を形成したが、透明合成樹脂板又はガラス板の両側面に金属反射面を形成してもよい。そして、両側面に金属反射面が形成された透明合成樹脂板又はガラス板を多数枚積層して積層体を作製し、この積層体から各金属反射面に対して垂直な切出し面が形成されるように切出して第1及び第2の光制御パネルを形成することもできる。
更に、第1、第2の実施の形態で、第1の光制御パネルの平面光反射部のピッチと、第2の光制御パネルの平面光反射部のピッチを同一としたが、第1の光制御パネルの平面光反射部のピッチと第2の光制御パネルの平面光反射部のピッチは異なっていてもよい。
更に、各実施の形態においては、光制御パネル内の平面光反射部の間隔(ピッチ)は必ずしも同一である必要はない。
In the first embodiment, the metal reflection surface is formed on one side of the transparent synthetic resin plate. However, the metal reflection surface may be formed on both side surfaces of the transparent synthetic resin plate or the glass plate. And a laminated body is produced by laminating a large number of transparent synthetic resin plates or glass plates having metal reflecting surfaces formed on both side surfaces, and cut-out surfaces perpendicular to the respective metal reflecting surfaces are formed from this laminated body. Thus, the first and second light control panels can be formed by cutting out.
Furthermore, in the first and second embodiments, the pitch of the planar light reflecting portion of the first light control panel is the same as the pitch of the planar light reflecting portion of the second light control panel. The pitch of the planar light reflecting portions of the light control panel may be different from the pitch of the planar light reflecting portions of the second light control panel.
Furthermore, in each embodiment, the space | interval (pitch) of the planar light reflection part in a light control panel does not necessarily need to be the same.

本発明に係る光学結像装置においては、透明平板の内部に、一方側の面に垂直に多数かつ帯状の平面光反射部を一定のピッチで並べて形成した第1及び第2の光制御パネルのそれぞれの一面側を、それぞれの平面光反射部を直交させて向かい合わせているので、この光学結像装置の一側に配置された物体から放射される光は、光学結像装置の他側に収束して結像する。従って、空間内に立体像を映し出すことができ、立体表示機器、ゲーム機、遊戯機器、広告塔等に応用できる。
更に、構造も簡単であるので、安価な光学結像装置を提供できる。
Oite the optical imaging equipment according to the present invention, the inside of the transparent plate, while the first and second light planar light reflecting portion of the vertically numerous and strip the surface of the side to form side by side at a constant pitch Since one surface side of each control panel faces each other with the respective plane light reflecting portions orthogonal to each other, the light emitted from the object arranged on one side of the optical imaging device is reflected by the optical imaging device. It converges on the other side and forms an image. Therefore, a stereoscopic image can be projected in the space, and can be applied to a stereoscopic display device, a game machine, a game machine, an advertising tower, and the like.
Furthermore, since the structure is simple, an inexpensive optical imaging apparatus can be provided.

10:光学結像装置、11、12:平面光反射部、13、14:溝、15、16:光透過部、19、20:斜面、21:光学結像装置、22、23:平面光反射部、26:光学結像装置、27、28:平面光反射部、29:当接面、A、C、E:第1の光制御パネル、B、D、F:第2の光制御パネル DESCRIPTION OF SYMBOLS 10: Optical imaging device, 11, 12: Plane light reflection part, 13, 14: Groove, 15, 16: Light transmission part, 19, 20: Slope, 21: Optical imaging device, 22, 23: Plane light reflection Part, 26: optical imaging device, 27, 28: planar light reflecting part, 29: contact surface, A, C, E: first light control panel, B, D, F: second light control panel

Claims (3)

透明平板の内部に、該透明平板の一方側の面に垂直に多数かつ帯状の平面光反射部を一定のピッチで並べて形成した第1及び第2の光制御パネルを用い、該第1及び第2の光制御パネルのそれぞれの一面側を、前記平面光反射部を直交させて向かい合わせたことを特徴とする光学結像装置。 Using the first and second light control panels, in which a large number of strip-like planar light reflecting portions are arranged at a constant pitch perpendicularly to one surface of the transparent flat plate inside the transparent flat plate. An optical imaging apparatus, wherein one surface side of each of the two light control panels is opposed to each other with the planar light reflecting portions orthogonal to each other. 請求項1記載の光学結像装置において、前記第1及び第2の光制御パネルの前記平面光反射部が金属反射面であることを特徴とする光学結像装置。 2. The optical imaging apparatus according to claim 1, wherein the planar light reflecting portions of the first and second light control panels are metal reflecting surfaces. 請求項1又は2記載の光学結像装置において、前記平面光反射部が両面反射板であって、前記第1及び第2の光制御パネル内にそれぞれ配置されている複数の前記平面光反射部の幅が、中央部から周辺部にかけて徐々に大きくなっていることを特徴とする光学結像装置。 3. The optical imaging device according to claim 1, wherein the planar light reflecting portion is a double-sided reflecting plate, and the plurality of planar light reflecting portions respectively disposed in the first and second light control panels. The optical imaging apparatus is characterized in that the width of is gradually increased from the central part to the peripheral part.
JP2012108788A 2008-04-22 2012-05-10 Optical imaging device Active JP5437436B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012108788A JP5437436B2 (en) 2008-04-22 2012-05-10 Optical imaging device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008111672 2008-04-22
JP2008111672 2008-04-22
JP2012108788A JP5437436B2 (en) 2008-04-22 2012-05-10 Optical imaging device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011217754A Division JP5036898B2 (en) 2008-04-22 2011-09-30 Optical imaging device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013003620A Division JP5420774B2 (en) 2008-04-22 2013-01-11 Optical imaging device

Publications (3)

Publication Number Publication Date
JP2012155345A true JP2012155345A (en) 2012-08-16
JP2012155345A5 JP2012155345A5 (en) 2013-04-11
JP5437436B2 JP5437436B2 (en) 2014-03-12

Family

ID=41216860

Family Applications (5)

Application Number Title Priority Date Filing Date
JP2010509189A Active JP4865088B2 (en) 2008-04-22 2009-04-21 Optical imaging method
JP2011122306A Active JP5085767B2 (en) 2008-04-22 2011-05-31 Method for manufacturing optical imaging apparatus
JP2011217754A Active JP5036898B2 (en) 2008-04-22 2011-09-30 Optical imaging device
JP2012108788A Active JP5437436B2 (en) 2008-04-22 2012-05-10 Optical imaging device
JP2013003620A Active JP5420774B2 (en) 2008-04-22 2013-01-11 Optical imaging device

Family Applications Before (3)

Application Number Title Priority Date Filing Date
JP2010509189A Active JP4865088B2 (en) 2008-04-22 2009-04-21 Optical imaging method
JP2011122306A Active JP5085767B2 (en) 2008-04-22 2011-05-31 Method for manufacturing optical imaging apparatus
JP2011217754A Active JP5036898B2 (en) 2008-04-22 2011-09-30 Optical imaging device

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2013003620A Active JP5420774B2 (en) 2008-04-22 2013-01-11 Optical imaging device

Country Status (2)

Country Link
JP (5) JP4865088B2 (en)
WO (1) WO2009131128A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013145983A1 (en) * 2012-03-27 2013-10-03 株式会社アスカネット Method for manufacturing optical control panel
US9513486B2 (en) 2011-10-24 2016-12-06 Asukanet Company, Ltd. Optical imaging apparatus
US9523859B2 (en) 2012-02-28 2016-12-20 Asukanet Company, Ltd. Volumetric-image forming system and method thereof
RU2719349C1 (en) * 2017-01-27 2020-04-17 Асуканет Компани, Лтд. Production method for stereoscopic image forming device and stereoscopic image forming device
US11714296B2 (en) 2017-06-29 2023-08-01 Asukanet Company, Ltd. Stereoscopic image forming device and method for manufacturing stereoscopic image forming device

Families Citing this family (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009131128A1 (en) * 2008-04-22 2009-10-29 Fujishima Tomohiko Optical imaging device and optical imaging method using the same
WO2009136578A1 (en) * 2008-05-09 2009-11-12 パイオニア株式会社 Spatial image display apparatus
JP2009276699A (en) * 2008-05-16 2009-11-26 National Institute Of Information & Communication Technology Dihedral corner reflector array
JP5352410B2 (en) * 2009-10-09 2013-11-27 パイオニア株式会社 Spatial image display device
JP2011081300A (en) * 2009-10-09 2011-04-21 Pioneer Electronic Corp Method for manufacturing reflection type plane-symmetric imaging element
JP5498853B2 (en) 2010-05-21 2014-05-21 スタンレー電気株式会社 Display device
JP5728748B2 (en) * 2011-05-25 2015-06-03 国立研究開発法人情報通信研究機構 Reflector array optical device and display device using the same
JP5904436B2 (en) * 2011-11-09 2016-04-13 パイオニア株式会社 Method for manufacturing a large reflective plane-symmetric imaging element
JP5904437B2 (en) * 2011-11-22 2016-04-13 パイオニア株式会社 Spatial image display device
JP5995131B2 (en) * 2011-11-25 2016-09-21 大日本印刷株式会社 Optical panel and display device
US8702252B2 (en) 2012-01-30 2014-04-22 Asukanet Company, Ltd. Optical imaging apparatus and optical imaging method using the same
JP5921243B2 (en) * 2012-02-14 2016-05-24 シャープ株式会社 Reflective imaging element and optical system
JP5318242B2 (en) * 2012-03-22 2013-10-16 パイオニア株式会社 Method for manufacturing a reflection-type plane-symmetric imaging element
JP2012128456A (en) * 2012-03-22 2012-07-05 Pioneer Electronic Corp Method of manufacturing reflective plane-symmetric imaging element
JP5863037B2 (en) * 2012-03-30 2016-02-16 大日本印刷株式会社 Optical panel and display device
JP2013242850A (en) * 2012-04-27 2013-12-05 Nitto Denko Corp Display input device
WO2013183454A1 (en) 2012-06-07 2013-12-12 株式会社アスカネット Optical image forming device and optical image forming method
JP2014032394A (en) * 2012-07-13 2014-02-20 Nitto Denko Corp Micromirror array, micromirror array manufacturing method and optical element for use in micromirror array
WO2014024677A1 (en) * 2012-08-10 2014-02-13 株式会社アスカネット Size-altering optical image forming device and manufacturing method therefor
JP2014067071A (en) * 2012-09-10 2014-04-17 Askanet:Kk Floating touch panel
JP2014066825A (en) * 2012-09-25 2014-04-17 Nitto Denko Corp Method of manufacturing micromirror array
JP2014081617A (en) * 2012-09-28 2014-05-08 Nlt Technologies Ltd Spatial imaging element and method for manufacturing the same, display device and terminal equipment
JPWO2014073650A1 (en) * 2012-11-08 2016-09-08 株式会社アスカネット Manufacturing method of light control panel
JP6315305B2 (en) * 2013-02-19 2018-04-25 日本電気硝子株式会社 Glass laminate and optical imaging member using the same
WO2014167904A1 (en) * 2013-04-12 2014-10-16 シャープ株式会社 Reflective type image forming element and method for manufacturing reflective type image forming element
US9618757B2 (en) 2013-04-24 2017-04-11 Asukanet Company, Ltd. Stereoscopic image display device and stereoscopic image display method
US10019115B2 (en) 2013-06-07 2018-07-10 Asukanet Company, Ltd. Method and apparatus for contactlessly detecting indicated position on reproduced image
JP5509391B1 (en) * 2013-06-07 2014-06-04 株式会社アスカネット Method and apparatus for detecting a designated position of a reproduced image in a non-contact manner
JP5723928B2 (en) * 2013-07-09 2015-05-27 株式会社アスカネット Manufacturing method of mold
JP5789644B2 (en) * 2013-07-09 2015-10-07 株式会社アスカネット Image reproduction method
US20150336340A1 (en) * 2013-09-06 2015-11-26 Asukanet Company, Ltd. Method for producing a light control panel provided with parallelly-arranged light-reflective portions
JP6053171B2 (en) * 2013-10-18 2016-12-27 増田 麻言 Scanning projection apparatus and portable projection apparatus
JP6105465B2 (en) * 2013-12-27 2017-03-29 株式会社アスカネット Method for manufacturing stereoscopic image forming apparatus
EP3153908B1 (en) * 2014-06-05 2023-07-26 Asukanet Company, Ltd. Image display device and image display method
WO2015198499A1 (en) * 2014-06-27 2015-12-30 株式会社アスカネット Retroreflector, and stereoscopic image display device and method using same
JP5820955B1 (en) * 2014-06-27 2015-11-24 株式会社アスカネット Retroreflector and stereoscopic image display device using the same
JP5927366B1 (en) 2014-09-24 2016-06-01 オリンパス株式会社 Medical system
WO2016051480A1 (en) * 2014-09-29 2016-04-07 日立マクセル株式会社 Display device and apparatus incorporating same
KR101619638B1 (en) * 2014-11-11 2016-05-10 현대자동차일본기술연구소 Mirrorless monitor for vehicle using spatial imaging optical device
CN107003440A (en) * 2014-12-05 2017-08-01 昭和电工株式会社 Photocontrol panel and photoimaging equipment
JP6674683B2 (en) * 2014-12-19 2020-04-01 国立大学法人 鹿児島大学 Authentication processing apparatus and authentication processing method
JP2016180785A (en) * 2015-03-23 2016-10-13 コニカミノルタ株式会社 Reflection type aerial image formation element and manufacturing method thereof
WO2016152309A1 (en) 2015-03-26 2016-09-29 京セラドキュメントソリューションズ株式会社 Visible-image formation device and image formation device
WO2016158803A1 (en) 2015-03-30 2016-10-06 京セラドキュメントソリューションズ株式会社 Visible image forming device and image forming device
JP6281520B2 (en) 2015-03-31 2018-02-21 京セラドキュメントソリューションズ株式会社 Image forming apparatus
US10289367B2 (en) 2015-05-08 2019-05-14 Kyocera Document Solutions Inc. Image forming apparatus
JPWO2017047527A1 (en) * 2015-09-15 2018-07-19 コニカミノルタ株式会社 Fitness equipment and fitness system
CN108139516B (en) 2015-09-25 2020-10-16 亚斯卡奈特股份有限公司 Retroreflective article
JP6842648B2 (en) * 2016-01-15 2021-03-17 大日本印刷株式会社 Optical sheet and optical panel
TW201734572A (en) 2016-03-10 2017-10-01 Omron Tateisi Electronics Co Stereoscopic display device
JP6834153B2 (en) * 2016-03-14 2021-02-24 大日本印刷株式会社 Space floating image display device
CN106560734A (en) * 2016-06-01 2017-04-12 杭州飞像科技有限公司 Application of aerial imaging element in prompter, and prompter
JP6700106B2 (en) * 2016-06-02 2020-05-27 コニカミノルタ株式会社 Method for manufacturing optical element and method for manufacturing reflective aerial imaging element
JP6645371B2 (en) 2016-07-15 2020-02-14 オムロン株式会社 Optical device and stereoscopic display method
EP3508909A1 (en) 2016-08-31 2019-07-10 Scivax Corporation Optical imaging apparatus
WO2018139444A1 (en) * 2017-01-27 2018-08-02 株式会社アスカネット Production method for stereoscopic-image-forming device
JP6203989B1 (en) * 2017-01-27 2017-09-27 株式会社アスカネット Method for manufacturing stereoscopic image forming apparatus
JP7152019B2 (en) * 2017-01-30 2022-10-12 株式会社パリティ・イノベーションズ Optical element and image display device using the same
JP6756281B2 (en) 2017-03-14 2020-09-16 オムロン株式会社 Display method and display device
WO2018193952A1 (en) 2017-04-17 2018-10-25 富士フイルム株式会社 Optical film, stacked optical film, and aerial imaging device equipped with stacked optical film
JP6203978B1 (en) * 2017-04-17 2017-09-27 株式会社アスカネット Method for manufacturing stereoscopic image forming apparatus
CN110709759B (en) 2017-06-01 2022-05-13 亚斯卡奈特股份有限公司 Method for manufacturing stereoscopic image imaging device and stereoscopic image imaging device
WO2019021497A1 (en) * 2017-07-24 2019-01-31 株式会社アスカネット Stereoscopic image forming device and method for manufacturing same
CN107193125A (en) * 2017-07-26 2017-09-22 安徽省东超科技有限公司 A kind of optical flat structure for realizing air imaging
JP2019045562A (en) * 2017-08-30 2019-03-22 株式会社アスカネット Method for manufacturing stereoscopic image forming device
US20210173218A1 (en) 2017-11-01 2021-06-10 Murakami Corporation Image display system
JP6898021B2 (en) * 2018-03-07 2021-07-07 Necソリューションイノベータ株式会社 Operation input device, operation input method, and program
WO2019225516A1 (en) 2018-05-22 2019-11-28 株式会社村上開明堂 Virtual image display device
WO2020017071A1 (en) 2018-07-18 2020-01-23 株式会社アスカネット Method for manufacturing stereoscopic image formation device and stereoscopic image formation device
JP6616554B1 (en) * 2018-07-18 2019-12-04 株式会社アスカネット Method for manufacturing stereoscopic image forming apparatus
CN113661474A (en) 2019-04-10 2021-11-16 株式会社村上开明堂 Reference position setting method and operation detection device
CN110264916B (en) * 2019-06-21 2022-05-10 京东方科技集团股份有限公司 Projection device and aerial imaging equipment
JP2021026093A (en) * 2019-08-02 2021-02-22 本田技研工業株式会社 Video display apparatus
JP2023007508A (en) * 2019-10-11 2023-01-19 株式会社アスカネット Manufacturing method of optical imaging device, and optical imaging device
JP6850522B1 (en) 2020-03-10 2021-03-31 株式会社アスカネット Manufacturing method of optical control panel used for optical imaging device
CN112180478B (en) * 2020-09-03 2022-03-18 核桃智能科技(常州)有限公司 Air imaging lens
EP4231084A1 (en) 2020-10-15 2023-08-23 Asukanet Company, Ltd. Aerial image forming element and aerial image forming device
WO2022224613A1 (en) 2021-04-21 2022-10-27 株式会社アスカネット Reflection-type aerial image formation device and reflection-type aerial image formation method
US20240027786A1 (en) 2021-04-21 2024-01-25 Asukanet Company, Ltd. Reflection-type aerial image formation device and reflection-type aerial image formation method
JP7184220B1 (en) 2021-07-12 2022-12-06 凸版印刷株式会社 aerial display
WO2023007816A1 (en) 2021-07-26 2023-02-02 株式会社アスカネット Method for manufacturing aerial image formation device, and aerial image formation device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5821702A (en) * 1981-07-31 1983-02-08 Ricoh Co Ltd Image-forming element using both side reflection band of minute width
JPS6125104A (en) * 1984-07-13 1986-02-04 Hitachi Ltd Compound lens
JPH095503A (en) * 1995-06-23 1997-01-10 Nittetsu Elex Co Ltd Optical imaging device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62284740A (en) * 1986-06-03 1987-12-10 信越ポリマ−株式会社 Fine roller screen-shaped glare-shielding sheet
JPS63191182A (en) * 1987-02-04 1988-08-08 キヤノン株式会社 Image display member
JP5565824B2 (en) * 2006-10-02 2014-08-06 独立行政法人情報通信研究機構 Two-point imaging optical device
JP4734652B2 (en) * 2006-12-21 2011-07-27 独立行政法人情報通信研究機構 Optical system
WO2009131128A1 (en) * 2008-04-22 2009-10-29 Fujishima Tomohiko Optical imaging device and optical imaging method using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5821702A (en) * 1981-07-31 1983-02-08 Ricoh Co Ltd Image-forming element using both side reflection band of minute width
JPS6125104A (en) * 1984-07-13 1986-02-04 Hitachi Ltd Compound lens
JPH095503A (en) * 1995-06-23 1997-01-10 Nittetsu Elex Co Ltd Optical imaging device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9513486B2 (en) 2011-10-24 2016-12-06 Asukanet Company, Ltd. Optical imaging apparatus
US9523859B2 (en) 2012-02-28 2016-12-20 Asukanet Company, Ltd. Volumetric-image forming system and method thereof
WO2013145983A1 (en) * 2012-03-27 2013-10-03 株式会社アスカネット Method for manufacturing optical control panel
RU2719349C1 (en) * 2017-01-27 2020-04-17 Асуканет Компани, Лтд. Production method for stereoscopic image forming device and stereoscopic image forming device
US11714296B2 (en) 2017-06-29 2023-08-01 Asukanet Company, Ltd. Stereoscopic image forming device and method for manufacturing stereoscopic image forming device

Also Published As

Publication number Publication date
WO2009131128A1 (en) 2009-10-29
JP4865088B2 (en) 2012-02-01
JPWO2009131128A1 (en) 2011-08-18
JP5085767B2 (en) 2012-11-28
JP5036898B2 (en) 2012-09-26
JP2012014194A (en) 2012-01-19
JP5437436B2 (en) 2014-03-12
JP2013127625A (en) 2013-06-27
JP2011175297A (en) 2011-09-08
JP5420774B2 (en) 2014-02-19

Similar Documents

Publication Publication Date Title
JP5420774B2 (en) Optical imaging device
JP2012155345A5 (en)
JP5085631B2 (en) Optical imaging apparatus and optical imaging method using the same
KR101067941B1 (en) Optical system
JP5024712B2 (en) Multi-viewpoint aerial image display device
JP7437068B2 (en) display device
KR102060161B1 (en) Recursive reflector
US10908454B2 (en) Backlight module and display device
TW201348742A (en) System and method for forming stereo image
WO1997001116A1 (en) Optical image formation apparatus
KR20140066237A (en) Backlight device
US9958613B2 (en) Light divider
Fujii et al. Aerial imaging steganography method for aerial imaging by retro-reflection with dual acrylic ball
JP5667729B2 (en) Optical imaging device
JP5367912B2 (en) Spatial image display device
CN211905753U (en) Optical lens
JP2017126032A (en) Optical sheet and optical panel
CN108181781B (en) Transmission type projection display method
JP2014139596A (en) Directional reflection screen and image display device
JP6681183B2 (en) Image projector and planetarium
CN117055213A (en) Waveguide sheet and calculation method of output energy distribution of coupling-in area thereof
TW202407430A (en) Holographic projection operating device, holographic projection device and holographic optical module thereof
CN114252941A (en) Optical waveguide lens
JP2016133577A (en) Aerial image formation device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120511

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130207

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20130207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130226

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20130308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131211

R150 Certificate of patent or registration of utility model

Ref document number: 5437436

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250