WO2013145954A1 - Liquid composition, copper metal film, conductive wiring line, and method for producing copper metal film - Google Patents

Liquid composition, copper metal film, conductive wiring line, and method for producing copper metal film Download PDF

Info

Publication number
WO2013145954A1
WO2013145954A1 PCT/JP2013/054176 JP2013054176W WO2013145954A1 WO 2013145954 A1 WO2013145954 A1 WO 2013145954A1 JP 2013054176 W JP2013054176 W JP 2013054176W WO 2013145954 A1 WO2013145954 A1 WO 2013145954A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid composition
copper
oxide particles
formic acid
mass
Prior art date
Application number
PCT/JP2013/054176
Other languages
French (fr)
Japanese (ja)
Inventor
保田 貴康
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to KR1020147027080A priority Critical patent/KR20140134305A/en
Priority to CN201380015623.XA priority patent/CN104185880B/en
Publication of WO2013145954A1 publication Critical patent/WO2013145954A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/32Inkjet printing inks characterised by colouring agents
    • C09D11/322Pigment inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/08Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/14Decomposition by irradiation, e.g. photolysis, particle radiation or by mixed irradiation sources
    • C23C18/143Radiation by light, e.g. photolysis or pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • H05K1/097Inks comprising nanoparticles and specially adapted for being sintered at low temperature
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/11Treatments characterised by their effect, e.g. heating, cooling, roughening
    • H05K2203/1157Using means for chemical reduction
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/105Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by conversion of non-conductive material on or in the support into conductive material, e.g. by using an energy beam
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1241Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns by ink-jet printing or drawing by dispensing
    • H05K3/125Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns by ink-jet printing or drawing by dispensing by ink-jet printing

Definitions

  • the present invention relates to a liquid composition suitable as a material for forming a metal copper film having few internal voids and excellent conductivity, a metal copper film obtained by using the liquid composition, a conductor wiring, and a metal copper film. It relates to the manufacturing method.
  • a metal particle or metal oxide particle dispersion is applied to the base material by a printing method, dried, heat-treated and sintered to form a metal film or wiring on a circuit board.
  • a technique for forming such an electrically conductive portion is known. Since the above method is simpler, energy-saving, and resource-saving than conventional high-heat / vacuum processes (sputtering) and plating processes, it is highly anticipated in the development of next-generation electronics. However, even if the metal particles are sintered, voids (voids) remain to some extent, so that a decrease in conductivity due to an increase in electric resistance value is a problem.
  • Patent Document 1 describes a method for producing a copper metal film by heat-treating copper oxide particles in a formic acid gas atmosphere.
  • Patent Document 2 describes a conductive ink composition having fine particles of a copper salt composed of a carboxylic acid having a reducing power such as copper formate and copper ions, and a coordinating compound such as alkanethiol or aliphatic amine.
  • Patent Document 3 describes a photosintering method in which an exposed portion is made conductive by exposing a film containing copper nanoparticles.
  • patent document 1 since it heat-processes in a formic acid gas atmosphere, it is necessary to perform by a batch process using a chamber, and is inferior in productivity.
  • the copper film obtained using the ink composition disclosed in Patent Document 2 had many voids (high void ratio) and was inferior in conductivity.
  • patent document 3 since photo-sintering is performed, although deterioration of a base material etc. can be prevented, the space
  • the present invention has been made paying attention to the above circumstances, and has a dense microstructure with few voids and a liquid composition capable of forming a metallic copper film with good conductivity, and formed using the liquid composition.
  • An object of the present invention is to provide a metal copper film and a conductor wiring, and a method for producing the metal copper film.
  • the solvent is derived from water, an aliphatic alcohol having 1 to 3 hydroxyl groups, an alkyl ether derived from an aliphatic alcohol having 1 to 3 hydroxyl groups, and an aliphatic alcohol having 1 to 3 hydroxyl groups.
  • a liquid composition containing (a) at least one selected from the group consisting of formic acid and copper formate, (b) copper oxide particles, and (c) a solvent is applied, and the applied liquid composition A method for producing a metallic copper film in which at least a part of an object is irradiated with light.
  • a liquid composition containing (b) copper oxide particles and (c) a solvent is applied on the base material, and at least one selected from the group consisting of (a) formic acid and copper formate is added to the applied liquid composition.
  • a liquid composition containing copper oxide particles and (c) a solvent is applied, and at least a part of the applied liquid composition is irradiated with light.
  • a method for producing a metallic copper film wherein a solution containing at least one selected from the group consisting of formic acid and copper formate is applied, dried, and then irradiated or heated.
  • a liquid composition capable of forming a metallic copper film having a fine microstructure with few voids and good electrical conductivity, a metallic copper film and a conductor wiring formed using the liquid composition, and A method for producing a metallic copper film can be provided.
  • the manufacturing method of the metal copper film of this invention since it sinters by light irradiation, there is little deterioration of a base material and it can obtain a metal copper film with favorable adhesiveness with a base material.
  • a conductive material exhibiting excellent bending resistance in addition to conductivity and adhesion can be provided.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the liquid composition of the present invention contains (a) at least one selected from the group consisting of formic acid and copper formate, (b) copper oxide particles, and (c) a solvent.
  • the liquid composition of the present invention contains at least one selected from the group consisting of formic acid and copper formate (also referred to as component (a)).
  • formic acid can erode copper oxide particles to produce copper formate, and the copper formate can be sublimated by the energy of the sintering process to fill voids in the metal copper film.
  • copper formate can be sublimated by the energy of the sintering process to fill the voids in the metal copper film.
  • the liquid composition of the present invention preferably contains formic acid.
  • the content of formic acid is preferably 0.5% by mass or more and 20% by mass or less with respect to the copper oxide particles. It is more preferably 0% by mass or more and 18% by mass or less, and further preferably 5.0% by mass or more and 15% by mass or less.
  • the formic acid content is 0.5% by mass or more with respect to the copper oxide particles, the voids of the obtained metal copper film are reduced and the conductivity is improved, and the copper oxide particles are preferably 20% by mass or less. This ratio is preferable because the thickness of the copper metal film after sintering does not decrease and the film thickness of the sintered metal copper film becomes sufficient.
  • the liquid composition of the present invention contains copper formate as the component (a), and the content of the copper formate is from 1% by mass to 30% by mass with respect to the copper oxide particles from the viewpoint of reducing the void ratio. It is preferably 2% by mass or more and 20% by mass or less, more preferably 3% by mass or more and 15% by mass or less.
  • the content of copper formate is 1% by mass or more with respect to the copper oxide particles, voids of the obtained metal copper film are reduced and conductivity is improved, and when the content is 30% by mass or less, This is preferable because the ratio does not decrease and the thickness of the sintered metal copper film is sufficient.
  • (B) Copper oxide particles The liquid composition of the present invention contains copper oxide particles.
  • the “copper oxide” in the present invention is a compound that substantially does not contain copper that has not been oxidized. Specifically, in crystal analysis by X-ray diffraction, a peak derived from copper oxide is detected, and is derived from a metal. Refers to a compound in which no peak is detected. Although it does not contain copper substantially, it means that copper content is 1 mass% or less with respect to copper oxide microparticles
  • copper oxide copper oxide (I) or copper oxide (II) is preferable, and copper oxide (II) is more preferable because it is available at low cost and has low resistance.
  • the average particle diameter of the copper oxide particles is preferably less than 1 ⁇ m, and more preferably less than 200 nm. Moreover, it is preferable that the average particle diameter of a copper oxide particle is 1 nm or more. A particle diameter of 1 nm or more is preferable because the activity on the particle surface does not become too high and does not dissolve in the liquid composition. Moreover, if it is less than 1 micrometer, it will become easy to perform pattern formation of wiring etc. by a printing method using a liquid composition as an inkjet ink composition, and when making a liquid composition into a conductor, it will reduce to metallic copper Is sufficient, and the resulting conductor has good conductivity, which is preferable.
  • the average particle diameter in this invention points out an average primary particle diameter. The average particle diameter can be determined by observation with a transmission electron microscope (TEM) or a scanning electron microscope (SEM).
  • the content of the copper oxide particles in the liquid composition is preferably 5 to 60% by mass, more preferably 5 to 50% by mass, and still more preferably 10 to 30% by mass. If it is 5 mass% or more, the film thickness of the metal copper film obtained will become enough. Moreover, if it is 60 mass% or less, the viscosity of a liquid composition will not become high, and this composition can be used as an inkjet ink composition.
  • the viscosity of the liquid composition is preferably 1 to 50 cP, more preferably 1 to 40 cP, from the viewpoint of ink jet discharge suitability.
  • the liquid composition of the present invention contains a solvent.
  • the solvent can function as a dispersion medium for copper oxide particles.
  • water, alcohols, ethers, esters, and other organic solvents can be widely used, and there is no particular limitation as long as the liquid composition of the present invention can be adjusted to a predetermined viscosity.
  • One type is preferably used.
  • a solvent having a level of purity such as ion exchange water is preferable.
  • Examples of aliphatic alcohols having a monovalent to trivalent hydroxyl group include methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol, 1-hexanol, cyclohexanol, 1-heptanol, 1-octanol, and 1-nonanol.
  • aliphatic alcohols having 1 to 3 carbon atoms having 1 to 3 valent hydroxyl groups have a high boiling point and are difficult to remain after sintering, and are highly polar and easily compatible with formic acid and copper formate. More specifically, methanol, ethylene glycol, glycerin, 2-methoxyethanol, and diethylene glycol are preferred.
  • ethers examples include alkyl ethers derived from the alcohols, such as diethyl ether, diisobutyl ether, dibutyl ether, methyl-t-butyl ether, methyl cyclohexyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, triethylene glycol dimethyl ether, triethylene glycol diethyl.
  • alkyl ethers derived from the alcohols such as diethyl ether, diisobutyl ether, dibutyl ether, methyl-t-butyl ether, methyl cyclohexyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, triethylene glycol dimethyl ether, triethylene glycol diethyl.
  • examples include ether, tetrahydrofuran, tetrahydropyran, 1,4-dioxane and the like.
  • alkyl ethers having 2 to 8 carbon atoms derived from aliphatic alcohols having 1 to 3 carbon atoms and having 1 to 3 valent hydroxyl groups are preferable, and specifically, diethyl ether, diethylene glycol dimethyl ether, and tetrahydrofuran. It is preferable.
  • esters examples include alkyl esters derived from the alcohols such as methyl formate, ethyl formate, butyl formate, methyl acetate, ethyl acetate, butyl acetate, methyl propionate, ethyl propionate, butyl propionate, and ⁇ -butyrolactone. Illustrated. Of these, alkyl esters having 2 to 8 carbon atoms derived from aliphatic alcohols having 1 to 3 carbon atoms and having 1 to 3 valent hydroxyl groups are preferable, and specifically, methyl formate, ethyl formate, and methyl acetate. It is preferable.
  • the main solvent is a solvent having the highest content in the solvent.
  • the solvent included in the present invention is preferably 5 to 95% by mass, more preferably 10 to 90% by mass, and particularly preferably 15 to 80% by mass with respect to the total amount of the liquid composition. .
  • the metallic copper film of the present invention can be obtained by applying the liquid composition on a substrate, drying it, and then baking it. If the boiling point of the solvent is 300 ° C. or lower, it is easy to volatilize during drying, and it does not vaporize and expand in the firing process to generate minute cracks or voids. Since it becomes favorable, it is preferable.
  • the firing includes sintering by light irradiation (photosintering) and sintering by heating (thermal sintering). In the present invention, photosintering is preferable.
  • the liquid composition may contain a polymer compound as a binder component.
  • the polymer compound may be any of natural, synthetic polymers, or a mixture thereof, and examples thereof include vinyl polymers, polyethers, acrylic polymers, epoxy resins, urethane resins, and rosin compounds.
  • the addition amount of the other components is preferably 0.1 to 20% by mass, more preferably 0.5 to 15% by mass with respect to the total amount of the liquid composition. Preferably, it is 1 to 13% by mass.
  • the present invention also relates to a metallic copper film obtained from the above liquid composition.
  • the metallic copper film of the present invention has a dense microstructure with few voids and good electrical conductivity. Moreover, it becomes a metal copper film with high adhesiveness with a base material by performing sintering by light irradiation mentioned later in manufacture of a metal copper film.
  • the porosity (void ratio) of the metallic copper film is calculated from the ratio of white and black dots by digitizing a cross-sectional observation photograph taken with a scanning electron microscope (SEM) by digital processing, for example. can do.
  • the void ratio is preferably 25% or less, more preferably 15% or less, and still more preferably 10% or less. When the void ratio is larger than 25%, it is not preferable because it causes a decrease in the adhesion between the metal copper film and the substrate and a decrease in the conductivity.
  • the volume resistance value of the metallic copper film is preferably 1 ⁇ 10 ⁇ 3 ⁇ cm or less, more preferably 1 ⁇ 10 ⁇ 4 ⁇ cm or less, and further preferably 1 ⁇ 10 ⁇ 5 ⁇ cm or less.
  • the volume resistance value can be calculated by, for example, multiplying the obtained surface resistance value by the film thickness after measuring the surface resistance value of the metal copper film by the four-probe method.
  • the method for sintering the liquid composition examples include heat sintering and photo-sintering, but photo-sintering is preferable from the viewpoint that the deterioration of the base material is small and the adhesion between the metal copper film and the base material does not decrease. . Photo sintering will be described later.
  • the heating temperature is preferably 50 ° C. to 250 ° C., more preferably 80 ° C. to 200 ° C.
  • the present invention also relates to a method for producing a metallic copper film using the above-mentioned liquid composition.
  • the method for producing a metal copper film of the present invention comprises (a) at least one selected from the group consisting of formic acid and copper formate, (b) copper oxide particles, and (c) on a substrate. It is a method for producing a metallic copper film in which a liquid composition containing a solvent is applied, and at least a part of the applied liquid composition is irradiated with light. The exposed portion can be made conductive by the light irradiation.
  • this invention also includes another aspect as a manufacturing method of a metallic copper film
  • a liquid composition containing (b) copper oxide particles and (c) a solvent is applied on the base material, and the applied liquid composition is selected from the group consisting of (a) formic acid and copper formate.
  • membrane which light-irradiates after providing the solution containing at least 1 sort (s) to be dried.
  • a method for producing a metallic copper film which comprises applying (a) a solution containing at least one selected from the group consisting of formic acid and copper formate and drying or applying light after heating.
  • a known substrate can be used as the substrate, and is not particularly limited.
  • resin, paper, glass, silicon-based semiconductor, compound semiconductor, metal oxide, metal nitriding 1 type, 2 types or more, or 2 types or more composite base materials which consist of a thing, wood, etc. are mentioned.
  • low density polyethylene resin high density polyethylene resin
  • ABS resin acrylonitrile-butadiene-styrene copolymer synthetic resin
  • acrylic resin styrene resin
  • vinyl chloride resin polyester resin (polyethylene terephthalate), polyacetal resin
  • polysulfone Resin polyetherimide resin
  • polyetherketone resin cellulose derivatives and other resin base materials
  • uncoated printing paper finely coated printing paper, coated printing paper (art paper, coated paper), special printing paper, copy paper (PPC paper), unbleached wrapping paper (both kraft paper for heavy bags, both kraft paper), bleached wrapping paper (bleached kraft paper, pure white roll paper), coated paper, chip ball, corrugated cardboard and other paper base materials
  • Glass substrates such as soda glass, borosilicate glass, silica glass and quartz glass
  • Silicon-based semiconductors such as silicon and polysilicon
  • compound semiconductors such as CdS, CdTe, and GaAs
  • metal substrates such as copper plates,
  • liquid composition In the production method of the present invention, the above-described liquid composition of the present invention can be preferably used.
  • the liquid composition may be prepared in any way as long as it includes the components (a) to (c).
  • the method of applying the liquid composition of the present invention to a substrate is preferably a coating method.
  • a coating method For example, the screen printing method, the dip coating method, the spray coating method, the spin coating method, the inkjet method, the coating method with a dispenser etc. are mentioned. There is no problem even if the shape of application is planar or dot-like, and there is no particular limitation.
  • the coating amount for applying the liquid composition to the substrate may be appropriately adjusted according to the desired film thickness of the electrically conductive portion. Usually, the film thickness of the liquid composition after drying is 0.01 to 5000 ⁇ m. The film may be applied in a range of 0.1 to 1000 ⁇ m.
  • the liquid composition is dried after being applied to the substrate and free from liquid components before being sintered. If the liquid component does not remain, the liquid component does not vaporize and expand in the firing step, and fine cracks and voids are not generated, which is preferable from the viewpoints of adhesion of the conductor to the base material and conductivity.
  • a drying method a hot air dryer or the like can be used, and the temperature is preferably 40 ° C. to 200 ° C., more preferably 50 ° C. to 150 ° C.
  • a metallic copper film is produced by applying the liquid composition on a substrate and irradiating at least part of the applied liquid composition.
  • the copper oxide particles in the liquid composition can be reduced to copper and further sintered to form a metal copper film.
  • Photo-sintering is different from sintering by heating, and it becomes possible to sinter by irradiating light to a part to which a liquid composition is applied at room temperature for a short time. Does not occur, and the adhesion of the metallic copper film to the base material is improved.
  • Examples of the light source include a mercury lamp, a metal halide lamp, a xenon lamp, a chemical lamp, and a carbon arc lamp.
  • Examples of radiation include electron beams, X-rays, ion beams, and far infrared rays.
  • g-line, i-line, deep-UV light, and high-density energy beam (laser beam) are used.
  • Specific examples of preferred embodiments include scanning exposure with an infrared laser, high-illuminance flash exposure such as a xenon discharge lamp, and infrared lamp exposure.
  • the light irradiation is preferably light irradiation with a flash lamp, and more preferably pulsed light irradiation with a flash lamp.
  • the irradiation of high energy pulsed light is because the surface of the part to which the liquid composition is applied can be concentrated and heated in a very short time, so that the influence of heat on the substrate can be extremely reduced. is there.
  • a preferable range for the irradiation energy of the pulsed light is 1 J / cm 2 to 100 J / cm 2 , and a pulse width is preferably 1 ⁇ sec to 100 msec.
  • the irradiation time of the pulsed light is preferably 1 to 100 milliseconds, more preferably 1 to 50 milliseconds, and further preferably 1 to 20 milliseconds.
  • Light irradiation energy is preferably 1 ⁇ 30J / cm 2, more preferably 3 ⁇ 25J / cm 2, more preferably 5 ⁇ 20J / cm 2.
  • a solution containing at least one selected from the group consisting of formic acid and copper formate is applied, dried, and then irradiated or heated.
  • the application, drying, and light irradiation of the component (a) can be performed in the same manner as described above.
  • the heating of (a) component it can carry out similarly to the said drying.
  • the present invention also relates to a conductor wiring obtained from the liquid composition.
  • the conductor wiring can be obtained by a method of printing the liquid composition in a pattern or by etching a metal copper film obtained from the liquid composition in a pattern.
  • This step is a step of etching the metal copper film in a pattern. That is, in this step, a desired metal pattern can be formed by removing unnecessary portions of the metal copper film formed on the entire substrate surface by etching. Any method can be used to form the metal pattern, and specifically, a generally known subtractive method or semi-additive method is used.
  • a dry film resist layer is provided on the formed metal copper film, the same pattern as the metal pattern part is formed by pattern exposure and development, and the metal copper film is removed with an etching solution using the dry film resist pattern as a mask. And forming a metal pattern.
  • Any material can be used as the dry film resist, and negative, positive, liquid, and film-like ones can be used.
  • an etching method any method used at the time of manufacturing a printed wiring board can be used, and wet etching, dry etching, and the like can be used, and may be arbitrarily selected. In terms of operation, wet etching is preferable from the viewpoint of simplicity of the apparatus.
  • an etching solution for example, an aqueous solution of cupric chloride, ferric chloride, or the like can be used.
  • the semi-additive method is to provide a dry film resist layer on the formed metal copper film, form the same pattern as the non-metal pattern part by pattern exposure and development, and perform electroplating using the dry film resist pattern as a mask.
  • This is a method for forming a metal pattern by performing quick etching after removing the dry film resist pattern and removing the metal copper film in a pattern.
  • the dry film resist, the etching solution, etc. can use the same material as the subtractive method.
  • the above-mentioned method can be used as the electroplating method. Through the above steps, a conductor wiring having a desired metal pattern is manufactured.
  • a conductor wiring can also be manufactured by forming the said liquid composition in a pattern shape, exposing with respect to a pattern-like liquid composition, and performing light sintering.
  • a liquid composition may be ejected in a pattern on a substrate by an ink jet method, and the liquid composition molding portion may be exposed to light to form a conductor.
  • the conductor wiring of the present invention has a dense microstructure with few voids and good electrical conductivity. Moreover, it becomes a conductor wiring with high base-material adhesiveness by performing sintering by the above-mentioned light irradiation.
  • an insulating layer insulating resin layer, interlayer insulating film, solder resist
  • further wiring metal pattern
  • Insulating film materials that can be used in the present invention include epoxy resin, aramid resin, crystalline polyolefin resin, amorphous polyolefin resin, fluorine-containing resin (polytetrafluoroethylene, perfluorinated polyimide, perfluorinated amorphous resin, etc.) , Polyimide resin, polyether sulfone resin, polyphenylene sulfide resin, polyether ether ketone resin, liquid crystal resin and the like.
  • an epoxy resin a polyimide resin, or a liquid crystal resin, and more preferably an epoxy resin. Specific examples include ABF GX-13 manufactured by Ajinomoto Fine Techno Co., Ltd.
  • solder resist which is a kind of insulating layer material used for wiring protection, is described in detail in, for example, Japanese Patent Application Laid-Open No. 10-204150 and Japanese Patent Application Laid-Open No. 2003-222993. These materials can also be applied to the present invention if desired.
  • solder resist commercially available products may be used. Specific examples include PFR800 manufactured by Taiyo Ink Manufacturing Co., Ltd., PSR4000 (trade name), SR7200G manufactured by Hitachi Chemical Co., Ltd., and the like.
  • Example 1> Preparation of liquid composition
  • 0.8 g of formic acid, 24.2 g of copper (II) oxide particles (manufactured by Kanto Chemical; average primary particle size 60 nm), 68 g of water, 4 g of ethylene glycol, and 3 g of glycerin are mixed and treated with an ultrasonic homogenizer for 5 minutes to obtain a liquid composition It was a thing.
  • the average primary particle size was observed and measured with a scanning electron microscope (SEM: S-5500, manufactured by Hitachi High-Technologies).
  • the above liquid composition is printed on a slide glass (Preclin water rim polish (manufactured by MATUNAMI)) in a 1 cm square surface using an inkjet (IJ) printer (DMP2831 (manufactured by Dimatix)), and 120 mm by a hot air dryer. Dry at 30 ° C. for 30 minutes.
  • the film thickness of the dried liquid composition was 0.8 ⁇ m as measured with a laser microscope.
  • the portion coated and dried with the liquid composition is irradiated with a Xe flash lamp (Sinteron 2000 (manufactured by Xenon), set voltage 3 kV, irradiation energy 7 J / cm 2 , pulse width 2 msec.), Sintered, and metal copper A membrane was obtained.
  • a Xe flash lamp Sinteron 2000 (manufactured by Xenon), set voltage 3 kV, irradiation energy 7 J / cm 2 , pulse width 2 msec.), Sintered, and metal copper A membrane was obtained.
  • Examples 2 to 4 A metal copper film was obtained in the same manner as in Example 1 except that the substrate type to be used, the type and addition amount of the component (a), and the addition amount of the copper oxide particles were changed as shown in Table 1.
  • the composition ratio of each component of the solvent used in Examples 2 to 4 was the same as that in Example 1. Tetron Tetoron was used as the PET substrate.
  • Example 5 (Preparation of liquid composition) 23.5 g of copper (II) oxide particles (manufactured by Kanto Chemical; average particle size 60 nm), 64 g of water, 4 g of ethylene glycol, and 3 g of glycerin were mixed and treated with an ultrasonic homogenizer for 5 minutes to obtain a liquid composition.
  • copper (II) oxide particles manufactured by Kanto Chemical; average particle size 60 nm
  • the liquid composition is printed on a PET substrate (Teijin Tetoron) with a 1 cm square surface using an inkjet (IJ) printer (DMP2831 (manufactured by Dimatix)), and dried at 100 ° C. for 30 minutes with a hot air dryer. did.
  • Example 6 (Preparation of liquid composition) Copper (II) oxide particles (manufactured by Kanto Chemical; average particle size 60 nm) (23.5 g), water 64 g, ethylene glycol 4 g, and glycerin 3 g were mixed and treated with an ultrasonic homogenizer for 5 minutes.
  • Copper (II) oxide particles manufactured by Kanto Chemical; average particle size 60 nm
  • water 64 g ethylene glycol 4 g
  • glycerin 3 g were mixed and treated with an ultrasonic homogenizer for 5 minutes.
  • the liquid composition is printed on a PET substrate (Teijin Tetoron) on a 1 cm square surface using an inkjet (IJ) printer (DMP2831 (manufactured by Dimatix)), and dried in a hot air dryer at 100 ° C. for 30 minutes. did. The film thickness after drying was 0.8 ⁇ m.
  • Example 7 A metal copper film was obtained in the same manner as in Example 2 except that the light-irradiation was not performed, and the sintering method was changed to the light sintering and the heat sintering was performed at 200 ° C. for 2 hours under nitrogen.
  • Example 8> A metal copper film was obtained in the same manner as in Example 3 except that the light-irradiation was not performed and the sintering method was changed to the light sintering and the heat sintering was performed at 200 ° C. for 2 hours under nitrogen.
  • Example 9 A metal copper film was obtained in the same manner as in Example 2 except that the metal oxide particles used were changed to copper (II) oxide particles (manufactured by American Elements; average primary particle size 550 nm).
  • Example 10 A metal copper film was obtained in the same manner as in Example 2 except that the metal oxide particles used were changed to copper (II) oxide particles (manufactured by High Purity Chemical Laboratory; average primary particle size 1.2 ⁇ m).
  • Examples 11 to 13> A metallic copper film was obtained in the same manner as in Example 3 except that the irradiation energy of the Xe flash lamp in the light irradiation was changed as shown in Table 1.
  • Example 1 A metal copper film was obtained in the same manner as in Example 1 except that formic acid and copper formate were not added, and the addition amount of the copper oxide fine particles was changed as shown in Table 1.
  • the metal copper film was cross-section processed with a focused ion beam (FIB, SMI3050R (SII NanoTechnology), and a cross-sectional observation photograph was taken using a scanning electron microscope (SEM: Hitachi High-Technologies S-5500).
  • the cross-section observed in the cross-sectional observation photograph refers to a cross section perpendicular to the base material, and the obtained cross-sectional observation photograph is a threshold value by using image software (“Adobe Photoshop” manufactured by Adobe Systems, Inc.).
  • Void ratio (%) (area of black region / area of entire cross section) ⁇ 100
  • the metal copper films of Comparative Examples 1 and 2 that do not use formic acid or copper formate in the liquid composition have a high void ratio and a high volume resistivity, sufficient conductivity is not obtained.
  • the void ratio was low in all cases, and the conductivity was good.
  • the tape peelability was better than that in the case where the heat-sintering was performed. This is thought to be because the base material adhesion was improved because the deterioration of the substrate could be prevented by sintering at a low temperature in a short time.
  • a liquid composition capable of forming a metallic copper film having a fine microstructure with few voids and good electrical conductivity, a metallic copper film and a conductor wiring formed using the liquid composition, and A method for producing a metallic copper film can be provided.
  • the manufacturing method of the metal copper film of this invention since it sinters by light irradiation, there is little deterioration of a base material and it can obtain a metal copper film with favorable adhesiveness with a base material.
  • a conductive material exhibiting excellent bending resistance in addition to conductivity and adhesion can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Thermal Sciences (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Nanotechnology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Conductive Materials (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Chemically Coating (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

Provided is a copper metal film which has less voids and good electrical conductivity, while exhibiting good adhesion to a base. A liquid composition which contains (a) at least one substance that is selected from the group consisting of formic acid and copper formate, (b) copper oxide particles and (c) a solvent.

Description

液状組成物、金属銅膜、及び導体配線、並びに金属銅膜の製造方法Liquid composition, metallic copper film, conductor wiring, and method for producing metallic copper film
 本発明は、内部における空隙が少なく、導電性に優れた金属銅膜を形成する材料として好適な液状組成物、該液状組成物を用いて得られる金属銅膜、及び導体配線、並びに金属銅膜の製造方法に関する。 The present invention relates to a liquid composition suitable as a material for forming a metal copper film having few internal voids and excellent conductivity, a metal copper film obtained by using the liquid composition, a conductor wiring, and a metal copper film. It relates to the manufacturing method.
 基材上に金属膜を形成する方法として、金属粒子や金属酸化物粒子の分散体を印刷法により基材に塗布・乾燥し、加熱処理して焼結させることによって金属膜や回路基板における配線等の電気的導通部位を形成する技術が知られている。
 上記方法は、従来の高熱・真空プロセス(スパッタ)やめっき処理による配線作製法に比べて、簡便・省エネ・省資源であることから次世代エレクトロニクス開発において大きな期待を集めている。
 しかし、金属粒子同士が焼結しても空隙(ボイド)がある程度残存するために、電気抵抗値の上昇による導電性の低下が問題となっている。
As a method of forming a metal film on a base material, a metal particle or metal oxide particle dispersion is applied to the base material by a printing method, dried, heat-treated and sintered to form a metal film or wiring on a circuit board. A technique for forming such an electrically conductive portion is known.
Since the above method is simpler, energy-saving, and resource-saving than conventional high-heat / vacuum processes (sputtering) and plating processes, it is highly anticipated in the development of next-generation electronics.
However, even if the metal particles are sintered, voids (voids) remain to some extent, so that a decrease in conductivity due to an increase in electric resistance value is a problem.
 例えば、特許文献1には、銅酸化物粒子をギ酸ガス雰囲気下で加熱処理することで金属銅膜を製造する方法が記載されている。
 特許文献2には、ギ酸銅などの還元力を有するカルボン酸と銅イオンとからなる銅塩の微粒子と、アルカンチオール、脂肪族アミンなどの配位性化合物とを有する導電性インク組成物が記載されている。
 また、特許文献3には、銅ナノ粒子を含むフィルムに対し、露光することによって露光部分を導電性にする光焼結法が記載されている。
For example, Patent Document 1 describes a method for producing a copper metal film by heat-treating copper oxide particles in a formic acid gas atmosphere.
Patent Document 2 describes a conductive ink composition having fine particles of a copper salt composed of a carboxylic acid having a reducing power such as copper formate and copper ions, and a coordinating compound such as alkanethiol or aliphatic amine. Has been.
Patent Document 3 describes a photosintering method in which an exposed portion is made conductive by exposing a film containing copper nanoparticles.
日本国特開2011-238737号公報Japanese Unexamined Patent Publication No. 2011-238737 日本国特開2011-241309号公報Japanese Unexamined Patent Publication No. 2011-241309 日本国特表2010-528428号公報Japanese National Table 2010-528428
 しかしながら、特許文献1においては、ギ酸ガス雰囲気下で加熱処理するため、チャンバーを用い、バッチ処理で行なう必要があり、生産性に劣っている。
 特許文献2に開示されたインク組成物を用いて得られる銅膜は空隙が多く(ボイド率が高く)、導電性に劣っていた。
 また、特許文献3においては、光焼結を行なっているため、基材の劣化等を防ぐことはできるが、得られる金属膜の空隙を少なくすることはできず、導電性に劣るという問題があった。
However, in patent document 1, since it heat-processes in a formic acid gas atmosphere, it is necessary to perform by a batch process using a chamber, and is inferior in productivity.
The copper film obtained using the ink composition disclosed in Patent Document 2 had many voids (high void ratio) and was inferior in conductivity.
Moreover, in patent document 3, since photo-sintering is performed, although deterioration of a base material etc. can be prevented, the space | gap of the metal film obtained cannot be decreased and there exists a problem that it is inferior to electroconductivity. there were.
 本発明は上記事情に着目してなされたものであって、空隙が少ない緻密な微細構造を有し、導電性が良好な金属銅膜を形成できる液状組成物、該液状組成物を用いて形成される金属銅膜及び導体配線、並びに金属銅膜の製造方法を提供することを目的とする。 The present invention has been made paying attention to the above circumstances, and has a dense microstructure with few voids and a liquid composition capable of forming a metallic copper film with good conductivity, and formed using the liquid composition. An object of the present invention is to provide a metal copper film and a conductor wiring, and a method for producing the metal copper film.
 本願発明者が鋭意検討を行った結果、下記手段により上記課題を解決できることを見出し、発明を完成させるに至った。 As a result of intensive studies by the inventor of the present application, it has been found that the above problems can be solved by the following means, and the present invention has been completed.
[1]
 (a)ギ酸及びギ酸銅からなる群より選択される少なくとも1種、(b)酸化銅粒子、及び(c)溶媒を含有する液状組成物。
[2]
 (a)として、ギ酸を含有する[1]に記載の液状組成物。
[3]
 酸化銅粒子の平均粒子径が1nm以上1μm未満である[1]又は[2]に記載の液状組成物。
[4]
 酸化銅粒子の平均粒子径が1nm以上200nm未満である[1]~[3]のいずれか1項に記載の液状組成物。
[5]
 溶媒が、水、1~3価のヒドロキシル基を有する脂肪族アルコール、1~3価のヒドロキシル基を有する脂肪族アルコール由来のアルキルエーテル、及び1~3価のヒドロキシル基を有する脂肪族アルコール由来のアルキルエステルからなる群から選択される少なくとも1種である[1]~[4]のいずれか1項に記載の液状組成物。
[6]
 (a)としてギ酸を含有し、ギ酸の含有量が酸化銅粒子に対して0.5質量%以上20質量%以下である、[1]~[5]のいずれか1項に記載の液状組成物。
[7]
 (a)としてギ酸を含有し、ギ酸の含有量が酸化銅粒子に対して5質量%以上15質量%以下である、[1]~[5]のいずれか1項に記載の液状組成物。
[8]
 (a)としてギ酸銅を含有し、ギ酸銅の含有量が酸化銅粒子に対して1質量%以上30質量%以下である、[1]、[3]~[5]のいずれか1項に記載の液状組成物。
[9]
 酸化銅粒子の含有量が、液状組成物全量に対して5質量%以上60質量%以下である、[1]~[8]のいずれか1項に記載の液状組成物。
[10]
 [1]~[9]のいずれか1項に記載の液状組成物を光焼結して得られる、ボイド率が25%以下の金属銅膜。
[11]
 [1]~[9]のいずれか1項に記載の液状組成物又は[10]に記載の金属銅膜により得られる導体配線。
[12]
 基材上に、(a)ギ酸及びギ酸銅からなる群より選択される少なくとも1種、(b)酸化銅粒子、及び(c)溶媒を含有する液状組成物を付与し、付与された液状組成物の少なくとも一部に対して光照射する金属銅膜の製造方法。
[13]
 基材上に、(b)酸化銅粒子及び(c)溶媒を含有する液状組成物を付与し、付与された液状組成物に、(a)ギ酸及びギ酸銅からなる群より選択される少なくとも1種を含む溶液を付与し、乾燥した後、光照射する金属銅膜の製造方法。
[14]
 基材上に、(b)酸化銅粒子及び(c)溶媒を含有する液状組成物を付与し、付与された液状組成物の少なくとも一部に対して光照射し、光照射された部分に、(a)ギ酸及びギ酸銅からなる群より選択される少なくとも1種を含む溶液を塗布し、乾燥した後、光照射又は加熱する金属銅膜の製造方法。
[15]
 (a)がギ酸である[12]~[14]のいずれか1項に記載の金属銅膜の製造方法。
[16]
 酸化銅粒子の平均粒子径が1nm以上1μm未満である[12]~[15]のいずれか1項に記載の金属銅膜の製造方法。
[17]
 酸化銅粒子の平均粒子径が1nm以上200nm未満である[12]~[16]のいずれか1項に記載の金属銅膜の製造方法。
[18]
 光照射が、フラッシュランプによる光照射である[12]~[17]のいずれか1項に記載の金属銅膜の製造方法。
[19]
 [12]~[18]のいずれか1項に記載の製造方法により得られた金属銅膜を用いた導体配線。
[1]
(A) A liquid composition containing at least one selected from the group consisting of formic acid and copper formate, (b) copper oxide particles, and (c) a solvent.
[2]
(A) As a liquid composition as described in [1] containing formic acid.
[3]
The liquid composition according to [1] or [2], wherein the average particle diameter of the copper oxide particles is 1 nm or more and less than 1 μm.
[4]
The liquid composition according to any one of [1] to [3], wherein the average particle diameter of the copper oxide particles is 1 nm or more and less than 200 nm.
[5]
The solvent is derived from water, an aliphatic alcohol having 1 to 3 hydroxyl groups, an alkyl ether derived from an aliphatic alcohol having 1 to 3 hydroxyl groups, and an aliphatic alcohol having 1 to 3 hydroxyl groups. The liquid composition according to any one of [1] to [4], which is at least one selected from the group consisting of alkyl esters.
[6]
The liquid composition according to any one of [1] to [5], wherein (a) contains formic acid, and the content of formic acid is 0.5% by mass or more and 20% by mass or less with respect to the copper oxide particles. object.
[7]
The liquid composition according to any one of [1] to [5], wherein (a) contains formic acid and the content of formic acid is 5% by mass or more and 15% by mass or less with respect to the copper oxide particles.
[8]
[1], [3] to [5], wherein copper formate is contained as (a), and the content of copper formate is 1% by mass to 30% by mass with respect to the copper oxide particles. The liquid composition as described.
[9]
The liquid composition according to any one of [1] to [8], wherein the content of the copper oxide particles is 5% by mass or more and 60% by mass or less based on the total amount of the liquid composition.
[10]
A metallic copper film having a void ratio of 25% or less, obtained by photo-sintering the liquid composition according to any one of [1] to [9].
[11]
Conductor wiring obtained from the liquid composition according to any one of [1] to [9] or the metallic copper film according to [10].
[12]
On the substrate, a liquid composition containing (a) at least one selected from the group consisting of formic acid and copper formate, (b) copper oxide particles, and (c) a solvent is applied, and the applied liquid composition A method for producing a metallic copper film in which at least a part of an object is irradiated with light.
[13]
A liquid composition containing (b) copper oxide particles and (c) a solvent is applied on the base material, and at least one selected from the group consisting of (a) formic acid and copper formate is added to the applied liquid composition. The manufacturing method of the metal copper film | membrane which light-irradiates after providing the solution containing a seed and drying.
[14]
On the base material, (b) a liquid composition containing copper oxide particles and (c) a solvent is applied, and at least a part of the applied liquid composition is irradiated with light. (A) A method for producing a metallic copper film, wherein a solution containing at least one selected from the group consisting of formic acid and copper formate is applied, dried, and then irradiated or heated.
[15]
The method for producing a metallic copper film according to any one of [12] to [14], wherein (a) is formic acid.
[16]
The method for producing a metallic copper film according to any one of [12] to [15], wherein the average particle diameter of the copper oxide particles is 1 nm or more and less than 1 μm.
[17]
The method for producing a metallic copper film according to any one of [12] to [16], wherein the average particle diameter of the copper oxide particles is 1 nm or more and less than 200 nm.
[18]
The method for producing a metallic copper film according to any one of [12] to [17], wherein the light irradiation is light irradiation by a flash lamp.
[19]
[12] A conductor wiring using a metal copper film obtained by the manufacturing method according to any one of [18].
 本発明によれば、空隙が少ない緻密な微細構造を有し、導電性が良好な金属銅膜を形成できる液状組成物、該液状組成物を用いて形成される金属銅膜及び導体配線、並びに金属銅膜の製造方法を提供することができる。また、本発明の金属銅膜の製造方法によれば、光照射により焼結させるため、基材の劣化が少なく、基材との密着性が良好な金属銅膜を得ることができる。更に、樹脂基材に本発明の液状組成物を用いて金属銅膜を形成した場合は、導電性と密着性に加え、優れた曲げ耐性も示す導電性材料を提供することができる。 According to the present invention, a liquid composition capable of forming a metallic copper film having a fine microstructure with few voids and good electrical conductivity, a metallic copper film and a conductor wiring formed using the liquid composition, and A method for producing a metallic copper film can be provided. Moreover, according to the manufacturing method of the metal copper film of this invention, since it sinters by light irradiation, there is little deterioration of a base material and it can obtain a metal copper film with favorable adhesiveness with a base material. Furthermore, when a metal copper film is formed on the resin substrate using the liquid composition of the present invention, a conductive material exhibiting excellent bending resistance in addition to conductivity and adhesion can be provided.
 以下、本発明の代表的な実施形態に基づいて記載されるが、本発明の主旨を超えない限りにおいて、本発明は記載された実施形態に限定されるものではない。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
Hereinafter, although described based on typical embodiment of this invention, unless it exceeds the main point of this invention, this invention is not limited to described embodiment.
In the present specification, a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
<液状組成物>
 本発明の液状組成物は、(a)ギ酸及びギ酸銅からなる群より選択される少なくとも1種、(b)酸化銅粒子、及び(c)溶媒を含有する。
<Liquid composition>
The liquid composition of the present invention contains (a) at least one selected from the group consisting of formic acid and copper formate, (b) copper oxide particles, and (c) a solvent.
(a)ギ酸及びギ酸銅からなる群より選択される少なくとも1種
 本発明の液状組成物は、ギ酸及びギ酸銅からなる群より選択される少なくとも1種((a)成分ともいう)を含有する。
 ギ酸は、酸化銅粒子を浸食し、ギ酸銅を生成し、該ギ酸銅が焼結工程のエネルギーにより昇華して、金属銅膜の空隙(ボイド)を埋めることができる。また、ギ酸銅についても同様に、焼結工程のエネルギーにより昇華して、金属銅膜の空隙を埋めることができる。
 より安価に入手できる観点から、本発明の液状組成物はギ酸を含有することが好ましい。
(A) At least one selected from the group consisting of formic acid and copper formate The liquid composition of the present invention contains at least one selected from the group consisting of formic acid and copper formate (also referred to as component (a)). .
Formic acid can erode copper oxide particles to produce copper formate, and the copper formate can be sublimated by the energy of the sintering process to fill voids in the metal copper film. Similarly, copper formate can be sublimated by the energy of the sintering process to fill the voids in the metal copper film.
From the viewpoint of availability at a lower cost, the liquid composition of the present invention preferably contains formic acid.
 本発明の液状組成物が、(a)成分としてギ酸を含有する場合、該ギ酸の含有量は、酸化銅粒子に対して0.5質量%以上20質量%以下であることが好ましく、1.0質量%以上18質量%以下であることがより好ましく、5.0質量%以上15質量%以下であることが更に好ましい。ギ酸の含有量が酸化銅粒子に対して0.5質量%以上であると、得られる金属銅膜の空隙が少なくなり、導電性が向上するため好ましく、20質量%以下であると酸化銅粒子の比率が小さくならず、焼結後の金属銅膜の膜厚が十分なものとなるため好ましい。 When the liquid composition of the present invention contains formic acid as the component (a), the content of formic acid is preferably 0.5% by mass or more and 20% by mass or less with respect to the copper oxide particles. It is more preferably 0% by mass or more and 18% by mass or less, and further preferably 5.0% by mass or more and 15% by mass or less. When the formic acid content is 0.5% by mass or more with respect to the copper oxide particles, the voids of the obtained metal copper film are reduced and the conductivity is improved, and the copper oxide particles are preferably 20% by mass or less. This ratio is preferable because the thickness of the copper metal film after sintering does not decrease and the film thickness of the sintered metal copper film becomes sufficient.
 本発明の液状組成物が、(a)成分としてギ酸銅を含有し、該ギ酸銅の含有量は、ボイド率低減の観点から、酸化銅粒子に対して1質量%以上30質量%以下であることが好ましく、2質量%以上20質量%以下であることがより好ましく、3質量%以上15質量%以下であることが更に好ましい。ギ酸銅の含有量が酸化銅粒子に対して1質量%以上であると、得られる金属銅膜の空隙が少なくなり、導電性が向上するため好ましく、30質量%以下であると酸化銅粒子の比率が小さくならず、焼結後の金属銅膜の膜厚が十分なものとなるため好ましい。 The liquid composition of the present invention contains copper formate as the component (a), and the content of the copper formate is from 1% by mass to 30% by mass with respect to the copper oxide particles from the viewpoint of reducing the void ratio. It is preferably 2% by mass or more and 20% by mass or less, more preferably 3% by mass or more and 15% by mass or less. When the content of copper formate is 1% by mass or more with respect to the copper oxide particles, voids of the obtained metal copper film are reduced and conductivity is improved, and when the content is 30% by mass or less, This is preferable because the ratio does not decrease and the thickness of the sintered metal copper film is sufficient.
(b)酸化銅粒子
 本発明の液状組成物は酸化銅粒子を含む。
(B) Copper oxide particles The liquid composition of the present invention contains copper oxide particles.
 本発明における「酸化銅」とは、酸化されていない銅を実質的に含まない化合物であり、具体的には、X線回折による結晶解析において、酸化銅由来のピークが検出され、かつ金属由来のピークが検出されない化合物のことを指す。銅を実質的に含まないとは、限定的ではないが、銅の含有量が酸化銅微粒子に対して1質量%以下であることをいう。 The “copper oxide” in the present invention is a compound that substantially does not contain copper that has not been oxidized. Specifically, in crystal analysis by X-ray diffraction, a peak derived from copper oxide is detected, and is derived from a metal. Refers to a compound in which no peak is detected. Although it does not contain copper substantially, it means that copper content is 1 mass% or less with respect to copper oxide microparticles | fine-particles.
 酸化銅としては酸化銅(I)又は酸化銅(II)が好ましく、安価に入手可能であること、低抵抗であることから酸化銅(II)であることが更に好ましい。 As the copper oxide, copper oxide (I) or copper oxide (II) is preferable, and copper oxide (II) is more preferable because it is available at low cost and has low resistance.
 酸化銅粒子の平均粒子径は1μm未満であることが好ましく、200nm未満であることがより好ましい。また、酸化銅粒子の平均粒子径は1nm以上であることが好ましい。
 粒子径が1nm以上であれば、粒子表面の活性が高くなりすぎず、液状組成物中で溶解することがないため好ましい。また、1μm未満であれば、液状組成物をインクジェット用インク組成物として用い、印刷法により配線等のパターン形成を行うことが容易となり、液状組成物を導体化する際に、金属銅への還元が十分となり、得られる導体の導電性が良好であるため好ましい。
 なお、本発明における平均粒子径は、平均一次粒径のことを指す。平均粒子径は透過型電子顕微鏡(TEM)観察や走査型電子顕微鏡(SEM)観察により求めることができる。
The average particle diameter of the copper oxide particles is preferably less than 1 μm, and more preferably less than 200 nm. Moreover, it is preferable that the average particle diameter of a copper oxide particle is 1 nm or more.
A particle diameter of 1 nm or more is preferable because the activity on the particle surface does not become too high and does not dissolve in the liquid composition. Moreover, if it is less than 1 micrometer, it will become easy to perform pattern formation of wiring etc. by a printing method using a liquid composition as an inkjet ink composition, and when making a liquid composition into a conductor, it will reduce to metallic copper Is sufficient, and the resulting conductor has good conductivity, which is preferable.
In addition, the average particle diameter in this invention points out an average primary particle diameter. The average particle diameter can be determined by observation with a transmission electron microscope (TEM) or a scanning electron microscope (SEM).
 液状組成物中の酸化銅粒子の含有量としては、5~60質量%であることが好ましく、5~50質量%がより好ましく、10~30質量%が更に好ましい。5質量%以上であれば、得られる金属銅膜の膜厚が十分となる。また、60質量%以下であれば、液状組成物の粘度が高くならず、該組成物をインクジェット用インク組成物として用いることができる。
 液状組成物の粘度は、インクジェット吐出適性の観点から、1~50cPであることが好ましく、1~40cPであることがより好ましい。
The content of the copper oxide particles in the liquid composition is preferably 5 to 60% by mass, more preferably 5 to 50% by mass, and still more preferably 10 to 30% by mass. If it is 5 mass% or more, the film thickness of the metal copper film obtained will become enough. Moreover, if it is 60 mass% or less, the viscosity of a liquid composition will not become high, and this composition can be used as an inkjet ink composition.
The viscosity of the liquid composition is preferably 1 to 50 cP, more preferably 1 to 40 cP, from the viewpoint of ink jet discharge suitability.
(c)溶媒
 本発明の液状組成物は、溶媒を含む。該溶媒は、酸化銅粒子の分散媒として機能することができる。
 溶媒としては水、アルコール類、エーテル類、エステル類などの有機溶媒を幅広く用いることが可能であり、本発明の液状組成物を所定の粘度に調製出来るものであれば特に限定は要さないが、ギ酸又はギ酸銅との相溶性の観点から、水、1~3価のヒドロキシル基を有する脂肪族アルコール、前記アルコール由来のアルキルエーテル、及び前記アルコール由来のアルキルエステルからなる群から選択される少なくとも1種が好ましく用いられる。
(C) Solvent The liquid composition of the present invention contains a solvent. The solvent can function as a dispersion medium for copper oxide particles.
As the solvent, water, alcohols, ethers, esters, and other organic solvents can be widely used, and there is no particular limitation as long as the liquid composition of the present invention can be adjusted to a predetermined viscosity. From the viewpoint of compatibility with formic acid or copper formate, at least selected from the group consisting of water, an aliphatic alcohol having a monovalent to trivalent hydroxyl group, an alkyl ether derived from the alcohol, and an alkyl ester derived from the alcohol. One type is preferably used.
 溶媒として、水を用いる場合には、イオン交換水等のレベルの純度を有するものが好ましい。 When water is used as the solvent, a solvent having a level of purity such as ion exchange water is preferable.
 1~3価のヒドロキシル基を有する脂肪族アルコールとしては、メタノール、エタノール、1-プロパノール、1-ブタノール、1-ペンタノール、1-ヘキサノール、シクロヘキサノール、1-ヘプタノール、1-オクタノール、1-ノナノール、1-デカノール、グリシドール、メチルシクロヘキサノール、2-メチル1-ブタノール、3-メチル-2-ブタノール、4-メチル-2-ペンタノール、イソプロピルアルコール、2-エチルブタノール、2-エチルヘキサノール、2-オクタノール、テルピネオール、ジヒドロテルピネオール、2-メトキシエタノール、2-エトキシエタノール、2-n-ブトキシエタノール、2-フェノキシエタノール、カルビトール、エチルカルビトール、n-ブチルカルビトール、ジアセトンアルコール、エチレングリコール、ジエチレングリコールトリエチレングリコール、テトラエチレングリコール、プロピレングリコール、トリメチレングリコール、ジプロピレングリコール、トリプロピレングリコール、1,2-ブチレングリコール、1,3-ブチレングリコール、1,4-ブチレングリコール、ペンタメチレングリコール、へキシレングリコール、グリセリン等が挙げられる。
 中でも、1~3価のヒドロキシル基を有する炭素数1~4の脂肪族アルコールが沸点が高すぎず焼結後に残存しにくいこと、高極性でギ酸やギ酸銅との相溶性を図りやすいことからより好ましく、具体的には、メタノール、エチレングリコール、グリセリン、2-メトキシエタノール、ジエチレングリコールであることが好ましい。
Examples of aliphatic alcohols having a monovalent to trivalent hydroxyl group include methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol, 1-hexanol, cyclohexanol, 1-heptanol, 1-octanol, and 1-nonanol. 1-decanol, glycidol, methylcyclohexanol, 2-methyl 1-butanol, 3-methyl-2-butanol, 4-methyl-2-pentanol, isopropyl alcohol, 2-ethylbutanol, 2-ethylhexanol, 2- Octanol, terpineol, dihydroterpineol, 2-methoxyethanol, 2-ethoxyethanol, 2-n-butoxyethanol, 2-phenoxyethanol, carbitol, ethyl carbitol, n-butyl carbitol, diacetone alcohol , Ethylene glycol, diethylene glycol triethylene glycol, tetraethylene glycol, propylene glycol, trimethylene glycol, dipropylene glycol, tripropylene glycol, 1,2-butylene glycol, 1,3-butylene glycol, 1,4-butylene glycol , Pentamethylene glycol, hexylene glycol, glycerin and the like.
Among them, aliphatic alcohols having 1 to 3 carbon atoms having 1 to 3 valent hydroxyl groups have a high boiling point and are difficult to remain after sintering, and are highly polar and easily compatible with formic acid and copper formate. More specifically, methanol, ethylene glycol, glycerin, 2-methoxyethanol, and diethylene glycol are preferred.
 エーテル類としては、前記アルコール由来のアルキルエーテルが挙げられ、ジエチルエーテル、ジイソブチルエーテル、ジブチルエーテル、メチル-t-ブチルエーテル、メチルシクロヘキシルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールジエチルエーテル、テトラヒドロフラン、テトラヒドロピラン、1,4-ジオキサン等が例示される。中でも、1~3価のヒドロキシル基を有する炭素数1~4の脂肪族アルコール由来の炭素数2~8のアルキルエーテルであることが好ましく、具体的には、ジエチルエーテル、ジエチレングリコールジメチルエーテル、テトラヒドロフランであることが好ましい。 Examples of the ethers include alkyl ethers derived from the alcohols, such as diethyl ether, diisobutyl ether, dibutyl ether, methyl-t-butyl ether, methyl cyclohexyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, triethylene glycol dimethyl ether, triethylene glycol diethyl. Examples include ether, tetrahydrofuran, tetrahydropyran, 1,4-dioxane and the like. Among these, alkyl ethers having 2 to 8 carbon atoms derived from aliphatic alcohols having 1 to 3 carbon atoms and having 1 to 3 valent hydroxyl groups are preferable, and specifically, diethyl ether, diethylene glycol dimethyl ether, and tetrahydrofuran. It is preferable.
 エステル類としては、前記アルコール由来のアルキルエステルが挙げられ、ギ酸メチル、ギ酸エチル、ギ酸ブチル、酢酸メチル、酢酸エチル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸ブチル、γ-ブチロラクトン等が例示される。中でも1~3価のヒドロキシル基を有する炭素数1~4の脂肪族アルコール由来の炭素数2~8のアルキルエステルであることが好ましく、具体的には、ギ酸メチル、ギ酸エチル、酢酸メチルであることが好ましい。 Examples of the esters include alkyl esters derived from the alcohols such as methyl formate, ethyl formate, butyl formate, methyl acetate, ethyl acetate, butyl acetate, methyl propionate, ethyl propionate, butyl propionate, and γ-butyrolactone. Illustrated. Of these, alkyl esters having 2 to 8 carbon atoms derived from aliphatic alcohols having 1 to 3 carbon atoms and having 1 to 3 valent hydroxyl groups are preferable, and specifically, methyl formate, ethyl formate, and methyl acetate. It is preferable.
 上記溶媒の中でも、沸点が高すぎないことから、特に水を主溶媒として用いることが好ましい。主溶媒とは、溶媒の中で含有率が最も多い溶媒である。 Among the above solvents, it is particularly preferable to use water as the main solvent because the boiling point is not too high. The main solvent is a solvent having the highest content in the solvent.
 本発明に含まれる溶媒は、液体組成物全量に対して、5~95質量%であることが好ましく、10~90質量%であることが更に好ましく、15~80質量%であることが特に好ましい。
 本発明の金属銅膜は、後述するように、基材上に該液状組成物を塗布後、乾燥した後に焼成を行うことによって得られる。溶媒の沸点が300℃以下であれば、乾燥時に揮発しやすく、焼成工程において気化膨張して微小なクラックや空隙を発生させないため、導体の基材との密着性が良好になり、導電性が良好となるため好ましい。
 なお、焼成としては、光照射による焼結(光焼結)や加熱による焼結(熱焼結)があるが、本発明では光焼結が好ましい。
The solvent included in the present invention is preferably 5 to 95% by mass, more preferably 10 to 90% by mass, and particularly preferably 15 to 80% by mass with respect to the total amount of the liquid composition. .
As will be described later, the metallic copper film of the present invention can be obtained by applying the liquid composition on a substrate, drying it, and then baking it. If the boiling point of the solvent is 300 ° C. or lower, it is easy to volatilize during drying, and it does not vaporize and expand in the firing process to generate minute cracks or voids. Since it becomes favorable, it is preferable.
The firing includes sintering by light irradiation (photosintering) and sintering by heating (thermal sintering). In the present invention, photosintering is preferable.
(その他の成分)
 この他、液状組成物中には、バインダー成分として高分子化合物を含んでいても良い。高分子化合物は、天然、合成高分子又はこれらの混合物のいずれでもよく、例えばビニル系ポリマー、ポリエーテル、アクリル系ポリマー、エポキシ樹脂、ウレタン樹脂、ロジン配合物などが好適に挙げられる。その他の成分を含む場合は、その他の成分の添加量としては、液状組成物全量に対して、0.1~20質量%であることが好ましく、0.5~15質量%であることがより好ましく、1~13質量%であることが更に好ましい。
(Other ingredients)
In addition, the liquid composition may contain a polymer compound as a binder component. The polymer compound may be any of natural, synthetic polymers, or a mixture thereof, and examples thereof include vinyl polymers, polyethers, acrylic polymers, epoxy resins, urethane resins, and rosin compounds. When other components are included, the addition amount of the other components is preferably 0.1 to 20% by mass, more preferably 0.5 to 15% by mass with respect to the total amount of the liquid composition. Preferably, it is 1 to 13% by mass.
<金属銅膜>
 本発明は、上記液状組成物より得られる金属銅膜にも関する。本発明の金属銅膜は、上記液状組成物を用いることにより、空隙が少ない緻密な微細構造となり、導電性が良好となる。また、金属銅膜の製造において焼結を後述の光照射で行うことにより、基材との密着性の高い金属銅膜となる。
<Metal copper film>
The present invention also relates to a metallic copper film obtained from the above liquid composition. By using the above liquid composition, the metallic copper film of the present invention has a dense microstructure with few voids and good electrical conductivity. Moreover, it becomes a metal copper film with high adhesiveness with a base material by performing sintering by light irradiation mentioned later in manufacture of a metal copper film.
 金属銅膜の空隙率(ボイド率)は、例えば、走査型電子顕微鏡(SEM)を用いて撮影した断面観察写真をデジタル処理にて白・黒二値化し、白と黒のドット数比から算出することができる。ボイド率としては、25%以下であることが好ましく、15%以下であることがより好ましく、10%以下であることが更に好ましい。ボイド率が25%より大きい場合には、金属銅膜と基材との密着性の低下、導電率の低下を引き起こすため好ましくない。 The porosity (void ratio) of the metallic copper film is calculated from the ratio of white and black dots by digitizing a cross-sectional observation photograph taken with a scanning electron microscope (SEM) by digital processing, for example. can do. The void ratio is preferably 25% or less, more preferably 15% or less, and still more preferably 10% or less. When the void ratio is larger than 25%, it is not preferable because it causes a decrease in the adhesion between the metal copper film and the substrate and a decrease in the conductivity.
 金属銅膜の体積抵抗値としては、1×10-3Ωcm以下であることが好ましく、1×10-4Ωcm以下であることがより好ましく、1×10-5Ωcm以下であることが更に好ましい。体積抵抗値は、金属銅膜の表面抵抗値を四探針法にて測定後、得られた表面抵抗値に膜厚を乗算すること等で算出することができる。 The volume resistance value of the metallic copper film is preferably 1 × 10 −3 Ωcm or less, more preferably 1 × 10 −4 Ωcm or less, and further preferably 1 × 10 −5 Ωcm or less. . The volume resistance value can be calculated by, for example, multiplying the obtained surface resistance value by the film thickness after measuring the surface resistance value of the metal copper film by the four-probe method.
 液状組成物の焼結方法としては、加熱焼結、光焼結が挙げられるが、基材の劣化が少なく、金属銅膜と基材との密着性が低下しないという観点から光焼結が好ましい。光焼結については後述する。
 加熱焼結の場合の加熱温度は、50℃~250℃が好ましく、80℃~200℃がより好ましい。
Examples of the method for sintering the liquid composition include heat sintering and photo-sintering, but photo-sintering is preferable from the viewpoint that the deterioration of the base material is small and the adhesion between the metal copper film and the base material does not decrease. . Photo sintering will be described later.
In the case of heat sintering, the heating temperature is preferably 50 ° C. to 250 ° C., more preferably 80 ° C. to 200 ° C.
<金属銅膜の製造方法>
 本発明は、上述の液状組成物を用いた金属銅膜の製造方法にも関する。具体的には、本発明の金属銅膜の製造方法は、基材上に、(a)ギ酸及びギ酸銅からなる群より選択される少なくとも1種、(b)酸化銅粒子、及び(c)溶媒を含有する液状組成物を付与し、該付与された液状組成物の少なくとも一部に対して光照射する金属銅膜の製造方法である。該光照射により露光部分を導電性にすることができる。
<Method for producing metal copper film>
The present invention also relates to a method for producing a metallic copper film using the above-mentioned liquid composition. Specifically, the method for producing a metal copper film of the present invention comprises (a) at least one selected from the group consisting of formic acid and copper formate, (b) copper oxide particles, and (c) on a substrate. It is a method for producing a metallic copper film in which a liquid composition containing a solvent is applied, and at least a part of the applied liquid composition is irradiated with light. The exposed portion can be made conductive by the light irradiation.
 また、本発明は、金属銅膜の製造方法として別の態様も含むものであり、具体的には、以下の2種類の態様が挙げられる。
 <A>基材上に、(b)酸化銅粒子及び(c)溶媒を含有する液状組成物を付与し、該付与された液状組成物に、(a)ギ酸及びギ酸銅からなる群より選択される少なくとも1種を含む溶液を付与し、乾燥した後、光照射する金属銅膜の製造方法。
 <B>基材上に、(b)酸化銅粒子及び(c)溶媒を含有する液状組成物を付与し、該付与された液状組成物の少なくとも一部に対して光照射し、該光照射された部分に、(a)ギ酸及びギ酸銅からなる群より選択される少なくとも1種を含む溶液を塗布し、乾燥した後、光照射又は加熱する金属銅膜の製造方法。
Moreover, this invention also includes another aspect as a manufacturing method of a metallic copper film | membrane, and specifically, the following two types of aspects are mentioned.
<A> A liquid composition containing (b) copper oxide particles and (c) a solvent is applied on the base material, and the applied liquid composition is selected from the group consisting of (a) formic acid and copper formate. The manufacturing method of the metal copper film | membrane which light-irradiates after providing the solution containing at least 1 sort (s) to be dried.
<B> On the base material, a liquid composition containing (b) copper oxide particles and (c) a solvent is applied, and light irradiation is performed on at least a part of the applied liquid composition. (A) A method for producing a metallic copper film, which comprises applying (a) a solution containing at least one selected from the group consisting of formic acid and copper formate and drying or applying light after heating.
(基材)
 本発明の製造方法において、基材としては、公知のものを用いることができ、特に限定するものではないが、例えば、樹脂、紙、ガラス、シリコン系半導体、化合物半導体、金属酸化物、金属窒化物、木材等からなる一種又は二種以上、若しくは二種以上の複合基材が挙げられる。
(Base material)
In the production method of the present invention, a known substrate can be used as the substrate, and is not particularly limited. For example, resin, paper, glass, silicon-based semiconductor, compound semiconductor, metal oxide, metal nitriding 1 type, 2 types or more, or 2 types or more composite base materials which consist of a thing, wood, etc. are mentioned.
 具体的には、低密度ポリエチレン樹脂、高密度ポリエチレン樹脂、ABS樹脂(アクリロニトリル-ブタジエン-スチレン共重合合成樹脂)、アクリル樹脂、スチレン樹脂、塩化ビニル樹脂、ポリエステル樹脂(ポリエチレンテレフタレート)、ポリアセタール樹脂、ポリサルフォン樹脂、ポリエーテルイミド樹脂、ポリエーテルケトン樹脂、セルロース誘導体等の樹脂基材;非塗工印刷用紙、微塗工印刷用紙、塗工印刷用紙(アート紙、コート紙)、特殊印刷用紙、コピー用紙(PPC用紙)、未晒包装紙(重袋用両更クラフト紙、両更クラフト紙)、晒包装紙(晒クラフト紙、純白ロール紙)、コートボール、チップボール、段ボール等の紙基材;ソーダガラス、ホウケイ酸ガラス、シリカガラス、石英ガラス等のガラス基材;アモルファスシリコン、ポリシリコン等のシリコン系半導体;CdS、CdTe、GaAs等の化合物半導体;銅板、鉄板、アルミ板等の金属基材;アルミナ、サファイア、ジルコニア、チタニア、酸化イットリウム、酸化インジウム、ITO(インジウム錫酸化物)、IZO(インジウム亜鉛酸化物)、ネサ(酸化錫)、ATO(アンチモンドープ酸化錫)、フッ素ドープ酸化錫、酸化亜鉛、AZO(アルミドープ酸化亜鉛)、ガリウムドープ酸化亜鉛、窒化アルミニウム基材、炭化ケイ素等のその他無機基材;紙-フェノール樹脂、紙-エポキシ樹脂、紙-ポリエステル樹脂等の紙-樹脂複合物、ガラス布-エポキシ樹脂、ガラス布-ポリイミド系樹脂、ガラス布-フッ素樹脂等のガラス-樹脂複合物等の複合基材等が挙げられる。これらの中でも、ポリエステル樹脂、ポリエーテルイミド樹脂、紙基材、ガラス基材が好ましく使用される。 Specifically, low density polyethylene resin, high density polyethylene resin, ABS resin (acrylonitrile-butadiene-styrene copolymer synthetic resin), acrylic resin, styrene resin, vinyl chloride resin, polyester resin (polyethylene terephthalate), polyacetal resin, polysulfone Resin, polyetherimide resin, polyetherketone resin, cellulose derivatives and other resin base materials; uncoated printing paper, finely coated printing paper, coated printing paper (art paper, coated paper), special printing paper, copy paper (PPC paper), unbleached wrapping paper (both kraft paper for heavy bags, both kraft paper), bleached wrapping paper (bleached kraft paper, pure white roll paper), coated paper, chip ball, corrugated cardboard and other paper base materials; Glass substrates such as soda glass, borosilicate glass, silica glass and quartz glass; Silicon-based semiconductors such as silicon and polysilicon; compound semiconductors such as CdS, CdTe, and GaAs; metal substrates such as copper plates, iron plates, and aluminum plates; alumina, sapphire, zirconia, titania, yttrium oxide, indium oxide, ITO (indium tin) Oxide), IZO (indium zinc oxide), Nesa (tin oxide), ATO (antimony-doped tin oxide), fluorine-doped tin oxide, zinc oxide, AZO (aluminum-doped zinc oxide), gallium-doped zinc oxide, aluminum nitride group Materials, other inorganic base materials such as silicon carbide; paper-phenolic resin, paper-epoxy resin, paper-resin composite such as paper-polyester resin, glass cloth-epoxy resin, glass cloth-polyimide resin, glass cloth-fluorine Examples thereof include composite base materials such as glass-resin composites such as resins. Among these, polyester resins, polyetherimide resins, paper base materials, and glass base materials are preferably used.
(液状組成物)
 本発明の製造方法において、既述の本発明の液状組成物を好ましく用いることができる。液状組成物の調製は、上記(a)~(c)の各成分を含む限りにおいてはどのように調製してもよい。
(Liquid composition)
In the production method of the present invention, the above-described liquid composition of the present invention can be preferably used. The liquid composition may be prepared in any way as long as it includes the components (a) to (c).
(液状組成物の基材への付与)
 本発明の製造方法において、本発明の液状組成物を基材に付与する方法としては、塗布法が好ましい。塗布法としては、特に限定するものではないが、例えば、スクリーン印刷法、ディップコーティング法、スプレー塗布法、スピンコーティング法、インクジェット法、ディスペンサーでの塗布法等が挙げられる。塗布の形状としては面状であっても、ドット状であっても、問題は無く、特に限定されない。液状組成物を基材に塗布する塗布量としては、所望する電気的導通部位の膜厚に応じて適宜調整すればよいが、通常、乾燥後の液状組成物の膜厚が0.01~5000μmの範囲、好ましくは0.1~1000μmの範囲となるよう塗布すれば良い。
(Application of liquid composition to substrate)
In the production method of the present invention, the method of applying the liquid composition of the present invention to a substrate is preferably a coating method. Although it does not specifically limit as a coating method, For example, the screen printing method, the dip coating method, the spray coating method, the spin coating method, the inkjet method, the coating method with a dispenser etc. are mentioned. There is no problem even if the shape of application is planar or dot-like, and there is no particular limitation. The coating amount for applying the liquid composition to the substrate may be appropriately adjusted according to the desired film thickness of the electrically conductive portion. Usually, the film thickness of the liquid composition after drying is 0.01 to 5000 μm. The film may be applied in a range of 0.1 to 1000 μm.
(乾燥)
 本発明の製造方法においては、液状組成物は基材へ塗布した後に乾燥を行い、焼結させる前に液体成分が存在しないものとすることが望ましい。液体成分が残存していないと、焼成工程において液体成分が気化膨張して微小なクラックや空隙を発生させることがないため、導体の基材との密着性、導電率の観点で好ましい。
 乾燥させる方法としては、温風乾燥機などを用いることができ、温度としては、40℃~200℃で行なうことが好ましく、50℃~150℃で行なうことがより好ましい。
(Dry)
In the production method of the present invention, it is desirable that the liquid composition is dried after being applied to the substrate and free from liquid components before being sintered. If the liquid component does not remain, the liquid component does not vaporize and expand in the firing step, and fine cracks and voids are not generated, which is preferable from the viewpoints of adhesion of the conductor to the base material and conductivity.
As a drying method, a hot air dryer or the like can be used, and the temperature is preferably 40 ° C. to 200 ° C., more preferably 50 ° C. to 150 ° C.
(光照射)
 本発明の製造方法においては、基材上に上記液状組成物を付与し、該付与された液状組成物の少なくとも一部に対して光照射することにより金属銅膜を製造する。
 光を照射することにより、液状組成物中の酸化銅粒子を銅に還元し、更に焼結させて金属銅膜とすることができる。
 光焼結は、加熱による焼結と異なり、室温にて液状組成物成が付与された部分に対して光を短時間照射することで焼結が可能となり、長時間の加熱による基材の劣化が起こらず、金属銅膜の基材との密着性が良好となる。
(Light irradiation)
In the production method of the present invention, a metallic copper film is produced by applying the liquid composition on a substrate and irradiating at least part of the applied liquid composition.
By irradiating with light, the copper oxide particles in the liquid composition can be reduced to copper and further sintered to form a metal copper film.
Photo-sintering is different from sintering by heating, and it becomes possible to sinter by irradiating light to a part to which a liquid composition is applied at room temperature for a short time. Does not occur, and the adhesion of the metallic copper film to the base material is improved.
 光源としては、例えば、水銀灯、メタルハライドランプ、キセノンランプ、ケミカルランプ、カーボンアーク灯、等がある。放射線としては、電子線、X線、イオンビーム、遠赤外線などがある。また、g線、i線、Deep-UV光、高密度エネルギービーム(レーザービーム)も使用される。
 具体的な態様としては、赤外線レーザーによる走査露光、キセノン放電灯などの高照度フラッシュ露光、赤外線ランプ露光などが好適に挙げられる。
Examples of the light source include a mercury lamp, a metal halide lamp, a xenon lamp, a chemical lamp, and a carbon arc lamp. Examples of radiation include electron beams, X-rays, ion beams, and far infrared rays. Also, g-line, i-line, deep-UV light, and high-density energy beam (laser beam) are used.
Specific examples of preferred embodiments include scanning exposure with an infrared laser, high-illuminance flash exposure such as a xenon discharge lamp, and infrared lamp exposure.
 光照射は、フラッシュランプによる光照射が好ましく、フラッシュランプによるパルス光照射であることがより好ましい。高エネルギーのパルス光の照射は、液状組成物を付与した部分の表面を、極めて短い時間で集中して加熱することができるため、基材への熱の影響を極めて小さくすることができるためである。 The light irradiation is preferably light irradiation with a flash lamp, and more preferably pulsed light irradiation with a flash lamp. The irradiation of high energy pulsed light is because the surface of the part to which the liquid composition is applied can be concentrated and heated in a very short time, so that the influence of heat on the substrate can be extremely reduced. is there.
 パルス光の照射エネルギーとして好ましい範囲は1J/cm~100J/cmであり、パルス幅としては1μ秒~100m秒であることが好ましい。 A preferable range for the irradiation energy of the pulsed light is 1 J / cm 2 to 100 J / cm 2 , and a pulse width is preferably 1 μsec to 100 msec.
 パルス光の照射時間は、1~100m秒が好ましく、1~50m秒がより好ましく、1~20m秒が更に好ましい。光照射エネルギーは1~30J/cmが好ましく、3~25J/cmがより好ましく、5~20J/cmが更に好ましい。 The irradiation time of the pulsed light is preferably 1 to 100 milliseconds, more preferably 1 to 50 milliseconds, and further preferably 1 to 20 milliseconds. Light irradiation energy is preferably 1 ~ 30J / cm 2, more preferably 3 ~ 25J / cm 2, more preferably 5 ~ 20J / cm 2.
 なお、<B>の態様は、酸化銅粒子に光照射した後に、(a)ギ酸及びギ酸銅からなる群より選択される少なくとも1種を含む溶液を塗布し、乾燥した後、光照射又は加熱するものであるが、(a)成分の塗布、乾燥、光照射は前記と同様に行なうことができる。また、(a)成分の加熱については、前記乾燥と同様に行なうことができる。 In the aspect of <B>, after the copper oxide particles are irradiated with light, (a) a solution containing at least one selected from the group consisting of formic acid and copper formate is applied, dried, and then irradiated or heated. However, the application, drying, and light irradiation of the component (a) can be performed in the same manner as described above. Moreover, about the heating of (a) component, it can carry out similarly to the said drying.
<導体配線>
 本発明は、上記液状組成物により得られる導体配線にも関する。
 導体配線は、上記液状組成物をパターン状に印刷する方法や、上記液状組成物から得られた金属銅膜をパターン状にエッチングすることなどで得られる。
<Conductor wiring>
The present invention also relates to a conductor wiring obtained from the liquid composition.
The conductor wiring can be obtained by a method of printing the liquid composition in a pattern or by etching a metal copper film obtained from the liquid composition in a pattern.
(エッチング工程)
 本工程は、上記金属銅膜をパターン状にエッチングする工程である。即ち、本工程では、基材表面全体に形成された金属銅膜の不要部分をエッチングで取り除くことで、所望の金属パターンを形成することができる。
 この金属パターンの形成には、如何なる手法も使用することができ、具体的には一般的に知られているサブトラクティブ法、セミアディティブ法が用いられる。
(Etching process)
This step is a step of etching the metal copper film in a pattern. That is, in this step, a desired metal pattern can be formed by removing unnecessary portions of the metal copper film formed on the entire substrate surface by etching.
Any method can be used to form the metal pattern, and specifically, a generally known subtractive method or semi-additive method is used.
 サブトラクティブ法とは、形成された金属銅膜上にドライフィルムレジスト層を設けパターン露光、現像により金属パターン部と同じパターンを形成し、ドライフィルムレジストパターンをマスクとしてエッチング液で金属銅膜を除去し、金属パターンを形成する方法である。ドライフィルムレジストとしては如何なる材料も使用でき、ネガ型、ポジ型、液状、フィルム状のものが使用できる。また、エッチング方法としては、プリント配線基板の製造時に使用されている方法が何れも使用可能であり、湿式エッチング、ドライエッチング等が使用可能であり、任意に選択すればよい。作業の操作上、湿式エッチングが装置などの簡便性の点で好ましい。エッチング液として、例えば、塩化第二銅、塩化第二鉄等の水溶液を使用することができる。 In the subtractive method, a dry film resist layer is provided on the formed metal copper film, the same pattern as the metal pattern part is formed by pattern exposure and development, and the metal copper film is removed with an etching solution using the dry film resist pattern as a mask. And forming a metal pattern. Any material can be used as the dry film resist, and negative, positive, liquid, and film-like ones can be used. Moreover, as an etching method, any method used at the time of manufacturing a printed wiring board can be used, and wet etching, dry etching, and the like can be used, and may be arbitrarily selected. In terms of operation, wet etching is preferable from the viewpoint of simplicity of the apparatus. As an etching solution, for example, an aqueous solution of cupric chloride, ferric chloride, or the like can be used.
 また、セミアディティブ法とは、形成された金属銅膜上にドライフィルムレジスト層を設け、パターン露光、現像により非金属パターン部と同じパターンを形成し、ドライフィルムレジソトパターンをマスクとして電気めっきを行い、ドライフィルムレジソトパターンを除去した後にクイックエッチングを実施し、金属銅膜をパターン状に除去することで、金属パターンを形成する方法である。ドライフィルムレジスト、エッチング液等はサブトラクティブ法と同様な材料が使用できる。また、電気めっき手法としては上記記載の手法が使用できる。
 以上の工程を経ることにより、所望の金属パターンを有する導体配線が製造される。
The semi-additive method is to provide a dry film resist layer on the formed metal copper film, form the same pattern as the non-metal pattern part by pattern exposure and development, and perform electroplating using the dry film resist pattern as a mask. This is a method for forming a metal pattern by performing quick etching after removing the dry film resist pattern and removing the metal copper film in a pattern. The dry film resist, the etching solution, etc. can use the same material as the subtractive method. Moreover, the above-mentioned method can be used as the electroplating method.
Through the above steps, a conductor wiring having a desired metal pattern is manufactured.
 一方、上記液状組成物をパターン状に形成し、パターン状の液状組成物に対して露光し、光焼結を行うことで、導体配線を製造することもできる。
 具体的には、インクジェット方式により、基材上にパターン状に液状組成物を吐出して、該液状組成物成形部分に対して露光することにより導体化させればよい。
On the other hand, a conductor wiring can also be manufactured by forming the said liquid composition in a pattern shape, exposing with respect to a pattern-like liquid composition, and performing light sintering.
Specifically, a liquid composition may be ejected in a pattern on a substrate by an ink jet method, and the liquid composition molding portion may be exposed to light to form a conductor.
 本発明の導体配線は、本発明の金属銅膜と同様、空隙が少ない緻密な微細構造となり、導電性が良好となる。また、焼結を上述の光照射で行うことにより、基材密着性の高い導体配線となる。
 本発明における導体配線を多層配線基板として構成する場合、金属パターン材料の表面に、更に絶縁層(絶縁樹脂層、層間絶縁膜、ソルダーレジスト)を積層して、その表面にさらなる配線(金属パターン)を形成してもよい。
As with the metal copper film of the present invention, the conductor wiring of the present invention has a dense microstructure with few voids and good electrical conductivity. Moreover, it becomes a conductor wiring with high base-material adhesiveness by performing sintering by the above-mentioned light irradiation.
When the conductor wiring in the present invention is configured as a multilayer wiring board, an insulating layer (insulating resin layer, interlayer insulating film, solder resist) is further laminated on the surface of the metal pattern material, and further wiring (metal pattern) is formed on the surface. May be formed.
 本発明に用いうる絶縁膜の材料としては、エポキシ樹脂、アラミド樹脂、結晶性ポリオレフィン樹脂、非晶性ポリオレフィン樹脂、フッ素含有樹脂(ポリテトラフルオロエチレン、全フッ素化ポリイミド、全フッ素化アモルファス樹脂など)、ポリイミド樹脂、ポリエーテルスルフォン樹脂、ポリフェニレンサルファイド樹脂、ポリエーテルエーテルケトン樹脂、液晶樹脂など挙げられる。
 これらの中でも、密着性、寸法安定性、耐熱性、電気絶縁性等の観点から、エポキシ樹脂、ポリイミド樹脂、又は液晶樹脂を含有するものであることが好ましく、より好ましくはエポキシ樹脂である。具体的には、味の素ファインテクノ(株)製、ABF GX-13などが挙げられる。
Insulating film materials that can be used in the present invention include epoxy resin, aramid resin, crystalline polyolefin resin, amorphous polyolefin resin, fluorine-containing resin (polytetrafluoroethylene, perfluorinated polyimide, perfluorinated amorphous resin, etc.) , Polyimide resin, polyether sulfone resin, polyphenylene sulfide resin, polyether ether ketone resin, liquid crystal resin and the like.
Among these, from the viewpoints of adhesion, dimensional stability, heat resistance, electrical insulation, and the like, it is preferable to contain an epoxy resin, a polyimide resin, or a liquid crystal resin, and more preferably an epoxy resin. Specific examples include ABF GX-13 manufactured by Ajinomoto Fine Techno Co., Ltd.
 また、配線保護のために用いられる絶縁層の材料の一種であるソルダーレジストについては、例えば、特開平10-204150号公報や、特開2003-222993号公報等に詳細に記載され、ここに記載の材料を所望により本発明にも適用することができる。ソルダーレジストは市販品を用いてもよく、具体的には、例えば、太陽インキ製造(株)製PFR800、PSR4000(商品名)、日立化成工業(株)製 SR7200G、などが挙げられる。 The solder resist, which is a kind of insulating layer material used for wiring protection, is described in detail in, for example, Japanese Patent Application Laid-Open No. 10-204150 and Japanese Patent Application Laid-Open No. 2003-222993. These materials can also be applied to the present invention if desired. As the solder resist, commercially available products may be used. Specific examples include PFR800 manufactured by Taiyo Ink Manufacturing Co., Ltd., PSR4000 (trade name), SR7200G manufactured by Hitachi Chemical Co., Ltd., and the like.
 以下、本発明の実施例を説明するが、本発明は、これらの実施例に何ら限定されるものではない。なお、実施例中の含有率としての「%」、及び、「部」は、いずれも質量基準に基づくものである。 Examples of the present invention will be described below, but the present invention is not limited to these examples. In the examples, “%” and “parts” as the contents are based on mass.
<実施例1>
(液状組成物の調製)
 ギ酸0.8g、酸化銅(II)粒子(関東化学製;平均一次粒径60nm)24.2g、水68g、エチレングリコール4g、グリセリン3gを混合し、超音波ホモジナイザーで5分間処理し、液状組成物とした。なお、前記平均一次粒径は走査型電子顕微鏡(SEM:日立ハイテクノロジーズ製 S-5500)で観察し測定した。
<Example 1>
(Preparation of liquid composition)
0.8 g of formic acid, 24.2 g of copper (II) oxide particles (manufactured by Kanto Chemical; average primary particle size 60 nm), 68 g of water, 4 g of ethylene glycol, and 3 g of glycerin are mixed and treated with an ultrasonic homogenizer for 5 minutes to obtain a liquid composition It was a thing. The average primary particle size was observed and measured with a scanning electron microscope (SEM: S-5500, manufactured by Hitachi High-Technologies).
(基板への塗布・乾燥)
 スライドガラス(プレクリン水縁磨(MATSUNAMI製))に、上記液状組成物をインクジェット(IJ)印刷装置(DMP2831(Dimatix製))にて1cm角の面状に印刷し、温風乾燥機にて120℃、30分間乾燥した。乾燥後の液体組成物の膜厚は、レーザーマイクロスコープにより測定したところ、0.8μmであった。
(Apply to substrate and dry)
The above liquid composition is printed on a slide glass (Preclin water rim polish (manufactured by MATUNAMI)) in a 1 cm square surface using an inkjet (IJ) printer (DMP2831 (manufactured by Dimatix)), and 120 mm by a hot air dryer. Dry at 30 ° C. for 30 minutes. The film thickness of the dried liquid composition was 0.8 μm as measured with a laser microscope.
(光照射)
 液状組成物を塗布・乾燥させた部分に、Xeフラッシュランプ(Sinteron2000(Xenon製)、設定電圧3kV、照射エネルギー7J/cm、パルス幅2m秒.)を照射し、焼結させて、金属銅膜を得た。
(Light irradiation)
The portion coated and dried with the liquid composition is irradiated with a Xe flash lamp (Sinteron 2000 (manufactured by Xenon), set voltage 3 kV, irradiation energy 7 J / cm 2 , pulse width 2 msec.), Sintered, and metal copper A membrane was obtained.
<実施例2~4>
 用いる基板種、(a)成分の種類及び添加量、酸化銅粒子の添加量を表1に記載のように変更した以外は実施例1と同様にして、金属銅膜を得た。なお、実施例2~4に用いた溶媒の各成分の組成比は実施例1と同じにした。PET基板としては、帝人製テトロンを用いた。
<Examples 2 to 4>
A metal copper film was obtained in the same manner as in Example 1 except that the substrate type to be used, the type and addition amount of the component (a), and the addition amount of the copper oxide particles were changed as shown in Table 1. The composition ratio of each component of the solvent used in Examples 2 to 4 was the same as that in Example 1. Tetron Tetoron was used as the PET substrate.
<実施例5>
(液状組成物の調製)
 酸化銅(II)粒子(関東化学製;平均粒径60nm)23.5g、水64g、エチレングリコール4g、グリセリン3gを混合し、超音波ホモジナイザーで5分間処理し、液状組成物とした。
<Example 5>
(Preparation of liquid composition)
23.5 g of copper (II) oxide particles (manufactured by Kanto Chemical; average particle size 60 nm), 64 g of water, 4 g of ethylene glycol, and 3 g of glycerin were mixed and treated with an ultrasonic homogenizer for 5 minutes to obtain a liquid composition.
(基板への塗布・乾燥)
 PET基板(帝人製テトロン)に、上記液状組成物をインクジェット(IJ)印刷装置(DMP2831(Dimatix製))にて1cm角の面状に印刷し、温風乾燥機にて100℃、30分間乾燥した。
(Apply to substrate and dry)
The liquid composition is printed on a PET substrate (Teijin Tetoron) with a 1 cm square surface using an inkjet (IJ) printer (DMP2831 (manufactured by Dimatix)), and dried at 100 ° C. for 30 minutes with a hot air dryer. did.
(ギ酸添加)
 水(4g)にギ酸(1.5g)を溶解したギ酸水溶液をIJにて上述の1cm角印刷部分に塗布し、温風乾燥機にて100℃、10分間乾燥した。乾燥後の膜厚は0.9μmであった。
(Formic acid added)
A formic acid aqueous solution in which formic acid (1.5 g) was dissolved in water (4 g) was applied to the above-mentioned 1 cm square printed portion by IJ and dried at 100 ° C. for 10 minutes by a hot air dryer. The film thickness after drying was 0.9 μm.
(光照射)
 ギ酸を塗布・乾燥させた部分に、Xeフラッシュランプ(Sinteron2000(Xenon製)、設定電圧3kV、照射エネルギー7J/cm、パルス幅2m秒.)を照射し、焼結させて、金属銅膜を得た。
(Light irradiation)
The portion where formic acid is applied and dried is irradiated with a Xe flash lamp (Sinteron 2000 (manufactured by Xenon), set voltage 3 kV, irradiation energy 7 J / cm 2 , pulse width 2 msec.) And sintered to form a metallic copper film. Obtained.
<実施例6>
(液状組成物の調製)
 酸化銅(II)粒子(関東化学製;平均粒径60nm)(23.5g)、水64g、エチレングリコール4g、グリセリン3gを混合し、超音波ホモジナイザーで5分間処理した。
<Example 6>
(Preparation of liquid composition)
Copper (II) oxide particles (manufactured by Kanto Chemical; average particle size 60 nm) (23.5 g), water 64 g, ethylene glycol 4 g, and glycerin 3 g were mixed and treated with an ultrasonic homogenizer for 5 minutes.
(基板への塗布・乾燥)
 PET基板(帝人製テトロン)に、上記液状組成物をインクジェット(IJ)印刷装置(DMP2831(Dimatix製))にて1cm角の面状に印刷し、温風乾燥機にて100℃、30分間乾燥した。乾燥後の膜厚は0.8μmであった。
(Apply to substrate and dry)
The liquid composition is printed on a PET substrate (Teijin Tetoron) on a 1 cm square surface using an inkjet (IJ) printer (DMP2831 (manufactured by Dimatix)), and dried in a hot air dryer at 100 ° C. for 30 minutes. did. The film thickness after drying was 0.8 μm.
(光照射)
 液状組成物を塗布・乾燥させた部分に、Xeフラッシュランプ(設定電圧3kV、照射エネルギー7J/cm、パルス幅2m秒.)を照射した。
(Light irradiation)
The portion where the liquid composition was applied and dried was irradiated with a Xe flash lamp (setting voltage 3 kV, irradiation energy 7 J / cm 2 , pulse width 2 msec.).
(ギ酸添加)
 水(4g)にギ酸(1.5g)を溶解したギ酸水溶液をIJにて上述の1cm角印刷部分に塗布し、温風乾燥機にて100℃、10分間乾燥した。
(Formic acid added)
A formic acid aqueous solution in which formic acid (1.5 g) was dissolved in water (4 g) was applied to the above-mentioned 1 cm square printed portion by IJ and dried at 100 ° C. for 10 minutes by a hot air dryer.
(後加熱工程)
 温風乾燥機にて150℃、1時間加熱処理した。
(Post-heating process)
It heat-processed at 150 degreeC with the warm air dryer for 1 hour.
<実施例7>
 光照射を行なわず、焼結方法を、光焼結に替えて、窒素下で200℃、2時間加熱する熱焼結とした以外は実施例2と同様にして、金属銅膜を得た。
<Example 7>
A metal copper film was obtained in the same manner as in Example 2 except that the light-irradiation was not performed, and the sintering method was changed to the light sintering and the heat sintering was performed at 200 ° C. for 2 hours under nitrogen.
<実施例8>
 光照射を行なわず、焼結方法を、光焼結に替えて、窒素下で200℃、2時間加熱する熱焼結とした以外は実施例3と同様にして、金属銅膜を得た。
<Example 8>
A metal copper film was obtained in the same manner as in Example 3 except that the light-irradiation was not performed and the sintering method was changed to the light sintering and the heat sintering was performed at 200 ° C. for 2 hours under nitrogen.
<実施例9>
 用いる金属酸化物粒子を酸化銅(II)粒子(American Elements製;平均一次粒径550nm)に変更した以外は実施例2と同様にして、金属銅膜を得た。
<Example 9>
A metal copper film was obtained in the same manner as in Example 2 except that the metal oxide particles used were changed to copper (II) oxide particles (manufactured by American Elements; average primary particle size 550 nm).
<実施例10>
 用いる金属酸化物粒子を酸化銅(II)粒子(高純度化学研究所製;平均一次粒径1.2μm)に変更した以外は実施例2と同様にして、金属銅膜を得た。
<Example 10>
A metal copper film was obtained in the same manner as in Example 2 except that the metal oxide particles used were changed to copper (II) oxide particles (manufactured by High Purity Chemical Laboratory; average primary particle size 1.2 μm).
<実施例11~13>
 光照射におけるXeフラッシュランプの照射エネルギーを表1に記載のように変更した以外は実施例3と同様にして、金属銅膜を得た。
<Examples 11 to 13>
A metallic copper film was obtained in the same manner as in Example 3 except that the irradiation energy of the Xe flash lamp in the light irradiation was changed as shown in Table 1.
<比較例1>
 ギ酸及びギ酸銅を添加せずに、酸化銅微粒子の添加量を表1のように変更した以外は実施例1と同様にして、金属銅膜を得た。
<Comparative Example 1>
A metal copper film was obtained in the same manner as in Example 1 except that formic acid and copper formate were not added, and the addition amount of the copper oxide fine particles was changed as shown in Table 1.
<比較例2>
 ギ酸及びギ酸銅を添加せずに、酸化銅微粒子の添加量を表1のように変更した以外は実施例8と同様にして、金属銅膜を得た。
<Comparative example 2>
A metal copper film was obtained in the same manner as in Example 8 except that formic acid and copper formate were not added, and the addition amount of the copper oxide fine particles was changed as shown in Table 1.
〔評価〕
 得られた各金属銅膜を下記の方法で評価した。結果を表1に示す。
(体積抵抗率)
 金属銅膜の表面抵抗値を、ロレスタEP MCP-T360(三菱化学アナリテック製)を用いて、四探針法にて測定した。得られた表面抵抗値に膜厚を乗算して体積抵抗率を算出した。
[Evaluation]
Each obtained metal copper film was evaluated by the following method. The results are shown in Table 1.
(Volume resistivity)
The surface resistance value of the metallic copper film was measured by a four probe method using Loresta EP MCP-T360 (manufactured by Mitsubishi Chemical Analytech). Volume resistivity was calculated by multiplying the obtained surface resistance value by the film thickness.
(ボイド率)
 金属銅膜を集束イオンビーム(FIB、SMI3050R(エスアイアイ・ナノテクノロジー製)により断面加工し、走査型電子顕微鏡(SEM:日立ハイテクノロジーズ製 S-5500)を用いて断面観察写真を撮影した。ここで、断面観察写真で観察した断面とは、基材に対して垂直方向の断面のことを指す。得られた断面観察写真を画像ソフト(Adobe Systems,Inc.製“Adobe Photoshop”)にて閾値を調整して銅が存在する白の領域と、空隙が存在する黒の領域とに二値化し、断面全体の面積に対する黒の領域(空隙)の面積の割合を下記式より算出し、これをボイド率とした。
 ボイド率(%)=(黒の領域の面積/断面全体の面積)×100
(Void rate)
The metal copper film was cross-section processed with a focused ion beam (FIB, SMI3050R (SII NanoTechnology), and a cross-sectional observation photograph was taken using a scanning electron microscope (SEM: Hitachi High-Technologies S-5500). The cross-section observed in the cross-sectional observation photograph refers to a cross section perpendicular to the base material, and the obtained cross-sectional observation photograph is a threshold value by using image software (“Adobe Photoshop” manufactured by Adobe Systems, Inc.). Is binarized into a white region where copper is present and a black region where voids are present, and the ratio of the area of the black region (void) to the area of the entire cross section is calculated from the following formula, Void rate was used.
Void ratio (%) = (area of black region / area of entire cross section) × 100
(テープ剥離試験)
 金属銅膜に対して、JIS K5600-5-6に基づき試験を行い、以下の基準で評価した。
  A:試験後も全く異常が無いもの
  B:試験時に10%程度剥がれが見られたもの
(Tape peeling test)
The metal copper film was tested according to JIS K5600-5-6 and evaluated according to the following criteria.
A: No abnormality at all after the test B: About 10% peeling was observed during the test
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 液状組成物中にギ酸又はギ酸銅を用いない比較例1及び2の金属銅膜は、ボイド率が高く、体積抵抗率が高くなるため、十分な導電性が得られていない。これに対し、本発明の液状組成物を用いた実施例においては、いずれにおいてもボイド率が低く、導電性が良好となった。更に、本発明の製造方法にかかる光焼結を行った場合においては、加熱焼結を行った場合に比してテープ剥離性の結果が良好となった。これは、低温短時間で焼結を行うことにより、基板の劣化が防ぐことができたために、基材密着性が向上したものと考えられる。 Since the metal copper films of Comparative Examples 1 and 2 that do not use formic acid or copper formate in the liquid composition have a high void ratio and a high volume resistivity, sufficient conductivity is not obtained. On the other hand, in the examples using the liquid composition of the present invention, the void ratio was low in all cases, and the conductivity was good. Further, in the case where the photo-sintering according to the production method of the present invention was performed, the tape peelability was better than that in the case where the heat-sintering was performed. This is thought to be because the base material adhesion was improved because the deterioration of the substrate could be prevented by sintering at a low temperature in a short time.
 更に、基板としてPETを用い、光焼結を行った実施例につき、曲げ性試験を行った。焼結後の金属銅膜を有するPET基板を略直角に折り曲げ、基板を目視にて観察したところ、いずれも全く異常がなく、焼結によって基板が劣化していないことが確認できた。 Furthermore, a bendability test was performed on the examples in which PET was used as a substrate and photo sintering was performed. When the PET substrate having the sintered metal copper film was bent at a substantially right angle and the substrates were visually observed, no abnormality was found at all, and it was confirmed that the substrate was not deteriorated by sintering.
 本発明によれば、空隙が少ない緻密な微細構造を有し、導電性が良好な金属銅膜を形成できる液状組成物、該液状組成物を用いて形成される金属銅膜及び導体配線、並びに金属銅膜の製造方法を提供することができる。また、本発明の金属銅膜の製造方法によれば、光照射により焼結させるため、基材の劣化が少なく、基材との密着性が良好な金属銅膜を得ることができる。更に、樹脂基材に本発明の液状組成物を用いて金属銅膜を形成した場合は、導電性と密着性に加え、優れた曲げ耐性も示す導電性材料を提供することができる。 According to the present invention, a liquid composition capable of forming a metallic copper film having a fine microstructure with few voids and good electrical conductivity, a metallic copper film and a conductor wiring formed using the liquid composition, and A method for producing a metallic copper film can be provided. Moreover, according to the manufacturing method of the metal copper film of this invention, since it sinters by light irradiation, there is little deterioration of a base material and it can obtain a metal copper film with favorable adhesiveness with a base material. Furthermore, when a metal copper film is formed on the resin substrate using the liquid composition of the present invention, a conductive material exhibiting excellent bending resistance in addition to conductivity and adhesion can be provided.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2012年3月28日出願の日本特許出願(特願2012-074553)に基づくものであり、その内容はここに参照として取り込まれる。
Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on a Japanese patent application filed on Mar. 28, 2012 (Japanese Patent Application No. 2012-075453), the contents of which are incorporated herein by reference.

Claims (19)

  1.  (a)ギ酸及びギ酸銅からなる群より選択される少なくとも1種、(b)酸化銅粒子、及び(c)溶媒を含有する液状組成物。 (A) A liquid composition containing at least one selected from the group consisting of formic acid and copper formate, (b) copper oxide particles, and (c) a solvent.
  2.  前記(a)として、ギ酸を含有する請求項1に記載の液状組成物。 The liquid composition according to claim 1, comprising formic acid as (a).
  3.  前記酸化銅粒子の平均粒子径が1nm以上1μm未満である請求項1又は2に記載の液状組成物。 The liquid composition according to claim 1 or 2, wherein the copper oxide particles have an average particle diameter of 1 nm or more and less than 1 µm.
  4.  前記酸化銅粒子の平均粒子径が1nm以上200nm未満である請求項1~3のいずれか1項に記載の液状組成物。 The liquid composition according to any one of claims 1 to 3, wherein an average particle diameter of the copper oxide particles is 1 nm or more and less than 200 nm.
  5.  前記溶媒が、水、1~3価のヒドロキシル基を有する脂肪族アルコール、前記アルコール由来のアルキルエーテル、及び前記アルコール由来のアルキルエステルからなる群から選択される少なくとも1種である請求項1~4のいずれか1項に記載の液状組成物。 The solvent is at least one selected from the group consisting of water, an aliphatic alcohol having a monovalent to trivalent hydroxyl group, an alkyl ether derived from the alcohol, and an alkyl ester derived from the alcohol. Liquid composition of any one of these.
  6.  前記(a)としてギ酸を含有し、該ギ酸の含有量が前記酸化銅粒子に対して0.5質量%以上20質量%以下である、請求項1~5のいずれか1項に記載の液状組成物。 The liquid according to any one of claims 1 to 5, wherein formic acid is contained as (a), and the content of the formic acid is 0.5% by mass or more and 20% by mass or less with respect to the copper oxide particles. Composition.
  7.  前記(a)としてギ酸を含有し、該ギ酸の含有量が前記酸化銅粒子に対して5質量%以上15質量%以下である、請求項1~5のいずれか1項に記載の液状組成物。 The liquid composition according to any one of claims 1 to 5, wherein formic acid is contained as (a), and the content of the formic acid is 5% by mass or more and 15% by mass or less with respect to the copper oxide particles. .
  8.  前記(a)としてギ酸銅を含有し、該ギ酸銅の含有量が前記酸化銅粒子に対して1質量%以上30質量%以下である、請求項1、3~5のいずれか1項に記載の液状組成物。 The copper formate is contained as the (a), and the content of the copper formate is 1% by mass or more and 30% by mass or less with respect to the copper oxide particles. Liquid composition.
  9.  前記酸化銅粒子の含有量が、液状組成物全量に対して5質量%以上60質量%以下である、請求項1~8のいずれか1項に記載の液状組成物。 The liquid composition according to any one of claims 1 to 8, wherein the content of the copper oxide particles is 5% by mass or more and 60% by mass or less based on the total amount of the liquid composition.
  10.  請求項1~9のいずれか1項に記載の液状組成物を光焼結して得られる、ボイド率が25%以下の金属銅膜。 A metal copper film having a void ratio of 25% or less, obtained by photosintering the liquid composition according to any one of claims 1 to 9.
  11.  請求項1~9のいずれか1項に記載の液状組成物又は請求項10に記載の金属銅膜により得られる導体配線。 A conductor wiring obtained from the liquid composition according to any one of claims 1 to 9 or the metal copper film according to claim 10.
  12.  基材上に、(a)ギ酸及びギ酸銅からなる群より選択される少なくとも1種、(b)酸化銅粒子、及び(c)溶媒を含有する液状組成物を付与し、該付与された液状組成物の少なくとも一部に対して光照射する金属銅膜の製造方法。 On the substrate, a liquid composition containing (a) at least one selected from the group consisting of formic acid and copper formate, (b) copper oxide particles, and (c) a solvent is applied, and the applied liquid A method for producing a metallic copper film, wherein at least a part of the composition is irradiated with light.
  13.  基材上に、(b)酸化銅粒子及び(c)溶媒を含有する液状組成物を付与し、該付与された液状組成物に、(a)ギ酸及びギ酸銅からなる群より選択される少なくとも1種を含む溶液を付与し、乾燥した後、光照射する金属銅膜の製造方法。 On the base material, (b) a liquid composition containing copper oxide particles and (c) a solvent is applied, and the applied liquid composition is at least selected from the group consisting of (a) formic acid and copper formate. The manufacturing method of the metal copper film | membrane which light-irradiates after providing the solution containing 1 type, and drying.
  14.  基材上に、(b)酸化銅粒子及び(c)溶媒を含有する液状組成物を付与し、該付与された液状組成物の少なくとも一部に対して光照射し、該光照射された部分に、(a)ギ酸及びギ酸銅からなる群より選択される少なくとも1種を含む溶液を塗布し、乾燥した後、光照射又は加熱する金属銅膜の製造方法。 On the substrate, a liquid composition containing (b) copper oxide particles and (c) a solvent is applied, and at least a part of the applied liquid composition is irradiated with light, and the light irradiated part (A) A method for producing a metallic copper film, wherein a solution containing at least one selected from the group consisting of formic acid and copper formate is applied, dried, and then irradiated or heated.
  15.  前記(a)がギ酸である請求項12~14のいずれか1項に記載の金属銅膜の製造方法。 The method for producing a metallic copper film according to any one of claims 12 to 14, wherein (a) is formic acid.
  16.  前記酸化銅粒子の平均粒子径が1nm以上1μm未満である請求項12~15のいずれか1項に記載の金属銅膜の製造方法。 The method for producing a copper metal film according to any one of claims 12 to 15, wherein an average particle diameter of the copper oxide particles is 1 nm or more and less than 1 µm.
  17.  前記酸化銅粒子の平均粒子径が1nm以上200nm未満である請求項12~16のいずれか1項に記載の金属銅膜の製造方法。 The method for producing a copper metal film according to any one of claims 12 to 16, wherein an average particle diameter of the copper oxide particles is 1 nm or more and less than 200 nm.
  18.  前記光照射が、フラッシュランプによる光照射である請求項12~17のいずれか1項に記載の金属銅膜の製造方法。 The method for producing a metallic copper film according to any one of claims 12 to 17, wherein the light irradiation is light irradiation by a flash lamp.
  19.  請求項12~18のいずれか1項に記載の製造方法により得られた金属銅膜を用いた導体配線。 A conductor wiring using a metallic copper film obtained by the manufacturing method according to any one of claims 12 to 18.
PCT/JP2013/054176 2012-03-28 2013-02-20 Liquid composition, copper metal film, conductive wiring line, and method for producing copper metal film WO2013145954A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020147027080A KR20140134305A (en) 2012-03-28 2013-02-20 Liquid composition, copper metal film, conductive wiring line, and method for producing copper metal film
CN201380015623.XA CN104185880B (en) 2012-03-28 2013-02-20 Liquid composition, copper metal film, conductive wiring line, and method for producing copper metal film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-074553 2012-03-28
JP2012074553A JP2013206722A (en) 2012-03-28 2012-03-28 Liquid composition, metal copper film, conductor wiring, and method for manufacturing metal copper film

Publications (1)

Publication Number Publication Date
WO2013145954A1 true WO2013145954A1 (en) 2013-10-03

Family

ID=49259236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/054176 WO2013145954A1 (en) 2012-03-28 2013-02-20 Liquid composition, copper metal film, conductive wiring line, and method for producing copper metal film

Country Status (5)

Country Link
JP (1) JP2013206722A (en)
KR (1) KR20140134305A (en)
CN (1) CN104185880B (en)
TW (1) TWI564352B (en)
WO (1) WO2013145954A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5735093B1 (en) * 2013-12-24 2015-06-17 株式会社マテリアル・コンセプト Solar cell and manufacturing method thereof
JP6221825B2 (en) * 2014-02-27 2017-11-01 三菱マテリアル株式会社 Method for producing transparent conductive film and method for producing conductive sheet for transfer
JP6252242B2 (en) * 2014-02-27 2017-12-27 三菱マテリアル株式会社 Method for producing transparent conductive sheet
KR101785350B1 (en) * 2014-07-18 2017-10-17 한국화학연구원 Fabrication Method of Conductive Metal Film with Light Sintering
JPWO2016031404A1 (en) * 2014-08-28 2017-04-27 富士フイルム株式会社 Conductive film forming composition and method for producing conductive film using the same
US9533574B2 (en) 2014-10-06 2017-01-03 Mando Corporation Speed control system and speed control method for curved road section
CN107614481B (en) * 2015-06-11 2021-05-07 加拿大国家研究委员会 Preparation of high-conductivity copper film
EP3832668A4 (en) 2018-07-30 2021-09-22 Asahi Kasei Kabushiki Kaisha Conductive film and conductive film roll, electronic paper, touch panel, and flat panel display using same
CN118496706A (en) * 2024-05-23 2024-08-16 华中科技大学 Composite ink for laser-induced selective copper metallization and process method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007197755A (en) * 2006-01-25 2007-08-09 Nippon Shokubai Co Ltd Method for producing metal nanoparticle, metal nanoparticle, electrically conductive composition and electronic device
JP2007332422A (en) * 2006-06-15 2007-12-27 Ebara Corp Film deposition method and film deposition apparatus
JP2010176976A (en) * 2009-01-28 2010-08-12 Tosoh Corp Composition for conductive film formation, its manufacturing method, and forming method of the conductive film
JP2010528428A (en) * 2007-05-18 2010-08-19 アプライド・ナノテック・ホールディングス・インコーポレーテッド Metal ink

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004277868A (en) * 2003-03-19 2004-10-07 Mitsubishi Paper Mills Ltd Preparation method of conductive composition
EP2234119A4 (en) * 2007-12-18 2015-04-15 Hitachi Chemical Co Ltd Copper conductor film and manufacturing method thereof, conductive substrate and manufacturing method thereof, copper conductor wiring and manufacturing method thereof, and treatment solution
SG10201405419XA (en) * 2009-09-16 2014-10-30 Hitachi Chemical Co Ltd Copper metal film, method for producing same, copper metal pattern, conductive wiring line using the copper metal pattern, copper metal bump, heat conduction path, bonding material, and liquid composition
JP2011142052A (en) * 2010-01-08 2011-07-21 Hitachi Chem Co Ltd Copper conductor ink, conductive substrate, and method of manufacturing the same
JP5495044B2 (en) * 2010-05-10 2014-05-21 日立化成株式会社 Dense metal copper film manufacturing method and liquid composition used therefor, dense metal copper film obtained therefrom, conductor wiring, heat conduction path, joined body

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007197755A (en) * 2006-01-25 2007-08-09 Nippon Shokubai Co Ltd Method for producing metal nanoparticle, metal nanoparticle, electrically conductive composition and electronic device
JP2007332422A (en) * 2006-06-15 2007-12-27 Ebara Corp Film deposition method and film deposition apparatus
JP2010528428A (en) * 2007-05-18 2010-08-19 アプライド・ナノテック・ホールディングス・インコーポレーテッド Metal ink
JP2010176976A (en) * 2009-01-28 2010-08-12 Tosoh Corp Composition for conductive film formation, its manufacturing method, and forming method of the conductive film

Also Published As

Publication number Publication date
KR20140134305A (en) 2014-11-21
TW201343809A (en) 2013-11-01
CN104185880A (en) 2014-12-03
CN104185880B (en) 2017-05-24
TWI564352B (en) 2017-01-01
JP2013206722A (en) 2013-10-07

Similar Documents

Publication Publication Date Title
WO2013145954A1 (en) Liquid composition, copper metal film, conductive wiring line, and method for producing copper metal film
EP2930722B1 (en) Process for manufacturing conductive film and printed wiring board
WO2013145953A1 (en) Liquid composition, metal film, conductive wiring line, and method for producing metal film
JP5897437B2 (en) Manufacturing method of conductive layer, printed wiring board
WO2014156594A1 (en) Composition for forming conductive film, and conductive film manufacturing method using same
JP2014182913A (en) Composition for conductive film formation, and method for producing conductive film using the same
WO2015005276A1 (en) Method for producing electrically conductive film and electrically conductive film
JP6562196B2 (en) Copper fine particle sintered body and method for producing conductive substrate
WO2015015918A1 (en) Electroconductive-film-forming composition and method for producing electroconductive film
WO2014156326A1 (en) Composition for forming conductive film, and conductive film manufacturing method using same
WO2014157303A1 (en) Composition for forming conductive films and method for producing conductive film using same
JP5871762B2 (en) Conductive film forming composition and conductive film manufacturing method
WO2014141787A1 (en) Composition for forming electrically conductive film, and method for producing electrically conductive film using same
JP2014167872A (en) Method for producing conductive film, and wiring board
JP2014189757A (en) Composition for forming electroconductive film and method for manufacturing electroconductive film using the same
JP2014186952A (en) Method of producing coated copper particle, method of producing composition for formation of conductive film and method of producing conductive film
WO2015005178A1 (en) Composition for forming electrically conductive film, and method for producing electrically conductive film using same
JP2014044907A (en) Composition for forming conductive film and method for producing conductive film
JP2014025085A (en) Composition for forming conductive film and process for producing conductive film
JP6263630B2 (en) Conductive film forming composition and conductive film forming method
JP2014186831A (en) Method of producing conductive film
JP2016051692A (en) Conductive film and manufacturing method of conductive film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13769524

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147027080

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13769524

Country of ref document: EP

Kind code of ref document: A1