JP2004277868A - Preparation method of conductive composition - Google Patents

Preparation method of conductive composition Download PDF

Info

Publication number
JP2004277868A
JP2004277868A JP2003074879A JP2003074879A JP2004277868A JP 2004277868 A JP2004277868 A JP 2004277868A JP 2003074879 A JP2003074879 A JP 2003074879A JP 2003074879 A JP2003074879 A JP 2003074879A JP 2004277868 A JP2004277868 A JP 2004277868A
Authority
JP
Japan
Prior art keywords
copper
conductive composition
copper salt
salt
conduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003074879A
Other languages
Japanese (ja)
Inventor
Tomoaki Inoue
智明 井上
Masakazu Takada
昌和 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP2003074879A priority Critical patent/JP2004277868A/en
Publication of JP2004277868A publication Critical patent/JP2004277868A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Chemically Coating (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a simple method whereby a conductive composition is easily prepared from a nonconductive composition containing a copper salt and/or a copper powder. <P>SOLUTION: A non-conductive composition consisting of a specified combination containing at least one selected from among a copper salt, a copper powder, an amino compound, and a photothermal conversion substance is irradiated with a near-infrared laser beam. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、簡便な方法により導電性を有する含銅組成物を得るための技術に関し、より具体的には、近赤外部に吸収を有する光熱変換物質、アミノ化合物、銅塩、銅粉の少なくとも1つを含む非導電性組成物を近赤レーザー光で処理することによって導電性組成物に変換するプロセスに関する。
【0002】
【従来の技術】
銅は導電性材料や記録材料、表面の被覆剤、プリント配線板等、電子部品として広汎に使われている素材である。銅膜の作成法としては、化学的に銅銀を析出させる無電解めっき法や、金属銅薄膜を直接絶縁性基材に張り合わせる方法、金属銅薄膜を直接絶縁性基材に蒸着する方法などがある。
【0003】
しかし、これらの方法には、様々な欠点もある。例えば、無電解湿式めっき法の場合、洗浄、前処理等の工程が必要で、かつ薬品も多く消費する(例えば、非特許文献1、2参照)。
【0004】
一方、銅を直接張り合わせる場合、予め電解形成した銅薄膜と絶縁性基材とを樹脂で接着させる必要があり、接着剤の調製、絶縁性基材への接着剤の含浸、塗布、銅薄膜との張り合わせ作業等の複数の作業を必要とするため、取り扱いも容易ではない(例えば、非特許文献3参照)。さらに、この手法は銅を選択的に付着させることが困難で、その場合はパターンエッチング等の手法が必要なため、手数がかかる(例えば、非特許文献4参照)。
【0005】
蒸着は対象物を幅広く選べ、選択的な付着もマスキング等により比較的容易という利点もあるが、特殊な設備が必要とされる(例えば、非特許文献5参照)。
【0006】
また、近年では高密度集積回路製造技術の進歩と関連して、ChemicalVapor Deposition(略してCVD)を利用した高精細な金属銅膜形成法が報告されている。しかし、この手法についても、特殊な設備が必要である事、あるいは特殊で高価な有機銅化合物を使用する必要がある事から、簡便な銅薄膜形成法ではない(例えば、非特許文献6参照)。
【0007】
一方、無機の銅塩あるいは有機酸の銅塩にアルゴンレーザー等のレーザー光を照射し、その熱分解によって絶縁性支持体上に金属銅を析出させる技術が近年報告されている。この手法は、安価な材料を使用する点で利点があるが、均一な金属銅薄膜を形成する事が困難である事、あるいは毒性の高い有機酸を使用する事等から、実用的な銅膜形成法ではない(例えば、非特許文献7、8参照)。
【0008】
銅系の導電性組成物としては、銅粉を樹脂バインダーに分散した導電ペーストが挙げられる。銅をベースとした導電性ペーストは銀ベースのもの等と比較して価格が安く、マイグレーションに強い長所がある。しかし、銅は酸化されやすい素材であるため、銅粉の極表面は酸化膜によって往々にして不導体化してしまう。したがって、導電性や接着性の保持のため焼結の必要があり、この時も大気雰囲気下では酸化されるために、窒素雰囲気下、あるいは還元雰囲気下で加熱する必要がある等、大気雰囲気下で手軽に扱うことができない欠点がある(例えば、非特許文献9参照)。
【0009】
銅塩より簡便に導電性銅を得る方法として、無機銅塩とアミノ化合物から成る組成物、または無機銅塩とアミノ化合物より調製した銅錯体を光または熱で処理する方法が提案されている(例えば、特許文献1参照)。しかし、この方法は得られる導電性膜の均一性が良くなく、導電性を有しない部分が局部的に発生する可能性があり、再現性が良くない欠点がある。
【0010】
【特許文献1】
特願2002−328436号公報
【非特許文献1】
「プリント回路技術便覧−第2版−」社団法人プリント回路学会編、日刊工業新聞社発行、69頁〜76頁
【非特許文献2】
「プリント配線板製造入門」伊藤謹司著、日刊工業新聞社発行、123頁〜132頁
【非特許文献3】
「プリント配線板製造入門」伊藤謹司著、日刊工業新聞社発行、21頁〜39頁
【非特許文献4】
「プリント配線板製造入門」伊藤謹司著、日刊工業新聞社発行、143頁〜158頁
【非特許文献5】
「薄膜化技術」早川茂・和佐清孝著、共立出版株式会社発行、15頁〜20頁
【非特許文献6】
Chemical Review、第102巻、1525頁〜1549頁(2002年)
【非特許文献7】
Journal of The Electrochemical Society、第147巻、1418頁〜1422頁(2000年)
【非特許文献8】
Applied Surface Science、第154−155巻、399頁〜404頁(2000年)
【非特許文献9】
「エレクトロニクス実装技術基礎講座 第3巻 膜回路形成技術」(社)ハイブリッドマイクロエレクトロニクス協会編、(株)工業調査会発行、57頁〜59頁
【0011】
【発明が解決しようとする課題】
本発明の目的は、無機銅塩とアミノ化合物より成る組成物、または無機銅塩とアミノ化合物より調製した銅錯体を光または熱で処理することによって導電性組成物を得る方法を改良し、導電性がより確実に得られる組成物の組み合わせと処理方法を提供することにある。この方法は簡易かつ加工性が良く、導電性材料や記録材料など様々な分野に使うことが期待できる。
【0012】
【課題を解決するための手段】
本発明者は実験を繰り返し、銅塩または銅粉、アミノ化合物、光熱変換物質から構成される非導電性組成物に、近赤レーザー光を照射することにより、大気雰囲気下中で確実に非導電性組成物を導電性組成物に変換できることを見い出し、上記の目的を達成した。
【0013】
無機銅塩とアミノ化合物より成る組成物、または無機銅塩とアミノ化合物より調製した銅錯体を、熱で処理することによって導電性組成物を得ることができる。これは加熱時に銅塩がアミノ化合物によって還元される、あるいは銅錯体が熱分解して銅が遊離することにより、導電性に変化すると考えられる。しかし、得られる導電体は均一性に欠け、組成物の一部が不導体のままであったり、抵抗値が非常に高い部分が残っていることが多い。
【0014】
これは、電気炉等を使用した通常の加熱方法の場合、組成物自体の温度が還元反応の誘起温度に達するまでに時間が必要であること、また、反応終了後に組成物を常温に冷却するまでに時間が必要であることから、生じた金属銅の一部が大気中の酸素によって再酸化されて導電性の発現を阻害していると考えられる。
【0015】
また、加熱処理後、生じた金属銅以外に組成物中に残留する有機物を完全に除去することは困難である。例えば残留有機物を完全に燃焼除去しようとする場合、加熱時間を長くすると、生じた金属銅が空気酸化によって却って不導体化する等のデメリットが発生する。即ち、加熱処理で得た導電性組成物中にも非導電性の不純物が混在することが避けられず、これによって往々にして導電性の阻害が発生する。
【0016】
これらの不具合を克服する方法として、(1)非導電性組成物の加熱と冷却を素早く行うことによって、生成する銅の酸化を防止すること、(2)非導電性組成物中の銅の含有比率を可能な限り高めること、(3)銅以外の有機成分は、加熱によって蒸発する、あるいは熱分解して組成物中に残留しない性質の物を選択すること、等が挙げられる。
【0017】
(1)の非導電性組成物の加熱と冷却を素早く行うために、近赤レーザーを用いることは非常に有用である。近赤部に吸収波長を有する光熱変換物質に近赤レーザー光を照射することにより高熱が発生するが、それに要する時間は0.1秒以下である。
【0018】
したがって、アミノ化合物と銅塩と近赤外部に吸収を有する光熱変換物質を混合した非導電性組成物に近赤レーザー光を照射すると、光熱変換物質より生じる熱によってアミノ化合物と銅塩が瞬時に加熱され、銅塩がアミノ化合物により還元されて金属銅が生じる。近赤レーザー照射による加熱の場合、組成物が高温である時間はごく短時間であるため、生じた銅はほとんど空気酸化されない。銅粉は酸化されやすい性質を有し、表面は多くの場合、酸化銅(I)に覆われている。銅塩の代わりに銅粉を用いた場合、表面の酸化膜と共存するアミノ化合物、光熱変換物質により導通が阻害されるため、全体としては非導電性になる。しかし、近赤レーザー光照射で加熱すれば、アミノ化合物によって銅粉の表面の酸化膜が還元されて金属銅が露出すると同時に複数の銅粒子界面での焼結が生じ、導電性組成物に変化する。
【0019】
また、組成物中の銅成分含有比率を上げるためには、銅前駆体の銅塩よりも銅粉を用いた方が好ましい。
【0020】
一方、近赤外部に吸収を有する光熱変換物質として銅塩を用いることは、組成物中の銅含量を増やす目的から、より好ましい。このような、近赤外部に吸収を有する銅塩としては、無機銅塩としては水酸化銅(II)や硫酸銅(II)が挙げられる。有機銅塩としては、ギ酸銅等が挙げられる。中でも水酸化銅(II)は、銅以外に生じる物質が水と酸素であり、組成物中に残留しない点から非常に有用な素材である。
【0021】
銅塩の多くは、加熱で分解し、非導電性の酸化銅になるが、中には加熱分解により、金属銅を放出するものが存在する。このような銅塩は、それ自身が還元性を有するため、アミノ化合物は不要であり、光熱変換物質との2成分混合物に近赤レーザー光を照射するだけで、金属銅が生成する。さらに、この銅塩自身が近赤外領域に吸収を有する場合は、光熱変換物質を併用する必要がなくなり、組成物中の銅含有量を増やせるため、非常に好ましい。
【0022】
加熱分解で金属銅を生じる銅塩としては、第一に、ギ酸、グリオキシル酸、グリコール酸、D−グルコン酸等の有機カルボン酸銅塩が挙げられる。その中でも、グリオキシル酸、ピルビン酸、2−ケトブタン酸等のα−ケトカルボン酸の銅塩が特に好ましい。
【0023】
α−ケトカルボン酸が銅イオンと結合して銅塩が生じる際、α−ケトン基は水和体となって、水酸基とカルボキシル基の二座配位子として銅イオンに結合していることが知られている(薬学雑誌、第86巻、26頁〜31頁(1966年)を参照)。
【0024】
α−ケトン基が水和体であるため、加熱時に強力な還元剤として機能して銅イオンを金属銅に還元できると推定される。また、α−ケトカルボン酸銅塩を合成した場合は、α−ケトン基が水和型となって水溶液から析出するため、微粒子粉末として単離される。微粒子のα−ケトカルボン酸銅塩に近赤レーザー光を照射すると効率的に光熱変換が起こり、微粒子の金属銅が生じる。その結果、α−ケトカルボン酸銅塩と、銅粉あるいは他の銅塩とを併用した場合は、微粒子の金属銅が銅粉粒子間の間隙に析出するため、効率的に導通を確保できる。
【0025】
加熱分解で金属銅を生じる銅塩として第二に挙げられる物は、分子内にピペリジン環、あるいはピペラジン環を有する多価のアミノ化合物が銅イオンと配位結合し、水に比較的難溶性の金属キレート化合物を形成したものである。このようなアミノ化合物としては、以下のような物が挙げられる。
【0026】
1−(2−アミノエチル)ピペリジン、1−(3−アミノプロピル)ピペリジン、1−(2−アミノプロピル)ピペリジン、N−(2−アミノエチル)ピペラジン、N−(3−アミノプロピル)ピペラジン、N−(2−アミノプロピル)ピペラジン、N−(3−アミノ−2−メチルプロピル)ピペラジン、1,4−ビス(2−アミノエチル)ピペラジン、1,4−ビス(3−アミノプロピル)ピペラジン等。
【0027】
これらの銅塩は、熱分解により、金属銅と還元性を有するアミノ化合物を放出する。光熱変換物質とこれらの銅塩との混合物に近赤外レーザー光を照射することにより、金属銅を主体とする導電性組成物を得ることができる。
【0028】
これらの銅塩は加熱により、銅イオンと配位結合している塩基の部分が銅イオンを金属銅に還元しながら解離し、解離した分解物自身も還元剤として機能するため、生じた銅の空気酸化を抑制すると推定される。このような銅塩は、銅塩の還元剤としてのアミノ化合物を組成物中に共存させる必要がないため、有用な素材である。さらに、このような銅塩と、銅粉または銅の前駆体となる銅塩を混合して使用することもでき、この場合、放出された還元剤により銅粉の極表面の酸化銅が還元除去され、また、銅前駆体の銅塩が金属銅に還元されるので、組成物中の銅含有量を高め、効率良く金属銅を生成させることができる。
【0029】
【発明の実施の形態】
以下、発明の実施の形態に関してくわしく説明する。
【0030】
まず、本発明でアミノ化合物や光熱変換物質、熱分解により金属銅を生じる銅塩と混合される銅粉や銅塩については、特に制限はない。銅粉の場合、粒子径が10nmから10μmのものが好ましい。また、その極表面が酸化され、酸化銅の膜で覆われていても一向に構わない。銅塩については、酸化銅(I)や酸化銅(II)が挙げられる。
【0031】
アミノ化合物も特に制限はないが、水溶性のものが好ましい。また、水溶性の有機溶剤、例えばアルコール、アセトン、アセトニトリル等に溶解する物でも使用できる。このようなアミノ化合物には以下のようなものがあげられる。
【0032】
メチルアミン、エチルアミン、n−プロピルアミン、イソプロピルアミン、ブチルアミン、2−エチルヘキシルアミン、シクロヘキシルアミン、アリルアミン、エチレンジアミン、1,2−プロパンジアミン、1,3−プロパンジアミン、2,3−ブタンジアミン、1,2−シクロヘキサンジアミン、ジエチレントリアミン、アニリン、o−トルイジン、p−トルイジン、o−クロロアニリン、2−アミノエタノール、ジメチルアミン、ジエチルアミン、ジ−n−プロピルアミン、ジブチルアミン、ジイソブチルアミン、ジアリルアミン、ジシクロヘキシルアミン、トリス(2−アミノエチル)アミン、エタノールアミン、N−メチルエタノールアミン、ジエタノールアミン、トリメチルアミン、トリエチルアミン、トリ−n−プロピルアミン、N,N−ジエチルエタノールアミン、N,N´−ビス(2−アミノエチル)−1,3−プロパンジアミン、ジ−n−ブチルエタノールアミン、トリエタノールアミン、o−フェニレンジアミン、トリエチレンテトラミン、ペンタエチレンテトラミン、ピペリジン、1−メチルピペリジン、4−メチルピペリジン、4−ヒドロキシピペリジン、4−ヒドロキシ−1−メチルピペリジン、1−ピペリジンエタノール、2−ピペリジンエタノール、4−ピペリジンエタノール、1−アミノピペリジン、4−アミノ−2,2,6,6−テトラメチルピペリジン、4−ピペリジノピペリジン、1,3−ジ−4−ピペリジルプロパン、モルホリン、N−メチルモルホリン、ピロリジン、ピリジン、2,6−ルチジン、ピペラジン、1,4−ジメチルピペラジン、2−アミノエタノール、2−(2−アミノエチル)エタノール、3−アミノ−1,2−プロパンジオール、2−アミノ−1,3−プロパンジオール、1,3−ジアミノ−2−プロパノール、N,N−ビス(2−ヒドロキシエチル)−1,3−ジアミノプロパン、4−アミノシクロヘキサノール、2−アミノシクロヘキサノール、1−ピペラジンエタノール、N−(2−ヒドロキシエチル)モルホリン、1,4−ビス(2−ヒドロキシエチル)ピペラジン等。
【0033】
近赤外線に対応した光熱変換物質として汎用されるものには、カーボンブラックを挙げることができる。特に粒子径が10〜300nmのものが好ましい。その他、赤外線吸収色素を用いることもできる。このような赤外線吸収色素としては特開平5−116450号、同5−124338号、同5−124339号、同5−124340号及び同7−32739号の各公報に示されたシアニン系色素、フタロシアニン系色素、ピリリウム・チアピリリウム系色素、アズレン系色素、特開平7−25153号公報に示されたスクワリリウム系色素、Ni、Cr等の金属錯体塩系色素、インドフェノール系色素、ナフトキノン系色素、アントラキノン系色素、インドフェノール系色素、インドアニリン系色素、トリフェニルメタン系色素、トリアリルメタン系色素、アミニウム系色素、ジイモニウム系色素、ニトロソ化合物等を挙げることができる。
【0034】
しかし、光熱変換物質としてより好ましいものは、750〜900nmの範囲に吸収を有する銅化合物である。これは、近赤外線を熱に変換すると同時に、この熱により自ら分解して銅源としても働くため、効率が良い。この銅化合物とアミノ化合物が混合されている場合は、生じた銅の空気酸化は抑制されて金属銅として析出する。このような銅化合物としては、水酸化銅(II)、酢酸銅、塩化銅、硫酸銅(II)、炭酸銅、ギ酸銅、ステアリン酸銅、安息香酸銅、エチルアセト酢酸銅、ピロリン酸銅、ナフテン酸銅、クエン酸銅、D−グルコン酸銅等の無水物や水和物を挙げることができる。特に、水酸化銅は、銅以外の分解生成物が水や酸素といった揮発しやすいものであり、かつ有害なものが生じる危険も少なく、非常に好ましい。
【0035】
熱分解により銅および/または還元剤を放出するような銅塩は、無機銅塩と上記に挙げたようなアミノ化合物や有機酸を水または有機溶媒に溶解した状態で互いに混合して調製する。使用される無機銅塩については、特に制限はないが、空気中で安定で、水溶性のものが好ましい。このようなものには硫酸第二銅、硝酸第二銅、塩化第二銅等をあげることができる。混合比は特に制限はないが、無機銅塩1モルに対し、アミノ化合物または有機酸0.01〜100モルが好ましい。混合により、銅とアミノ化合物または有機酸より成る溶媒不溶の沈澱を生じる。沈澱した銅組成物は濾過、遠心分離、その他の方法により溶媒と分離できる。また、分離せずにそのまま何らかの媒体に塗布・乾燥するしてそのまま使用しても良い。その場合には、溶媒のデカンテーションや蒸留除去により銅組成物を高濃度にして使用することもできる。
【0036】
銅塩または銅粉とアミノ化合物の混合比は特に制限はないが、銅粉または銅塩10質量部に対し、アミノ化合物1〜20質量部が好ましい。また、銅塩とは別に光熱変換物質を加える場合も、混合比は特に制限はないが、銅粉または銅塩10質量部に対し、光熱変換物質0.1〜10質量部が好ましい。また、近赤外に吸収を有する銅塩、または熱分解により還元剤を放出する銅塩をそれぞれの特性を有しない銅塩または銅粉と混合する場合も、その混合比には特に制限はないが、好ましくは前者10質量部に対し、後者1〜100質量部が好ましい。
【0037】
銅塩または銅粉とその他の素材との混合時には、互いに直に混合しても構わないし、あるいは水または有機溶媒に分散した状態で互いに混合しても構わない。また、使用時の形状も特に制限はなく、固体として使用してもよく、あるいはこれを砕いて粉体として使用してもよい。あるいは、ペースト状で用いても構わないし、さらに溶媒を加えて、塗液として用いることもできる。
【0038】
本発明における非導電性組成物に近赤レーザー光を照射して導電性組成物に変換するに際し、近赤レーザー光の照射は必ずしも非導電性組成物全体に施される必要はない。部分的に近赤レーザー光を照射して、所望の個所にだけを導電性組成物に変換することにより、希望の形状に形成することができる。導電性に変換しなかった部分は、必要に応じ除去する事ができる。もちろん、予め非導電性組成物を所定の形状に塗布加工後、これ全体に近赤レーザー光照射を行うことにより非導電性組成物全体を導電性に変換することも可能である。
【0039】
非導電性組成物が導電性に変わった部分と変わらなかった部分には、導電性以外にも様々な差が認められる。例えば、色調の変化、耐溶媒性、耐水性、接着強度などがあげられる。この差は未処理部の除去によりさらに大きくすることができる。その差を利用することにより、本組成物は導電性材料ばかりでなく、記録材料や印刷材料として使用することもできる。
【0040】
本発明に用いる非導電性組成物には、必要に応じて他の薬品、例えば、分散性向上のための界面活性剤、液性改良のための増粘剤、pH調整剤、消泡剤、バインダーとしての高分子化合物、熱硬化剤、等々を添加してもよい。
【0041】
本発明に用いる非導電性組成物は使用時の形状に特に制限はない。溶媒から分離して固体として使用してもよく、これを砕いて粉体として使用してもよい。また、大量の溶媒に分散または溶解して、塗液として、あるいは少量の溶媒で練り上げてペースト状にして用いてもよい。
【0042】
【実施例】
本発明の詳細を実施例を用いて以下に具体的に説明するが、実施例のみに限定されるものではない。また、実施例の%はすべて質量によるものである。
【0043】
実施例1
水酸化銅(II)20gと3−アミノ−1,2−プロパンジオール20gを、蒸留水15gとガラスビーズ15gとともにペイントコンディショナーで粉砕・分散した。この分散液を塗液とし、ワイヤーバーを用いてスライドグラスに固形分塗抹量30g/mになるように塗布した。乾燥後、この青色塗布面の導通をテスターで調べたが、導通はなかった。この非導電性組成物塗布物に波長830nmの半導体レーザー(出力1W)で15mm×25mmの範囲でベタ焼きしたところ、レーザーの照射部が青色から赤褐色に変化した。テスターで導通を確認したところ、赤褐色の部分には全体にわたって導通が生じていた。
【0044】
比較例1
実施例1で用いた分散液を塗液とし、ワイヤーバーを用いてスライドグラスに固形分塗抹量30g/mになるように塗布した。この非導電性組成物塗布物を電気炉に入れ、5℃/分の昇温速度で250℃まで加熱した。250℃で30分保持後、放冷により常温まで冷ましてから電気炉より取り出した。塗布物全体は青色から赤褐色に変色していた。テスターで導通を調べたところ、ところどころ導通のないところがあり、全体に均一に導通が生じてはいなかった。
【0045】
実施例2
銅粉末(純正化学製200メッシュ)20g、カーボンブラック5g、2−アミノ−1,3−プロパンジオール15gを、蒸留水15gとガラスビーズ15gとともにペイントコンディショナーで粉砕・分散した。この分散液を塗液とし、ワイヤーバーを用いてPET製OHPシートに固形分塗抹量30g/mになるように塗布した。乾燥後、この赤褐色塗布面の導通をテスターで調べたが、導通はなかった。この非導電性組成物塗布物に波長830nmの半導体レーザー(出力1W)で15mm×25mmの範囲でベタ焼きしたところ、レーザーの照射部はやや赤みが強くなった。テスターで導通を確認したところ、レーザーを照射した部分には全体にわたって導通が生じていた。
【0046】
実施例3
水酸化銅(II)12g、酸化銅(I)8g、ジエチレントリアミン20gを、蒸留水15gとガラスビーズ15gとともにペイントコンディショナーで粉砕・分散した。この分散液を塗液とし、ワイヤーバーを用いてスライドグラスに固形分塗抹量20g/mになるように塗布した。乾燥後、この濃青色塗布面の導通をテスターで調べたが、導通はなかった。また、X線回折を測定したところ、水酸化銅(II)による2θ値が34°、36°、38°、40°、54°付近の回折ピークと酸化銅(I)による2θ値が36°、42°、61°、73°付近の回折ピークを確認することができた。
【0047】
この非導電性組成物塗布物に波長830nmの半導体レーザー(出力1W)で15mm×25mmの範囲でベタ焼きしたところ、レーザーの照射部が濃青色から赤褐色に変化した。テスターで導通を確認したところ、赤褐色の部分には全体にわたって導通が生じていた。この部分のX線回折を測定したところ、2θ値が44°、51°、74°である銅のピークが生じ、水酸化銅(II)及び酸化銅(I)によるピークは弱くなっていた。
【0048】
比較例2
実施例3で用いた分散液を塗液とし、ワイヤーバーを用いてスライドグラスに固形分塗抹量25g/mになるように塗布した。この非導電性組成物塗布物を電気炉に入れ、10℃/分の昇温速度で250℃まで加熱した。250℃で30分保持後、放冷により常温まで冷ましてから電気炉より取り出した。塗布物全体は濃青色から黒褐色に変色していた。テスターで導通を調べたところ、ところどころ導通のないところがあり、全体に均一に導通が生じてはいなかった。
【0049】
実施例4
硫酸第二銅5水和物20gを蒸留水160mlに攪拌溶解し、1−(2−アミノエチル)ピペリジン20.4gを蒸留水80mlに溶解して少しずつ添加した。生じる濃青色の均一水溶液にヘキサフルオロリン酸アンモニウム13.2gを蒸留水40ml溶解して添加し、生じた青紫色の沈殿を吸引濾過した。濾取した沈殿を蒸留水80mlで洗浄後、減圧乾燥して1−(2−アミノエチル)ピペリジンの銅(II)錯体20gをヘキサフルオロリン酸塩として単離した。
【0050】
この銅(II)錯体10gを、カーボンブラック3g、蒸留水20gとガラスビーズ15gとともにペイントコンディショナーで粉砕・分散した。得られた分散液を塗液とし、ワイヤーバーを用いてPET製OHPシートに固形分塗抹量20g/mになるように塗布した。乾燥後、濃青紫色の塗布面の導通をテスターで調べたが、導通は全く見られなかった。この非導電性組成物塗布物に波長830nmの半導体レーザー(出力1W)で15mm×25mmの範囲でベタ焼きしたところ、レーザーの照射部が濃青紫色から赤褐色に変化した。テスターで導通を確認したところ、赤褐色の部分には全体にわたって導通が生じていた。
【0051】
実施例5
実施例4で用いた銅(II)錯体10gを、銅粉末(純正化学製200メッシュ)10g、カーボンブラック5g、蒸留水30gとガラスビーズ30gとともにペイントコンディショナーで粉砕・分散した。この分散液を塗液とし、ワイヤーバーを用いてスライドグラスに固形分塗抹量30g/mになるように塗布した。乾燥後、この赤褐色塗布面の導通をテスターで調べたが、導通はなかった。この非導電性組成物塗布物に波長830nmの半導体レーザー(出力1W)で15mm×25mmの範囲でベタ焼きしたところ、レーザーの照射部はやや赤みが強くなった。テスターで導通を確認したところ、レーザーを照射した部分には全体にわたって導通が生じていた。
【0052】
比較例3
実施例5で用いた分散液を塗液とし、ワイヤーバーを用いてスライドグラスに固形分塗抹量30g/mになるように塗布した。この非導電性組成物塗布物を電気炉に入れ、10℃/分の昇温速度で250℃まで加熱した。250℃で30分保持後、放冷により常温まで冷ましてから電気炉より取り出した。塗布物全体は赤褐色から黒褐色に変色していた。テスターで導通を調べたところ、ところどころ導通のないところがあり、全体に均一に導通が生じてはいなかった。
【0053】
実施例6
実施例4で用いた銅(II)錯体5gを、酸化銅(I)15g、カーボンブラック5g、蒸留水30gとガラスビーズ30gとともにペイントコンディショナーで粉砕・分散した。この分散液を塗液とし、ワイヤーバーを用いてPET製OHPシートに固形分塗抹量20g/mになるように塗布した。乾燥後、この赤褐色塗布面の導通をテスターで調べたが、導通はなかった。この非導電性組成物塗布物に波長830nmの半導体レーザー(出力1W)で15mm×25mmの範囲でベタ焼きしたところ、レーザーの照射部はやや赤みが強くなった。テスターで導通を確認したところ、レーザーを照射した部分には全体にわたって導通が生じていた。
【0054】
実施例7
D−グルコン酸銅(純正化学特級)10gを、蒸留水10gとガラスビーズ10gとともにペイントコンディショナーで粉砕・分散した。得られた分散液を塗液とし、ワイヤーバーを用いてスライドグラスに固形分塗抹量20g/mになるように塗布した。乾燥後、薄青色の塗布面の導通をテスターで調べたが、導通は全く見られなかった。この非導電性組成物塗布物に波長830nmの半導体レーザー(出力1W)で15mm×25mmの範囲でベタ焼きしたところ、レーザーの照射部が薄青色から赤褐色に変化した。テスターで導通を確認したところ、赤褐色の部分には全体にわたって導通が生じていた。この部分のX線回折を測定したところ、2θ値が44°、51°、74°である銅のピークが生じていた。
【0055】
比較例4
実施例7で用いた分散液を塗液とし、ワイヤーバーを用いてスライドグラスに固形分塗抹量20g/mになるように塗布した。この非導電性組成物塗布物を電気炉に入れ、10℃/分の昇温速度で250℃まで加熱した。250℃で30分保持後、放冷により常温まで冷ましてから電気炉より取り出した。塗布物全体は薄青色から黒褐色に変色していた。X線回折を測定したところ、2θ値が44°、51°、74°である銅のピークが生じていた。しかし、テスターで導通を調べたところ、ところどころ導通のないところがあり、全体に均一に導通が生じてはいなかった。
【0056】
実施例8
D−グルコン酸銅(純正化学特級)15gを、銅粉末(純正化学製200メッシュ)5g、蒸留水30gとガラスビーズ25gとともにペイントコンディショナーで粉砕・分散した。得られた分散液を塗液とし、ワイヤーバーを用いてPET製OHPシートに固形分塗抹量20g/mになるように塗布した。乾燥後、塗布面の導通をテスターで調べたが、導通は全く見られなかった。この非導電性組成物塗布物に波長830nmの半導体レーザー(出力1W)で15mm×25mmの範囲でベタ焼きしたところ、レーザーの照射部が赤褐色に変化した。テスターで導通を確認したところ、赤褐色の部分には全体にわたって導通が生じていた。
【0057】
実施例9
D−グルコン酸銅(純正化学特級)10gを、水酸化銅(II)10g、蒸留水30gとガラスビーズ25gとともにペイントコンディショナーで粉砕・分散した。得られた分散液を塗液とし、ワイヤーバーを用いてスライドグラスに固形分塗抹量20g/mになるように塗布した。乾燥後、青色塗布面の導通をテスターで調べたが、導通は全く見られなかった。この非導電性組成物塗布物に波長830nmの半導体レーザー(出力1W)で15mm×25mmの範囲でベタ焼きしたところ、レーザーの照射部が青色から赤褐色に変化した。テスターで導通を確認したところ、赤褐色の部分には全体にわたって導通が生じていた。
【0058】
比較例5
実施例9で用いた分散液を塗液とし、ワイヤーバーを用いてスライドグラスに固形分塗抹量20g/mになるように塗布した。この非導電性組成物塗布物を電気炉に入れ、5℃/分の昇温速度で250℃まで加熱した。250℃で30分保持後、放冷により常温まで冷ましてから電気炉より取り出した。塗布物全体は青色から黒褐色に変色していた。テスターで導通を調べたところ、ところどころ導通のないところがあり、全体に均一に導通が生じてはいなかった。
【0059】
実施例10
硫酸第二銅5水和物20gを蒸留水160mlに攪拌溶解し、グリオキシル酸ナトリウム塩の10%水溶液120gを少しずつ添加した。生じる薄青色の沈殿を吸引濾過し、濾取した沈殿を蒸留水80mlで洗浄した。減圧乾燥して、グリオキシル酸の銅水和塩を12g単離した。
【0060】
この銅塩10gを、蒸留水20gとガラスビーズ15gとともにペイントコンディショナーで粉砕・分散した。得られた分散液を塗液とし、ワイヤーバーを用いてスライドグラスに固形分塗抹量20g/mになるように塗布した。乾燥後、薄青色の塗布面の導通をテスターで調べたが、導通は全く見られなかった。この非導電性組成物塗布物に波長830nmの半導体レーザー(出力1W)で15mm×25mmの範囲でベタ焼きしたところ、レーザーの照射部が薄青色から銅赤色に変化した。テスターで導通を確認したところ、銅赤色の部分には全体にわたって導通が生じていた。この部分のX線回折を測定したところ、2θ値が44°、51°、74°である銅のピークが生じていた。
【0061】
比較例6
実施例10で用いた分散液を塗液とし、ワイヤーバーを用いてスライドグラスに固形分塗抹量20g/mになるように塗布した。この非導電性組成物塗布物を電気炉に入れ、10℃/分の昇温速度で250℃まで加熱した。250℃で30分保持後、放冷により常温まで冷ましてから電気炉より取り出した。塗布物全体は薄青色から茶褐色に変色していた。X線回折を測定したところ、2θ値が44°、51°、74°である銅のピークと36°、42°、61°、73°である酸化銅(I)のピークを確認することができた。テスターで導通を調べたところ、導通は全く生じていなかった。
【0062】
実施例11
硫酸第二銅5水和物20gを蒸留水160mlに攪拌溶解し、ピルビン酸ナトリウム塩の10%水溶液150gを少しずつ添加した。生じる薄青色の沈殿を吸引濾過し、濾取した沈殿を蒸留水80mlで洗浄した。減圧乾燥して、ピルビン酸の銅塩を15g単離した。
【0063】
この銅塩10gを、蒸留水20gとガラスビーズ15gとともにペイントコンディショナーで粉砕・分散した。得られた分散液を塗液とし、ワイヤーバーを用いてスライドグラスに固形分塗抹量20g/mになるように塗布した。乾燥後、薄青色の塗布面の導通をテスターで調べたが、導通は全く見られなかった。この非導電性組成物塗布物に波長830nmの半導体レーザー(出力1W)で15mm×25mmの範囲でベタ焼きしたところ、レーザーの照射部が薄青色から銅赤色に変化した。テスターで導通を確認したところ、銅赤色の部分には全体にわたって導通が生じていた。この部分のX線回折を測定したところ、2θ値が44°、51°、74°である銅のピークが生じていた。
【0064】
比較例7
実施例10で用いた分散液を塗液とし、ワイヤーバーを用いてスライドグラスに固形分塗抹量20g/mになるように塗布した。この非導電性組成物塗布物を電気炉に入れ、10℃/分の昇温速度で250℃まで加熱した。250℃で30分保持後、放冷により常温まで冷ましてから電気炉より取り出した。塗布物全体は薄青色から茶褐色に変色していた。X線回折を測定したところ、2θ値が44°、51°、74°である銅のピークと36°、42°、61°、73°である酸化銅(I)のピークを確認することができた。テスターで導通を調べたところ、導通は全く生じていなかった。
【0065】
【発明の効果】
銅塩、銅粉、アミノ化合物、光熱変換物質の少なくとも1つを含むある特定の組み合わせより成る非導電性組成物に、近赤レーザー光を照射することにより、大気雰囲気下中で簡易に導電性組成物を得ることができる。この方法で得られた導電性組成物は導電性材料や記録材料など様々な分野に使用することが期待できる。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a technique for obtaining a conductive copper-containing composition by a simple method, and more specifically, at least a photothermal conversion substance having absorption in the near infrared region, an amino compound, a copper salt, and copper powder. A process for converting a non-conductive composition comprising one into a conductive composition by treating it with near-red laser light.
[0002]
[Prior art]
Copper is a material widely used as an electronic component, such as a conductive material, a recording material, a surface coating agent, and a printed wiring board. Examples of the method of forming a copper film include an electroless plating method of chemically depositing copper silver, a method of bonding a metal copper thin film directly to an insulating substrate, and a method of directly depositing a metal copper thin film on an insulating substrate. There is.
[0003]
However, these methods also have various disadvantages. For example, in the case of the electroless wet plating method, steps such as cleaning and pretreatment are required, and a large amount of chemicals are consumed (for example, see Non-Patent Documents 1 and 2).
[0004]
On the other hand, when copper is directly bonded, it is necessary to bond the electrolytically formed copper thin film and the insulating base material with a resin, and to prepare an adhesive, impregnate and apply the adhesive to the insulating base material, Since it requires a plurality of operations such as laminating operations, handling is not easy (for example, see Non-Patent Document 3). Furthermore, it is difficult for this method to selectively deposit copper, and in that case, a method such as pattern etching is required, which is troublesome (for example, see Non-Patent Document 4).
[0005]
Vapor deposition has the advantage that a wide range of objects can be selected and selective deposition is relatively easy due to masking or the like, but special equipment is required (for example, see Non-Patent Document 5).
[0006]
In recent years, in connection with the progress of high-density integrated circuit manufacturing technology, a high-definition metal copper film forming method using Chemical Vapor Deposition (abbreviated as CVD) has been reported. However, this method is not a simple copper thin film formation method either because special equipment is required or a special and expensive organic copper compound needs to be used (for example, see Non-Patent Document 6). .
[0007]
On the other hand, a technique has been reported recently in which an inorganic copper salt or an organic acid copper salt is irradiated with a laser beam such as an argon laser to deposit metallic copper on an insulating support by thermal decomposition. This method has the advantage of using an inexpensive material, but it is difficult to form a uniform metal copper thin film, or a highly toxic organic acid is used, so that a practical copper film is used. It is not a formation method (for example, see Non-Patent Documents 7 and 8).
[0008]
Examples of the copper-based conductive composition include a conductive paste in which copper powder is dispersed in a resin binder. Copper-based conductive pastes are less expensive and more resistant to migration than silver-based conductive pastes. However, since copper is a material that is easily oxidized, the very surface of the copper powder is often rendered nonconductive by an oxide film. Therefore, it is necessary to perform sintering to maintain conductivity and adhesiveness. At this time, since it is oxidized in the air atmosphere, it is necessary to heat in a nitrogen atmosphere or a reducing atmosphere. There is a disadvantage that it cannot be handled easily (for example, see Non-Patent Document 9).
[0009]
As a method for easily obtaining conductive copper from a copper salt, a method comprising treating a composition comprising an inorganic copper salt and an amino compound or a copper complex prepared from an inorganic copper salt and an amino compound with light or heat has been proposed ( For example, see Patent Document 1). However, this method has a drawback that the uniformity of the obtained conductive film is not good, a portion having no conductivity may be locally generated, and the reproducibility is not good.
[0010]
[Patent Document 1]
Japanese Patent Application No. 2002-328436
[Non-patent document 1]
"Printed Circuit Technology Handbook-Second Edition-" edited by The Printed Circuit Society of Japan, published by Nikkan Kogyo Shimbun, pages 69-76.
[Non-patent document 2]
"Introduction to Printed Wiring Board Manufacturing" by Kenji Ito, published by Nikkan Kogyo Shimbun, pages 123-132
[Non-Patent Document 3]
"Introduction to Printed Wiring Board Manufacturing" by Kenji Ito, published by Nikkan Kogyo Shimbun, pp. 21-39
[Non-patent document 4]
"Introduction to Printed Wiring Board Manufacturing" by Kenji Ito, published by Nikkan Kogyo Shimbun, pages 143-158
[Non-Patent Document 5]
"Thinning technology", written by Shigeru Hayakawa and Kiyotaka Wasa, published by Kyoritsu Shuppan Co., Ltd., pages 15-20
[Non-Patent Document 6]
Chemical Review, Vol. 102, pp. 1525-1549 (2002)
[Non-Patent Document 7]
Journal of The Electrochemical Society, Vol. 147, pp. 1418-1422 (2000)
[Non-Patent Document 8]
Applied Surface Science, 154-155, 399-404 (2000).
[Non-Patent Document 9]
"Electronic Packaging Technology Basic Course Vol.3 Membrane Circuit Forming Technology", edited by Hybrid Microelectronics Association, published by the Industrial Research Institute, pp. 57-59
[0011]
[Problems to be solved by the invention]
An object of the present invention is to improve the method for obtaining a conductive composition by treating a composition comprising an inorganic copper salt and an amino compound, or a copper complex prepared from an inorganic copper salt and an amino compound with light or heat, to obtain a conductive composition. An object of the present invention is to provide a combination of compositions and a processing method capable of more reliably obtaining the properties. This method is simple and has good workability, and can be expected to be used in various fields such as conductive materials and recording materials.
[0012]
[Means for Solving the Problems]
The inventor repeated the experiment, and irradiating a near-red laser beam to a non-conductive composition composed of a copper salt or copper powder, an amino compound, and a light-to-heat conversion material to ensure non-conductivity in an air atmosphere. The inventors have found that a conductive composition can be converted to a conductive composition, and have achieved the above object.
[0013]
A conductive composition can be obtained by heat-treating a composition comprising an inorganic copper salt and an amino compound, or a copper complex prepared from an inorganic copper salt and an amino compound. This is considered to be due to the fact that the copper salt is reduced by the amino compound at the time of heating, or the copper complex is thermally decomposed to release copper, thereby changing the conductivity to electrical conductivity. However, the resulting conductor lacks uniformity, and often a part of the composition remains nonconductive or a part having a very high resistance value remains.
[0014]
This means that in the case of a normal heating method using an electric furnace or the like, time is required until the temperature of the composition itself reaches the induction temperature of the reduction reaction, and the composition is cooled to room temperature after completion of the reaction. Since it takes a long time, it is considered that a part of the produced metallic copper is re-oxidized by oxygen in the atmosphere and inhibits the development of conductivity.
[0015]
Further, it is difficult to completely remove the organic substances remaining in the composition other than the generated metallic copper after the heat treatment. For example, in the case where the residual organic matter is to be completely burned and removed, if the heating time is lengthened, disadvantages such as the resulting metallic copper being turned into a non-conductor by air oxidation will occur. That is, it is inevitable that non-conductive impurities are mixed in the conductive composition obtained by the heat treatment, and this often causes the inhibition of conductivity.
[0016]
As a method for overcoming these problems, (1) heating and cooling of the non-conductive composition are promptly performed to prevent oxidation of generated copper, and (2) content of copper in the non-conductive composition. Increasing the ratio as much as possible, and (3) selecting an organic component other than copper that evaporates by heating or that does not remain in the composition due to thermal decomposition.
[0017]
It is very useful to use a near red laser to quickly heat and cool the non-conductive composition of (1). Irradiation of a near-red laser beam onto a photothermal conversion material having an absorption wavelength in the near-red portion generates high heat, but the time required for the heat is 0.1 second or less.
[0018]
Therefore, when irradiating near-red laser light to a non-conductive composition obtained by mixing an amino compound, a copper salt, and a photothermal conversion substance having absorption in the near infrared region, the amino compound and the copper salt are instantaneously converted by the heat generated from the photothermal conversion substance. Upon heating, the copper salt is reduced by the amino compound to produce metallic copper. In the case of heating by irradiation with near-red laser, the time when the composition is at a high temperature is very short, so that the generated copper is hardly air-oxidized. Copper powder has the property of being easily oxidized, and the surface is often covered with copper (I) oxide. When copper powder is used in place of the copper salt, conduction is impeded by an amino compound and a photothermal conversion substance that coexist with the oxide film on the surface, so that the whole becomes nonconductive. However, when heated by irradiation with near-red laser light, the oxide film on the surface of the copper powder is reduced by the amino compound to expose metallic copper, and at the same time, sintering occurs at the interface of multiple copper particles, changing to a conductive composition. I do.
[0019]
Further, in order to increase the content ratio of the copper component in the composition, it is preferable to use copper powder rather than copper salt of a copper precursor.
[0020]
On the other hand, it is more preferable to use a copper salt as a photothermal conversion substance having an absorption in the near infrared region, for the purpose of increasing the copper content in the composition. Examples of such copper salts having absorption in the near infrared region include copper (II) hydroxide and copper (II) sulfate as inorganic copper salts. Examples of the organic copper salt include copper formate. Among them, copper (II) hydroxide is a very useful material because substances other than copper are water and oxygen and do not remain in the composition.
[0021]
Most of the copper salts are decomposed by heating into non-conductive copper oxide, and some of them release metallic copper by heat decomposition. Since such a copper salt itself has a reducing property, an amino compound is unnecessary, and metallic copper is generated only by irradiating a near-red laser beam to a binary mixture with a photothermal conversion substance. Further, when the copper salt itself has absorption in the near infrared region, it is not necessary to use a photothermal conversion material together, and the copper content in the composition can be increased, which is very preferable.
[0022]
First, examples of the copper salt that produces metallic copper by thermal decomposition include copper salts of organic carboxylic acids such as formic acid, glyoxylic acid, glycolic acid, and D-gluconic acid. Among them, copper salts of α-ketocarboxylic acids such as glyoxylic acid, pyruvic acid and 2-ketobutanoic acid are particularly preferred.
[0023]
When α-ketocarboxylic acid binds to copper ions to form copper salts, it is known that α-ketone groups are hydrated and bound to copper ions as bidentate ligands of hydroxyl and carboxyl groups. (See Pharmaceutical Journal, Vol. 86, pp. 26-31 (1966)).
[0024]
Since the α-ketone group is a hydrate, it is presumed that it functions as a strong reducing agent at the time of heating and can reduce copper ions to metallic copper. In addition, when an α-ketocarboxylic acid copper salt is synthesized, the α-ketone group becomes a hydrated form and precipitates from an aqueous solution, and thus is isolated as fine particle powder. When the near-red laser light is applied to the α-ketocarboxylate copper salt of fine particles, photothermal conversion occurs efficiently, and metallic copper of fine particles is generated. As a result, when the α-ketocarboxylate copper salt and the copper powder or another copper salt are used in combination, the metal copper of the fine particles precipitates in the gap between the copper powder particles, so that conduction can be efficiently secured.
[0025]
The second thing listed as a copper salt that produces metallic copper by thermal decomposition is that a polyvalent amino compound having a piperidine ring or a piperazine ring in the molecule is coordinated with copper ions and relatively insoluble in water. A metal chelate compound is formed. Examples of such an amino compound include the following.
[0026]
1- (2-aminoethyl) piperidine, 1- (3-aminopropyl) piperidine, 1- (2-aminopropyl) piperidine, N- (2-aminoethyl) piperazine, N- (3-aminopropyl) piperazine, N- (2-aminopropyl) piperazine, N- (3-amino-2-methylpropyl) piperazine, 1,4-bis (2-aminoethyl) piperazine, 1,4-bis (3-aminopropyl) piperazine, etc. .
[0027]
These copper salts release metallic copper and an amino compound having a reducing property by thermal decomposition. By irradiating a near infrared laser beam to a mixture of the photothermal conversion substance and these copper salts, a conductive composition mainly composed of metallic copper can be obtained.
[0028]
These copper salts dissociate by heating while the base portion coordinated with the copper ions reduces the copper ions to metallic copper, and the dissociated decomposed products themselves also function as reducing agents. It is estimated to suppress air oxidation. Such a copper salt is a useful material because it is not necessary to allow an amino compound as a copper salt reducing agent to coexist in the composition. Furthermore, such a copper salt and a copper powder or a copper salt that is a precursor of copper can be used as a mixture. In this case, the released reducing agent is used to reduce and remove copper oxide on the outer surface of the copper powder. In addition, since the copper salt of the copper precursor is reduced to metallic copper, the copper content in the composition can be increased, and metallic copper can be produced efficiently.
[0029]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
[0030]
First, there is no particular limitation on the copper powder or copper salt mixed with the amino compound, the light-to-heat conversion substance, and the copper salt that generates metallic copper by thermal decomposition in the present invention. In the case of copper powder, those having a particle diameter of 10 nm to 10 μm are preferable. Further, even if the extreme surface is oxidized and covered with a copper oxide film, it does not matter. Examples of the copper salt include copper (I) oxide and copper (II) oxide.
[0031]
The amino compound is not particularly limited, but is preferably a water-soluble one. Further, a substance which is dissolved in a water-soluble organic solvent, for example, alcohol, acetone, acetonitrile or the like can be used. Examples of such an amino compound include the following.
[0032]
Methylamine, ethylamine, n-propylamine, isopropylamine, butylamine, 2-ethylhexylamine, cyclohexylamine, allylamine, ethylenediamine, 1,2-propanediamine, 1,3-propanediamine, 2,3-butanediamine, 1, 2-cyclohexanediamine, diethylenetriamine, aniline, o-toluidine, p-toluidine, o-chloroaniline, 2-aminoethanol, dimethylamine, diethylamine, di-n-propylamine, dibutylamine, diisobutylamine, diallylamine, dicyclohexylamine, Tris (2-aminoethyl) amine, ethanolamine, N-methylethanolamine, diethanolamine, trimethylamine, triethylamine, tri-n-propylamido N, N-diethylethanolamine, N, N'-bis (2-aminoethyl) -1,3-propanediamine, di-n-butylethanolamine, triethanolamine, o-phenylenediamine, triethylenetetramine, Pentaethylenetetramine, piperidine, 1-methylpiperidine, 4-methylpiperidine, 4-hydroxypiperidine, 4-hydroxy-1-methylpiperidine, 1-piperidineethanol, 2-piperidineethanol, 4-piperidineethanol, 1-aminopiperidine, 4-amino-2,2,6,6-tetramethylpiperidine, 4-piperidinopiperidine, 1,3-di-4-piperidylpropane, morpholine, N-methylmorpholine, pyrrolidine, pyridine, 2,6-lutidine , Piperazine, 1,4-dimethylpipe Razine, 2-aminoethanol, 2- (2-aminoethyl) ethanol, 3-amino-1,2-propanediol, 2-amino-1,3-propanediol, 1,3-diamino-2-propanol, N , N-bis (2-hydroxyethyl) -1,3-diaminopropane, 4-aminocyclohexanol, 2-aminocyclohexanol, 1-piperazineethanol, N- (2-hydroxyethyl) morpholine, 1,4-bis (2-hydroxyethyl) piperazine and the like.
[0033]
Carbon black can be used as a light-to-heat conversion material widely used for near infrared rays. In particular, those having a particle diameter of 10 to 300 nm are preferable. In addition, an infrared absorbing dye can be used. Examples of such infrared absorbing dyes include cyanine dyes and phthalocyanines described in JP-A-5-116450, JP-A-5-124338, JP-A-5-124339, JP-A-5-124340 and JP-A-7-32739. Dyes, pyrylium / thiapyrylium dyes, azulene dyes, squarylium dyes disclosed in JP-A-7-25153, metal complex salt dyes such as Ni and Cr, indophenol dyes, naphthoquinone dyes, anthraquinone dyes Dyes, indophenol dyes, indoaniline dyes, triphenylmethane dyes, triallylmethane dyes, aminium dyes, diimonium dyes, nitroso compounds and the like can be mentioned.
[0034]
However, a more preferred light-to-heat conversion material is a copper compound having absorption in the range of 750 to 900 nm. This is efficient because it converts near-infrared rays into heat and, at the same time, decomposes itself by this heat to work as a copper source. When the copper compound and the amino compound are mixed, the air oxidation of the generated copper is suppressed, and the copper is precipitated as metallic copper. Examples of such copper compounds include copper (II) hydroxide, copper acetate, copper chloride, copper (II) sulfate, copper carbonate, copper formate, copper stearate, copper benzoate, copper ethyl acetoacetate, copper pyrophosphate, and naphthene. Anhydrides and hydrates such as copper acid, copper citrate and copper D-gluconate can be mentioned. In particular, copper hydroxide is very preferable because decomposition products other than copper are easily volatilized such as water and oxygen, and there is little danger of generating harmful substances.
[0035]
A copper salt which releases copper and / or a reducing agent by thermal decomposition is prepared by mixing an inorganic copper salt and the above-mentioned amino compound or organic acid in a state of being dissolved in water or an organic solvent, and mixing them. There are no particular restrictions on the inorganic copper salt used, but those that are stable in air and water-soluble are preferred. Such compounds include cupric sulfate, cupric nitrate, cupric chloride and the like. The mixing ratio is not particularly limited, but an amino compound or an organic acid is preferably 0.01 to 100 mol per 1 mol of the inorganic copper salt. Mixing produces a solvent-insoluble precipitate consisting of copper and an amino compound or organic acid. The precipitated copper composition can be separated from the solvent by filtration, centrifugation, or other methods. Further, it may be applied to any medium without any separation, dried and used as it is. In that case, the copper composition can be used at a high concentration by decantation or distillation removal of the solvent.
[0036]
The mixing ratio between the copper salt or copper powder and the amino compound is not particularly limited, but is preferably 1 to 20 parts by mass of the amino compound with respect to 10 parts by mass of the copper powder or copper salt. When a light-to-heat conversion substance is added separately from the copper salt, the mixing ratio is not particularly limited, but 0.1 to 10 parts by weight of the light-to-heat conversion substance is preferably based on 10 parts by weight of copper powder or copper salt. Also, when a copper salt having absorption in the near infrared or a copper salt which releases a reducing agent by thermal decomposition is mixed with a copper salt or copper powder having no respective properties, the mixing ratio is not particularly limited. However, the former is preferably 1 to 100 parts by mass with respect to the former 10 parts by mass.
[0037]
When the copper salt or copper powder is mixed with other materials, they may be mixed directly with each other, or may be mixed with each other in a state of being dispersed in water or an organic solvent. The shape at the time of use is not particularly limited, and may be used as a solid or may be crushed and used as a powder. Alternatively, it may be used in the form of a paste, or may be used as a coating liquid by further adding a solvent.
[0038]
In irradiating the non-conductive composition in the present invention with a near-red laser beam to convert it into a conductive composition, it is not always necessary to apply the near-red laser beam to the entire non-conductive composition. A desired shape can be formed by partially irradiating near-red laser light and converting only a desired portion into a conductive composition. Portions that have not been converted to conductive can be removed as needed. Of course, it is also possible to convert the entire non-conductive composition into conductive by applying a near-red laser beam to the entire non-conductive composition after applying the non-conductive composition in a predetermined shape in advance.
[0039]
There are various differences besides the conductivity in the portion where the non-conductive composition has changed to the conductivity and in the portion which has not changed. For example, color change, solvent resistance, water resistance, adhesive strength and the like can be mentioned. This difference can be further increased by removing unprocessed portions. By utilizing the difference, the present composition can be used not only as a conductive material but also as a recording material or a printing material.
[0040]
The non-conductive composition used in the present invention, other chemicals as needed, for example, a surfactant for improving dispersibility, a thickener for improving liquidity, a pH adjuster, a defoaming agent, A polymer compound as a binder, a thermosetting agent, and the like may be added.
[0041]
The shape of the non-conductive composition used in the present invention at the time of use is not particularly limited. It may be separated from the solvent and used as a solid, or may be crushed and used as a powder. Further, it may be dispersed or dissolved in a large amount of solvent and used as a coating liquid or kneaded with a small amount of solvent to form a paste.
[0042]
【Example】
The details of the present invention will be specifically described below using examples, but the present invention is not limited to only examples. Further, all percentages in the examples are based on mass.
[0043]
Example 1
20 g of copper (II) hydroxide and 20 g of 3-amino-1,2-propanediol were pulverized and dispersed with a paint conditioner together with 15 g of distilled water and 15 g of glass beads. This dispersion was used as a coating liquid, and the solid content was applied to a slide glass using a wire bar at a rate of 30 g / m 2. 2 Was applied. After drying, the continuity of the blue coated surface was examined with a tester, but there was no continuity. When the solid coating of the non-conductive composition was solid-baked in a range of 15 mm × 25 mm with a semiconductor laser having a wavelength of 830 nm (output: 1 W), the irradiated portion of the laser changed from blue to reddish brown. When conduction was confirmed with a tester, conduction was found throughout the reddish brown portion.
[0044]
Comparative Example 1
The dispersion liquid used in Example 1 was used as a coating liquid, and the solid content was applied to a slide glass using a wire bar at a rate of 30 g / m 2. 2 Was applied. This non-conductive composition coating was placed in an electric furnace and heated to 250 ° C. at a rate of 5 ° C./min. After holding at 250 ° C. for 30 minutes, the mixture was allowed to cool to room temperature and then taken out of the electric furnace. The entire coating was discolored from blue to reddish brown. When the conduction was examined with a tester, there were some places where there was no conduction, and there was no uniform conduction throughout.
[0045]
Example 2
20 g of copper powder (200 mesh manufactured by Junsei Chemical), 5 g of carbon black, and 15 g of 2-amino-1,3-propanediol were ground and dispersed together with 15 g of distilled water and 15 g of glass beads by a paint conditioner. This dispersion was used as a coating liquid, and the solid content was applied to a PET OHP sheet using a wire bar at a coating amount of 30 g / m 2. 2 Was applied. After drying, the conduction of the reddish brown coated surface was examined with a tester, but there was no conduction. When the solid coating of the non-conductive composition was baked with a semiconductor laser having a wavelength of 830 nm (output: 1 W) in a range of 15 mm × 25 mm, the irradiated portion of the laser became slightly reddish. When conduction was confirmed by a tester, conduction was found to occur entirely in the portion irradiated with the laser.
[0046]
Example 3
12 g of copper (II) hydroxide, 8 g of copper (I) oxide and 20 g of diethylenetriamine were ground and dispersed with a paint conditioner together with 15 g of distilled water and 15 g of glass beads. This dispersion was used as a coating liquid, and a solid content was applied to a slide glass using a wire bar at a coating amount of 20 g / m 2. 2 Was applied. After drying, the conduction of the dark blue coated surface was examined with a tester, but there was no conduction. Further, when the X-ray diffraction was measured, the 2θ value due to copper (II) hydroxide was around 34 °, 36 °, 38 °, 40 °, and 54 ° and the 2θ value due to copper oxide (I) was 36 ° , 42 °, 61 °, and 73 ° could be confirmed.
[0047]
When the solid of the non-conductive composition was solid-baked in a range of 15 mm × 25 mm with a semiconductor laser having a wavelength of 830 nm (output: 1 W), the irradiated portion of the laser changed from dark blue to reddish brown. When conduction was confirmed with a tester, conduction was found throughout the reddish brown portion. When X-ray diffraction of this portion was measured, copper peaks having 2θ values of 44 °, 51 ° and 74 ° were generated, and the peaks of copper hydroxide (II) and copper oxide (I) were weakened.
[0048]
Comparative Example 2
The dispersion liquid used in Example 3 was used as a coating liquid, and the solid content was applied to a slide glass using a wire bar at a coating amount of 25 g / m 2. 2 Was applied. This non-conductive composition coating was placed in an electric furnace and heated to 250 ° C. at a rate of 10 ° C./min. After holding at 250 ° C. for 30 minutes, the mixture was allowed to cool to room temperature and then taken out of the electric furnace. The entire coating was discolored from dark blue to dark brown. When the conduction was examined with a tester, there were some places where there was no conduction, and there was no uniform conduction throughout.
[0049]
Example 4
20 g of cupric sulfate pentahydrate was dissolved by stirring in 160 ml of distilled water, and 20.4 g of 1- (2-aminoethyl) piperidine was dissolved in 80 ml of distilled water and added little by little. To the resulting dark blue homogeneous aqueous solution, 13.2 g of ammonium hexafluorophosphate dissolved in 40 ml of distilled water was added, and the resulting blue-violet precipitate was filtered by suction. The precipitate collected by filtration was washed with 80 ml of distilled water and dried under reduced pressure to isolate 20 g of a copper (II) complex of 1- (2-aminoethyl) piperidine as a hexafluorophosphate.
[0050]
10 g of this copper (II) complex was ground and dispersed with a paint conditioner together with 3 g of carbon black, 20 g of distilled water and 15 g of glass beads. The obtained dispersion was used as a coating liquid, and the solid content was applied to a PET OHP sheet using a wire bar at a coating amount of 20 g / m 2. 2 Was applied. After drying, conduction on the dark blue-purple coated surface was examined with a tester, but no conduction was observed. When the solid coating of the nonconductive composition was solid-baked with a semiconductor laser having a wavelength of 830 nm (output: 1 W) in a range of 15 mm × 25 mm, the irradiated portion of the laser changed from deep blue-violet to reddish brown. When conduction was confirmed with a tester, conduction was found throughout the reddish brown portion.
[0051]
Example 5
10 g of the copper (II) complex used in Example 4 was pulverized and dispersed with a paint conditioner together with 10 g of copper powder (200 mesh manufactured by Junsei Chemical), 5 g of carbon black, 30 g of distilled water and 30 g of glass beads. This dispersion was used as a coating liquid, and the solid content was applied to a slide glass using a wire bar at a rate of 30 g / m 2. 2 Was applied. After drying, the conduction of the reddish brown coated surface was examined with a tester, but there was no conduction. When the solid coating of the non-conductive composition was baked with a semiconductor laser having a wavelength of 830 nm (output: 1 W) in a range of 15 mm × 25 mm, the irradiated portion of the laser became slightly reddish. When conduction was confirmed by a tester, conduction was found to occur entirely in the portion irradiated with the laser.
[0052]
Comparative Example 3
The dispersion liquid used in Example 5 was used as a coating liquid, and the solid content was applied to a slide glass using a wire bar at a rate of 30 g / m 2. 2 Was applied. This non-conductive composition coating was placed in an electric furnace and heated to 250 ° C. at a rate of 10 ° C./min. After holding at 250 ° C. for 30 minutes, the mixture was allowed to cool to room temperature and then taken out of the electric furnace. The entire coating was discolored from reddish brown to blackish brown. When the conduction was examined with a tester, there were some places where there was no conduction, and there was no uniform conduction throughout.
[0053]
Example 6
5 g of the copper (II) complex used in Example 4 was pulverized and dispersed with a paint conditioner together with 15 g of copper (I) oxide, 5 g of carbon black, 30 g of distilled water and 30 g of glass beads. This dispersion was used as a coating liquid, and the solid content was coated on a PET OHP sheet using a wire bar at a coating amount of 20 g / m 2. 2 Was applied. After drying, the conduction of the reddish brown coated surface was examined with a tester, but there was no conduction. When the solid coating of the non-conductive composition was baked with a semiconductor laser having a wavelength of 830 nm (output: 1 W) in a range of 15 mm × 25 mm, the irradiated portion of the laser became slightly reddish. When conduction was confirmed by a tester, conduction was found to occur entirely in the portion irradiated with the laser.
[0054]
Example 7
10 g of copper D-gluconate (genuine chemical special grade) was pulverized and dispersed with a paint conditioner together with 10 g of distilled water and 10 g of glass beads. The resulting dispersion was used as a coating liquid, and the solid content was applied to a slide glass using a wire bar at a coating amount of 20 g / m 2. 2 Was applied. After drying, the continuity of the light blue coated surface was examined with a tester, but no continuity was observed. When the solid coating of the non-conductive composition was solid-baked in a range of 15 mm × 25 mm with a semiconductor laser having a wavelength of 830 nm (output: 1 W), the irradiated portion of the laser changed from light blue to reddish brown. When conduction was confirmed with a tester, conduction was found throughout the reddish brown portion. When X-ray diffraction of this portion was measured, copper peaks having 2θ values of 44 °, 51 °, and 74 ° were generated.
[0055]
Comparative Example 4
The dispersion liquid used in Example 7 was used as a coating liquid, and a slide bar was coated on a slide glass with a wire bar using a wire bar. 2 Was applied. This non-conductive composition coating was placed in an electric furnace and heated to 250 ° C. at a rate of 10 ° C./min. After holding at 250 ° C. for 30 minutes, the mixture was allowed to cool to room temperature and then taken out of the electric furnace. The entire coating was discolored from light blue to dark brown. When X-ray diffraction was measured, copper peaks having 2θ values of 44 °, 51 °, and 74 ° were generated. However, when the conduction was examined with a tester, there were some places where there was no conduction, and conduction was not uniformly generated as a whole.
[0056]
Example 8
15 g of copper D-gluconate (special grade of pure chemical) was pulverized and dispersed with a paint conditioner together with 5 g of copper powder (200 mesh made by pure chemical), 30 g of distilled water and 25 g of glass beads. The obtained dispersion was used as a coating liquid, and the solid content was applied to a PET OHP sheet using a wire bar at a coating amount of 20 g / m 2. 2 Was applied. After drying, conduction on the coated surface was examined with a tester, but no conduction was observed. When this non-conductive composition coating material was solid-baked in a range of 15 mm × 25 mm with a semiconductor laser having a wavelength of 830 nm (output: 1 W), the irradiated portion of the laser turned reddish brown. When conduction was confirmed with a tester, conduction was found throughout the reddish brown portion.
[0057]
Example 9
10 g of copper D-gluconate (Pure Chemical Special Grade) was pulverized and dispersed with a paint conditioner together with 10 g of copper (II) hydroxide, 30 g of distilled water and 25 g of glass beads. The resulting dispersion was used as a coating liquid, and the solid content was applied to a slide glass using a wire bar at a coating amount of 20 g / m 2. 2 Was applied. After drying, the conduction of the blue coated surface was examined with a tester, but no conduction was observed. When the solid coating of the non-conductive composition was solid-baked in a range of 15 mm × 25 mm with a semiconductor laser having a wavelength of 830 nm (output: 1 W), the irradiated portion of the laser changed from blue to reddish brown. When conduction was confirmed with a tester, conduction was found throughout the reddish brown portion.
[0058]
Comparative Example 5
The dispersion liquid used in Example 9 was used as a coating liquid, and the solid content was applied to a slide glass using a wire bar at a coating amount of 20 g / m 2. 2 Was applied. This non-conductive composition coating was placed in an electric furnace and heated to 250 ° C. at a rate of 5 ° C./min. After holding at 250 ° C. for 30 minutes, the mixture was allowed to cool to room temperature and then taken out of the electric furnace. The entire coating was discolored from blue to dark brown. When the conduction was examined with a tester, there were some places where there was no conduction, and there was no uniform conduction throughout.
[0059]
Example 10
20 g of cupric sulfate pentahydrate was dissolved in 160 ml of distilled water with stirring, and 120 g of a 10% aqueous solution of sodium glyoxylate was added little by little. The resulting pale blue precipitate was filtered by suction, and the precipitate collected by filtration was washed with 80 ml of distilled water. After drying under reduced pressure, 12 g of copper hydrate of glyoxylic acid was isolated.
[0060]
10 g of this copper salt was ground and dispersed with a paint conditioner together with 20 g of distilled water and 15 g of glass beads. The resulting dispersion was used as a coating liquid, and the solid content was applied to a slide glass using a wire bar at a coating amount of 20 g / m 2. 2 Was applied. After drying, the continuity of the light blue coated surface was examined with a tester, but no continuity was observed. When the solid coating of the non-conductive composition was solid-baked in a range of 15 mm × 25 mm with a semiconductor laser having a wavelength of 830 nm (output: 1 W), the irradiated portion of the laser changed from light blue to copper red. When conduction was confirmed with a tester, conduction was observed throughout the copper red portion. When X-ray diffraction of this portion was measured, copper peaks having 2θ values of 44 °, 51 °, and 74 ° were generated.
[0061]
Comparative Example 6
The dispersion liquid used in Example 10 was used as a coating liquid, and the solid content was applied to a slide glass using a wire bar at a coating amount of 20 g / m 2. 2 Was applied. This non-conductive composition coating was placed in an electric furnace and heated to 250 ° C. at a rate of 10 ° C./min. After holding at 250 ° C. for 30 minutes, the mixture was allowed to cool to room temperature and then taken out of the electric furnace. The entire coating was discolored from light blue to brown. When X-ray diffraction was measured, copper peaks having 2θ values of 44 °, 51 ° and 74 ° and copper (I) peaks of 36 °, 42 °, 61 ° and 73 ° were confirmed. did it. When continuity was examined with a tester, no continuity occurred.
[0062]
Example 11
20 g of cupric sulfate pentahydrate was dissolved by stirring in 160 ml of distilled water, and 150 g of a 10% aqueous solution of sodium pyruvate was added little by little. The resulting pale blue precipitate was filtered by suction, and the precipitate collected by filtration was washed with 80 ml of distilled water. After drying under reduced pressure, 15 g of a copper salt of pyruvic acid was isolated.
[0063]
10 g of this copper salt was ground and dispersed with a paint conditioner together with 20 g of distilled water and 15 g of glass beads. The resulting dispersion was used as a coating liquid, and the solid content was applied to a slide glass using a wire bar at a coating amount of 20 g / m 2. 2 Was applied. After drying, the continuity of the light blue coated surface was examined with a tester, but no continuity was observed. When the solid coating of the non-conductive composition was solid-baked in a range of 15 mm × 25 mm with a semiconductor laser having a wavelength of 830 nm (output: 1 W), the irradiated portion of the laser changed from light blue to copper red. When conduction was confirmed with a tester, conduction was observed throughout the copper red portion. When X-ray diffraction of this portion was measured, copper peaks having 2θ values of 44 °, 51 °, and 74 ° were generated.
[0064]
Comparative Example 7
The dispersion liquid used in Example 10 was used as a coating liquid, and the solid content was applied to a slide glass using a wire bar at a coating amount of 20 g / m 2. 2 Was applied. This non-conductive composition coating was placed in an electric furnace and heated to 250 ° C. at a rate of 10 ° C./min. After holding at 250 ° C. for 30 minutes, the mixture was allowed to cool to room temperature and then taken out of the electric furnace. The entire coating was discolored from light blue to brown. When X-ray diffraction was measured, copper peaks having 2θ values of 44 °, 51 ° and 74 ° and copper (I) peaks of 36 °, 42 °, 61 ° and 73 ° were confirmed. did it. When continuity was examined with a tester, no continuity occurred.
[0065]
【The invention's effect】
By irradiating near-red laser light to a non-conductive composition composed of a specific combination containing at least one of a copper salt, a copper powder, an amino compound, and a photothermal conversion substance, the composition can be easily conductive in an air atmosphere. A composition can be obtained. The conductive composition obtained by this method can be expected to be used in various fields such as a conductive material and a recording material.

Claims (12)

(a)近赤外部に吸収を有する銅塩と(b)アミノ化合物から成る非導電性組成物に、近赤レーザー光を照射することを特徴とする導電性組成物の作製方法。A method for producing a conductive composition, comprising irradiating a near-red laser beam to a nonconductive composition comprising (a) a copper salt having absorption in the near infrared region and (b) an amino compound. (a)近赤外部に吸収を有する光熱変換物質と(b)アミノ化合物と(c)銅粉または銅塩から成る非導電性組成物に、近赤レーザー光を照射することを特徴とする導電性組成物の作製方法。A non-conductive composition comprising (a) a photothermal conversion substance having absorption in the near-infrared region, (b) an amino compound, and (c) copper powder or a copper salt, is irradiated with near-red laser light. Method for preparing a hydrophilic composition. 近赤外部に吸収を有する光熱変換物質が銅塩であることを特徴とする、請求項2記載の導電性組成物の作製方法。The method for producing a conductive composition according to claim 2, wherein the photothermal conversion substance having absorption in the near infrared region is a copper salt. (a)近赤外部に吸収を有する光熱変換物質と(b)熱分解により金属銅を生じる銅塩から成る非導電性組成物に、近赤レーザー光を照射することを特徴とする導電性組成物の作製方法。A conductive composition characterized by irradiating a near-red laser beam to (a) a non-conductive composition comprising a photothermal conversion substance having absorption in the near infrared region and (b) a copper salt which generates metallic copper by thermal decomposition. How to make things. (a)近赤外部に吸収を有する光熱変換物質と(b)熱分解により還元剤を放出する銅塩と(c)銅粉または銅粉の前駆体となる銅塩から成る非導電性組成物に、近赤レーザー光を照射することを特徴とする導電性組成物の作製方法。Non-conductive composition comprising (a) a photothermal conversion substance having absorption in the near infrared region, (b) a copper salt releasing a reducing agent by thermal decomposition, and (c) copper powder or a copper salt serving as a precursor of copper powder. And irradiating the composition with a near red laser beam. 近赤外部に吸収を有し、かつ熱分解により金属銅を生じる銅塩に近赤レーザー光を照射することを特徴とする導電性組成物の作製方法。A method for producing a conductive composition, comprising irradiating a copper salt having absorption in the near infrared region and producing metallic copper by thermal decomposition with near-red laser light. (a)近赤外部に吸収を有し、かつ熱分解により還元剤を放出する銅塩と(b)銅粉または銅粉の前駆体となる銅塩から成る非導電性組成物に、近赤レーザー光を照射することを特徴とする導電性組成物の作製方法。A non-conductive composition comprising (a) a copper salt having absorption in the near-infrared region and releasing a reducing agent by thermal decomposition and (b) copper powder or a copper salt which is a precursor of the copper powder, has a near red color. A method for producing a conductive composition, which comprises irradiating a laser beam. 銅塩が水酸化銅(II)であることを特徴とする請求項1,2,3のいずれかに記載の導電性組成物の作製方法。The method for producing a conductive composition according to any one of claims 1, 2, and 3, wherein the copper salt is copper (II) hydroxide. 銅粉の前駆体となる銅塩が水酸化銅(II)であることを特徴とする請求項5あるいは7のいずれかに記載の導電性組成物の作製方法。8. The method for producing a conductive composition according to claim 5, wherein the copper salt serving as a precursor of the copper powder is copper (II) hydroxide. 熱分解により還元剤を放出する銅塩が、還元性の置換基を有する有機酸の銅塩であることを特徴とする請求項5あるいは7のいずれかに記載の導電性組成物の作製方法。The method for producing a conductive composition according to claim 5, wherein the copper salt that releases the reducing agent by thermal decomposition is a copper salt of an organic acid having a reducing substituent. 近赤外部に吸収を有し、かつ熱分解により金属銅を生じる銅塩が、還元性の置換基を有する有機酸の銅塩であることを特徴とする請求項6に記載の導電性組成物の作製方法。The conductive composition according to claim 6, wherein the copper salt having an absorption in the near infrared region and generating copper metal by thermal decomposition is a copper salt of an organic acid having a reducing substituent. Method of manufacturing. 還元性の置換基を有する有機酸の銅塩が、α−ケトカルボン酸の銅塩であることを特徴とする請求項10あるいは11のいずれかに記載の導電性組成物の作製方法。The method for producing a conductive composition according to claim 10, wherein the copper salt of an organic acid having a reducing substituent is a copper salt of α-ketocarboxylic acid.
JP2003074879A 2003-03-19 2003-03-19 Preparation method of conductive composition Pending JP2004277868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003074879A JP2004277868A (en) 2003-03-19 2003-03-19 Preparation method of conductive composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003074879A JP2004277868A (en) 2003-03-19 2003-03-19 Preparation method of conductive composition

Publications (1)

Publication Number Publication Date
JP2004277868A true JP2004277868A (en) 2004-10-07

Family

ID=33290340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003074879A Pending JP2004277868A (en) 2003-03-19 2003-03-19 Preparation method of conductive composition

Country Status (1)

Country Link
JP (1) JP2004277868A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008088523A (en) * 2006-10-04 2008-04-17 Ebara Udylite Kk Reaction promoter for electroless copper plating bath
JP2010534932A (en) * 2007-07-26 2010-11-11 エルジー・ケム・リミテッド Method for forming electrically conductive copper pattern layer by laser irradiation
JP2011243436A (en) * 2010-05-19 2011-12-01 Tosoh Corp Method of producing composition for conductive film formation
JP2013206722A (en) * 2012-03-28 2013-10-07 Fujifilm Corp Liquid composition, metal copper film, conductor wiring, and method for manufacturing metal copper film
JP2013206721A (en) * 2012-03-28 2013-10-07 Fujifilm Corp Liquid composition, metal film, conductor wiring, and method for manufacturing metal film
JP2013206719A (en) * 2012-03-28 2013-10-07 Fujifilm Corp Method of manufacturing conductive film
WO2016052162A1 (en) * 2014-10-03 2016-04-07 株式会社Adeka Copper film-forming composition and method for manufacturing copper film in which said composition is used
JP2016079439A (en) * 2014-10-14 2016-05-16 四国化成工業株式会社 Copper film formation agent and its application
JP2016171013A (en) * 2015-03-13 2016-09-23 東洋インキScホールディングス株式会社 Conductive paste for laser processing and use of the same
JP2016176116A (en) * 2015-03-20 2016-10-06 株式会社Adeka Composition for nickel film formation and method for manufacturing nickel film using the same
JP2017039999A (en) * 2008-10-17 2017-02-23 エヌシーシー ナノ, エルエルシー Method for reducing thin film on low temperature substrate
WO2018212345A1 (en) * 2017-05-18 2018-11-22 学校法人芝浦工業大学 Method for producing conductor, method for producing wiring board, and composition for forming conductor
KR20200037821A (en) * 2017-08-01 2020-04-09 내션얼 리서치 카운슬 오브 캐나다 Copper ink
WO2022050354A1 (en) * 2020-09-07 2022-03-10 株式会社ダイセル Mounting structure, led display, and mounting method
US11525060B2 (en) 2019-04-16 2022-12-13 Samsung Electronics Co., Ltd. Near-infrared absorbing composition, optical structure comprising the same, and camera module and electronic device comprising the same

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008088523A (en) * 2006-10-04 2008-04-17 Ebara Udylite Kk Reaction promoter for electroless copper plating bath
JP4621190B2 (en) * 2006-10-04 2011-01-26 荏原ユージライト株式会社 Reaction accelerator for electroless copper plating bath
JP2010534932A (en) * 2007-07-26 2010-11-11 エルジー・ケム・リミテッド Method for forming electrically conductive copper pattern layer by laser irradiation
JP2017039999A (en) * 2008-10-17 2017-02-23 エヌシーシー ナノ, エルエルシー Method for reducing thin film on low temperature substrate
JP2011243436A (en) * 2010-05-19 2011-12-01 Tosoh Corp Method of producing composition for conductive film formation
JP2013206719A (en) * 2012-03-28 2013-10-07 Fujifilm Corp Method of manufacturing conductive film
JP2013206721A (en) * 2012-03-28 2013-10-07 Fujifilm Corp Liquid composition, metal film, conductor wiring, and method for manufacturing metal film
JP2013206722A (en) * 2012-03-28 2013-10-07 Fujifilm Corp Liquid composition, metal copper film, conductor wiring, and method for manufacturing metal copper film
CN107075681A (en) * 2014-10-03 2017-08-18 株式会社Adeka Copper film formation composition and the manufacture method using its copper film
WO2016052162A1 (en) * 2014-10-03 2016-04-07 株式会社Adeka Copper film-forming composition and method for manufacturing copper film in which said composition is used
JP2016074925A (en) * 2014-10-03 2016-05-12 株式会社Adeka Composition for copper film formation, and production method of copper film using the same
CN107075681B (en) * 2014-10-03 2019-04-23 株式会社Adeka Copper film forms the manufacturing method of the copper film with composition and using it
KR20170057443A (en) * 2014-10-03 2017-05-24 가부시키가이샤 아데카 Copper film-forming composition and method for manufacturing copper film in which said composition is used
JP2016079439A (en) * 2014-10-14 2016-05-16 四国化成工業株式会社 Copper film formation agent and its application
JP2016171013A (en) * 2015-03-13 2016-09-23 東洋インキScホールディングス株式会社 Conductive paste for laser processing and use of the same
JP2016176116A (en) * 2015-03-20 2016-10-06 株式会社Adeka Composition for nickel film formation and method for manufacturing nickel film using the same
WO2018212345A1 (en) * 2017-05-18 2018-11-22 学校法人芝浦工業大学 Method for producing conductor, method for producing wiring board, and composition for forming conductor
JPWO2018212345A1 (en) * 2017-05-18 2020-05-07 学校法人 芝浦工業大学 Method for producing conductor, method for producing wiring board, and composition for forming conductor
JP7130631B2 (en) 2017-05-18 2022-09-05 株式会社ダイセル Method for producing conductor, method for producing wiring board, and method for producing composition for forming conductor
KR20200037821A (en) * 2017-08-01 2020-04-09 내션얼 리서치 카운슬 오브 캐나다 Copper ink
JP2020530049A (en) * 2017-08-01 2020-10-15 ナショナル リサーチ カウンシル オブ カナダ Copper ink
JP7241734B2 (en) 2017-08-01 2023-03-17 ナショナル リサーチ カウンシル オブ カナダ copper ink
KR102643783B1 (en) 2017-08-01 2024-03-05 내션얼 리서치 카운슬 오브 캐나다 copper ink
US11525060B2 (en) 2019-04-16 2022-12-13 Samsung Electronics Co., Ltd. Near-infrared absorbing composition, optical structure comprising the same, and camera module and electronic device comprising the same
WO2022050354A1 (en) * 2020-09-07 2022-03-10 株式会社ダイセル Mounting structure, led display, and mounting method

Similar Documents

Publication Publication Date Title
JP2004277868A (en) Preparation method of conductive composition
JP6029721B2 (en) Nano ink composition
JP5712635B2 (en) Silver-containing composition
JP2017516887A (en) Conductive ink composition
KR102404062B1 (en) Molecular organic reactive inks for conductive silver printing
JP2010043350A (en) Alloy nanoparticle, method for production thereof, and ink and paste using the alloy nanoparticle
EP2045028A1 (en) Metal nanoparticles, method for producing the same, aqueous dispersion, method for manufacturing printed wiring or electrode, and printed wiring board or device
JP2004162110A (en) Copper/amine composition
KR101759004B1 (en) Silver-containing composition, and base for use in formation of silver element
JP6509770B2 (en) Conductive metal powder paste
JP2022003170A (en) Composition for forming metal film and method of forming metal film
JP2010077520A (en) Method for producing fine copper particle, and fine copper particle
RU2388774C2 (en) Conductive ink and method of making said ink
JP2004259464A (en) Copper/amine composition
Togashi et al. N, N-Diethyl-diaminopropane-copper (ii) Oxalate Self-reducible Complex for the Solution-based Synthesis of Copper Nanocrystals
JP2009228017A (en) Method for producing copper particulate, and copper particulate
US5175024A (en) Processes for preparation of oxidation resistant metal powders
JP2009149918A (en) Method for manufacturing copper fine particle, and copper fine particle
JP7130631B2 (en) Method for producing conductor, method for producing wiring board, and method for producing composition for forming conductor
JP6267836B1 (en) Method for producing metallic silver fine particles
KR102044239B1 (en) A nucleating agent for laser direct structuring, preparation thereof, and a method for preparing conductive copper thin-film pattern using the same
Kintzel et al. Synthesis and Structure of the Silver (I) Complexes [Ag2 (C4H6O4N) NO3]· H2O and Ag6 (C6H6O6N) 2 for the Formulation of Silver Inks in Nanoimprint Lithography
JP7399304B2 (en) Metal wiring manufacturing method and kit
EP4056365A1 (en) Structure with conductive pattern and method for manufacturing same
JP2020167167A (en) Conductor forming composition, method for producing conductor, conductor and device