WO2018212345A1 - Method for producing conductor, method for producing wiring board, and composition for forming conductor - Google Patents

Method for producing conductor, method for producing wiring board, and composition for forming conductor Download PDF

Info

Publication number
WO2018212345A1
WO2018212345A1 PCT/JP2018/019372 JP2018019372W WO2018212345A1 WO 2018212345 A1 WO2018212345 A1 WO 2018212345A1 JP 2018019372 W JP2018019372 W JP 2018019372W WO 2018212345 A1 WO2018212345 A1 WO 2018212345A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
conductor
copper complex
composition
substrate
Prior art date
Application number
PCT/JP2018/019372
Other languages
French (fr)
Japanese (ja)
Inventor
大石 知司
Original Assignee
学校法人芝浦工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人芝浦工業大学 filed Critical 学校法人芝浦工業大学
Priority to JP2019518897A priority Critical patent/JP7130631B2/en
Publication of WO2018212345A1 publication Critical patent/WO2018212345A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/14Decomposition by irradiation, e.g. photolysis, particle radiation or by mixed irradiation sources
    • C23C18/143Radiation by light, e.g. photolysis or pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/30Making metallic powder or suspensions thereof using chemical processes with decomposition of metal compounds, e.g. by pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/288Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns

Definitions

  • the present invention relates to a method for producing a conductor, a method for producing a wiring board, and a composition for forming a conductor.
  • Non-Patent Document 1 as a method for forming a conductor in the atmosphere, a thin film is formed on a substrate by using a coating solution containing a copper complex soluble in a solvent, and then a carbon dioxide laser is formed in a desired pattern shape.
  • a method has been proposed in which copper is deposited in the irradiated region by irradiating the film with the material.
  • Non-Patent Document 1 has advantages such as the ability to form a conductor even in the atmosphere and direct patterning of the conductor, but there is room for improvement in the smoothness of the surface of the obtained conductor.
  • This invention makes it a subject to provide the manufacturing method of the conductor which can be implemented in air
  • Means for solving the above problems include the following embodiments.
  • a composition comprising a first copper complex formed from a keto acid and a copper ion, and a second copper complex formed from a ligand containing a nitrogen atom and a copper ion.
  • a method for producing a conductor comprising: applying and forming a composition layer; and subjecting the composition layer to laser irradiation to deposit copper.
  • ⁇ 3> The method for producing a conductor according to ⁇ 1> or ⁇ 2>, wherein the laser irradiation is performed using a CO 2 laser or an Er laser.
  • ⁇ 4> The method for producing a conductor according to any one of ⁇ 1> to ⁇ 3>, wherein the laser irradiation is performed in a pattern.
  • ⁇ 5> The method for producing a conductor according to any one of ⁇ 1> to ⁇ 4>, which is performed in the atmosphere.
  • ⁇ 6> The method for producing a conductor according to any one of ⁇ 1> to ⁇ 5>, wherein the substrate is a resin substrate.
  • ⁇ 7> A method for producing a wiring board comprising a substrate and a copper wiring disposed on the substrate, a first copper complex formed from keto acid and copper ions, and a coordination containing a nitrogen atom
  • a step of forming a composition layer by applying to the substrate a composition comprising a second copper complex formed from a child and copper ions, and depositing copper by laser irradiation of the composition layer
  • a method of manufacturing a wiring board including the steps.
  • ⁇ 9> The method for manufacturing a wiring board according to ⁇ 7> or ⁇ 8>, wherein the laser irradiation is performed using a CO 2 laser or an Er laser.
  • ⁇ 10> The method for manufacturing a wiring board according to any one of ⁇ 7> to ⁇ 9>, wherein the laser irradiation is performed in a pattern.
  • ⁇ 11> The method for manufacturing a wiring board according to any one of ⁇ 7> to ⁇ 10>, which is performed in the atmosphere.
  • ⁇ 12> The method for manufacturing a wiring board according to any one of ⁇ 7> to ⁇ 11>, wherein the substrate is a resin substrate.
  • composition for conductor formation containing the 1st copper complex comprised from ⁇ 13> keto acid and a copper ion, and the 2nd copper complex formed from the ligand and copper ion containing a nitrogen atom. . ⁇ 14>
  • a method for producing a conductor a method for producing a wiring board, and a composition for forming a conductor that can be formed in the atmosphere and can form a conductor having excellent surface smoothness.
  • the present invention is not limited to the following embodiments.
  • the components including element steps and the like are not essential unless otherwise specified.
  • the term “process” includes a process that is independent of other processes and includes the process if the purpose of the process is achieved even if it cannot be clearly distinguished from the other processes.
  • numerical ranges indicated using “to” include numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • each component may contain a plurality of corresponding substances.
  • the content or content of each component is the total content or content of the multiple types of substances present in the composition unless otherwise specified. Means quantity.
  • a method for producing a conductor of the present disclosure includes a first copper complex formed from a keto acid and a copper ion, and a second copper complex formed from a ligand containing a nitrogen atom and a copper ion.
  • substrate Specifically, when the laser irradiation is performed, the irradiated part is heated instantaneously, and the bond of the ligand of the copper complex is cut by this heat, and the copper ions are reduced to Cu and copper is deposited. Moreover, the ligand is decomposed into CO 2 and CO and H 2 O by thermal, to be removed by a gas, high purity conductor is obtained.
  • the shape of the conductor is not particularly limited, and may be a film shape, a pattern shape, or other shapes.
  • the conductor formed by the above method is superior in surface smoothness to a conductor formed using a composition containing only the first copper complex. Since the second copper complex is easier to decompose than the first copper complex (has a lower decomposition temperature), the copper deposition from the second copper complex occurs first to form a nucleus, and based on this nucleus It is considered that the growth of particles by copper deposited from the first copper complex is promoted. A smoother conductor surface is thought to mean a more dense conductor structure.
  • the first copper complex used in the above method is not particularly limited as long as it is formed from a keto acid and a copper ion (copper keto), and ⁇ -keto acid copper such as copper glyoxylate, ⁇ -keto Either copper acid or copper ⁇ -keto acid or a combination thereof may be used.
  • the second copper complex used in the above method is not particularly limited as long as it is formed from a nitrogen atom-containing ligand and a copper ion.
  • amine-based copper complexes such as A 2nd copper complex may be used individually by 1 type, or may use 2 or more types together.
  • the composition containing the first copper complex and the second copper complex may further contain a solvent capable of dissolving these copper complexes.
  • solvents include alcohol solvents such as methanol, ethanol and aminoethanol, ketone solvents such as cyclohexanone, amide solvents such as dimethylformamide, terpene solvents such as terpineol, and ester solvents.
  • a solvent may be used individually by 1 type, or may use 2 or more types together.
  • the content ratio of the first copper complex and the second copper complex in the composition is not particularly limited, but may be, for example, in the range of 90% by mass to 5% by mass of the entire composition, and 80% by mass to 10% by mass. % Is preferable.
  • the molar ratio of the first copper complex to the second copper complex in the composition is not particularly limited, but is within the range of, for example, 9: 1 to 1: 9. It may be within a range of 8: 2 to 2: 8. Further, the molar concentration of copper (the total of the first copper complex and the second copper complex) with respect to the whole composition is not particularly limited, but for example 0.5 M (mol / L) to 3.0 M (mol / L) It is preferable to be within the range.
  • the composition may contain components other than the copper complex and the medium as necessary.
  • examples of such components include viscosity modifiers.
  • the substrate used in the above method is not particularly limited, and a general wiring substrate for an electronic component device can be used.
  • a semiconductor substrate, a glass substrate, a ceramic substrate, a resin substrate, a composite body thereof, or the like can be given.
  • substrate etc. which are used for the paper device using a cellulose nanofiber are mentioned.
  • the conductor since the conductor is formed by laser irradiation, the conductor can be formed even on a substrate made of a material that is not suitable for heat treatment such as baking.
  • the method for forming the composition layer on the substrate is not particularly limited. For example, a spin coat method, a printing method, etc. are mentioned.
  • the composition layer may be formed uniformly on the substrate or may be formed in a pattern.
  • the laser used for laser irradiation by the above method is not particularly limited as long as it causes decomposition of the copper complex and precipitation of copper. From the viewpoint of forming a good conductor in the air, an infrared laser and a near infrared laser are preferable, and a CO 2 laser and an Er laser are more preferable. Laser irradiation may be performed uniformly or in a pattern on the composition layer.
  • the above method may include a step of removing a composition layer other than a portion where copper is deposited by laser irradiation. For example, you may remove a composition layer using the solvent which can melt
  • the conductor formed by the above method may be further subjected to treatment such as electroless copper plating.
  • treatment such as electroless copper plating.
  • electroless copper plating the thickness of the conductor can be increased.
  • a Pd film is used as a catalyst film for copper deposition.
  • the above method is advantageous in terms of cost reduction because copper is deposited on the conductor.
  • the patterned conductor formed by the above method has excellent pattern width uniformity. For this reason, it becomes possible to form a finer pattern and to provide an element (circuit) and wiring with higher performance.
  • a method of directly irradiating the composition layer with a laser in a pattern form is also used to form a composition layer in a pattern, and then irradiating the laser to form a copper wiring.
  • a method of conversion may be used. These methods do not require an etching process for removing unnecessary conductors, and are not environmentally friendly because no etching waste liquid is generated.
  • Examples of the method for forming the composition layer in a pattern include a printing method generally used for wiring formation such as screen printing and offset printing, and microcontact printing capable of forming finer wiring.
  • a composition adhered to a stamper made of PDMS is transferred to a substrate to form a patterned composition layer, and laser irradiation is performed.
  • PDMS polydimethylsiloxane
  • the conductor formed by the above method can be used for various purposes. For example, it can be suitably used as a method of forming an element or wiring of a wiring board used in electronic equipment. Moreover, since a conductor can be formed with low energy, it can be suitably used for forming a conductor on a substrate, which is difficult to form with a conventional method such as a resin film, a thin glass plate, or a paper device.
  • the interposer is a member disposed between the substrate and the semiconductor element, and includes a through electrode that electrically connects the substrate and the semiconductor element.
  • resin, silicon or the like is generally used as the material of the interposer. Glass interposers are advantageous in terms of thermal expansion coefficient, heat resistance, insulation, manufacturing cost, etc., compared to interposers made of resin, silicon, etc., but they are not strong enough to withstand the process of forming through electrodes. There is.
  • the through electrode can be formed without damaging the glass thin plate.
  • the through electrode is formed on the glass interposer by, for example, forming a through hole in a glass thin plate by laser processing, then applying a composition containing the first copper complex and the second copper complex inside the through hole, This can be done by precipitating copper by irradiation.
  • a method of manufacturing a wiring board according to the present disclosure is a manufacturing method of a wiring board including a substrate and a copper wiring disposed on the substrate, and a first copper complex formed from keto acid and copper ions
  • a step of forming a composition layer by applying to a substrate a composition comprising a second copper complex formed from a ligand containing nitrogen atoms and copper ions, and laser irradiation of the composition layer
  • a step of depositing copper is a manufacturing method of a wiring board including a substrate and a copper wiring disposed on the substrate, and a first copper complex formed from keto acid and copper ions.
  • the conductor forming composition of the present disclosure includes a first copper complex composed of a keto acid and a copper ion, and a second copper complex formed from a ligand containing a nitrogen atom and a copper ion. Including.
  • composition By using the above composition, a conductor having excellent surface smoothness can be formed.
  • the details and preferred embodiments of the composition are the same as the details and preferred embodiments of the composition used in the above-described method for producing a conductor.
  • ⁇ -Keto acid (copper glyoxylate) was neutralized with sodium hydroxide to obtain a sodium salt of ⁇ -keto acid.
  • This ⁇ -keto acid sodium salt was dissolved in water, and copper sulfate dissolved in water was added.
  • an ⁇ -keto acid copper complex was precipitated as a light blue precipitate.
  • the precipitated ⁇ -keto acid copper complex was recovered and dissolved in a mixed solvent of aminoethanol and ethanol.
  • a solution of copper formate dissolved in methanol solution of methylamine is added to form a methylamine copper complex.
  • the first copper complex is ⁇ -keto acid copper complex and the second copper complex is A composition containing a methylamine copper complex was prepared.
  • the molar ratio of the ⁇ -keto acid copper complex and the methylamine copper complex in the composition was 1: 1, and the total content of the ⁇ -keto acid copper complex and the methylamine copper complex in the entire composition was 1 M as the copper concentration ( mol / L).
  • the prepared composition was applied onto a glass substrate, and a CO 2 laser (laser output: 6 W) was irradiated in a pattern (pattern width: 200 ⁇ m) in the air. Copper was deposited in the irradiated area.
  • the substrate after irradiation was immersed in an aminoethanol solution, and the composition layer other than the portion where copper was deposited was removed. Subsequently, it dried and the board
  • a composition was prepared in the same manner as described above except that only the copper complex of ⁇ -keto acid was included as a copper complex, and a conductor was formed on the substrate in the same manner as described above except that this composition was used. Subsequently, the state of the surface of both conductors was observed with an optical microscope. As a result, as shown in FIG. 1, a composition containing an ⁇ -keto acid copper complex and a methylamine copper complex was used as compared with a conductor (left) formed using a composition containing only an ⁇ -keto acid copper complex. The conductor (right) formed in this way was superior in surface smoothness.
  • ⁇ -keto acid (copper glyoxylate) 0.85 g was dissolved in a mixture of 1 ml of 2-aminoethanol and 2 ml of ethanol to prepare a 1.7M copper glyoxylate solution.
  • 1.105 g of copper formate tetrahydrate was dissolved in 3 ml of 40% methylamine methanol to prepare a 1.7 M methylamine copper complex solution.
  • a composition containing an ⁇ -keto acid copper complex as the first copper complex and a methylamine copper complex as the second copper complex was prepared.
  • the prepared composition is spin-coated on a glass slide (3000 rpm, 30 seconds), a microcontact stamper is pressed to adhere the composition to the stamper, and this is stamped onto an alumina substrate to form a fine pattern composition layer.
  • Pre-baking was performed at 80 ° C. for 10 minutes, and a CO 2 laser was irradiated (distance between laser and composition layer: 145 mm, sweep rate: 20 mm / s, output: 8.0 W) to obtain a conductor.
  • electroless copper plating of the conductor was performed. Electroless copper plating was performed using “Sulcup ELC-SP” manufactured by Uemura Kogyo Co., Ltd. under conditions of 60 ° C., 3, 6, 9 and 15 minutes. Thereby, a copper wiring having a pattern width of about 5 ⁇ m was formed.
  • Example 3 (Preparation of composition) 0.5 g of ⁇ -keto acid (copper glyoxylate) was dissolved in a mixture of 1 ml of 2-aminoethanol and 2 ml of ethanol to prepare a 1.0 M copper glyoxylate solution. Separately, 0.65 g of copper formate tetrahydrate was dissolved in 3 ml of 40% methylamine methanol to prepare a 1.0 M methylamine copper complex solution. By mixing these two solutions, a composition containing an ⁇ -keto acid copper complex as the first copper complex and a methylamine copper complex as the second copper complex was prepared.
  • UV irradiation (10 mW / cm 2 , distance between polyimide film and UV lamp: 2.0 cm) was performed on one side of the polyimide film for 2 minutes.
  • the prepared composition was spin-coated (2000 rpm, 30 seconds) on a UV-irradiated polyimide film, and pre-baked (80 ° C., 10 minutes) to form a composition layer.
  • a CO 2 laser was irradiated in a pattern (pattern width: 200 ⁇ m) (distance between laser and composition layer: 140 mm, sweep speed: 20 mm / s, output: 2.0 W).
  • composition layer in the non-irradiated region was removed with pure water and dried with ethanol to obtain a patterned conductor.
  • electroless copper plating of the conductor was performed.
  • the electroless copper plating was performed using “Sulcup ELC-SP” manufactured by Uemura Kogyo Co., Ltd. at 60 ° C. for 10 minutes. Thereby, a copper wiring having a pattern width of about 200 ⁇ m was formed.
  • the method of the present disclosure can be carried out in the atmosphere and can form a conductor having excellent surface smoothness. Moreover, it turned out that the method of this indication is suitable also for formation of a high-definition copper wiring. Furthermore, it has been found that the method of the present disclosure can form a conductor having excellent surface smoothness on a resin substrate having a relatively low heat resistance, and can form a high-definition copper wiring.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Toxicology (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Health & Medical Sciences (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Chemically Coating (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

A method for producing a conductor, which comprises: a step for forming a composition layer by applying a composition to a substrate, said composition containing a first copper complex that is formed from a keto acid and a copper ion and a second copper complex that is formed from a copper ion and a ligand containing a nitrogen atom; and a step for having copper precipitated by irradiating the composition layer with a laser beam.

Description

導体の製造方法、配線基板の製造方法及び導体形成用組成物Method for producing conductor, method for producing wiring board, and composition for forming conductor
 本発明は、導体の製造方法、配線基板の製造方法及び導体形成用組成物に関する。 The present invention relates to a method for producing a conductor, a method for producing a wiring board, and a composition for forming a conductor.
 近年、各種電子デバイス、電気機器類などの素子及び配線を印刷法により形成する、プリンタブルエレクトロニクスと呼ばれる技術が注目されている。真空蒸着法、スパッタリング法、CVD法等による従来の方法は大掛かりな設備を必要とし、これが製品の高コスト化の大きな要因となっている。また、これらの方法では一般に配線となる部分を残し、その他の部分をエッチング等により除去する工程を伴うため、材料利用の非効率、廃棄物の処分などの問題点が存在する。これに対してプリンタブルエレクトロニクスでは、配線材料を含む塗布液を基板に印刷し、これを熱処理して配線を形成する。このため、高価な装置を必要としない、配線形成に伴う廃棄物が生じないなどの利点を有する。 In recent years, a technique called printable electronics that forms elements and wirings of various electronic devices and electric devices by a printing method has been attracting attention. Conventional methods such as vacuum deposition, sputtering, and CVD require large-scale equipment, which is a major factor in increasing the cost of products. In addition, these methods generally involve a step of leaving a portion to be a wiring and removing the other portion by etching or the like, and thus there are problems such as inefficient use of materials and disposal of waste. On the other hand, in printable electronics, a coating liquid containing a wiring material is printed on a substrate, and this is heat-treated to form a wiring. For this reason, there is an advantage that an expensive device is not required and waste associated with the formation of wiring does not occur.
 一方、配線材料としては金、銀等の貴金属に代わってより低価格でマイグレーションの発生もない銅の使用が検討されている。しかしながら、銅は極めて酸化され易い金属であるため、配線形成を不活性ガス雰囲気下で行う等の酸化防止のための対策が必要であり、これが低コスト化を妨げる要因の一つとなっている。 On the other hand, as a wiring material, the use of copper that does not cause migration at a lower price in place of noble metals such as gold and silver is being studied. However, since copper is a metal that is very easily oxidized, it is necessary to take measures to prevent oxidation, such as performing wiring formation in an inert gas atmosphere, and this is one of the factors hindering cost reduction.
 非特許文献1には、大気中で導体を形成可能な方法として、溶媒に可溶な銅錯体を含む塗布液を用いて基板上に印刷により薄膜を形成し、次いで炭酸ガスレーザを所望のパターン状に照射することで、照射領域に銅を析出させる方法が提案されている。 In Non-Patent Document 1, as a method for forming a conductor in the atmosphere, a thin film is formed on a substrate by using a coating solution containing a copper complex soluble in a solvent, and then a carbon dioxide laser is formed in a desired pattern shape. A method has been proposed in which copper is deposited in the irradiated region by irradiating the film with the material.
 非特許文献1に記載の方法は、大気中でも導体を形成可能である、導体のダイレクトパターニングが可能である等の利点を有するが、得られる導体の表面の平滑性に向上の余地がある。
 本発明は上記事情に鑑み、大気中で実施でき、表面の平滑性に優れる導体を形成可能な導体の製造方法、配線基板の製造方法及び導体形成用組成物を提供することを課題とする。
The method described in Non-Patent Document 1 has advantages such as the ability to form a conductor even in the atmosphere and direct patterning of the conductor, but there is room for improvement in the smoothness of the surface of the obtained conductor.
This invention makes it a subject to provide the manufacturing method of the conductor which can be implemented in air | atmosphere in view of the said situation, and can form the conductor excellent in surface smoothness, the manufacturing method of a wiring board, and the composition for conductor formation.
 上記課題を解決するための手段には、以下の実施態様が含まれる。
<1>ケト酸と銅イオンとから形成される第一の銅錯体と、窒素原子を含有する配位子と銅イオンとから形成される第二の銅錯体と、を含む組成物を基板に付与して組成物層を形成する工程と、前記組成物層にレーザ照射を行って銅を析出させる工程と、を含む導体の製造方法。
<2>第二の銅錯体がアミン系銅錯体である、<1>に記載の導体の製造方法。
<3> 前記レーザ照射がCOレーザ又はErレーザを用いて行われる、<1>又は<2>に記載の導体の製造方法。
<4>前記レーザ照射がパターン状に行われる、<1>~<3>のいずれか1項に記載の導体の製造方法。
<5>大気中で行われる、<1>~<4>のいずれか1項に記載の導体の製造方法。
<6>前記基板が樹脂基板である、<1>~<5>のいずれか1項に記載の導体の製造方法。
<7>基板と、前記基板上に配置される銅配線とを備える配線基板の製造方法であり、ケト酸と銅イオンとから形成される第一の銅錯体と、窒素原子を含有する配位子と銅イオンとから形成される第二の銅錯体と、を含む組成物を前記基板に付与して組成物層を形成する工程と、前記組成物層にレーザ照射を行って銅を析出させる工程と、を含む配線基板の製造方法。
<8>第二の銅錯体がアミン系銅錯体である、<7>に記載の配線基板の製造方法。
<9>前記レーザ照射がCOレーザ又はErレーザを用いて行われる、<7>又は<8>に記載の配線基板の製造方法。
<10>前記レーザ照射がパターン状に行われる、<7>~<9>のいずれか1項に記載の配線基板の製造方法。
<11>大気中で行われる、<7>~<10>のいずれか1項に記載の配線基板の製造方法。
<12>前記基板が樹脂基板である、<7>~<11>のいずれか1項に記載の配線基板の製造方法。
<13>ケト酸と銅イオンとから構成される第一の銅錯体と、窒素原子を含有する配位子と銅イオンとから形成される第二の銅錯体と、を含む導体形成用組成物。
<14>第一の銅錯体がケト酸銅錯体である、<13>に記載の導体形成用組成物。
<15>第二の銅錯体がアミン系銅錯体である、<13>又は<14>に記載の導体形成用組成物。
Means for solving the above problems include the following embodiments.
<1> A composition comprising a first copper complex formed from a keto acid and a copper ion, and a second copper complex formed from a ligand containing a nitrogen atom and a copper ion. A method for producing a conductor, comprising: applying and forming a composition layer; and subjecting the composition layer to laser irradiation to deposit copper.
<2> The method for producing a conductor according to <1>, wherein the second copper complex is an amine-based copper complex.
<3> The method for producing a conductor according to <1> or <2>, wherein the laser irradiation is performed using a CO 2 laser or an Er laser.
<4> The method for producing a conductor according to any one of <1> to <3>, wherein the laser irradiation is performed in a pattern.
<5> The method for producing a conductor according to any one of <1> to <4>, which is performed in the atmosphere.
<6> The method for producing a conductor according to any one of <1> to <5>, wherein the substrate is a resin substrate.
<7> A method for producing a wiring board comprising a substrate and a copper wiring disposed on the substrate, a first copper complex formed from keto acid and copper ions, and a coordination containing a nitrogen atom A step of forming a composition layer by applying to the substrate a composition comprising a second copper complex formed from a child and copper ions, and depositing copper by laser irradiation of the composition layer And a method of manufacturing a wiring board including the steps.
<8> The method for producing a wiring board according to <7>, wherein the second copper complex is an amine-based copper complex.
<9> The method for manufacturing a wiring board according to <7> or <8>, wherein the laser irradiation is performed using a CO 2 laser or an Er laser.
<10> The method for manufacturing a wiring board according to any one of <7> to <9>, wherein the laser irradiation is performed in a pattern.
<11> The method for manufacturing a wiring board according to any one of <7> to <10>, which is performed in the atmosphere.
<12> The method for manufacturing a wiring board according to any one of <7> to <11>, wherein the substrate is a resin substrate.
The composition for conductor formation containing the 1st copper complex comprised from <13> keto acid and a copper ion, and the 2nd copper complex formed from the ligand and copper ion containing a nitrogen atom. .
<14> The conductor-forming composition according to <13>, wherein the first copper complex is a keto acid copper complex.
<15> The conductor-forming composition according to <13> or <14>, wherein the second copper complex is an amine-based copper complex.
 本発明によれば、大気中で実施でき、表面の平滑性に優れる導体を形成可能な導体の製造方法、配線基板の製造方法及び導体形成用組成物が提供される。 According to the present invention, there are provided a method for producing a conductor, a method for producing a wiring board, and a composition for forming a conductor that can be formed in the atmosphere and can form a conductor having excellent surface smoothness.
実施例で形成した導体の表面の状態を示す電子顕微鏡写真である。It is an electron micrograph which shows the state of the surface of the conductor formed in the Example.
 以下、本発明を実施するための形態について詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。
 本開示において「工程」との語には、他の工程から独立した工程に加え、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、当該工程も含まれる。
 本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において各成分は該当する物質を複数種含んでいてもよい。組成物中に各成分に該当する物質が複数種存在する場合、各成分の含有率又は含有量は、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
Hereinafter, embodiments for carrying out the present invention will be described in detail. However, the present invention is not limited to the following embodiments. In the following embodiments, the components (including element steps and the like) are not essential unless otherwise specified. The same applies to numerical values and ranges thereof, and the present invention is not limited thereto.
In the present disclosure, the term “process” includes a process that is independent of other processes and includes the process if the purpose of the process is achieved even if it cannot be clearly distinguished from the other processes. .
In the present disclosure, numerical ranges indicated using “to” include numerical values described before and after “to” as the minimum value and the maximum value, respectively.
In the numerical ranges described stepwise in the present disclosure, the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical description. . Further, in the numerical ranges described in the present disclosure, the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples.
In the present disclosure, each component may contain a plurality of corresponding substances. When multiple types of substances corresponding to each component are present in the composition, the content or content of each component is the total content or content of the multiple types of substances present in the composition unless otherwise specified. Means quantity.
<導体の製造方法>
 本開示の導体の製造方法は、ケト酸と銅イオンとから形成される第一の銅錯体と、窒素原子を含有する配位子と銅イオンとから形成される第二の銅錯体と、を含む組成物を基板に付与して組成物層を形成する工程と、前記組成物層にレーザ照射を行って銅を析出させる工程と、を含む。
<Manufacturing method of conductor>
A method for producing a conductor of the present disclosure includes a first copper complex formed from a keto acid and a copper ion, and a second copper complex formed from a ligand containing a nitrogen atom and a copper ion. A step of applying a composition to the substrate to form a composition layer, and a step of depositing copper by irradiating the composition layer with laser.
 上記方法では、基板上に形成された組成物層にレーザ照射を行うことで銅が析出する。具体的には、レーザ照射を行うと照射部が瞬間的に熱せられ、この熱によって銅錯体の配位子の結合が切断され、銅イオンがCuに還元されて銅が析出する。また、配位子は熱によりCOとCOとHOとに分解され、気体となって除去されるため、高純度な導体が得られる。導体の形状は特に制限されず、膜状であってもパターン状であってもその他の形状であってもよい。 In the said method, copper precipitates by performing laser irradiation to the composition layer formed on the board | substrate. Specifically, when the laser irradiation is performed, the irradiated part is heated instantaneously, and the bond of the ligand of the copper complex is cut by this heat, and the copper ions are reduced to Cu and copper is deposited. Moreover, the ligand is decomposed into CO 2 and CO and H 2 O by thermal, to be removed by a gas, high purity conductor is obtained. The shape of the conductor is not particularly limited, and may be a film shape, a pattern shape, or other shapes.
 上記方法では、析出により生じた銅のナノ粒子同士が溶融して成長し、レーザ照射領域に導体が形成されると考えられる。また、この反応が極めて短時間のうちに進行するために大気中の酸素と反応する前に銅粒子が析出することから、大気中であっても良好な導体が形成できると考えられる。また、析出した銅ナノ粒子は銅の融点よりも低い温度で溶融するため、低エネルギーで導体を形成することができる。また、レーザ照射された領域外の組成物層は、銅錯体を溶解しうる溶剤等を用いて容易に除去することができるため、低コスト化の点でも有利である。また、組成物は銅錯体が溶解した状態であるため、金属粒子を用いた材料のように凝集、酸化等の問題が生じず保存安定性に優れている。 In the above method, it is considered that copper nanoparticles produced by precipitation melt and grow, and a conductor is formed in the laser irradiation region. In addition, since this reaction proceeds in a very short time, the copper particles are precipitated before reacting with oxygen in the atmosphere. Therefore, it is considered that a good conductor can be formed even in the atmosphere. Moreover, since the deposited copper nanoparticles melt at a temperature lower than the melting point of copper, a conductor can be formed with low energy. Further, the composition layer outside the region irradiated with the laser can be easily removed using a solvent or the like that can dissolve the copper complex, which is advantageous in terms of cost reduction. Further, since the composition is in a state in which the copper complex is dissolved, problems such as aggregation and oxidation do not occur as in the material using metal particles, and the composition is excellent in storage stability.
 さらに、上記方法により形成される導体は、第一の銅錯体のみを含む組成物を用いて形成した導体よりも表面の平滑性に優れている。第二の銅錯体が第一の銅錯体よりも分解しやすい(分解温度が低い)ため、第二の銅錯体からの銅の析出が先に生じて核を形成し、この核をもとにして第一の銅錯体から析出した銅による粒子の成長が促進されると考えられる。導体の表面がより平滑であることは、導体の構造がより緻密であることを意味すると考えられる。 Furthermore, the conductor formed by the above method is superior in surface smoothness to a conductor formed using a composition containing only the first copper complex. Since the second copper complex is easier to decompose than the first copper complex (has a lower decomposition temperature), the copper deposition from the second copper complex occurs first to form a nucleus, and based on this nucleus It is considered that the growth of particles by copper deposited from the first copper complex is promoted. A smoother conductor surface is thought to mean a more dense conductor structure.
 上記方法で使用する第一の銅錯体は、ケト酸と銅イオンとから形成されるもの(ケト酸銅)であれば特に制限されず、グリオキシル酸銅等のα-ケト酸銅、β-ケト酸銅及びγ-ケト酸銅のいずれであっても、これらの組み合わせであってもよい。 The first copper complex used in the above method is not particularly limited as long as it is formed from a keto acid and a copper ion (copper keto), and α-keto acid copper such as copper glyoxylate, β-keto Either copper acid or copper γ-keto acid or a combination thereof may be used.
 上記方法で使用する第二の銅錯体は、窒素原子を含有する配位子と銅イオンとから形成されるものであれば特に制限されない。例えば、メチルアミン銅錯体、エチルアミン銅錯体等のモノアルキルアミン銅錯体(C2n+1NHCu:nは整数)、ジアルキルアミン銅錯体、トリアルキルアミン銅錯体、エチレンジアミン銅錯体、エタノールアミン銅錯体等のアミン系銅錯体が挙げられる。第二の銅錯体は1種を単独で用いても2種以上を併用してもよい。 The second copper complex used in the above method is not particularly limited as long as it is formed from a nitrogen atom-containing ligand and a copper ion. For example, methylamine copper complex, monoalkylamine copper complex such as ethylamine copper complex (C n H 2n + 1 NH 2 Cu: n is an integer), dialkylamine copper complex, trialkylamine copper complex, ethylenediamine copper complex, ethanolamine copper complex And amine-based copper complexes such as A 2nd copper complex may be used individually by 1 type, or may use 2 or more types together.
 第一の銅錯体と第二の銅錯体を含む組成物は、これらの銅錯体を溶解しうる溶媒をさらに含んでもよい。このような溶媒としては、メタノール、エタノール、アミノエタノール等のアルコール系溶剤、シクロヘキサノン等のケトン系溶剤、ジメチルホルムアミド等のアミド系溶剤、テルピネオール等のテルペン系溶剤、エステル系溶剤などが挙げられる。溶媒は1種を単独で用いても2種以上を併用してもよい。 The composition containing the first copper complex and the second copper complex may further contain a solvent capable of dissolving these copper complexes. Examples of such solvents include alcohol solvents such as methanol, ethanol and aminoethanol, ketone solvents such as cyclohexanone, amide solvents such as dimethylformamide, terpene solvents such as terpineol, and ester solvents. A solvent may be used individually by 1 type, or may use 2 or more types together.
 組成物中の第一の銅錯体と第二の銅錯体の含有率は特に制限されないが、例えば組成物全体の90質量%~5質量%の範囲内であってよく、80質量%~10質量%の範囲内であることが好ましい。 The content ratio of the first copper complex and the second copper complex in the composition is not particularly limited, but may be, for example, in the range of 90% by mass to 5% by mass of the entire composition, and 80% by mass to 10% by mass. % Is preferable.
 組成物中の第一の銅錯体と第二の銅錯体のモル比(第一の銅錯体:第二の銅錯体)は特に制限されないが、例えば9:1~1:9の範囲内であってよく、8:2~2:8の範囲内であることが好ましい。また、組成物全体に対する銅のモル濃度(第一の銅錯体と第二の銅錯体の合計)は特に制限されないが、例えば0.5M(mol/L)~3.0M(mol/L)の範囲内であることが好ましい。 The molar ratio of the first copper complex to the second copper complex in the composition (first copper complex: second copper complex) is not particularly limited, but is within the range of, for example, 9: 1 to 1: 9. It may be within a range of 8: 2 to 2: 8. Further, the molar concentration of copper (the total of the first copper complex and the second copper complex) with respect to the whole composition is not particularly limited, but for example 0.5 M (mol / L) to 3.0 M (mol / L) It is preferable to be within the range.
 組成物は、銅錯体と媒体以外の成分を必要に応じて含んでもよい。このような成分としては、粘度調整剤等が挙げられる。 The composition may contain components other than the copper complex and the medium as necessary. Examples of such components include viscosity modifiers.
 上記方法で使用する基板は特に制限されず、電子部品装置の配線基板として一般的なものを使用できる。例えば、半導体基板、ガラス基板、セラミック基板、樹脂基板、これらの複合体等が挙げられる。さらには、セルロースナノファイバを利用したペーパーデバイスに用いる基板等が挙げられる。上記方法では導体の形成がレーザ照射により行われるため、焼成等の熱処理に適しない材料からなる基板であっても導体を形成することができる。 The substrate used in the above method is not particularly limited, and a general wiring substrate for an electronic component device can be used. For example, a semiconductor substrate, a glass substrate, a ceramic substrate, a resin substrate, a composite body thereof, or the like can be given. Furthermore, the board | substrate etc. which are used for the paper device using a cellulose nanofiber are mentioned. In the above method, since the conductor is formed by laser irradiation, the conductor can be formed even on a substrate made of a material that is not suitable for heat treatment such as baking.
 基板上に組成物層を形成する方法は、特に制限されない。例えば、スピンコート法、印刷法等が挙げられる。組成物層は基板上に一様に形成しても、パターン状に形成してもよい。 The method for forming the composition layer on the substrate is not particularly limited. For example, a spin coat method, a printing method, etc. are mentioned. The composition layer may be formed uniformly on the substrate or may be formed in a pattern.
 上記方法でレーザ照射に使用するレーザは、銅錯体の分解と銅の析出を生じさせるものであれば特に制限されない。大気中で良好な導体を形成する観点からは赤外線レーザ及び近赤外線レーザが好ましく、COレーザ及びErレーザがより好ましい。レーザ照射は組成物層に対して一様に実施しても、パターン状に実施してもよい。 The laser used for laser irradiation by the above method is not particularly limited as long as it causes decomposition of the copper complex and precipitation of copper. From the viewpoint of forming a good conductor in the air, an infrared laser and a near infrared laser are preferable, and a CO 2 laser and an Er laser are more preferable. Laser irradiation may be performed uniformly or in a pattern on the composition layer.
 上記方法は、レーザ照射により銅が析出した部分以外の組成物層を除去する工程を含んでもよい。例えば、組成物層に含まれる銅錯体を溶解しうる溶剤を用いて組成物層を除去してもよい。 The above method may include a step of removing a composition layer other than a portion where copper is deposited by laser irradiation. For example, you may remove a composition layer using the solvent which can melt | dissolve the copper complex contained in a composition layer.
 上記方法で形成された導体は、さらに無電解銅めっき等の処理を施してもよい。無電解銅めっきを施すことで、導体の厚みを増すことができる。一般的な無電解銅めっきではPd膜を銅析出の触媒膜として使用するが、上記方法では導体上に銅を析出させるため、低コスト化の点でも有利である。 The conductor formed by the above method may be further subjected to treatment such as electroless copper plating. By applying electroless copper plating, the thickness of the conductor can be increased. In general electroless copper plating, a Pd film is used as a catalyst film for copper deposition. However, the above method is advantageous in terms of cost reduction because copper is deposited on the conductor.
 上記方法で形成されるパターン状の導体は、パターン幅の均一性に優れている。このため、より細かなパターンを形成することが可能となり、より高い性能を備える素子(回路)や配線を提供することが可能となる。 The patterned conductor formed by the above method has excellent pattern width uniformity. For this reason, it becomes possible to form a finer pattern and to provide an element (circuit) and wiring with higher performance.
 パターン状の導体を形成する方法としては、組成物層にレーザをパターン状に直接照射する方法(ダイレクトパターニング)でも、パターン状に組成物層を形成し、ついでレーザを照射して銅配線へと転換する方法でもよい。これらの方法では不要な導体を除去するためのエッチングのプロセスを必要とせず、エッチング廃液などが生じないため環境にも優しい。パターン状に組成物層を形成する方法としては、スクリーン印刷、オフセット印刷などの配線形成に一般に使用される印刷法のほか、さらに微細な配線を形成可能なマイクロコンタクトプリンティングが挙げられる。 As a method of forming a patterned conductor, a method of directly irradiating the composition layer with a laser in a pattern form (direct patterning) is also used to form a composition layer in a pattern, and then irradiating the laser to form a copper wiring. A method of conversion may be used. These methods do not require an etching process for removing unnecessary conductors, and are not environmentally friendly because no etching waste liquid is generated. Examples of the method for forming the composition layer in a pattern include a printing method generally used for wiring formation such as screen printing and offset printing, and microcontact printing capable of forming finer wiring.
 マイクロコンタクトプリンティングによりパターン状の導体を形成する方法としては、例えば、PDMS(ポリジメチルシロキサン)からなるスタンパーに付着させた組成物を基板に転写してパターン状の組成物層を形成し、レーザ照射により銅を析出させる方法が挙げられる。 As a method for forming a patterned conductor by microcontact printing, for example, a composition adhered to a stamper made of PDMS (polydimethylsiloxane) is transferred to a substrate to form a patterned composition layer, and laser irradiation is performed. The method of depositing copper is mentioned.
 上記方法により形成される導体は、種々の用途に用いることができる。例えば、電子機器類に用いられる配線基板の素子又は配線を形成する方法として好適に用いることができる。また、低エネルギーで導体を形成できるため、樹脂フィルム、ガラス薄板、ペーパーデバイス等の従来の方法では導体の形成が困難であった基板への導体形成にも好適に用いることができる。 The conductor formed by the above method can be used for various purposes. For example, it can be suitably used as a method of forming an element or wiring of a wiring board used in electronic equipment. Moreover, since a conductor can be formed with low energy, it can be suitably used for forming a conductor on a substrate, which is difficult to form with a conventional method such as a resin film, a thin glass plate, or a paper device.
 上記方法の応用例のひとつとして、ガラスからなるインターポーザ(ガラスインターポーザ)への貫通電極の形成が挙げられる。インターポーザは基板と半導体素子との間に配置される部材であり、基板と半導体素子を電気的に接続する貫通電極を備える。インターポーザの材質としては樹脂、シリコン等が一般に用いられる。ガラスインターポーザは樹脂、シリコン等からなるインターポーザに比べて熱膨張係数、耐熱性、絶縁性、製造コスト等の面で有利である一方、貫通電極の形成工程に耐えうるほどに強度が十分でないという問題がある。 One example of application of the above method is the formation of a through electrode in an interposer made of glass (glass interposer). The interposer is a member disposed between the substrate and the semiconductor element, and includes a through electrode that electrically connects the substrate and the semiconductor element. As the material of the interposer, resin, silicon or the like is generally used. Glass interposers are advantageous in terms of thermal expansion coefficient, heat resistance, insulation, manufacturing cost, etc., compared to interposers made of resin, silicon, etc., but they are not strong enough to withstand the process of forming through electrodes. There is.
 上記方法によれば、ガラス薄板を損なうことなく貫通電極を形成することができる。ガラスインターポーザへの貫通電極の形成は、例えば、ガラス薄板にレーザ加工により貫通孔を形成し、次いで貫通孔の内部に第一の銅錯体と第二の銅錯体を含む組成物を付与し、レーザ照射により銅を析出させることで行うことができる。 According to the above method, the through electrode can be formed without damaging the glass thin plate. The through electrode is formed on the glass interposer by, for example, forming a through hole in a glass thin plate by laser processing, then applying a composition containing the first copper complex and the second copper complex inside the through hole, This can be done by precipitating copper by irradiation.
<配線基板の製造方法>
 本開示の配線基板の製造方法は、基板と、前記基板上に配置される銅配線とを備える配線基板の製造方法であって、ケト酸と銅イオンとから形成される第一の銅錯体と、窒素原子を含有する配位子と銅イオンとから形成される第二の銅錯体と、を含む組成物を基板に付与して組成物層を形成する工程と、前記組成物層にレーザ照射を行って銅を析出させる工程と、を含む。
<Manufacturing method of wiring board>
A method of manufacturing a wiring board according to the present disclosure is a manufacturing method of a wiring board including a substrate and a copper wiring disposed on the substrate, and a first copper complex formed from keto acid and copper ions A step of forming a composition layer by applying to a substrate a composition comprising a second copper complex formed from a ligand containing nitrogen atoms and copper ions, and laser irradiation of the composition layer And a step of depositing copper.
 上記方法で使用される材料、組成物層の形成方法、レーザ照射条件その他の項目の詳細及び好ましい態様は、上述した導体の製造方法におけるものと同様である。 The details and preferred aspects of the materials used in the above method, the composition layer forming method, the laser irradiation conditions and other items are the same as those in the above-described conductor manufacturing method.
<導体形成用組成物>
 本開示の導体形成用組成物は、ケト酸と銅イオンから構成される第一の銅錯体と、窒素原子を含有する配位子と銅イオンとから形成される第二の銅錯体と、を含む。
<Conductor forming composition>
The conductor forming composition of the present disclosure includes a first copper complex composed of a keto acid and a copper ion, and a second copper complex formed from a ligand containing a nitrogen atom and a copper ion. Including.
 上記組成物を用いることで、表面の平滑性に優れる導体を形成することができる。上記組成物の詳細及び好ましい態様は、上述した導体の製造方法に用いる組成物の詳細及び好ましい態様と同様である。 By using the above composition, a conductor having excellent surface smoothness can be formed. The details and preferred embodiments of the composition are the same as the details and preferred embodiments of the composition used in the above-described method for producing a conductor.
 以下、上述した導体の製造方法について実施例を参照してより詳細に説明するが、本開示はこれらの実施例に制限されるものではない。 Hereinafter, the above-described conductor manufacturing method will be described in more detail with reference to examples, but the present disclosure is not limited to these examples.
<実施例1>
(組成物の調製)
 α-ケト酸(グリオキシル酸銅)を水酸化ナトリウムで中和し、α-ケト酸のナトリウム塩を得た。このα-ケト酸ナトリウム塩を水に溶解し、硫酸銅を水に溶解したものを加えた。この混合液を撹拌すると、薄い青色の沈殿物としてα-ケト酸銅錯体が析出した。析出したα-ケト酸銅錯体を回収し、アミノエタノールとエタノールの混合溶媒に溶解させた。この溶液に、ギ酸銅をメチルアミンのメタノール溶液に溶解させたものを添加して、メチルアミン銅錯体を生成し、第一の銅錯体としてα-ケト酸銅錯体と、第二の銅錯体としてメチルアミン銅錯体と、を含む組成物を調製した。
 組成物中のα-ケト酸銅錯体とメチルアミン銅錯体のモル比は1:1とし、α-ケト酸銅錯体とメチルアミン銅錯体の合計の組成物全体における含有率は銅濃度として1M(mol/L)とした。
<Example 1>
(Preparation of composition)
α-Keto acid (copper glyoxylate) was neutralized with sodium hydroxide to obtain a sodium salt of α-keto acid. This α-keto acid sodium salt was dissolved in water, and copper sulfate dissolved in water was added. When this mixed solution was stirred, an α-keto acid copper complex was precipitated as a light blue precipitate. The precipitated α-keto acid copper complex was recovered and dissolved in a mixed solvent of aminoethanol and ethanol. To this solution, a solution of copper formate dissolved in methanol solution of methylamine is added to form a methylamine copper complex. The first copper complex is α-keto acid copper complex and the second copper complex is A composition containing a methylamine copper complex was prepared.
The molar ratio of the α-keto acid copper complex and the methylamine copper complex in the composition was 1: 1, and the total content of the α-keto acid copper complex and the methylamine copper complex in the entire composition was 1 M as the copper concentration ( mol / L).
(ダイレクトパターニングによるガラス基板への銅配線の形成)
 調製した組成物をガラス基板上に塗布し、COレーザ(レーザ出力:6W)をパターン状(パターン幅:200μm)に大気中で照射した。照射部には、銅が析出した。照射後の基板をアミノエタノール溶液に浸漬し、銅が析出した部分以外の組成物層を除去した。次いで乾燥し、導体が表面に形成された基板を得た。
(Formation of copper wiring on glass substrate by direct patterning)
The prepared composition was applied onto a glass substrate, and a CO 2 laser (laser output: 6 W) was irradiated in a pattern (pattern width: 200 μm) in the air. Copper was deposited in the irradiated area. The substrate after irradiation was immersed in an aminoethanol solution, and the composition layer other than the portion where copper was deposited was removed. Subsequently, it dried and the board | substrate with which the conductor was formed in the surface was obtained.
(導体表面の評価)
 銅錯体としてα-ケト酸銅錯体のみを含むこと以外は上記と同様にして組成物を調製し、この組成物を用いた以外は上記と同様にして基板上に導体を形成した。次いで、両者の導体の表面の状態を光学顕微鏡で観察した。その結果、図1に示すように、α-ケト酸銅錯体のみを含む組成物を用いて形成した導体(左)に比べ、α-ケト酸銅錯体とメチルアミン銅錯体を含む組成物を用いて形成した導体(右)の方が表面の平滑性に優れていた。
(Evaluation of conductor surface)
A composition was prepared in the same manner as described above except that only the copper complex of α-keto acid was included as a copper complex, and a conductor was formed on the substrate in the same manner as described above except that this composition was used. Subsequently, the state of the surface of both conductors was observed with an optical microscope. As a result, as shown in FIG. 1, a composition containing an α-keto acid copper complex and a methylamine copper complex was used as compared with a conductor (left) formed using a composition containing only an α-keto acid copper complex. The conductor (right) formed in this way was superior in surface smoothness.
<実施例2>
(組成物の調製)
 α-ケト酸(グリオキシル酸銅)0.85gを2-アミノエタノール1mlとエタノール2mlの混合物に溶解させ、1.7Mのグリオキシル酸銅溶液を調製した。別で、ギ酸銅・4水和物1.105gを40%メチルアミンメタノール3mlに溶解させ、1.7Mのメチルアミン銅錯体溶液を調製した。この二つの溶液を混合することで、第一の銅錯体としてα-ケト酸銅錯体と、第二の銅錯体としてメチルアミン銅錯体と、を含む組成物を調製した。
<Example 2>
(Preparation of composition)
α-keto acid (copper glyoxylate) 0.85 g was dissolved in a mixture of 1 ml of 2-aminoethanol and 2 ml of ethanol to prepare a 1.7M copper glyoxylate solution. Separately, 1.105 g of copper formate tetrahydrate was dissolved in 3 ml of 40% methylamine methanol to prepare a 1.7 M methylamine copper complex solution. By mixing these two solutions, a composition containing an α-keto acid copper complex as the first copper complex and a methylamine copper complex as the second copper complex was prepared.
(マイクロコンタクトプリンティングによる銅配線の形成)
 調製した組成物をスライドガラスにスピンコーティング(3000rpm、30秒)し、マイクロコンタクトスタンパーを押し当てて、スタンパーに組成物を付着させ、これをアルミナ基板にスタンピングして、微細パターンの組成物層を作製した。80℃、10分でプレベイクを行い、COレーザを照射して(レーザと組成物層間の距離:145mm、掃引速度:20mm/s、出力:8.0W)、導体を得た。次いで、導体の無電解銅めっきを行った。無電解銅めっきは、上村工業株式会社製の「スルカップELC-SP」を用いて、60℃、3、6、9及び15分の条件で実施した。これにより、パターン幅が約5μmの銅配線を形成した。
(Copper wiring formation by micro contact printing)
The prepared composition is spin-coated on a glass slide (3000 rpm, 30 seconds), a microcontact stamper is pressed to adhere the composition to the stamper, and this is stamped onto an alumina substrate to form a fine pattern composition layer. Produced. Pre-baking was performed at 80 ° C. for 10 minutes, and a CO 2 laser was irradiated (distance between laser and composition layer: 145 mm, sweep rate: 20 mm / s, output: 8.0 W) to obtain a conductor. Next, electroless copper plating of the conductor was performed. Electroless copper plating was performed using “Sulcup ELC-SP” manufactured by Uemura Kogyo Co., Ltd. under conditions of 60 ° C., 3, 6, 9 and 15 minutes. Thereby, a copper wiring having a pattern width of about 5 μm was formed.
<実施例3>
(組成物の調製)
 α-ケト酸(グリオキシル酸銅)0.5gを2-アミノエタノール1mlとエタノール2mlの混合物に溶解させ、1.0Mのグリオキシル酸銅溶液を調製した。別で、ギ酸銅・4水和物0.65gを40%メチルアミンメタノール3mlに溶解させ、1.0Mのメチルアミン銅錯体溶液を調製した。この二つの溶液を混合することで、第一の銅錯体としてα-ケト酸銅錯体と、第二の銅錯体としてメチルアミン銅錯体と、を含む組成物を調製した。
<Example 3>
(Preparation of composition)
0.5 g of α-keto acid (copper glyoxylate) was dissolved in a mixture of 1 ml of 2-aminoethanol and 2 ml of ethanol to prepare a 1.0 M copper glyoxylate solution. Separately, 0.65 g of copper formate tetrahydrate was dissolved in 3 ml of 40% methylamine methanol to prepare a 1.0 M methylamine copper complex solution. By mixing these two solutions, a composition containing an α-keto acid copper complex as the first copper complex and a methylamine copper complex as the second copper complex was prepared.
(ダイレクトパターニングによるポリイミドフィルムへの銅配線の形成)
 ポリイミドフィルムの片面に、UV照射(10mW/cm、ポリイミドフィルムとUVランプ間の距離:2.0cm)を2分間実施した。次いで、調製した組成物をUV照射したポリイミドフィルム上にスピンコーティング(2000rpm、30秒)し、プレベイク(80℃、10分)を行って組成物層を形成した。次いで、COレーザをパターン状(パターン幅:200μm)に照射(レーザと組成物層間の距離:140mm、掃引速度:20mm/s、出力:2.0W)した。その後、純水で非照射領域の組成物層を除去し、エタノールで乾燥することで、パターン状の導体を得た。次いで、導体の無電解銅めっきを行った。無電解銅めっきは、上村工業株式会社製の「スルカップELC-SP」を用いて、60℃、10分の条件で実施した。これにより、パターン幅が約200μmの銅配線を形成した。
(Formation of copper wiring on polyimide film by direct patterning)
UV irradiation (10 mW / cm 2 , distance between polyimide film and UV lamp: 2.0 cm) was performed on one side of the polyimide film for 2 minutes. Next, the prepared composition was spin-coated (2000 rpm, 30 seconds) on a UV-irradiated polyimide film, and pre-baked (80 ° C., 10 minutes) to form a composition layer. Subsequently, a CO 2 laser was irradiated in a pattern (pattern width: 200 μm) (distance between laser and composition layer: 140 mm, sweep speed: 20 mm / s, output: 2.0 W). Thereafter, the composition layer in the non-irradiated region was removed with pure water and dried with ethanol to obtain a patterned conductor. Next, electroless copper plating of the conductor was performed. The electroless copper plating was performed using “Sulcup ELC-SP” manufactured by Uemura Kogyo Co., Ltd. at 60 ° C. for 10 minutes. Thereby, a copper wiring having a pattern width of about 200 μm was formed.
 形成した銅配線の断面を透過電子顕微鏡で観察したところ、レーザ照射により形成された50nm~100nm程度の厚みのCu膜が、無電解銅めっきにより500nm程度にまで厚膜化されている様子が確認できた。また、得られた銅配線は緻密な構造を有していた。 Observation of a cross section of the formed copper wiring with a transmission electron microscope confirmed that the Cu film with a thickness of about 50 nm to 100 nm formed by laser irradiation was thickened to about 500 nm by electroless copper plating. did it. Further, the obtained copper wiring had a dense structure.
 以上の結果から、本開示の方法は大気中で実施でき、かつ表面の平滑性に優れる導体を形成できることがわかった。また、本開示の方法は高精細な銅配線の形成にも好適であることがわかった。さらに、本開示の方法は比較的耐熱性の低い樹脂基板にも表面の平滑性に優れる導体を形成でき、かつ高精細な銅配線を形成できることがわかった。 From the above results, it was found that the method of the present disclosure can be carried out in the atmosphere and can form a conductor having excellent surface smoothness. Moreover, it turned out that the method of this indication is suitable also for formation of a high-definition copper wiring. Furthermore, it has been found that the method of the present disclosure can form a conductor having excellent surface smoothness on a resin substrate having a relatively low heat resistance, and can form a high-definition copper wiring.
 日本国特許出願第2017-099366号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に援用されて取り込まれる。
The disclosure of Japanese Patent Application No. 2017-099366 is incorporated herein by reference in its entirety.
All documents, patent applications, and technical standards mentioned in this specification are to the same extent as if each individual document, patent application, and technical standard were specifically and individually described to be incorporated by reference, Incorporated herein by reference.

Claims (15)

  1.  ケト酸と銅イオンとから形成される第一の銅錯体と、窒素原子を含有する配位子と銅イオンとから形成される第二の銅錯体と、を含む組成物を基板に付与して組成物層を形成する工程と、前記組成物層にレーザ照射を行って銅を析出させる工程と、を含む導体の製造方法。 A composition comprising a first copper complex formed from a keto acid and a copper ion, and a second copper complex formed from a ligand containing a nitrogen atom and a copper ion is applied to the substrate. A method for producing a conductor, comprising: a step of forming a composition layer; and a step of depositing copper by irradiating the composition layer with laser.
  2.  第二の銅錯体がアミン系銅錯体である、請求項1に記載の導体の製造方法。 The method for producing a conductor according to claim 1, wherein the second copper complex is an amine-based copper complex.
  3.  前記レーザ照射がCOレーザ又はErレーザを用いて行われる、請求項1又は請求項2に記載の導体の製造方法。 The method for manufacturing a conductor according to claim 1, wherein the laser irradiation is performed using a CO 2 laser or an Er laser.
  4.  前記レーザ照射がパターン状に行われる、請求項1~請求項3のいずれか1項に記載の導体の製造方法。 The method of manufacturing a conductor according to any one of claims 1 to 3, wherein the laser irradiation is performed in a pattern.
  5.  大気中で行われる、請求項1~請求項4のいずれか1項に記載の導体の製造方法。 The method for producing a conductor according to any one of claims 1 to 4, which is performed in the atmosphere.
  6.  前記基板が樹脂基板である、請求項1~請求項5のいずれか1項に記載の導体の製造方法。 The method for producing a conductor according to any one of claims 1 to 5, wherein the substrate is a resin substrate.
  7.  基板と、前記基板上に配置される銅配線とを備える配線基板の製造方法であり、ケト酸と銅イオンとから形成される第一の銅錯体と、窒素原子を含有する配位子と銅イオンとから形成される第二の銅錯体と、を含む組成物を前記基板に付与して組成物層を形成する工程と、前記組成物層にレーザ照射を行って銅を析出させる工程と、を含む配線基板の製造方法。 A method of manufacturing a wiring board comprising a substrate and a copper wiring disposed on the substrate, a first copper complex formed from keto acid and copper ions, a ligand containing nitrogen atoms, and copper A step of applying a composition containing a second copper complex formed from ions to the substrate to form a composition layer, a step of performing laser irradiation on the composition layer to deposit copper, A method of manufacturing a wiring board including:
  8.  第二の銅錯体がアミン系銅錯体である、請求項7に記載の配線基板の製造方法。 The method for producing a wiring board according to claim 7, wherein the second copper complex is an amine-based copper complex.
  9.  前記レーザ照射がCOレーザ又はErレーザを用いて行われる、請求項7又は請求項8に記載の配線基板の製造方法。 The method for manufacturing a wiring board according to claim 7 or 8, wherein the laser irradiation is performed using a CO 2 laser or an Er laser.
  10.  前記レーザ照射がパターン状に行われる、請求項7~請求項9のいずれか1項に記載の配線基板の製造方法。 The method for manufacturing a wiring board according to any one of claims 7 to 9, wherein the laser irradiation is performed in a pattern.
  11.  大気中で行われる、請求項7~請求項10のいずれか1項に記載の配線基板の製造方法。 The method for manufacturing a wiring board according to any one of claims 7 to 10, wherein the method is performed in air.
  12.  前記基板が樹脂基板である、請求項7~請求項11のいずれか1項に記載の配線基板の製造方法。 12. The method for manufacturing a wiring board according to claim 7, wherein the substrate is a resin substrate.
  13.  ケト酸と銅イオンとから構成される第一の銅錯体と、窒素原子を含有する配位子と銅イオンとから形成される第二の銅錯体と、を含む導体形成用組成物。 A composition for forming a conductor, comprising: a first copper complex composed of keto acid and copper ions; and a second copper complex formed from a ligand containing a nitrogen atom and copper ions.
  14.  第一の銅錯体がケト酸銅錯体である、請求項13に記載の導体形成用組成物。 The conductor-forming composition according to claim 13, wherein the first copper complex is a keto acid copper complex.
  15.  第二の銅錯体がアミン系銅錯体である、請求項13又は請求項14に記載の導体形成用組成物。 The conductor-forming composition according to claim 13 or 14, wherein the second copper complex is an amine-based copper complex.
PCT/JP2018/019372 2017-05-18 2018-05-18 Method for producing conductor, method for producing wiring board, and composition for forming conductor WO2018212345A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019518897A JP7130631B2 (en) 2017-05-18 2018-05-18 Method for producing conductor, method for producing wiring board, and method for producing composition for forming conductor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017099366 2017-05-18
JP2017-099366 2017-05-18

Publications (1)

Publication Number Publication Date
WO2018212345A1 true WO2018212345A1 (en) 2018-11-22

Family

ID=64274174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/019372 WO2018212345A1 (en) 2017-05-18 2018-05-18 Method for producing conductor, method for producing wiring board, and composition for forming conductor

Country Status (2)

Country Link
JP (1) JP7130631B2 (en)
WO (1) WO2018212345A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022050354A1 (en) 2020-09-07 2022-03-10 株式会社ダイセル Mounting structure, led display, and mounting method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004277868A (en) * 2003-03-19 2004-10-07 Mitsubishi Paper Mills Ltd Preparation method of conductive composition
JP2010534932A (en) * 2007-07-26 2010-11-11 エルジー・ケム・リミテッド Method for forming electrically conductive copper pattern layer by laser irradiation
JP2011243436A (en) * 2010-05-19 2011-12-01 Tosoh Corp Method of producing composition for conductive film formation
JP2014196384A (en) * 2013-03-29 2014-10-16 富士フイルム株式会社 Conductive film-forming composition and method for producing conductive film using the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000328252A (en) * 1999-05-24 2000-11-28 Hyper Photon System:Kk Formation of metallic pattern
JP2003147541A (en) * 2001-11-15 2003-05-21 Hitachi Ltd Electroless copper plating solution, replenishing solution for electroless copper plating, and method of producing wiring board
JP2006098015A (en) * 2004-09-30 2006-04-13 Matsushita Electric Ind Co Ltd Humidifier
JP5101623B2 (en) * 2007-09-11 2012-12-19 新日鉄住金化学株式会社 Method for forming conductor layer, method for producing circuit board, method for producing conductive fine particles, and composition for forming conductor layer
JP2011122177A (en) * 2009-12-08 2011-06-23 Tosoh Corp Complex particulate, method for manufacturing the same, composition for forming conductive film using the same, and method for forming the conductive film
JP2013001984A (en) * 2011-06-21 2013-01-07 Sumitomo Electric Ind Ltd Method for producing fine metal particle by using electrolytically regenerated solution
JP6300615B2 (en) * 2014-04-16 2018-03-28 京都府公立大学法人 Photoacoustic image capturing apparatus and photoacoustic image capturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004277868A (en) * 2003-03-19 2004-10-07 Mitsubishi Paper Mills Ltd Preparation method of conductive composition
JP2010534932A (en) * 2007-07-26 2010-11-11 エルジー・ケム・リミテッド Method for forming electrically conductive copper pattern layer by laser irradiation
JP2011243436A (en) * 2010-05-19 2011-12-01 Tosoh Corp Method of producing composition for conductive film formation
JP2014196384A (en) * 2013-03-29 2014-10-16 富士フイルム株式会社 Conductive film-forming composition and method for producing conductive film using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022050354A1 (en) 2020-09-07 2022-03-10 株式会社ダイセル Mounting structure, led display, and mounting method

Also Published As

Publication number Publication date
JP7130631B2 (en) 2022-09-05
JPWO2018212345A1 (en) 2020-05-07

Similar Documents

Publication Publication Date Title
KR101935117B1 (en) Conductive substrate
JP4918994B2 (en) Method for forming metal coating and metal wiring
US20040055892A1 (en) Deposition method for nanostructure materials
CA2692067C (en) Organoamine stabilized silver nanoparticles and process for producing same
JP2005175472A (en) Method of depositing nanoparticles
JP2005507452A (en) Inkjet ink containing metal nanoparticles
JP2009545657A (en) Particles and inks and films using them
KR20150082133A (en) Conductive hybrid Cu ink and light sintering method using the same
JP2008041960A (en) Manufacturing method of electronic circuit component
JP4263581B2 (en) Metal oxide quantum dot formation method using metal thin film or metal powder
WO2011048937A1 (en) Conductive film using high concentration dispersion of copper-based nanoparticles, and method for producing same
KR20110027487A (en) Composition for metal pattern and method of forming metal pattern using the same
CN109712742A (en) A kind of graphene crystal film and preparation method thereof with highly conductive ability
KR100906317B1 (en) Method for forming inorganic thin film on polyimide resin and method for producing polyimide resin having reformed surface for forming inorganic thin film
US20080311414A1 (en) Method of forming thin metal film and thin metal film manufactured by the forming method
WO2018212345A1 (en) Method for producing conductor, method for producing wiring board, and composition for forming conductor
Ohishi et al. Preparation and properties of copper fine wire on polyimide film in air by laser irradiation and mixed-copper-complex solution containing glyoxylic acid copper complex and methylamine copper complex
JP2007200660A (en) Method of manufacturing metal film
JP4761110B2 (en) Metal coating and method for forming the same
CN113409990B (en) Flexible conductive film and preparation method thereof
JP2006052101A (en) Method of forming metal coating film on ceramic base material surface and metallized ceramic base material
JP7032126B2 (en) Substrate for printed wiring board and printed wiring board
JP2000001706A (en) High crystal silver particle, its production and conductor paste consisting of high crystal silver particle
JP7340179B2 (en) Method for manufacturing a conductor, method for manufacturing a wiring board, and composition for forming a conductor
JP7072812B2 (en) Conductor manufacturing method, wiring board manufacturing method, and conductor forming composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18801584

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019518897

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18801584

Country of ref document: EP

Kind code of ref document: A1