WO2013145437A1 - Method for measuring menthol content - Google Patents
Method for measuring menthol content Download PDFInfo
- Publication number
- WO2013145437A1 WO2013145437A1 PCT/JP2012/080460 JP2012080460W WO2013145437A1 WO 2013145437 A1 WO2013145437 A1 WO 2013145437A1 JP 2012080460 W JP2012080460 W JP 2012080460W WO 2013145437 A1 WO2013145437 A1 WO 2013145437A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- menthol content
- measuring
- menthol
- sample
- gum
- Prior art date
Links
- NOOLISFMXDJSKH-UTLUCORTSA-N (+)-Neomenthol Chemical compound CC(C)[C@@H]1CC[C@@H](C)C[C@@H]1O NOOLISFMXDJSKH-UTLUCORTSA-N 0.000 title claims abstract description 142
- NOOLISFMXDJSKH-UHFFFAOYSA-N DL-menthol Natural products CC(C)C1CCC(C)CC1O NOOLISFMXDJSKH-UHFFFAOYSA-N 0.000 title claims abstract description 142
- 229940041616 menthol Drugs 0.000 title claims abstract description 142
- 238000000034 method Methods 0.000 title claims abstract description 43
- 238000011088 calibration curve Methods 0.000 claims abstract description 57
- 238000005259 measurement Methods 0.000 claims abstract description 56
- 150000004676 glycans Chemical class 0.000 claims abstract description 29
- 229920001282 polysaccharide Polymers 0.000 claims abstract description 29
- 239000005017 polysaccharide Substances 0.000 claims abstract description 29
- 239000000463 material Substances 0.000 claims abstract description 20
- 238000000862 absorption spectrum Methods 0.000 claims abstract description 16
- 230000005540 biological transmission Effects 0.000 claims abstract description 16
- 238000001228 spectrum Methods 0.000 claims description 47
- 238000000691 measurement method Methods 0.000 claims description 31
- 229920000591 gum Polymers 0.000 claims description 25
- 238000004458 analytical method Methods 0.000 claims description 11
- 238000000611 regression analysis Methods 0.000 claims description 11
- 229920002148 Gellan gum Polymers 0.000 claims description 9
- 240000004584 Tamarindus indica Species 0.000 claims description 9
- 235000004298 Tamarindus indica Nutrition 0.000 claims description 9
- 235000010492 gellan gum Nutrition 0.000 claims description 9
- 239000000216 gellan gum Substances 0.000 claims description 9
- 235000019505 tobacco product Nutrition 0.000 claims description 8
- 238000000491 multivariate analysis Methods 0.000 claims description 7
- 244000090599 Plantago psyllium Species 0.000 claims description 6
- 235000010451 Plantago psyllium Nutrition 0.000 claims description 6
- 229920001817 Agar Polymers 0.000 claims description 4
- 244000247812 Amorphophallus rivieri Species 0.000 claims description 4
- 235000001206 Amorphophallus rivieri Nutrition 0.000 claims description 4
- 229920002752 Konjac Polymers 0.000 claims description 4
- 239000008272 agar Substances 0.000 claims description 4
- 235000010419 agar Nutrition 0.000 claims description 4
- 235000010418 carrageenan Nutrition 0.000 claims description 4
- 239000000679 carrageenan Substances 0.000 claims description 4
- 229920001525 carrageenan Polymers 0.000 claims description 4
- 229940113118 carrageenan Drugs 0.000 claims description 4
- 239000000252 konjac Substances 0.000 claims description 4
- 235000010485 konjac Nutrition 0.000 claims description 4
- 238000010238 partial least squares regression Methods 0.000 claims description 4
- 239000002994 raw material Substances 0.000 claims description 4
- UHVMMEOXYDMDKI-JKYCWFKZSA-L zinc;1-(5-cyanopyridin-2-yl)-3-[(1s,2s)-2-(6-fluoro-2-hydroxy-3-propanoylphenyl)cyclopropyl]urea;diacetate Chemical compound [Zn+2].CC([O-])=O.CC([O-])=O.CCC(=O)C1=CC=C(F)C([C@H]2[C@H](C2)NC(=O)NC=2N=CC(=CC=2)C#N)=C1O UHVMMEOXYDMDKI-JKYCWFKZSA-L 0.000 claims description 4
- LUEWUZLMQUOBSB-FSKGGBMCSA-N (2s,3s,4s,5s,6r)-2-[(2r,3s,4r,5r,6s)-6-[(2r,3s,4r,5s,6s)-4,5-dihydroxy-2-(hydroxymethyl)-6-[(2r,4r,5s,6r)-4,5,6-trihydroxy-2-(hydroxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-4,5-dihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol Chemical compound O[C@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@@H](O[C@@H]2[C@H](O[C@@H](OC3[C@H](O[C@@H](O)[C@@H](O)[C@H]3O)CO)[C@@H](O)[C@H]2O)CO)[C@H](O)[C@H]1O LUEWUZLMQUOBSB-FSKGGBMCSA-N 0.000 claims description 3
- 239000001884 Cassia gum Substances 0.000 claims description 3
- 229920002581 Glucomannan Polymers 0.000 claims description 3
- 229920002907 Guar gum Polymers 0.000 claims description 3
- 229920000161 Locust bean gum Polymers 0.000 claims description 3
- 235000019318 cassia gum Nutrition 0.000 claims description 3
- 239000002131 composite material Substances 0.000 claims description 3
- 229940046240 glucomannan Drugs 0.000 claims description 3
- 235000010417 guar gum Nutrition 0.000 claims description 3
- 239000000665 guar gum Substances 0.000 claims description 3
- 229960002154 guar gum Drugs 0.000 claims description 3
- 230000001678 irradiating effect Effects 0.000 claims description 3
- 235000010420 locust bean gum Nutrition 0.000 claims description 3
- 239000000711 locust bean gum Substances 0.000 claims description 3
- 235000010491 tara gum Nutrition 0.000 claims description 3
- 239000000213 tara gum Substances 0.000 claims description 3
- 229920001285 xanthan gum Polymers 0.000 claims description 3
- 235000010493 xanthan gum Nutrition 0.000 claims description 3
- 239000000230 xanthan gum Substances 0.000 claims description 3
- 229940082509 xanthan gum Drugs 0.000 claims description 3
- 229920002472 Starch Polymers 0.000 claims description 2
- 229940023476 agar Drugs 0.000 claims description 2
- 238000004364 calculation method Methods 0.000 claims description 2
- 239000008107 starch Substances 0.000 claims description 2
- 235000019698 starch Nutrition 0.000 claims description 2
- 238000000985 reflectance spectrum Methods 0.000 abstract description 5
- 238000000411 transmission spectrum Methods 0.000 abstract 2
- 239000011248 coating agent Substances 0.000 abstract 1
- 238000000576 coating method Methods 0.000 abstract 1
- 238000004497 NIR spectroscopy Methods 0.000 description 27
- 238000002329 infrared spectrum Methods 0.000 description 10
- 238000002835 absorbance Methods 0.000 description 8
- -1 polyethylene terephthalate Polymers 0.000 description 7
- 229920000139 polyethylene terephthalate Polymers 0.000 description 7
- 239000005020 polyethylene terephthalate Substances 0.000 description 7
- 239000000758 substrate Substances 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 239000002775 capsule Substances 0.000 description 4
- 230000004069 differentiation Effects 0.000 description 4
- 239000003205 fragrance Substances 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 241000208125 Nicotiana Species 0.000 description 3
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 239000001913 cellulose Substances 0.000 description 3
- 229920002678 cellulose Polymers 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 235000019504 cigarettes Nutrition 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000005022 packaging material Substances 0.000 description 2
- 238000000513 principal component analysis Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229920000057 Mannan Polymers 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 235000019506 cigar Nutrition 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002304 perfume Substances 0.000 description 1
- 238000012628 principal component regression Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N21/3563—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N21/359—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2201/00—Features of devices classified in G01N21/00
- G01N2201/12—Circuits of general importance; Signal processing
- G01N2201/129—Using chemometrical methods
Definitions
- the present invention relates to a method for measuring the menthol content in a sample, and more particularly, to a method for measuring the menthol content in a sample using near infrared spectroscopy.
- Menthol is known as a fragrance ingredient added to tobacco products or foods such as gums. In order to impart a desired flavor, an appropriate addition amount is required.
- a method for measuring the menthol content in a sample a method is known in which menthol in a sample is extracted with an extract and quantified by gas chromatography.
- menthol is a highly volatile component, it decays with time. Therefore, in the conventional measurement method, it is necessary to perform measurement as soon as possible after sampling, and to work with great care so as not to cause volatilization loss as much as possible during analysis processing.
- Patent Document 1 discloses a tobacco product evaluation system constituted by related equipment and an infrared spectroscopic device for measuring tobacco components and a device for keeping the tobacco layer flowing on the line constant. However, it is not disclosed how to measure each component specifically.
- Patent Document 2 discloses a method for determining an insertion state of an insert (such as a fragrance capsule) in a cigarette filter.
- the method disclosed in Patent Document 2 is a method in which when a fragrance capsule is broken in a filter, a state in which the menthol has flowed into the filter is determined by a near infrared (NIR) sensor. Therefore, Patent Document 2 does not disclose a method for measuring the amount of menthol in the fragrance capsule.
- NIR near infrared
- the present invention has been made in view of the above problems, and an object thereof is to provide a method for measuring the menthol content in a short time by a simple operation.
- the menthol content measurement method includes a measurement step of irradiating a sample in which menthol is coated with a polysaccharide material with near infrared rays to measure a transmission absorption spectrum or a diffuse reflection spectrum, and the measured transmission absorption spectrum or And a calculation step of calculating an estimated value of menthol content from a calibration curve prepared in advance using the diffuse reflection spectrum.
- the menthol content in a sample can be measured easily and quickly.
- the method for measuring the menthol content in this embodiment includes a step of irradiating a sample in which menthol (also referred to as menthol) is added to a polysaccharide material with near-infrared rays, and measuring a transmission absorption spectrum or a diffuse reflection spectrum.
- menthol also referred to as menthol
- a method for measuring menthol content in a sample comprising the step of calculating an estimated value of menthol content from a calibration curve prepared in advance using a transmitted absorption spectrum or diffuse reflection spectrum.
- the method for measuring the menthol content of the present embodiment is suitably used for measuring the menthol content in a sheet material of tobacco products, for example.
- tobacco products mean cigarettes, cigars, smokeless tobacco, and the like.
- near infrared spectrum the transmission absorption spectrum and diffuse reflection spectrum by near infrared irradiation are referred to as “near infrared spectrum”.
- polysaccharide material refers to a material mainly composed of polysaccharides.
- polysaccharides include carrageenan, agar, gellan gum, tamarind gum, single-component system of psyllium seed gum or konjac glucomannan, or carrageenan, locust bean gum, guar gum, agar, xanthan gum, gellan gum, tamarind gum, tara gum, konjac gluco
- examples include a composite system in which two or more components selected from the group consisting of mannan, starch, cassia gum and psyllium seed gum are combined.
- a perfume-containing material in tobacco products is selected from the group consisting of a single-component polysaccharide gum of gellan gum, tamarind gum, or psyllium seed gum, or locust bean gum, guar gum, xanthan gum, gellan gum, tamarind gum, tara gum, cassia gum and psyllium seed gum.
- a complex polysaccharide gum in which two or more components are combined is preferred.
- the composite gum in which two or more components are combined include a mixture of gellan gum and tamarind gum.
- pulp materials mainly composed of cellulose can be cited.
- the pulp raw material is suitable for use as a packaging material in tobacco products.
- These samples may be colored with a colorant.
- Examples of the sample in which menthol is added to the polysaccharide material include a sample in which menthol is coated with a polysaccharide, a sample in which menthol is sprayed on a molded product of polysaccharide (menthol addition material), and the like. it can. In particular, it is preferable to apply the measurement method of the present embodiment to a sample in which menthol is coated with a polysaccharide gum or a sample in which menthol is sprayed on a molded product of polysaccharide.
- the form of the sample is not particularly limited, and may be the same form as the sample used when the calibration curve is created.
- the measurement method of the present embodiment is, for example, formed into a sheet shape (for example, a thickness of 0.1 mm to 2.0 mm), a capsule shape, a bead shape, a paper shape, and a plate shape in which menthol is coated with a polysaccharide gum. It can be applied to prepared samples. Especially, it uses suitably for a sheet-like and paper-like sample. The sheet may be chopped. Further, a plurality of sheets can be stacked to form a measurement sample.
- “paper” is intended to be a sheet formed from a pulp raw material.
- the sample may be on the substrate.
- a sample can be molded on a base material such as polyethylene terephthalate and aluminum, and the sample can be measured while being placed on the base material.
- the sample moisture content at the time of sample measurement need not be considered.
- the water content is preferably close to the water content of the sample used when the calibration curve was created.
- the moisture content of the sample used when preparing the calibration curve is preferably within the range of ⁇ 3 (%). In the examples described below, the moisture content of the sample is 3-8%.
- NIR near-infrared spectrometer
- the near infrared ray irradiated to the sample is in the wavelength range of 1100 nm to 2500 nm, and includes at least a specific wavelength used when calculating the menthol content from a calibration curve. That's fine.
- the menthol content is measured using the estimation formula (I) in Example 1 described later, it is only necessary to irradiate near infrared rays having a wavelength of about 1562.5 nm.
- the estimation formula (III) in Example 3 to be described later it is only necessary to irradiate near infrared rays having wavelengths near 1224.5 nm and 1562.5 nm.
- the near infrared rays of wavelength 1693.0nm vicinity should just be irradiated.
- wavelengths near 1540.0 nm, near 1562.0 nm, and near 1595.0 nm can also be suitably used for measurement, when performing measurement using these wavelengths, these wavelengths are irradiated. Just do it.
- PLS Partial Least Squares
- Example 5 in which the method of adding menthol to the polysaccharide material is different from that in Examples 1 to 3, the measurement was performed using a wavelength different from that in Examples 1 to 3. Therefore, it is presumed that the wavelength used depends on the addition method of menthol.
- the measurement method of the present embodiment it is possible to measure the menthol content in a sample by measuring a near-infrared spectrum of a single wavelength or a near-infrared spectrum of two wavelengths.
- the measurement can be performed in a short time.
- the configuration of the measuring instrument can be simplified. In other words, measurement can be performed with a simple near-infrared spectrometer.
- the calibration curve used for calculating the menthol content in the measurement method in the present embodiment is preferably created by multivariate analysis using near-infrared spectra of a plurality of samples whose menthol content is known. . Therefore, when the calibration curve does not exist, in the measurement method according to the present embodiment, after measuring near-infrared spectra of a plurality of samples having known menthol contents, the calibration curve is created by multivariate analysis. It is preferable to further include a step.
- MLR Multiple ⁇ LinearPartRegression
- PLS Partial Least Squares regression analysis
- principal component regression analysis principal component regression analysis
- Fourier transform analysis can be used, among which multiple regression analysis and PLS regression Analysis is preferred.
- a sample having a known menthol content refers to a sample whose menthol content is measured by a conventional measurement method.
- the conventional measuring method is a method for quantitatively determining an extract by a gas chromatograph after performing a pretreatment for transferring menthol in a sample into the liquid with an extract.
- the wavelength region of the near-infrared spectrum for creating the calibration curve may be appropriately selected, and is, for example, 1100 nm to 2500 nm. However, it is not limited to this wavelength region, and may be a narrower wavelength region.
- the near-infrared spectrum can be measured by scanning every arbitrary wavelength interval within the above wavelength range, for example, every 0.5 nm.
- a near-infrared light that has been spectrally separated into monochromatic light is irradiated to a sample having a known menthol content within a certain wavelength region (for example, 1100 nm to 2500 nm) at regular intervals (for example, 0.5 nm intervals). . Since near infrared transmission and / or diffuse reflection occurs in the sample, the intensity of monochromatic light not absorbed by the sample is measured by a detector. The spectrum of the absorption intensity of each wavelength in the sample is mapped from the difference from the reference intensity measured in advance, and the mapped spectrum information is acquired as data. The above-described processing is performed on a plurality of samples, thereby acquiring a plurality of pieces of spectral information data.
- each data after measuring a transmission absorption spectrum or a diffuse reflection spectrum, these are converted into a secondary differential spectrum.
- the principal component analysis is performed using the obtained second derivative spectrum and the menthol content measured using the conventional measurement method, and the principal component (main wavelength) contributing to the objective variable (menthol content) is selected.
- a calibration curve is created by performing multivariate analysis such as multiple regression analysis and PLS regression analysis.
- this calibration curve can be used from the next measurement, and the step of creating a calibration curve is not necessary.
- the irradiation position on the sample is usually changed and irradiated with near infrared rays a plurality of times, and the average of the plurality of absorption intensities is used.
- the measurement can be completed easily and in a short time as compared with the conventional measuring method using a gas chromatograph.
- the time required for measurement is shorter, and when only a single wavelength is used, the measurement can be completed in a shorter time.
- the measurement result obtained has a high correlation with the result obtained by the conventional measurement method.
- Example 1 A polysaccharide sheet in which menthol was coated with a polysaccharide gum was prepared as a sample for preparing a calibration curve. Specifically, an uncolored translucent sheet (about 0.1 mm thick) in which menthol was added to a polysaccharide gum made of a mixture of gellan gum and tamarind gum was prepared as a sample for preparing a calibration curve. The amount of menthol contained in each sheet is measured in advance using a conventional menthol content measurement method. Regarding the sample for preparing a calibration curve, the reflection diffusion spectrum was measured at 0.5 nm intervals in the near infrared wavelength region of 1100 to 2500 nm.
- a sample for preparing a calibration curve is cut into pieces (14 cm ⁇ 4 cm) of a size (14 cm ⁇ 4 cm) that fits into a measurement boat (inner diameter W15 cm ⁇ D5 cm ⁇ H4 cm, bottom: made of quartz glass).
- the near infrared rays are irradiated from the bottom surface of quartz glass using a near infrared spectrometer (model: XM-1100, manufactured by FOSS NIRSystems) and reflected for each wavelength. Near-infrared light was detected and the diffuse reflection spectrum was measured from the difference from the reference intensity.
- each diffuse reflection spectrum is spectrally converted by the second derivative method, and the objective variable is known menthol content, principal component
- a calibration curve was created by multiple regression analysis.
- Y obtained by the estimation formula (I) is an estimated value of menthol content (ratio per dry matter (%)).
- K (1) represents the absorbance at a wavelength of 1562.5 nm, which was subjected to differentiation after spectrum measurement.
- Estimation formula (I): Y 12391.5K (1) +56.6
- the coefficient of determination (R 2 ) was 0.94, and the standard error was 3.37.
- Example 2 A polysaccharide sheet similar to Example 1 to which menthol was added and formed on a polyethylene terephthalate film was prepared as a sample for preparing a calibration curve.
- a non-colored translucent sheet obtained by adding menthol to a polysaccharide gum consisting of a mixture of gellan gum and tamarind gum is a polyethylene terephthalate substrate (about 0.05 mm thick,
- a sheet attached to the substrate was prepared as a sample for preparing a calibration curve.
- the amount of menthol contained in each sheet with polyethylene terephthalate is measured in advance using a conventional menthol content measurement method.
- a diffuse reflection spectrum was measured at intervals of 0.5 nm in the near infrared wavelength region of 1100 to 2500 nm.
- a near-infrared spectrometer model: XM-1100, manufactured by FOSS NIRSystems
- estimation formula (II) could be obtained.
- Y obtained by the estimation formula (II) is an estimated value of menthol content (ratio per dry matter (%)).
- K (1) represents the absorbance at a wavelength of 1562.5 nm, which was subjected to differentiation after spectrum measurement.
- Estimation formula (II): Y 38764.38K (1) +24.43
- the coefficient of determination (R 2 ) was 0.96, and the standard error was 2.60.
- the menthol content (chemical analysis value) obtained by the conventional measurement method and the estimated menthol value (NIR) obtained by the near infrared spectroscopy using the estimation formula (II) (Measurement value) is shown in FIG. 2 (“CAL” in FIG. 2).
- a sample having an unknown menthol content was subjected to spectrum measurement by near infrared spectroscopy, and the menthol content was estimated using the calibration curve.
- a measurement sample having an unknown menthol content was prepared in the same manner as the calibration curve preparation sample.
- a diffuse reflectance spectrum was measured, and an estimated value of menthol content was calculated for 12 samples using the absorbance at a wavelength of 1562.5 nm and an estimation formula (II) subjected to differentiation after the spectrum measurement.
- Example 3 In the present example, a case where a two-wavelength diffuse reflection spectrum was used was studied for the purpose of measuring with higher accuracy.
- a sample for preparing a calibration curve with a polyethylene terephthalate substrate attached was prepared in the same manner as in Example 2 except that the polysaccharide gum was colored brown, and the diffuse reflection spectrum was measured.
- a calibration curve was prepared in the same manner as in Example 1. At that time, a calibration curve using absorbance at two wavelengths was extracted.
- Y obtained by the estimation formula (III) is an estimated value of menthol content (ratio per dry matter (%)).
- K (1) and K (2) indicate the absorbances at wavelengths of 1562.5 nm and 1224.5 nm, respectively, which were differentiated after the spectrum measurement.
- Estimation formula (III): Y 7819.17K (2) + 38764.38K (1) +24.43
- the coefficient of determination (R 2 ) was 0.99, and the standard error was 1.32.
- the menthol content (chemical analysis value) obtained by the conventional measurement method and the menthol estimate value (NIR) obtained by the near infrared spectroscopy using the estimation formula (III) (Measurement value) is shown in FIG. 3 (“CAL” in FIG. 3).
- a sample having an unknown menthol content was subjected to spectrum measurement by near infrared spectroscopy, and the menthol content was estimated using the calibration curve.
- a measurement sample having an unknown menthol content was prepared in the same manner as the calibration curve preparation sample. A diffuse reflection spectrum was measured, and an estimated value of menthol content was calculated for 12 samples using absorbance at wavelengths of 1562.5 nm and 1224.5 nm and an estimation formula (III) subjected to differential processing after the spectrum measurement.
- Example 4 In the same manner as in Example 2, a calibration curve preparation sample was prepared, and a diffuse reflection spectrum was measured.
- Example 5 a sample in which a solution containing menthol was sprayed on a molded product of a polysaccharide material was used as a measurement target. Specifically, a sample in which an aluminum foil was bonded to one side of cellulose paper made from pulp and a solution containing menthol was sprayed on the other side was used as a measurement target. Further, samples with different menthol addition amounts were prepared by changing the amount of menthol sprayed.
- a diffuse reflection spectrum was measured at 0.5 nm intervals in the near infrared wavelength region of 1100 to 2500 nm.
- a sample for preparing a calibration curve is cut into pieces (14 cm ⁇ 4 cm) of a size (14 cm ⁇ 4 cm) that fit into a measurement boat (inner diameter W15 cm ⁇ D5 cm ⁇ H4 cm, bottom surface: made of quartz glass), and the cellulose surface ( Place one sheet with the aluminum foil not attached), and irradiate near infrared rays from the bottom of quartz glass using a near infrared spectrophotometer (FOSS NIRSystems, model: XM-1100)
- the diffuse reflectance spectrum was measured in the same manner as in Examples 1 to 4.
- Y obtained by the estimation formula (IV) is an estimated value of menthol content (unit: mg / 100 cm 2 ).
- K (1) represents the absorbance at a wavelength of 1693.0 nm, which was subjected to differentiation after spectrum measurement.
- Estimation formula (IV): Y -12408.95K (1) -2.1815
- the coefficient of determination (R 2 ) was 0.98, and the standard error was 2.11.
- the menthol content (chemical analysis value) obtained by the conventional measurement method and the menthol estimate value (NIR) obtained by the near infrared spectroscopy using the estimation formula (IV) (Measurement value) is shown in FIG. 4 (“CAL” in FIG. 4).
- a sample having an unknown menthol content was subjected to spectrum measurement by near infrared spectroscopy, and the menthol content was estimated using the calibration curve.
- a measurement sample having an unknown menthol content was prepared in the same manner as the calibration curve preparation sample. A diffuse reflection spectrum was measured, and an estimated value of menthol content was calculated for 27 samples using the absorbance at a wavelength of 1693.0 nm subjected to differential processing after the spectrum measurement and the estimation formula (IV).
- the present invention can be used for the manufacture of tobacco product raw materials, packaging materials, and the like.
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
The purpose of the present invention is to provide a method for measuring the menthol content of a sample simply and quickly. The present invention comprises the following: a measurement step in which a sample which is obtained by coating menthol with a polysaccharide material is irradiated with near infrared rays and the transmission/absorption spectrum or the diffuse reflectance spectrum is measured; and a calculating step wherein an estimated menthol content value is calculated using the measured transmission/absorption spectrum or the measured diffuse reflectance spectrum on the basis of a previously prepared calibration curve.
Description
本発明は、試料中のメンソール含量を測定する方法に関し、詳細には、試料中のメンソール含量を、近赤外分光法を利用して測定する方法に関する。
The present invention relates to a method for measuring the menthol content in a sample, and more particularly, to a method for measuring the menthol content in a sample using near infrared spectroscopy.
メンソールは、たばこ製品、あるいはガム等の食品等に添加される香料成分として知られている。所望の香味を付与するには、適正な添加量が求められる。試料中のメンソール含量を測定する方法としては、試料中のメンソールを抽出液で抽出し、これをガスクロマトグラフで定量する方法が知られている。
Menthol is known as a fragrance ingredient added to tobacco products or foods such as gums. In order to impart a desired flavor, an appropriate addition amount is required. As a method for measuring the menthol content in a sample, a method is known in which menthol in a sample is extracted with an extract and quantified by gas chromatography.
ところでメンソールは揮発性の高い成分であるため、時間とともに揮散減衰してしまう。そのため、従来の測定方法では、サンプリング後、できるだけ速やかに測定を実施し、分析処理中も揮散ロスが極力生じないよう細心の注意を払って作業を行なう必要がある。
By the way, since menthol is a highly volatile component, it decays with time. Therefore, in the conventional measurement method, it is necessary to perform measurement as soon as possible after sampling, and to work with great care so as not to cause volatilization loss as much as possible during analysis processing.
また、従来の測定方法では、試料の対象となった材料のメンソール含量が所望の範囲内にあることを確認するのに最低でも1~2日の時間を要する。そのため、試料の対象となる材料を製造した後、測定されたメンソール量から製造におけるメンソール添加量をリアルタイムでフィードバック制御することは不可能である。さらに、乾物当たりのメンソール含量を知るためには、試料の水分測定も必要になるため、さらなる労力および時間を必要とする。
In the conventional measurement method, it takes at least 1 to 2 days to confirm that the menthol content of the material as the sample is within the desired range. For this reason, it is impossible to feedback-control the menthol addition amount in production from the measured menthol amount in real time after the material to be sampled is manufactured. Furthermore, in order to know the menthol content per dry matter, it is necessary to measure the moisture content of the sample, which requires additional labor and time.
なお、上記特許文献1には、たばこの成分を測定するための関連設備および赤外線分光装置と、ライン上を流れるたばこの層を一定に保つための装置とによって構成されるたばこ製品評価システムが開示されているが、各成分を具体的にどのように測定するのかについては開示されていない。
Patent Document 1 discloses a tobacco product evaluation system constituted by related equipment and an infrared spectroscopic device for measuring tobacco components and a device for keeping the tobacco layer flowing on the line constant. However, it is not disclosed how to measure each component specifically.
また、上記特許文献2には、シガレットフィルタ中の挿入物(香料カプセル等)の挿入状態を判定する方法が開示されている。特許文献2に開示されている方法は、香料カプセルがフィルタ中で破損している場合に、メンソールがフィルタ中に流出した状態を近赤外線(NIR)センサにより判定する方法である。したがって、香料カプセル中のメンソール量を測定する方法については、特許文献2には開示されていない。
Further, Patent Document 2 discloses a method for determining an insertion state of an insert (such as a fragrance capsule) in a cigarette filter. The method disclosed in Patent Document 2 is a method in which when a fragrance capsule is broken in a filter, a state in which the menthol has flowed into the filter is determined by a near infrared (NIR) sensor. Therefore, Patent Document 2 does not disclose a method for measuring the amount of menthol in the fragrance capsule.
そこで、本発明は上記の問題点に鑑みてなされたものであり、その目的は、簡便な作業で短時間にメンソール含量を測定する方法を提供することにある。
Therefore, the present invention has been made in view of the above problems, and an object thereof is to provide a method for measuring the menthol content in a short time by a simple operation.
本発明に係るメンソール含量測定方法は、メンソールが多糖類材料に被覆されてなる試料に近赤外線を照射し、透過吸収スペクトルまたは拡散反射スペクトルを測定する測定工程、および測定された上記透過吸収スペクトルまたは上記拡散反射スペクトルを用いて、予め作成された検量線からメンソール含量推定値を算出する算出工程、を含む構成である。
The menthol content measurement method according to the present invention includes a measurement step of irradiating a sample in which menthol is coated with a polysaccharide material with near infrared rays to measure a transmission absorption spectrum or a diffuse reflection spectrum, and the measured transmission absorption spectrum or And a calculation step of calculating an estimated value of menthol content from a calibration curve prepared in advance using the diffuse reflection spectrum.
本発明に係るメンソール含量測定方法によれば、簡便かつ迅速に、試料中のメンソール含量を測定することができる。
According to the menthol content measuring method according to the present invention, the menthol content in a sample can be measured easily and quickly.
本発明に係るメンソール含量の測定方法の一実施形態について説明すれば以下の通りである。
An embodiment of the method for measuring the menthol content according to the present invention will be described as follows.
本実施の形態におけるメンソール含量の測定方法は、メンソール(メントールともいう)が多糖類材料に添加されてなる試料に近赤外線を照射し、透過吸収スペクトルまたは拡散反射スペクトルを測定する工程、および測定された透過吸収スペクトルまたは拡散反射スペクトルを用いて、予め作成された検量線からメンソール含量推定値を算出する工程、を含むことを特徴とする試料中のメンソール含量測定方法である。
The method for measuring the menthol content in this embodiment includes a step of irradiating a sample in which menthol (also referred to as menthol) is added to a polysaccharide material with near-infrared rays, and measuring a transmission absorption spectrum or a diffuse reflection spectrum. A method for measuring menthol content in a sample, comprising the step of calculating an estimated value of menthol content from a calibration curve prepared in advance using a transmitted absorption spectrum or diffuse reflection spectrum.
本実施の形態のメンソール含量の測定方法は、例えば、たばこ製品のシート原料におけるメンソール含量の測定に好適に用いられる。なお、本明細書においてたばこ製品とは、シガレット、シガーおよび無煙たばこ等のことをいう。
The method for measuring the menthol content of the present embodiment is suitably used for measuring the menthol content in a sheet material of tobacco products, for example. In addition, in this specification, tobacco products mean cigarettes, cigars, smokeless tobacco, and the like.
以下、近赤外線照射による透過吸収スペクトルおよび拡散反射スペクトルのことを「近赤外スペクトル」と称する。
Hereinafter, the transmission absorption spectrum and diffuse reflection spectrum by near infrared irradiation are referred to as “near infrared spectrum”.
本実施の形態における測定方法が適用される試料としては、メンソールが多糖類材料に添加されてなるものである。本明細書において「多糖類材料」とは、主として多糖類によって構成されている材料を指す。多糖類としては、例えば、カラギーナン、寒天、ゲランガム、タマリンドガム、サイリウムシードガムもしくはコンニャクグルコマンナンの単成分系、またはカラギーナン、ローカストビーンガム、グアーガム、寒天、キサンタンガム、ゲランガム、タマリンドガム、タラガム、コンニャクグルコマンナン、デンプン、カシアガムおよびサイリウムシードガムからなる群より選択される2以上の成分を組み合わせた複合系が挙げられる。これらは、たばこ製品における香料含有材料としての用途に適しているものである。なかでも、ゲランガム、タマリンドガム、もしくはサイリウムシードガムの単成分系の多糖類のガム、またはローカストビーンガム、グアーガム、キサンタンガム、ゲランガム、タマリンドガム、タラガム、カシアガムおよびサイリウムシードガムからなる群より選択される2以上の成分を組み合わせた複合系の多糖類のガムが好ましい。2以上の成分を組み合わせた複合系のガムとしては、例えば、ゲランガムおよびタマリンドガムの混合物が挙げられる。
As a sample to which the measurement method in the present embodiment is applied, menthol is added to a polysaccharide material. In this specification, “polysaccharide material” refers to a material mainly composed of polysaccharides. Examples of polysaccharides include carrageenan, agar, gellan gum, tamarind gum, single-component system of psyllium seed gum or konjac glucomannan, or carrageenan, locust bean gum, guar gum, agar, xanthan gum, gellan gum, tamarind gum, tara gum, konjac gluco Examples include a composite system in which two or more components selected from the group consisting of mannan, starch, cassia gum and psyllium seed gum are combined. These are suitable for use as a perfume-containing material in tobacco products. Among them, it is selected from the group consisting of a single-component polysaccharide gum of gellan gum, tamarind gum, or psyllium seed gum, or locust bean gum, guar gum, xanthan gum, gellan gum, tamarind gum, tara gum, cassia gum and psyllium seed gum. A complex polysaccharide gum in which two or more components are combined is preferred. Examples of the composite gum in which two or more components are combined include a mixture of gellan gum and tamarind gum.
また、多糖類材料としては、上記した多糖類によって構成されるものの他にも、主としてセルロースによって構成されるパルプ原料が挙げられる。パルプ原料は、たばこ製品における包装材料としての用途に適しているものである。
Moreover, as the polysaccharide material, in addition to the above-described polysaccharides, pulp materials mainly composed of cellulose can be cited. The pulp raw material is suitable for use as a packaging material in tobacco products.
これらの試料は、着色剤によって着色されていてもよい。
These samples may be colored with a colorant.
メンソールが多糖類材料に添加されてなる試料としては、例えば、メンソールが多糖類で被覆されてなるもの、多糖類による成形物にメンソールが噴霧されてなるもの(メンソール付加材)等を挙げることができる。中でも、メンソールが多糖類のガムで被覆されてなる試料または多糖類による成形物にメンソールが噴霧されてなる試料に本実施の形態の測定方法を適用することが好ましい。
Examples of the sample in which menthol is added to the polysaccharide material include a sample in which menthol is coated with a polysaccharide, a sample in which menthol is sprayed on a molded product of polysaccharide (menthol addition material), and the like. it can. In particular, it is preferable to apply the measurement method of the present embodiment to a sample in which menthol is coated with a polysaccharide gum or a sample in which menthol is sprayed on a molded product of polysaccharide.
本実施の形態の測定方法では試料の形態に特に制限はなく、検量線を作成したときに用いられた試料と同一の形態であればよい。本実施の形態の測定方法は、例えば、メンソールが多糖類のガムで被覆されてなるシート状(例えば厚さ0.1mm~2.0mm)、カプセル状、ビーズ状、紙状および板状に成形された試料に適用できる。なかでも、シート状および紙状の試料に好適に使用される。シートは刻み状にしたものであってもよい。また、複数枚のシートを重ねて、測定用試料とすることも可能である。なお、本明細書において「紙状」とは、パルプ原料によって成形されたシート状のものを意図している。また、近赤外線が試料に照射されるのであれば、当該試料が基材上にあるものであってもよい。例えば、ポリエチレンテレフタレート、およびアルミ等の基材上に試料を成形し、基材に載せた状態のまま試料を測定することも可能である。
In the measurement method of the present embodiment, the form of the sample is not particularly limited, and may be the same form as the sample used when the calibration curve is created. The measurement method of the present embodiment is, for example, formed into a sheet shape (for example, a thickness of 0.1 mm to 2.0 mm), a capsule shape, a bead shape, a paper shape, and a plate shape in which menthol is coated with a polysaccharide gum. It can be applied to prepared samples. Especially, it uses suitably for a sheet-like and paper-like sample. The sheet may be chopped. Further, a plurality of sheets can be stacked to form a measurement sample. In the present specification, “paper” is intended to be a sheet formed from a pulp raw material. If the sample is irradiated with near infrared rays, the sample may be on the substrate. For example, a sample can be molded on a base material such as polyethylene terephthalate and aluminum, and the sample can be measured while being placed on the base material.
本実施の形態の測定方法においては、試料測定時の試料水分含量は、特に考慮する必要はない。しかしながら、検量線を作成したときに用いられた試料の水分含量に近い水分含量であることが好ましい。例えば、検量線を作成したときに用いられた試料の水分含量±3(%)の範囲内であることが好ましい。後述する実施例においては、試料の水分含量は、3~8%である。
In the measurement method of the present embodiment, the sample moisture content at the time of sample measurement need not be considered. However, the water content is preferably close to the water content of the sample used when the calibration curve was created. For example, the moisture content of the sample used when preparing the calibration curve is preferably within the range of ± 3 (%). In the examples described below, the moisture content of the sample is 3-8%.
スペクトルの測定には、近赤外分光法に一般的に用いられている近赤外分光測定装置(NIR)を用いることができる。
For the measurement of the spectrum, a near-infrared spectrometer (NIR) generally used for near-infrared spectroscopy can be used.
メンソール含量が未知である試料の測定に際して、試料に照射する近赤外線は、1100nm~2500nmの波長領域であり、少なくとも、検量線からメンソール含量を算出する際に用いられる特定の波長が含まれていればよい。例えば、後述する実施例1における推定式(I)を利用してメンソール含量を測定する場合には、波長1562.5nm付近の近赤外線が照射されていればよい。また、後述する実施例3における推定式(III)を利用してメンソール含量を測定する場合には、波長1224.5nm付近および1562.5nm付近の近赤外線が照射されていればよい。また、後述する実施例5における推定式(V)を利用してメンソール含量を測定する場合には、波長1693.0nm付近の近赤外線が照射されていればよい。他にも、1540.0nm付近、1562.0nm付近および1595.0nm付近の波長も測定に好適に利用することができるため、これらを用いて測定を行なう場合には、これらの波長が照射されていればよい。なお、検量線がPLS(Partial Least Squares)回帰分析により得られたものである場合には、PLS回帰分析に利用したすべての波長を近赤外分光法によるメンソール含量の測定に利用する。
When measuring a sample with an unknown menthol content, the near infrared ray irradiated to the sample is in the wavelength range of 1100 nm to 2500 nm, and includes at least a specific wavelength used when calculating the menthol content from a calibration curve. That's fine. For example, when the menthol content is measured using the estimation formula (I) in Example 1 described later, it is only necessary to irradiate near infrared rays having a wavelength of about 1562.5 nm. In addition, when the menthol content is measured using the estimation formula (III) in Example 3 to be described later, it is only necessary to irradiate near infrared rays having wavelengths near 1224.5 nm and 1562.5 nm. Moreover, when measuring a menthol content using the estimation formula (V) in Example 5 mentioned later, the near infrared rays of wavelength 1693.0nm vicinity should just be irradiated. In addition, since wavelengths near 1540.0 nm, near 1562.0 nm, and near 1595.0 nm can also be suitably used for measurement, when performing measurement using these wavelengths, these wavelengths are irradiated. Just do it. When the calibration curve is obtained by PLS (Partial Least Squares) regression analysis, all wavelengths used for PLS regression analysis are used for measurement of menthol content by near infrared spectroscopy.
なお、後述する実施例(実施例1~3)においては、試料の重ね合わせ枚数、試料の着色の有無、および試料に付けられる基板の有無等、試料の形態に関係なく、何れも同一の波長を用いて測定されている。一方で、多糖類材料へのメンソールの添加方法が実施例1~3とは異なる実施例5においては、実施例1~3とは異なる波長を用いて測定されている。したがって、メンソールの添加方法によって、使用される波長が相違すると推察される。
In Examples (Examples 1 to 3) described later, the same wavelength is used regardless of the form of the sample, such as the number of superimposed samples, the presence or absence of coloring of the sample, and the presence or absence of a substrate attached to the sample. It is measured using. On the other hand, in Example 5 in which the method of adding menthol to the polysaccharide material is different from that in Examples 1 to 3, the measurement was performed using a wavelength different from that in Examples 1 to 3. Therefore, it is presumed that the wavelength used depends on the addition method of menthol.
本実施の形態の測定方法によれば、単一波長の近赤外スペクトルまたは2つの波長の近赤外スペクトルを測定することで、試料中のメンソール含量を測定することが可能である。単一波長の近赤外スペクトルのみを測定する場合には、測定を短時間で行うことができる。また、2つの波長の近赤外スペクトルのみを測定する場合には、測定を短時間で行うとともにより精度よく測定を行うことができる。また、単一波長もしくは2つの波長のみでもって測定を行う場合には、測定機器の構成を簡素にすることができる。換言すれば、簡易な近赤外分光測定装置でもって測定を行うことができる。
According to the measurement method of the present embodiment, it is possible to measure the menthol content in a sample by measuring a near-infrared spectrum of a single wavelength or a near-infrared spectrum of two wavelengths. When only a single-wavelength near-infrared spectrum is measured, the measurement can be performed in a short time. Moreover, when measuring only the near-infrared spectrum of two wavelengths, while measuring in a short time, it can measure more accurately. Further, when measurement is performed using only a single wavelength or two wavelengths, the configuration of the measuring instrument can be simplified. In other words, measurement can be performed with a simple near-infrared spectrometer.
近赤外分光法を利用した他の項目の測定法(例えば、水分の測定)が知られている場合に、当該測定に用いられる波長を含めておくことにより、メンソール含量の測定と同時に、当該他の項目の測定も行うことができる。
When the measurement method of other items using near infrared spectroscopy (for example, measurement of moisture) is known, by including the wavelength used for the measurement, simultaneously with the measurement of menthol content, Other items can also be measured.
本実施の形態における測定方法においてメンソール含量の算出に用いられる検量線は、メンソール含量が既知である複数の試料の近赤外スペクトルを用いて、多変量解析によって作成されたものであることが好ましい。そのため、当該検量線が存在しない場合には、本実施の形態における測定方法において、メンソール含量が既知である複数の試料の近赤外スペクトルを測定した後、多変量解析によって上記検量線を作成する工程をさらに含むことが好ましい。
The calibration curve used for calculating the menthol content in the measurement method in the present embodiment is preferably created by multivariate analysis using near-infrared spectra of a plurality of samples whose menthol content is known. . Therefore, when the calibration curve does not exist, in the measurement method according to the present embodiment, after measuring near-infrared spectra of a plurality of samples having known menthol contents, the calibration curve is created by multivariate analysis. It is preferable to further include a step.
多変量解析としては、重回帰分析(MLR:Multiple Linear Regression)、PLS(Partial Least Squares)回帰分析、主成分回帰分析、およびフーリエ変換解析を利用することができ、中でも、重回帰分析およびPLS回帰分析が好ましい。
For multivariate analysis, multiple regression analysis (MLR: Multiple 、 LinearPartRegression), PLS (Partial Least Squares) regression analysis, principal component regression analysis, and Fourier transform analysis can be used, among which multiple regression analysis and PLS regression Analysis is preferred.
本明細書において、「メンソール含量が既知である試料」とは、従来の測定方法によりメンソール含量を測定した試料のことを指す。従来の測定方法は、試料中のメンソールを抽出液で液中に移行させる前処理を行った後、抽出物をガスクロマトグラフで定量する方法である。
In the present specification, “a sample having a known menthol content” refers to a sample whose menthol content is measured by a conventional measurement method. The conventional measuring method is a method for quantitatively determining an extract by a gas chromatograph after performing a pretreatment for transferring menthol in a sample into the liquid with an extract.
検量線を作成するための近赤外スペクトルの波長領域は、適宜選択すればよく、例えば1100nm~2500nmである。しかしながらこの波長領域に限定されるものではなく、より狭い波長領域であってもよい。また、近赤外スペクトルは、上記波長範囲内で任意の一定波長間隔毎、例えば0.5nm毎に走査して測定することができる。
The wavelength region of the near-infrared spectrum for creating the calibration curve may be appropriately selected, and is, for example, 1100 nm to 2500 nm. However, it is not limited to this wavelength region, and may be a narrower wavelength region. The near-infrared spectrum can be measured by scanning every arbitrary wavelength interval within the above wavelength range, for example, every 0.5 nm.
次に、検量線の具体的な作成方法について説明する。
Next, a specific method for creating a calibration curve will be described.
まず、メンソール含量が既知である試料に対して、分光されて単色光となった近赤外線を、ある波長領域内(例えば、1100nm~2500nm)、一定間隔(例えば、0.5nm間隔)で照射する。試料において近赤外線の透過吸収および/または拡散反射が起こるため、試料に吸収されなかった単色光強度を検出器によって測定する。事前に測定したレファレンス強度との違いから試料における各波長の吸収強度のスペクトルをマップし、マップしたスペクトル情報をデータとして取得する。複数の試料について上記の処理を行い、これにより、複数のスペクトル情報のデータを取得する。それぞれのデータについて、透過吸収スペクトルまたは拡散反射スペクトルを測定した後、これらを2次微分スペクトルに変換する。得られた2次微分スペクトルおよび従来の測定法を用いて測定されたメンソール含量を用いて主成分分析を行い、目的変数(メンソール含量)に寄与する主成分(主波長)を選択する。次いで、重回帰分析およびPLS回帰分析などの多変量解析を行うことによって、検量線を作成する。
First, a near-infrared light that has been spectrally separated into monochromatic light is irradiated to a sample having a known menthol content within a certain wavelength region (for example, 1100 nm to 2500 nm) at regular intervals (for example, 0.5 nm intervals). . Since near infrared transmission and / or diffuse reflection occurs in the sample, the intensity of monochromatic light not absorbed by the sample is measured by a detector. The spectrum of the absorption intensity of each wavelength in the sample is mapped from the difference from the reference intensity measured in advance, and the mapped spectrum information is acquired as data. The above-described processing is performed on a plurality of samples, thereby acquiring a plurality of pieces of spectral information data. About each data, after measuring a transmission absorption spectrum or a diffuse reflection spectrum, these are converted into a secondary differential spectrum. The principal component analysis is performed using the obtained second derivative spectrum and the menthol content measured using the conventional measurement method, and the principal component (main wavelength) contributing to the objective variable (menthol content) is selected. Next, a calibration curve is created by performing multivariate analysis such as multiple regression analysis and PLS regression analysis.
なお検量線が作成されれば、その次の測定からはこの検量線を用いればよく、検量線を作成する工程は不要となる。
If a calibration curve is created, this calibration curve can be used from the next measurement, and the step of creating a calibration curve is not necessary.
なお、スペクトル測定では、通常、試料における照射位置を変えて近赤外線を複数回照射し、その複数の吸収強度の平均を用いる。
In the spectrum measurement, the irradiation position on the sample is usually changed and irradiated with near infrared rays a plurality of times, and the average of the plurality of absorption intensities is used.
以上のように、本実施の形態のメンソール含量の測定方法によれば、ガスクロマトグラフによる従来の測定方法に比べ、簡便かつ短時間に測定を完了することができる。測定に用いる波長が2つのみである場合には、測定に要する時間がより短くなり、単一の波長のみを用いる場合にはさらに短時間で測定を完了することができる。また、得られる測定結果は、従来の測定方法により得られる結果と高い相関がある。
As described above, according to the menthol content measuring method of the present embodiment, the measurement can be completed easily and in a short time as compared with the conventional measuring method using a gas chromatograph. When only two wavelengths are used for measurement, the time required for measurement is shorter, and when only a single wavelength is used, the measurement can be completed in a shorter time. Moreover, the measurement result obtained has a high correlation with the result obtained by the conventional measurement method.
以下に実施例を示し、本発明の実施の形態についてさらに詳しく説明する。もちろん、本発明は以下の実施例に限定されるものではなく、細部については様々な態様が可能であることはいうまでもない。さらに、本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、それぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、本明細書中に記載された文献の全てが参考として援用される。
Examples will be shown below, and the embodiments of the present invention will be described in more detail. Of course, the present invention is not limited to the following examples, and it goes without saying that various aspects are possible in detail. Further, the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope shown in the claims, and the present invention is also applied to the embodiments obtained by appropriately combining the disclosed technical means. It is included in the technical scope of the invention. Moreover, all the literatures described in this specification are used as reference.
〔実施例1〕
メンソールが多糖類のガムで被覆されてなる多糖類シートを、検量線作成用試料として準備した。具体的には、ゲランガムおよびタマリンドガムの混合物からなる多糖類のガムにメンソールを添加した無着色の半透明シート(約0.1mm厚)を検量線作成用試料として準備した。各シートに含まれるメンソールの量は、従来のメンソール含量測定法を用いて予め測定されている。検量線作成用試料について、1100~2500nmの近赤外波長領域に関し、0.5nm間隔で反射拡散スペクトルを測定した。具体的には、検量線作成用試料を、測定用のボート(内径W15cm×D5cm×H4cm、底面:石英ガラス製)に入る大きさ(14cm×4cm)の断片に切り出し、測定用のボートに5枚重ねにして入れ、鎮圧板をのせた後、近赤外線分光測定装置(FOSS NIRSystems社製、型式:XM-1100)を用いて、石英ガラス張りの底面から近赤外線を照射し、波長毎に反射する近赤外線を検出してレファレンス強度との違いから拡散反射スペクトルを測定した。 [Example 1]
A polysaccharide sheet in which menthol was coated with a polysaccharide gum was prepared as a sample for preparing a calibration curve. Specifically, an uncolored translucent sheet (about 0.1 mm thick) in which menthol was added to a polysaccharide gum made of a mixture of gellan gum and tamarind gum was prepared as a sample for preparing a calibration curve. The amount of menthol contained in each sheet is measured in advance using a conventional menthol content measurement method. Regarding the sample for preparing a calibration curve, the reflection diffusion spectrum was measured at 0.5 nm intervals in the near infrared wavelength region of 1100 to 2500 nm. Specifically, a sample for preparing a calibration curve is cut into pieces (14 cm × 4 cm) of a size (14 cm × 4 cm) that fits into a measurement boat (inner diameter W15 cm × D5 cm × H4 cm, bottom: made of quartz glass). After putting the sheets in layers and placing a pressure plate on them, the near infrared rays are irradiated from the bottom surface of quartz glass using a near infrared spectrometer (model: XM-1100, manufactured by FOSS NIRSystems) and reflected for each wavelength. Near-infrared light was detected and the diffuse reflection spectrum was measured from the difference from the reference intensity.
メンソールが多糖類のガムで被覆されてなる多糖類シートを、検量線作成用試料として準備した。具体的には、ゲランガムおよびタマリンドガムの混合物からなる多糖類のガムにメンソールを添加した無着色の半透明シート(約0.1mm厚)を検量線作成用試料として準備した。各シートに含まれるメンソールの量は、従来のメンソール含量測定法を用いて予め測定されている。検量線作成用試料について、1100~2500nmの近赤外波長領域に関し、0.5nm間隔で反射拡散スペクトルを測定した。具体的には、検量線作成用試料を、測定用のボート(内径W15cm×D5cm×H4cm、底面:石英ガラス製)に入る大きさ(14cm×4cm)の断片に切り出し、測定用のボートに5枚重ねにして入れ、鎮圧板をのせた後、近赤外線分光測定装置(FOSS NIRSystems社製、型式:XM-1100)を用いて、石英ガラス張りの底面から近赤外線を照射し、波長毎に反射する近赤外線を検出してレファレンス強度との違いから拡散反射スペクトルを測定した。 [Example 1]
A polysaccharide sheet in which menthol was coated with a polysaccharide gum was prepared as a sample for preparing a calibration curve. Specifically, an uncolored translucent sheet (about 0.1 mm thick) in which menthol was added to a polysaccharide gum made of a mixture of gellan gum and tamarind gum was prepared as a sample for preparing a calibration curve. The amount of menthol contained in each sheet is measured in advance using a conventional menthol content measurement method. Regarding the sample for preparing a calibration curve, the reflection diffusion spectrum was measured at 0.5 nm intervals in the near infrared wavelength region of 1100 to 2500 nm. Specifically, a sample for preparing a calibration curve is cut into pieces (14 cm × 4 cm) of a size (14 cm × 4 cm) that fits into a measurement boat (inner diameter W15 cm × D5 cm × H4 cm, bottom: made of quartz glass). After putting the sheets in layers and placing a pressure plate on them, the near infrared rays are irradiated from the bottom surface of quartz glass using a near infrared spectrometer (model: XM-1100, manufactured by FOSS NIRSystems) and reflected for each wavelength. Near-infrared light was detected and the diffuse reflection spectrum was measured from the difference from the reference intensity.
検量線作成用試料15サンプルについて拡散反射スペクトルを測定した後、当該スペクトルと、従来の測定法により得られていたメンソール含量との相関を多変量解析手法を用いて解析して、検量線を作成した。詳細には、上記近赤外線分光測定装置に内蔵された汎用VISIONソフト(FOSS NIRSystems社製)を用いて、各拡散反射スペクトルを2次微分法でスペクトル変換し、目的変数を既知メンソール含量、主成分を主波長として主成分分析を行った後に、重回帰分析によって検量線を作成した。
After measuring the diffuse reflectance spectrum of 15 samples for preparing a calibration curve, the correlation between the spectrum and the menthol content obtained by the conventional measurement method is analyzed using a multivariate analysis method to create a calibration curve did. Specifically, using the general-purpose VISION software (FOSS NIRSystems) built in the near-infrared spectrometer, each diffuse reflection spectrum is spectrally converted by the second derivative method, and the objective variable is known menthol content, principal component After performing principal component analysis using as the dominant wavelength, a calibration curve was created by multiple regression analysis.
その結果、以下の推定式(I)を得ることができた。推定式(I)によって得られるYがメンソール含量の推定値(乾物あたりの割合(%))である。K(1)は、スペクトル測定後に微分処理された、波長1562.5nmにおける吸光度を示している。
推定式(I):
Y=12391.5K(1)+56.6
推定式(I)は、決定係数(R2)が0.94であり、標準誤差が3.37であった。 As a result, the following estimation formula (I) was obtained. Y obtained by the estimation formula (I) is an estimated value of menthol content (ratio per dry matter (%)). K (1) represents the absorbance at a wavelength of 1562.5 nm, which was subjected to differentiation after spectrum measurement.
Estimation formula (I):
Y = 12391.5K (1) +56.6
In the estimation formula (I), the coefficient of determination (R 2 ) was 0.94, and the standard error was 3.37.
推定式(I):
Y=12391.5K(1)+56.6
推定式(I)は、決定係数(R2)が0.94であり、標準誤差が3.37であった。 As a result, the following estimation formula (I) was obtained. Y obtained by the estimation formula (I) is an estimated value of menthol content (ratio per dry matter (%)). K (1) represents the absorbance at a wavelength of 1562.5 nm, which was subjected to differentiation after spectrum measurement.
Estimation formula (I):
Y = 12391.5K (1) +56.6
In the estimation formula (I), the coefficient of determination (R 2 ) was 0.94, and the standard error was 3.37.
本実施例における検量線作成用試料について、従来の測定法により得られたメンソール含量(化学分析値)と、推定式(I)を用いて近赤外分光法により得られたメンソール推定値(NIR測定値)との関係を図1に示す。
〔実施例2〕
ポリエチレンテレフタレート製のフィルム上に成形された、メンソールが添加された実施例1と同様の多糖類シートを、検量線作成用試料として準備した。具体的には、ゲランガムおよびタマリンドガムの混合物からなる多糖類のガムにメンソールを添加した無着色の半透明シート(約0.1mm厚)がポリエチレンテレフタレートの基板(約0.05mm厚、製造工程の基板)に付いたシートを、検量線作成用試料として準備した。各ポリエチレンテレフタレート付きシートに含まれるメンソールの量は、従来のメンソール含量測定法を用いて予め測定されている。検量線作成用試料について、1100~2500nmの近赤外波長領域に関し、0.5nm間隔で拡散反射スペクトルを測定した。具体的には、ポリエチレンテレフタレートの基板が付いたままの検量線作成用試料を、測定用のボート(内径W15cm×D5cm×H4cm、底面:石英ガラス製)に入る大きさ(14cm×4cm)の断片に切り出し、当該ボートにシート面を下にして(ポリエチレンテレフタレート側を上にして)1枚入れ、近赤外線分光測定装置(FOSS NIRSystems社製、型式:XM-1100)を用いて、石英ガラス張りの底面から近赤外線を照射し、実施例1と同様にして拡散反射スペクトルを測定した。 For the sample for preparing a calibration curve in this example, the menthol content (chemical analysis value) obtained by the conventional measurement method and the estimated menthol value (NIR) obtained by the near infrared spectroscopy using the estimation formula (I) The relationship with the measured value is shown in FIG.
[Example 2]
A polysaccharide sheet similar to Example 1 to which menthol was added and formed on a polyethylene terephthalate film was prepared as a sample for preparing a calibration curve. Specifically, a non-colored translucent sheet (about 0.1 mm thick) obtained by adding menthol to a polysaccharide gum consisting of a mixture of gellan gum and tamarind gum is a polyethylene terephthalate substrate (about 0.05 mm thick, A sheet attached to the substrate was prepared as a sample for preparing a calibration curve. The amount of menthol contained in each sheet with polyethylene terephthalate is measured in advance using a conventional menthol content measurement method. Regarding the sample for preparing a calibration curve, a diffuse reflection spectrum was measured at intervals of 0.5 nm in the near infrared wavelength region of 1100 to 2500 nm. Specifically, a sample (14 cm × 4 cm) of a calibration curve preparation sample with a polyethylene terephthalate substrate attached to a measurement boat (inner diameter W15 cm × D5 cm × H4 cm, bottom: made of quartz glass) And put one sheet into the boat with the sheet surface facing down (polyethylene terephthalate side up) and using a near-infrared spectrometer (model: XM-1100, manufactured by FOSS NIRSystems) Then, near infrared rays were irradiated, and the diffuse reflection spectrum was measured in the same manner as in Example 1.
〔実施例2〕
ポリエチレンテレフタレート製のフィルム上に成形された、メンソールが添加された実施例1と同様の多糖類シートを、検量線作成用試料として準備した。具体的には、ゲランガムおよびタマリンドガムの混合物からなる多糖類のガムにメンソールを添加した無着色の半透明シート(約0.1mm厚)がポリエチレンテレフタレートの基板(約0.05mm厚、製造工程の基板)に付いたシートを、検量線作成用試料として準備した。各ポリエチレンテレフタレート付きシートに含まれるメンソールの量は、従来のメンソール含量測定法を用いて予め測定されている。検量線作成用試料について、1100~2500nmの近赤外波長領域に関し、0.5nm間隔で拡散反射スペクトルを測定した。具体的には、ポリエチレンテレフタレートの基板が付いたままの検量線作成用試料を、測定用のボート(内径W15cm×D5cm×H4cm、底面:石英ガラス製)に入る大きさ(14cm×4cm)の断片に切り出し、当該ボートにシート面を下にして(ポリエチレンテレフタレート側を上にして)1枚入れ、近赤外線分光測定装置(FOSS NIRSystems社製、型式:XM-1100)を用いて、石英ガラス張りの底面から近赤外線を照射し、実施例1と同様にして拡散反射スペクトルを測定した。 For the sample for preparing a calibration curve in this example, the menthol content (chemical analysis value) obtained by the conventional measurement method and the estimated menthol value (NIR) obtained by the near infrared spectroscopy using the estimation formula (I) The relationship with the measured value is shown in FIG.
[Example 2]
A polysaccharide sheet similar to Example 1 to which menthol was added and formed on a polyethylene terephthalate film was prepared as a sample for preparing a calibration curve. Specifically, a non-colored translucent sheet (about 0.1 mm thick) obtained by adding menthol to a polysaccharide gum consisting of a mixture of gellan gum and tamarind gum is a polyethylene terephthalate substrate (about 0.05 mm thick, A sheet attached to the substrate was prepared as a sample for preparing a calibration curve. The amount of menthol contained in each sheet with polyethylene terephthalate is measured in advance using a conventional menthol content measurement method. Regarding the sample for preparing a calibration curve, a diffuse reflection spectrum was measured at intervals of 0.5 nm in the near infrared wavelength region of 1100 to 2500 nm. Specifically, a sample (14 cm × 4 cm) of a calibration curve preparation sample with a polyethylene terephthalate substrate attached to a measurement boat (inner diameter W15 cm × D5 cm × H4 cm, bottom: made of quartz glass) And put one sheet into the boat with the sheet surface facing down (polyethylene terephthalate side up) and using a near-infrared spectrometer (model: XM-1100, manufactured by FOSS NIRSystems) Then, near infrared rays were irradiated, and the diffuse reflection spectrum was measured in the same manner as in Example 1.
検量線作成用試料32サンプルについて拡散反射スペクトルを測定した後、実施例1と同様にして検量線を作成した。
After measuring the diffuse reflection spectrum of 32 samples for preparing a calibration curve, a calibration curve was prepared in the same manner as in Example 1.
その結果、以下の推定式(II)を得ることができた。推定式(II)によって得られるYがメンソール含量の推定値(乾物あたりの割合(%))である。K(1)は、スペクトル測定後に微分処理された、波長1562.5nmにおける吸光度を示している。
推定式(II):
Y=38764.38K(1)+24.43
推定式(II)は、決定係数(R2)が0.96であり、標準誤差が2.60であった。 As a result, the following estimation formula (II) could be obtained. Y obtained by the estimation formula (II) is an estimated value of menthol content (ratio per dry matter (%)). K (1) represents the absorbance at a wavelength of 1562.5 nm, which was subjected to differentiation after spectrum measurement.
Estimation formula (II):
Y = 38764.38K (1) +24.43
In the estimation formula (II), the coefficient of determination (R 2 ) was 0.96, and the standard error was 2.60.
推定式(II):
Y=38764.38K(1)+24.43
推定式(II)は、決定係数(R2)が0.96であり、標準誤差が2.60であった。 As a result, the following estimation formula (II) could be obtained. Y obtained by the estimation formula (II) is an estimated value of menthol content (ratio per dry matter (%)). K (1) represents the absorbance at a wavelength of 1562.5 nm, which was subjected to differentiation after spectrum measurement.
Estimation formula (II):
Y = 38764.38K (1) +24.43
In the estimation formula (II), the coefficient of determination (R 2 ) was 0.96, and the standard error was 2.60.
本実施例における検量線作成用試料について、従来の測定法により得られたメンソール含量(化学分析値)と、推定式(II)を用いて近赤外分光法により得られたメンソール推定値(NIR測定値)との関係を図2に示す(図2中、「CAL」)。
For the sample for preparing a calibration curve in this example, the menthol content (chemical analysis value) obtained by the conventional measurement method and the estimated menthol value (NIR) obtained by the near infrared spectroscopy using the estimation formula (II) (Measurement value) is shown in FIG. 2 (“CAL” in FIG. 2).
次に、メンソール含量が未知である試料について、近赤外分光法によりスペクトル測定を行い、上記検量線を用いてメンソール含量を推定した。まず、検量線作成用試料と同様にして、メンソール含量が未知である測定用試料を準備した。拡散反射スペクトルを測定し、スペクトル測定後に微分処理した波長1562.5nmにおける吸光度および推定式(II)を用いて、12サンプルについてメンソール含量推定値を算出した。
Next, a sample having an unknown menthol content was subjected to spectrum measurement by near infrared spectroscopy, and the menthol content was estimated using the calibration curve. First, a measurement sample having an unknown menthol content was prepared in the same manner as the calibration curve preparation sample. A diffuse reflectance spectrum was measured, and an estimated value of menthol content was calculated for 12 samples using the absorbance at a wavelength of 1562.5 nm and an estimation formula (II) subjected to differentiation after the spectrum measurement.
各測定用試料について近赤外分光法によりメンソール含量を推定した後、従来の測定法により同一試料のメンソール含量を測定し、近赤外分光法により得られたメンソール含量推定値と、従来の測定法により得られたメンソール含量との相関関係を調べた。結果を図2に示す(図2中、「Vali」)。
After estimating the menthol content for each measurement sample by near-infrared spectroscopy, measure the menthol content of the same sample by conventional measurement method, and estimate the menthol content obtained by near-infrared spectroscopy and the conventional measurement The correlation with the menthol content obtained by the method was investigated. The results are shown in FIG. 2 (“Vali” in FIG. 2).
図2に示すとおり、従来の測定方法により得られたメンソール含量と、近赤外分光法により得られたメンソール含量の推定値との間には高い相関が見られた。以上から、近赤外分光法により、かつ単一波長のスペクトル測定により、短時間のうちに試料中のメンソール含量を精度よく測定することができる。
〔実施例3〕
本実施例では、より精度よく測定を行うことを目的として、2波長の拡散反射スペクトルを用いる場合について、検討を行った。 As shown in FIG. 2, a high correlation was found between the menthol content obtained by the conventional measurement method and the estimated value of menthol content obtained by the near infrared spectroscopy. From the above, the menthol content in the sample can be accurately measured in a short time by near-infrared spectroscopy and single-wavelength spectrum measurement.
Example 3
In the present example, a case where a two-wavelength diffuse reflection spectrum was used was studied for the purpose of measuring with higher accuracy.
〔実施例3〕
本実施例では、より精度よく測定を行うことを目的として、2波長の拡散反射スペクトルを用いる場合について、検討を行った。 As shown in FIG. 2, a high correlation was found between the menthol content obtained by the conventional measurement method and the estimated value of menthol content obtained by the near infrared spectroscopy. From the above, the menthol content in the sample can be accurately measured in a short time by near-infrared spectroscopy and single-wavelength spectrum measurement.
Example 3
In the present example, a case where a two-wavelength diffuse reflection spectrum was used was studied for the purpose of measuring with higher accuracy.
多糖類のガムを褐色に着色した以外は実施例2と同様にして、ポリエチレンテレフタレートの基板が付いたままの検量線作成用試料を準備し、拡散反射スペクトルを測定した。
A sample for preparing a calibration curve with a polyethylene terephthalate substrate attached was prepared in the same manner as in Example 2 except that the polysaccharide gum was colored brown, and the diffuse reflection spectrum was measured.
検量線作成用試料32サンプルについて拡散反射スペクトルを測定した後、実施例1と同様にして検量線を作成した。その際、2つの波長の吸光度を利用している検量線を抽出した。
After measuring the diffuse reflection spectrum of 32 samples for preparing a calibration curve, a calibration curve was prepared in the same manner as in Example 1. At that time, a calibration curve using absorbance at two wavelengths was extracted.
その結果、以下の推定式(III)を得ることができた。推定式(III)によって得られるYがメンソール含量の推定値(乾物あたりの割合(%))である。K(1)およびK(2)は、それぞれ、スペクトル測定後に微分処理された、波長1562.5nmおよび1224.5nmにおける吸光度を示している。
推定式(III):
Y=7819.17K(2)+38764.38K(1)+24.43
推定式(III)では、決定係数(R2)が0.99であり、標準誤差が1.32であった。 As a result, the following estimation formula (III) could be obtained. Y obtained by the estimation formula (III) is an estimated value of menthol content (ratio per dry matter (%)). K (1) and K (2) indicate the absorbances at wavelengths of 1562.5 nm and 1224.5 nm, respectively, which were differentiated after the spectrum measurement.
Estimation formula (III):
Y = 7819.17K (2) + 38764.38K (1) +24.43
In the estimation formula (III), the coefficient of determination (R 2 ) was 0.99, and the standard error was 1.32.
推定式(III):
Y=7819.17K(2)+38764.38K(1)+24.43
推定式(III)では、決定係数(R2)が0.99であり、標準誤差が1.32であった。 As a result, the following estimation formula (III) could be obtained. Y obtained by the estimation formula (III) is an estimated value of menthol content (ratio per dry matter (%)). K (1) and K (2) indicate the absorbances at wavelengths of 1562.5 nm and 1224.5 nm, respectively, which were differentiated after the spectrum measurement.
Estimation formula (III):
Y = 7819.17K (2) + 38764.38K (1) +24.43
In the estimation formula (III), the coefficient of determination (R 2 ) was 0.99, and the standard error was 1.32.
本実施例における検量線作成用試料について、従来の測定法により得られたメンソール含量(化学分析値)と、推定式(III)を用いて近赤外分光法により得られたメンソール推定値(NIR測定値)との関係を図3に示す(図3中、「CAL」)。
For the sample for preparing a calibration curve in this example, the menthol content (chemical analysis value) obtained by the conventional measurement method and the menthol estimate value (NIR) obtained by the near infrared spectroscopy using the estimation formula (III) (Measurement value) is shown in FIG. 3 (“CAL” in FIG. 3).
次に、メンソール含量が未知である試料について、近赤外分光法によりスペクトル測定を行い、上記検量線を用いてメンソール含量を推定した。まず、検量線作成用試料と同様にして、メンソール含量が未知である測定用試料を準備した。拡散反射スペクトルを測定し、スペクトル測定後に微分処理した波長1562.5nmおよび1224.5nmにおける吸光度および推定式(III)を用いて、12サンプルについてメンソール含量推定値を算出した。
Next, a sample having an unknown menthol content was subjected to spectrum measurement by near infrared spectroscopy, and the menthol content was estimated using the calibration curve. First, a measurement sample having an unknown menthol content was prepared in the same manner as the calibration curve preparation sample. A diffuse reflection spectrum was measured, and an estimated value of menthol content was calculated for 12 samples using absorbance at wavelengths of 1562.5 nm and 1224.5 nm and an estimation formula (III) subjected to differential processing after the spectrum measurement.
各測定用試料について近赤外分光法によりメンソール含量を推定した後、従来の測定法により同一試料のメンソール含量を測定し、近赤外分光法により得られたメンソール含量推定値と、従来の測定法により得られたメンソール含量との相関関係を調べた。結果を図3に示す(図3中、「Vali」)。
After estimating the menthol content for each measurement sample by near-infrared spectroscopy, measure the menthol content of the same sample by conventional measurement method, and estimate the menthol content obtained by near-infrared spectroscopy and the conventional measurement The correlation with the menthol content obtained by the method was investigated. The results are shown in FIG. 3 (“Vali” in FIG. 3).
図3に示すとおり、従来の測定方法により得られたメンソール含量と、近赤外分光法により得られたメンソール含量の推定値との間には高い相関が見られた。以上から、2つの波長を用いた近赤外分光法により、短時間のうちに試料中のメンソール含量をより精度よく測定することができる。
〔実施例4〕
実施例2と同様にして、検量線作成用試料を準備し、拡散反射スペクトルを測定した。 As shown in FIG. 3, a high correlation was found between the menthol content obtained by the conventional measurement method and the estimated value of menthol content obtained by the near infrared spectroscopy. As described above, the menthol content in the sample can be measured with higher accuracy in a short time by near infrared spectroscopy using two wavelengths.
Example 4
In the same manner as in Example 2, a calibration curve preparation sample was prepared, and a diffuse reflection spectrum was measured.
〔実施例4〕
実施例2と同様にして、検量線作成用試料を準備し、拡散反射スペクトルを測定した。 As shown in FIG. 3, a high correlation was found between the menthol content obtained by the conventional measurement method and the estimated value of menthol content obtained by the near infrared spectroscopy. As described above, the menthol content in the sample can be measured with higher accuracy in a short time by near infrared spectroscopy using two wavelengths.
Example 4
In the same manner as in Example 2, a calibration curve preparation sample was prepared, and a diffuse reflection spectrum was measured.
検量線作成用試料32サンプルについて拡散反射スペクトルを測定した後、波長1562.5nm以外の波長に関し、実施例1と同様にして検量線を作成し、その決定係数について調べた。その結果、表1に示すように、波長1540.0nm、1562.0nmまたは1595.0nmの波長を用いて測定を行なった場合にも、従来の測定方法から得られる結果と高い相関関係でもって、メンソール含量を測定できることが示された。
After measuring the diffuse reflection spectrum of 32 samples for preparing a calibration curve, a calibration curve was created in the same manner as in Example 1 for wavelengths other than 1562.5 nm, and the coefficient of determination was examined. As a result, as shown in Table 1, even when measurement was performed using wavelengths of 1540.0 nm, 1562.0 nm, or 1595.0 nm, with a high correlation with the results obtained from the conventional measurement method, It has been shown that the menthol content can be measured.
本実施例では、上述の実施例と異なり、メンソールを含む溶液を多糖類材料の成形物に噴霧した試料を測定対象とした。具体的には、パルプから作られるセルロースの紙の一方の面にアルミ箔が貼り合わされており、他方の面にはメンソールを含む溶液が吹き付けられている試料を測定対象とした。また吹き付けるメンソールの量を変え、メンソール添加量が異なる試料を準備した。
In this example, unlike the above example, a sample in which a solution containing menthol was sprayed on a molded product of a polysaccharide material was used as a measurement target. Specifically, a sample in which an aluminum foil was bonded to one side of cellulose paper made from pulp and a solution containing menthol was sprayed on the other side was used as a measurement target. Further, samples with different menthol addition amounts were prepared by changing the amount of menthol sprayed.
検量線作成用試料について、1100~2500nmの近赤外波長領域に関し、0.5nm間隔で拡散反射スペクトルを測定した。具体的には、検量線作成用試料を、測定用のボート(内径W15cm×D5cm×H4cm、底面:石英ガラス製)に入る大きさ(14cm×4cm)の断片に切り出し、当該ボートにセルロース面(アルミ箔が貼り合わされていない方の面)を下にして1枚入れ、近赤外線分光測定装置(FOSS NIRSystems社製、型式:XM-1100)を用いて、石英ガラス張りの底面から近赤外線を照射し、実施例1~4と同様にして拡散反射スペクトルを測定した。
For the sample for preparing a calibration curve, a diffuse reflection spectrum was measured at 0.5 nm intervals in the near infrared wavelength region of 1100 to 2500 nm. Specifically, a sample for preparing a calibration curve is cut into pieces (14 cm × 4 cm) of a size (14 cm × 4 cm) that fit into a measurement boat (inner diameter W15 cm × D5 cm × H4 cm, bottom surface: made of quartz glass), and the cellulose surface ( Place one sheet with the aluminum foil not attached), and irradiate near infrared rays from the bottom of quartz glass using a near infrared spectrophotometer (FOSS NIRSystems, model: XM-1100) The diffuse reflectance spectrum was measured in the same manner as in Examples 1 to 4.
検量線作成用試料27サンプルについて拡散反射スペクトルを測定した後、実施例1と同様にして検量線を作成した。
After measuring the diffuse reflection spectrum of 27 samples for preparing a calibration curve, a calibration curve was prepared in the same manner as in Example 1.
その結果、以下の推定式(IV)を得ることができた。推定式(IV)によって得られるYがメンソール含量の推定値(単位:mg/100cm2)である。K(1)は、スペクトル測定後に微分処理された、波長1693.0nmにおける吸光度を示している。
推定式(IV):
Y=-12408.95K(1)-2.1815
推定式(IV)は、決定係数(R2)が0.98であり、標準誤差が2.11であった。 As a result, the following estimation formula (IV) could be obtained. Y obtained by the estimation formula (IV) is an estimated value of menthol content (unit: mg / 100 cm 2 ). K (1) represents the absorbance at a wavelength of 1693.0 nm, which was subjected to differentiation after spectrum measurement.
Estimation formula (IV):
Y = -12408.95K (1) -2.1815
In the estimation formula (IV), the coefficient of determination (R 2 ) was 0.98, and the standard error was 2.11.
推定式(IV):
Y=-12408.95K(1)-2.1815
推定式(IV)は、決定係数(R2)が0.98であり、標準誤差が2.11であった。 As a result, the following estimation formula (IV) could be obtained. Y obtained by the estimation formula (IV) is an estimated value of menthol content (unit: mg / 100 cm 2 ). K (1) represents the absorbance at a wavelength of 1693.0 nm, which was subjected to differentiation after spectrum measurement.
Estimation formula (IV):
Y = -12408.95K (1) -2.1815
In the estimation formula (IV), the coefficient of determination (R 2 ) was 0.98, and the standard error was 2.11.
本実施例における検量線作成用試料について、従来の測定法により得られたメンソール含量(化学分析値)と、推定式(IV)を用いて近赤外分光法により得られたメンソール推定値(NIR測定値)との関係を図4に示す(図4中、「CAL」)。
For the sample for preparing a calibration curve in this example, the menthol content (chemical analysis value) obtained by the conventional measurement method and the menthol estimate value (NIR) obtained by the near infrared spectroscopy using the estimation formula (IV) (Measurement value) is shown in FIG. 4 (“CAL” in FIG. 4).
次に、メンソール含量が未知である試料について、近赤外分光法によりスペクトル測定を行い、上記検量線を用いてメンソール含量を推定した。まず、検量線作成用試料と同様にして、メンソール含量が未知である測定用試料を準備した。拡散反射スペクトルを測定し、スペクトル測定後に微分処理した波長1693.0nmにおける吸光度および推定式(IV)を用いて、27サンプルについてメンソール含量推定値を算出した。
Next, a sample having an unknown menthol content was subjected to spectrum measurement by near infrared spectroscopy, and the menthol content was estimated using the calibration curve. First, a measurement sample having an unknown menthol content was prepared in the same manner as the calibration curve preparation sample. A diffuse reflection spectrum was measured, and an estimated value of menthol content was calculated for 27 samples using the absorbance at a wavelength of 1693.0 nm subjected to differential processing after the spectrum measurement and the estimation formula (IV).
各測定用試料について近赤外分光法によりメンソール含量を推定した後、従来の測定法により同一試料のメンソール含量を測定し、近赤外分光法により得られたメンソール含量推定値と、従来の測定法により得られたメンソール含量との相関関係を調べた。結果を図4に示す(図4中、「Vali」)。
After estimating the menthol content for each measurement sample by near-infrared spectroscopy, measure the menthol content of the same sample by the conventional measurement method, and estimate the menthol content obtained by near-infrared spectroscopy and the conventional measurement The correlation with the menthol content obtained by the method was investigated. The results are shown in FIG. 4 (“Vali” in FIG. 4).
図4に示すとおり、従来の測定方法により得られたメンソール含量と、近赤外分光法により得られたメンソール含量の推定値との間には高い相関が見られた。以上から、近赤外分光法により、かつ単一波長のスペクトル測定により、短時間のうちに試料中のメンソール含量をより精度よく測定することができる。
As shown in FIG. 4, a high correlation was observed between the menthol content obtained by the conventional measurement method and the estimated value of the menthol content obtained by the near infrared spectroscopy. From the above, it is possible to measure the menthol content in a sample more accurately in a short time by near-infrared spectroscopy and spectrum measurement at a single wavelength.
本発明は、たばこ製品の原料、包装材料等の製造に利用することができる。
The present invention can be used for the manufacture of tobacco product raw materials, packaging materials, and the like.
Claims (11)
- メンソールが多糖類材料に被覆されてなる試料に近赤外線を照射し、透過吸収スペクトルまたは拡散反射スペクトルを測定する測定工程、および、
測定された上記透過吸収スペクトルまたは上記拡散反射スペクトルを用いて、予め作成された検量線からメンソール含量推定値を算出する算出工程、
を含むことを特徴とする試料中のメンソール含量測定方法。 A measurement step of irradiating a sample in which menthol is coated with a polysaccharide material with near infrared rays, and measuring a transmission absorption spectrum or a diffuse reflection spectrum, and
A calculation step of calculating an estimated value of menthol content from a calibration curve prepared in advance using the measured transmission absorption spectrum or the diffuse reflection spectrum,
A method for measuring the menthol content in a sample, comprising: - 上記試料は、シート状の試料であることを特徴とする請求項1に記載のメンソール含量測定方法。 2. The menthol content measuring method according to claim 1, wherein the sample is a sheet-like sample.
- 上記多糖類材料における多糖類は、カラギーナン、寒天、ゲランガム、タマリンドガム、サイリウムシードガムもしくはコンニャクグルコマンナンの単成分系、またはカラギーナン、ローカストビーンガム、グアーガム、寒天、キサンタンガム、ゲランガム、タマリンドガム、タラガム、コンニャクグルコマンナン、デンプン、カシアガムおよびサイリウムシードガムからなる群より選択される2以上の成分を組み合わせた複合系であることを特徴とする請求項1または2に記載のメンソール含量測定方法。 The polysaccharide in the polysaccharide material is carrageenan, agar, gellan gum, tamarind gum, single-component system of psyllium seed gum or konjac glucomannan, or carrageenan, locust bean gum, guar gum, agar, xanthan gum, gellan gum, tamarind gum, tara gum, The menthol content measurement method according to claim 1 or 2, wherein the menthol content measurement method is a composite system in which two or more components selected from the group consisting of konjac glucomannan, starch, cassia gum and psyllium seed gum are combined.
- 上記測定工程では、単一波長の透過吸収スペクトルまたは拡散反射スペクトルを測定することを特徴とする請求項1~3の何れか1項に記載のメンソール含量測定方法。 The menthol content measuring method according to any one of claims 1 to 3, wherein in the measuring step, a single wavelength transmission absorption spectrum or diffuse reflection spectrum is measured.
- 上記測定工程では、2つの波長の透過吸収スペクトルまたは拡散反射スペクトルを測定することを特徴とする請求項1~4の何れか1項に記載のメンソール含量測定方法。 The method for measuring menthol content according to any one of claims 1 to 4, wherein in the measurement step, a transmission absorption spectrum or a diffuse reflection spectrum of two wavelengths is measured.
- 上記測定工程では、1540.0nm、1562.0nm、1562.5nmおよび1595.0nmからなる群より選択される波長の透過吸収スペクトルまたは拡散反射スペクトルを少なくとも測定することを特徴とする請求項1~5の何れか1項に記載のメンソール含量測定方法。 6. The measuring step includes measuring at least a transmission absorption spectrum or a diffuse reflection spectrum at a wavelength selected from the group consisting of 1540.0 nm, 1562.0 nm, 1562.5 nm, and 1595.0 nm. The method for measuring menthol content according to any one of the above.
- 上記試料は、メンソールが多糖類のガムで被覆されてなるものであり、
上記測定工程では、1540.0nm、1562.0nm、1562.5nmおよび1595.0nmからなる群より選択される波長の透過吸収スペクトルまたは拡散反射スペクトルを少なくとも測定することを特徴とする請求項1~6の何れか1項に記載のメンソール含量測定方法。 The above sample is one in which menthol is coated with a polysaccharide gum,
The measurement step includes measuring at least a transmission absorption spectrum or a diffuse reflection spectrum of a wavelength selected from the group consisting of 1540.0 nm, 1562.0 nm, 1562.5 nm, and 1595.0 nm. The method for measuring menthol content according to any one of the above. - 上記測定工程では、1562.5nmの波長の透過吸収スペクトルまたは拡散反射スペクトルを少なくとも測定することを特徴とする請求項7に記載のメンソール含量測定方法。 The menthol content measuring method according to claim 7, wherein in the measuring step, at least a transmission absorption spectrum or a diffuse reflection spectrum having a wavelength of 1562.5 nm is measured.
- 上記試料は、たばこ製品の原料であることを特徴とする請求項1~8の何れか1項に記載のメンソール含量測定方法。 The method for measuring a menthol content according to any one of claims 1 to 8, wherein the sample is a raw material for tobacco products.
- メンソール含量が既知である複数の上記試料の透過吸収スペクトルまたは拡散反射スペクトルを用いて、多変量解析によって上記検量線を作成する工程をさらに含むことを特徴とする請求項1~9の何れか1項に記載のメンソール含量測定方法。 10. The method according to claim 1, further comprising the step of creating the calibration curve by multivariate analysis using transmission absorption spectra or diffuse reflection spectra of a plurality of the samples having a known menthol content. The menthol content measuring method according to Item.
- 上記多変量解析は、重回帰分析またはPLS回帰分析であることを特徴とする請求項10に記載のメンソール含量測定方法。 The menthol content measuring method according to claim 10, wherein the multivariate analysis is a multiple regression analysis or a PLS regression analysis.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012057699 | 2012-03-26 | ||
JPPCT/JP2012/057699 | 2012-03-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013145437A1 true WO2013145437A1 (en) | 2013-10-03 |
Family
ID=49258770
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/080460 WO2013145437A1 (en) | 2012-03-26 | 2012-11-26 | Method for measuring menthol content |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2013145437A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103604686A (en) * | 2013-12-03 | 2014-02-26 | 岛津企业管理(中国)有限公司 | Pre-treatment and quantitative analysis method for rapid determination of content of cadmium element in rice |
CN104713846A (en) * | 2015-02-03 | 2015-06-17 | 贵州省烟草科学研究院 | Modeling method for rapidly detecting content of starch in tobacco by using near infrared spectroscopy |
CN105352913A (en) * | 2015-11-25 | 2016-02-24 | 浙江百山祖生物科技有限公司 | Method for detecting polysaccharide content of ganoderma lucidum extract through near-infrared spectroscopy |
CN109307740A (en) * | 2018-09-20 | 2019-02-05 | 云南中烟工业有限责任公司 | The stem of pipe tobacco mixes the method for ratio in fact in a kind of quick estimation cigarette |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03289539A (en) * | 1990-04-05 | 1991-12-19 | Japan Tobacco Inc | Infrared-ray analyzer |
JP2001272338A (en) * | 2000-03-24 | 2001-10-05 | Snow Brand Milk Prod Co Ltd | Nondestructive measurement method for maturity degree |
JP2005257676A (en) * | 2004-02-09 | 2005-09-22 | National Agriculture & Bio-Oriented Research Organization | Method for determining quantity of chemical component in tea leaves |
JP2006238849A (en) * | 2005-03-07 | 2006-09-14 | Iseki & Co Ltd | Method and apparatus for foreseeing component information of fruit |
JP2009247473A (en) * | 2008-04-03 | 2009-10-29 | Hochiki Corp | Ethyl alcohol detector |
JP2011518544A (en) * | 2008-02-01 | 2011-06-30 | アール・ジエイ・レイノルズ・タバコ・カンパニー | System for analyzing filter elements associated with smoking articles and related methods |
-
2012
- 2012-11-26 WO PCT/JP2012/080460 patent/WO2013145437A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03289539A (en) * | 1990-04-05 | 1991-12-19 | Japan Tobacco Inc | Infrared-ray analyzer |
JP2001272338A (en) * | 2000-03-24 | 2001-10-05 | Snow Brand Milk Prod Co Ltd | Nondestructive measurement method for maturity degree |
JP2005257676A (en) * | 2004-02-09 | 2005-09-22 | National Agriculture & Bio-Oriented Research Organization | Method for determining quantity of chemical component in tea leaves |
JP2006238849A (en) * | 2005-03-07 | 2006-09-14 | Iseki & Co Ltd | Method and apparatus for foreseeing component information of fruit |
JP2011518544A (en) * | 2008-02-01 | 2011-06-30 | アール・ジエイ・レイノルズ・タバコ・カンパニー | System for analyzing filter elements associated with smoking articles and related methods |
JP2009247473A (en) * | 2008-04-03 | 2009-10-29 | Hochiki Corp | Ethyl alcohol detector |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103604686A (en) * | 2013-12-03 | 2014-02-26 | 岛津企业管理(中国)有限公司 | Pre-treatment and quantitative analysis method for rapid determination of content of cadmium element in rice |
CN104713846A (en) * | 2015-02-03 | 2015-06-17 | 贵州省烟草科学研究院 | Modeling method for rapidly detecting content of starch in tobacco by using near infrared spectroscopy |
CN105352913A (en) * | 2015-11-25 | 2016-02-24 | 浙江百山祖生物科技有限公司 | Method for detecting polysaccharide content of ganoderma lucidum extract through near-infrared spectroscopy |
CN105352913B (en) * | 2015-11-25 | 2018-06-12 | 浙江百山祖生物科技有限公司 | A kind of method of near infrared spectrum detection Ganodenna Lucidum P.E polyoses content |
CN109307740A (en) * | 2018-09-20 | 2019-02-05 | 云南中烟工业有限责任公司 | The stem of pipe tobacco mixes the method for ratio in fact in a kind of quick estimation cigarette |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012127615A1 (en) | Method for measuring filling capacity | |
WO2012127617A1 (en) | Method for measuring bulk density | |
Liu et al. | Comparison of the HPLC method and FT-NIR analysis for quantification of glucose, fructose, and sucrose in intact apple fruits | |
Liu et al. | Nondestructive determination of pear internal quality indices by visible and near-infrared spectrometry | |
Saranwong et al. | Prediction of ripe-stage eating quality of mango fruit from its harvest quality measured nondestructively by near infrared spectroscopy | |
Wang et al. | Measurement of the light absorption and scattering properties of onion skin and flesh at 633 nm | |
WO2013145437A1 (en) | Method for measuring menthol content | |
Cayuela et al. | Prediction of quality of intact olives by near infrared spectroscopy | |
CN104792722A (en) | Method for establishing agilawood oil content near infrared spectral prediction model | |
Munawar et al. | Near infrared spectroscopic data for rapid and simultaneous prediction of quality attributes in intact mango fruits | |
CN105092513B (en) | A kind of method of the content of drug ingedient in measurement hybrid medicine | |
CN105548070B (en) | A kind of apple soluble solid near infrared detection position compensation method and system | |
Torres et al. | Fast and accurate quality assessment of Raf tomatoes using NIRS technology | |
AU781286B2 (en) | Method and apparatus for controlling the manufacturing quality of a moving web | |
Sawale et al. | Development and validation of UV spectrophotometric method for simultaneous estimation of Olmesartan Medoxomil and Chlorthalidone in bulk and tablet | |
Xue et al. | Dynamic prediction models for alkaloid content using NIR technology for the study and online analysis of parching in areca seed | |
Wang et al. | Rapid determination of Lycium barbarum polysaccharide with effective wavelength selection using near-infrared diffuse reflectance spectroscopy | |
Masithoh et al. | Determination of soluble solids content and titratable acidity of intact fruit and juice of satsuma mandarin using a hand-held near infrared instrument in transmittance mode | |
Wilson et al. | The quantification of citral in lemongrass and lemon oils by near-infrared spectroscopy | |
Ona et al. | Non-destructive determination of wood constituents by fourier transform raman spectroscopy | |
Xue et al. | Study of the influence of NIRS acquisition parameters on the spectral repeatability for on-line measurement of crop straw fuel properties | |
Yahaya et al. | Visible spectroscopy calibration transfer model in determining pH of Sala mangoes | |
CN102645416A (en) | Method for rapidly determining anthocyanin content in blueberries | |
JP5822985B2 (en) | Swelling measurement method | |
Phetpan et al. | Evaluation of the moisture content of tapioca starch using near-infrared spectroscopy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12872905 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12872905 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |