JP2001272338A - Nondestructive measurement method for maturity degree - Google Patents

Nondestructive measurement method for maturity degree

Info

Publication number
JP2001272338A
JP2001272338A JP2000085379A JP2000085379A JP2001272338A JP 2001272338 A JP2001272338 A JP 2001272338A JP 2000085379 A JP2000085379 A JP 2000085379A JP 2000085379 A JP2000085379 A JP 2000085379A JP 2001272338 A JP2001272338 A JP 2001272338A
Authority
JP
Japan
Prior art keywords
cheese
white mold
degree
ripening
nondestructive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000085379A
Other languages
Japanese (ja)
Inventor
Noriyoshi Matsubara
範宜 松原
Tetsuo Oba
哲郎 大羽
Kazuhiko Hiramatsu
和彦 平松
Tomoshige Yoshioka
朋栄 吉岡
Yoshio Imamura
美生 今村
Koji Itagaki
康治 板垣
Yasuyuki Genbai
康幸 元賣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Snow Brand Milk Products Co Ltd
Original Assignee
Snow Brand Milk Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Snow Brand Milk Products Co Ltd filed Critical Snow Brand Milk Products Co Ltd
Priority to JP2000085379A priority Critical patent/JP2001272338A/en
Publication of JP2001272338A publication Critical patent/JP2001272338A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Dairy Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method, capable of nondestructively and rapidly measuring maturity degree of a mildew cheese. SOLUTION: This nondestructive measurement method for maturity degree for measuring the maturity degree of the mildew cheese uses near infrared rays. Preferably, the wavelength of the near-infrared rays is 800-2,500 nm. Preferably, a spectrum of a component having correlation with the maturity degree of the mildew cheese is obtained by irradiation of the infrared rays. Preferably, a component having correlation with the maturity degree is a compound which contains amino groups.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、近赤外線を用いて
白かびチーズの熟成程度を非破壊的かつ迅速に測定する
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for nondestructively and quickly measuring the maturity of white mold cheese using near infrared rays.

【0002】[0002]

【従来の技術】白かびチーズは、表面が白かびで覆われ
ているチーズの総称である。白かびチーズは、おもに欧
州で生産されるチーズであるが、日本でも食の欧米化に
伴い、急速にその市場が拡大している。白かびチーズは
そのかびの効果により、ゴーダチーズ、サムソー等に代
表されるセミハードタイプのチーズや、チェダーチー
ズ、パルミジャーノ等に代表されるハードタイプのチー
ズよりも、熟成が早期に完了する。白かびチーズの熟成
に要する期間は、種類によって異なるが、通常1〜8週
間程度である。白かびチーズは短期間に熟成するため、
チーズの物性や風味の変化が早く、熟成管理が困難であ
る。すなわち、熟成の進行は、温度、湿度、かびの成
長、スターター菌活性等の種々の要因の微妙な変化に大
きく影響されるため、完全に制御することは一般的に困
難である。また、熟成が進行しすぎると、内部が液化し
始め、保存性が悪くなるとともに、比較的短期間で変質
変敗してしまうという問題もある。
2. Description of the Related Art White mold cheese is a generic name for cheese whose surface is covered with white mold. White mold cheese is mainly produced in Europe, but its market is rapidly expanding in Japan with the westernization of food. Due to the mold effect, the white mold cheese completes ripening earlier than a semi-hard type cheese represented by Gouda cheese, Samsaw or the like, or a hard type cheese represented by Cheddar cheese, Parmigiano or the like. The period required for maturation of white mold cheese varies depending on the type, but is usually about 1 to 8 weeks. Because white mold cheese ages in a short time,
Changes in physical properties and flavor of cheese are rapid, and it is difficult to control ripening. That is, the progress of ripening is greatly affected by subtle changes in various factors such as temperature, humidity, mold growth, starter fungus activity, etc., and it is generally difficult to completely control the ripening. Further, if the aging is excessively advanced, there is a problem that the inside starts to be liquefied, the storage stability is deteriorated, and the deterioration and deterioration occur in a relatively short time.

【0003】そこで、これらの問題を解決するために、
適正な熟度管理を行うことに加え、熟成の程度を客観的
に評価する技術の構築が重要な課題となっている。従
来、白かびチーズの熟度の測定には、チーズのpHを測
定する方法や、熟成日数とともに増加する可溶性窒素お
よび非蛋白態窒素の含量が全窒素含量中に占める比率を
算出することにより測定する方法が用いられていた。し
かし、これらの方法においては、試料である白かびチー
ズの細断、薬品処理、分解、蒸留等の煩雑な工程が必要
となり、長時間を要するという問題があった。すなわ
ち、白かびチーズの熟成程度を非破壊的に、あるいは迅
速に測定する方法は確立されていなかった。
[0003] In order to solve these problems,
In addition to performing appropriate maturity management, construction of a technology for objectively evaluating the degree of maturity has become an important issue. Conventionally, the maturity of white mold cheese is measured by measuring the pH of the cheese or calculating the ratio of the content of soluble nitrogen and non-protein nitrogen that increases with ripening days to the total nitrogen content. Was used. However, in these methods, there is a problem that complicated steps such as shredding, chemical treatment, decomposition, and distillation of white mold cheese as a sample are required, and it takes a long time. That is, a method for nondestructively or quickly measuring the degree of maturation of white mold cheese has not been established.

【0004】近年、近赤外線を用いて非破壊的に成分分
析を行う方法が実用化されつつある。例えば、特開平6
−186159号公報には、果実糖度の非破壊的測定法
が開示されている。この技術は、大きさの異なる果実に
近赤外線を照射して透過させ、光線の光路中に分光器を
介在させ、特定波長の吸光度を測定し、得られた吸光度
に対して果実の大きさによる補正を行った値から、甘み
に関連する指標を求めることを特徴とする果実糖度の非
破壊測定法である。この技術により、果実糖度の非破壊
的な測定が可能となったが、果実中のショ糖濃度を反映
する指標を用いるものであるため、ショ糖が熟度の指標
となり得ない白かびチーズには応用することができな
い。
In recent years, a method of nondestructively analyzing components using near infrared rays has been put into practical use. For example, Japanese Unexamined Patent Publication
No. 186,159 discloses a non-destructive method for measuring the sugar content of fruits. This technique irradiates near-infrared rays to fruits of different sizes and transmits them, interposes a spectroscope in the optical path of the light beam, measures the absorbance at a specific wavelength, and uses the resulting absorbance according to the size of the fruits. This is a nondestructive method for measuring the sugar content of fruits, wherein an index relating to sweetness is obtained from the corrected value. This technology enabled non-destructive measurement of fruit sugar content, but because it uses an index that reflects the sucrose concentration in the fruit, it can be used for white mold cheese, where sucrose cannot be an indicator of ripeness. Cannot be applied.

【0005】また、近赤外線による非破壊的な測定がチ
ーズに応用された例として、特開平5−273125号
公報に、近赤外線によるナチュラルチーズの熟成程度の
非破壊測定法が開示されている。この技術は、従来複雑
な工程を経て測定していたナチュラルチーズの熟成程度
を非破壊的に測定することを可能にしたものである。し
かしながら、この技術において、「ナチュラルチーズ」
とは、ゴーダチーズやチェダーチーズ等のような水分含
量が37〜45%のいわゆるセミハードタイプのナチュ
ラルチーズであり、チーズ表面のリンドの形成を防止す
るためにフィルム包装されたリンドレスチーズを言うも
のである。すなわち、この技術は、セミハードタイプの
ナチュラルチーズの熟成程度の測定に限定されたもので
あり、白かびチーズに関する記載はなく、熟成程度の具
体的指標として乳酸の消失を用いたものである。なお、
通常白かびチーズでは、熟成過程で乳酸の変化がほとん
どなくなるため、乳酸の消失で適熟の判断を行うことは
不可能である。また、上記したように、白かびチーズは
かびの効果により、ハードタイプやセミハードタイプの
ナチュラルチーズと比較して熟成が早く、風味も強い。
さらに、かびの生育は、空気に接触している面のみで起
きるため、チーズの外側での熟成の進行は早く中心部で
遅いことが知られている。すなわち、白かびチーズは、
熟成の分布に差があるナチュラルチーズであり、ハード
タイプやセミハードタイプのナチュラルチーズとは異な
るものである。
Further, as an example in which non-destructive measurement using near-infrared rays is applied to cheese, Japanese Patent Application Laid-Open No. 5-273125 discloses a non-destructive method for measuring the degree of ripening of natural cheese using near-infrared rays. This technique makes it possible to nondestructively measure the degree of ripening of natural cheese, which has been measured through a complicated process. However, in this technology, "natural cheese"
Is a so-called semi-hard type natural cheese having a water content of 37 to 45%, such as Gouda cheese or Cheddar cheese, and refers to Lindless cheese film-wrapped to prevent the formation of a Lind on the cheese surface. It is. That is, this technique is limited to the measurement of the degree of ripening of a semi-hard natural cheese, does not describe white mold cheese, and uses the disappearance of lactic acid as a specific index of the degree of ripening. In addition,
Normally, in mildew cheese, lactic acid hardly changes during the ripening process, and it is impossible to judge appropriate ripening by disappearance of lactic acid. In addition, as described above, white mold cheese has a faster maturation and stronger flavor compared to hard type or semi-hard type natural cheese due to the effect of mold.
Furthermore, since the growth of the mold occurs only on the surface that is in contact with the air, it is known that the ripening on the outside of the cheese proceeds quickly and is slow at the center. In other words, white mold cheese is
It is a natural cheese having a difference in the distribution of ripening, and is different from a hard type or a semi-hard type natural cheese.

【0006】すなわち、白かびチーズの熟成程度に対す
る非破壊的な測定法については、全く研究・開発がなさ
れていないという現状にある。
That is, there is no research and development on a non-destructive method for measuring the maturity of white mold cheese.

【0007】[0007]

【発明が解決しようとする課題】このような現状を鑑
み、本発明は、上記従来技術の問題点を解決し、白かび
チーズの熟成程度を、非破壊的にしかも迅速に測定する
方法を提供することを課題とするものである。
SUMMARY OF THE INVENTION In view of such circumstances, the present invention solves the above-mentioned problems of the prior art and provides a method for nondestructively and quickly measuring the maturity of white mold cheese. The task is to do so.

【0008】[0008]

【課題を解決するための手段】本発明者らは、上記の課
題を解決するために、近赤外線を用いて白かびチーズを
破壊せずに、白かびチーズに含まれる成分を測定し、そ
の結果から多変量解析手法により検量線を作成し、これ
を利用することにより、白かびチーズの熟成程度を測定
する方法について検討し、本発明を完成させた。すなわ
ち、本発明は、近赤外線を用いて白かびチーズの熟成程
度を測定することを特徴とする非破壊的熟度測定法であ
る。本発明はまた、近赤外線の波長が、800〜250
0nmであることを特徴とする前記非破壊的熟度測定法
である。本発明はまた、近赤外線を照射することによ
り、白かびチーズの熟成程度と相関関係を有する成分の
分光スペクトルを得ることを特徴とする前記非破壊的熟
度測定法である。本発明はまた、白かびチーズに800
〜2500nmの近赤外線を照射して得られた分光スペ
クトルから、多変量解析手法により前記チーズ中の熟成
程度と相関関係を有する成分の含量を推定し、それに適
した波長を求め、その波長から前記成分の含量を算出す
ると共に、算出した成分の含量から熟度指数を算出して
白かびチーズの熟成程度を測定することを特徴とする非
破壊的熟度測定法である。本発明はまた、熟成程度と相
関関係を有する成分が、アミノ基を有する化合物である
ことを特徴とする前記非破壊的熟度測定法である。
Means for Solving the Problems In order to solve the above-mentioned problems, the present inventors measured components contained in white mold cheese without destroying the white mold cheese using near infrared rays. From the results, a calibration curve was created by a multivariate analysis technique, and by using this, a method for measuring the degree of maturation of white mold cheese was examined, and the present invention was completed. That is, the present invention is a nondestructive ripeness measurement method characterized by measuring the maturity of white mold cheese using near infrared rays. The present invention also provides a near-infrared wavelength of 800 to 250.
The nondestructive maturity measuring method, which is characterized by being 0 nm. The present invention is also the above nondestructive ripeness measuring method, characterized in that a near-infrared ray is irradiated to obtain a spectrum of a component having a correlation with the degree of maturation of white mold cheese. The present invention also provides white mold cheese with 800
From the spectral spectrum obtained by irradiating near-infrared light of 22500 nm, the content of components having a correlation with the ripening degree in the cheese is estimated by a multivariate analysis method, and a wavelength suitable for it is obtained. This is a nondestructive ripeness measurement method, which comprises calculating the content of components and calculating a ripeness index from the calculated component content to measure the degree of maturation of white mold cheese. The present invention also provides the method for measuring nondestructive maturity, wherein the component having a correlation with the degree of maturation is a compound having an amino group.

【0009】本発明において、白かびチーズとは、カマ
ンベールチーズやブリー等の白かびに覆われたナチュラ
ルチーズを言う。本発明の非破壊的測定法の実施におい
ては、白かびチーズを破壊せずに、近赤外線、望ましく
は波長800〜2500nmの近赤外線を白かびチーズ
に照射する。近赤外線の照射にあたっては、白かびチー
ズに、検出器に接続された同軸状のグラスファイバーの
先端を、直接または石英ガラスを介して密着させ、それ
を暗箱で覆い、近赤外線をチーズ内部に照射し、チーズ
内部の拡散反射光量を検出器で測定し、近赤外線吸収ス
ペクトルを得る。本発明者らは、このようにして近赤外
線吸収スペクトルを得ると同時に、化学分析により熟成
程度と相関関係を有する特定の成分の含量を求めるとい
う操作を、100検体以上について行った。
In the present invention, white mold cheese refers to natural cheese covered with white mold such as Camembert cheese and Brie. In carrying out the non-destructive measurement method of the present invention, the white mold cheese is irradiated with near infrared rays, preferably near infrared rays having a wavelength of 800 to 2500 nm, without destroying the white mold cheese. When irradiating near-infrared light, the tip of the coaxial glass fiber connected to the detector is brought into close contact with the white mold cheese directly or through quartz glass, covered with a dark box, and irradiated with near-infrared light inside the cheese. Then, the diffuse reflection light amount inside the cheese is measured by a detector to obtain a near infrared absorption spectrum. The present inventors performed an operation of obtaining at least 100 specimens at the same time as obtaining a near-infrared absorption spectrum in this way and obtaining the content of a specific component having a correlation with the degree of ripening by chemical analysis.

【0010】次に、上記化学分析により得られた目的成
分の含量を測定するために、最適な成分換算係数値を多
変量解析手法によって求め、これらの値を用いて検量線
を作成する。例えば、白かびチーズのアミノ基含量の検
量線は、下記式(1)で近似することができる。
Next, in order to measure the content of the target component obtained by the above-mentioned chemical analysis, an optimum component conversion coefficient value is determined by a multivariate analysis method, and a calibration curve is prepared using these values. For example, a calibration curve of the amino group content of white mold cheese can be approximated by the following equation (1).

【0011】[0011]

【数1】 y=K0+K1λ1+K2λ2+・・・・Knλn (1)Y = K0 + K1λ1 + K2λ2 +... Knλn (1)

【0012】式(1)中、λ1、λ2は、アミノ基含量
と相関関係を有する特異的な波長における吸収スペクト
ルの強さであり、Kは比例定数である。ここでは、化学
分析において求めたアミノ基を有する化合物の含量(ア
ミノ基含量)と、式(1)で推定した値の相関係数が最
も高くなるように、通常用いられている多変量解析手法
を用いてKの値を決定する。検量線を作成した後は、検
量線作成と同様の方法により、目的とする白かびチーズ
の成分に最適の波長で近赤外線吸収スペクトルを測定
し、得られた測定値を検量線と照らし合わせて、アミノ
基含量を求めればよい。
In the formula (1), λ1 and λ2 are the intensity of the absorption spectrum at a specific wavelength having a correlation with the amino group content, and K is a proportional constant. Here, a commonly used multivariate analysis method is used so that the correlation coefficient between the content of the compound having an amino group obtained in the chemical analysis (amino group content) and the value estimated by the equation (1) is the highest. Is used to determine the value of K. After creating the calibration curve, measure the near-infrared absorption spectrum at the wavelength optimal for the target white mold cheese component by the same method as for creating the calibration curve, and compare the measured values with the calibration curve. , Amino group content may be determined.

【0013】次に、得られたアミノ基含量から、白かび
チーズの熟度指数を次の方法により求める。すなわち、
白かびチーズの場合、チーズ中のアミノ基含量と熟成程
度との間に、相関係数0.9以上の高い相関関係が見ら
れる。したがって、前記方法により求めたアミノ基含量
を、統計的手法により熟度指数30〜200までに換算
することにより、表1に示す通り、白かびチーズの熟成
程度を測定することが可能となる。
Next, the ripeness index of the white mold cheese is determined from the obtained amino group content by the following method. That is,
In the case of white mold cheese, a high correlation with a correlation coefficient of 0.9 or more is observed between the amino group content in the cheese and the ripening degree. Therefore, by converting the amino group content obtained by the above method to a ripeness index of 30 to 200 by a statistical method, it is possible to measure the degree of maturation of white mold cheese as shown in Table 1.

【0014】[0014]

【表1】 [Table 1]

【0015】なお、この表においては、熟度指数100
未満の場合未熟であり、100〜150の場合適熟であ
り、150を超える場合過熟であるものとしているが、
この指数は、対象となる白かびチーズの特性に応じて変
更することも可能である。すなわち、この指数は特に限
定されるものではない。
In this table, the maturity index 100
If it is less than immature, it is considered that it is overripe when it is more than 150,
This index can be changed according to the characteristics of the target white mold cheese. That is, this index is not particularly limited.

【0016】[0016]

【実施例】以下、実施例により本発明をさらに具体的に
説明する。 (実施例1)試料である白かびチーズ30個を破壊せ
ず、そのままの形にて近赤外線を照射し、近赤外線吸収
スペクトルを測定した。また、同時に同じ試料のアミノ
基含量を、通常用いられている化学分析法により求め
た。測定した近赤外線吸収スペクトルから多変量解析手
法の1つである重回帰分析によりアミノ基含量を推定す
るために適した波長を決定し、検量線を作成した。表2
に、選択波長とその波長を用いてアミノ基含量を推定し
た場合の測定精度を示す。なお、アミノ基含量を推定す
るために用いた近似式は、下記式(2)の通りである。
The present invention will be described more specifically with reference to the following examples. (Example 1) Near-infrared rays were irradiated as they were without destroying 30 samples of white mold cheese, and near-infrared absorption spectra were measured. At the same time, the amino group content of the same sample was determined by a commonly used chemical analysis method. From the measured near-infrared absorption spectrum, a wavelength suitable for estimating the amino group content was determined by multiple regression analysis which is one of the multivariate analysis techniques, and a calibration curve was prepared. Table 2
The measurement accuracy when the amino group content is estimated using the selected wavelength and the wavelength is shown below. The approximate expression used for estimating the amino group content is as shown in the following expression (2).

【0017】[0017]

【数2】y(%)=4.561+50.2532[1484]+70.8216[15
03]+480.3450[1520] 式中y:アミノ基含量、[ ]内の数値:λnmにおける
吸光度
[Equation 2] y (%) = 4.561 + 50.2532 [1484] + 70.8216 [15]
03] +480.3450 [1520] In the formula, y: amino group content, numerical value in []: absorbance at λ nm

【0018】[0018]

【表2】 重相関係数 標準誤差 選択波長(nm) −−−−−−−−−−−−−−−−−−−−−−−− 0.989 0.14 1484, 1503, 1520 −−−−−−−−−−−−−−−−−−−−−−−−[Table 2] Multiple correlation coefficient Standard error Selected wavelength (nm) −−−−−−−−−−−−−−−−−−−−−−− 0.989 0.14 1484, 1503, 1520 −−−− −−−−−−−−−−−−−−−−−−−−−−−

【0019】次に、表2に示した波長を用いて、白かび
チーズ10個の近赤外線吸収スペクトルを測定し、測定
値から熟度指数を求めた。その結果と、化学分析により
求めた白かびチーズ中のアミノ基含量および乳酸濃度を
表3に示す。なお、本実施例における熟度指数の算出時
間は約20秒であった。これに対して、従来代表的な方
法として行われてきた白かびチーズの熟度指数である全
窒素に占める可溶化窒素の比率を求めるときの算出時間
は8時間であった。
Next, near-infrared absorption spectra of ten white mold cheeses were measured using the wavelengths shown in Table 2, and a ripeness index was determined from the measured values. Table 3 shows the results and the amino group content and lactic acid concentration in the white mold cheese determined by chemical analysis. The calculation time of the maturity index in this example was about 20 seconds. On the other hand, the calculation time for calculating the ratio of solubilized nitrogen to total nitrogen, which is a maturity index of white mold cheese, conventionally performed as a typical method was 8 hours.

【0020】[0020]

【表3】 試料 熟度指数 熟成程度 アミノ基 乳酸 (mg/100g) (mg/100g) −−−−−−−−−−−−−−−−−−−−−−−−−−− 1 36 未熟 15 360 2 40 未熟 23 320 3 50 未熟 30 290 4 72 未熟 35 225 5 88 未熟 50 180 6 102 適熟 135 150 7 122 適熟 150 145 8 144 適熟 220 150 9 162 過熟 280 150 −−−−−−−−−−−−−−−−−−−−−−−−−−−[Table 3] Sample Ripeness index Aging degree Amino group Lactic acid (mg / 100g) (mg / 100g) ------------------------------------------ 1 36 Immature 15 360 2 40 Immature 23 320 3 50 Immature 30 290 4 72 Immature 35 225 5 88 Immature 50 180 6 102 Optimal 135 150 7 122 Optimal 150 145 8 144 Optimal 220 220 9 162 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−

【0021】表3から明らかなように、アミノ基含量は
熟成程度と相関関係があったが、乳酸含量には熟成程度
と相関関係がなかった。
As apparent from Table 3, the amino group content had a correlation with the ripening degree, but the lactic acid content had no correlation with the ripening degree.

【0022】[0022]

【発明の効果】本発明によれば、白かびチーズの熟成程
度を非破壊的に、かつ迅速に測定する方法が提供され
る。本発明の測定法は、薬品処理のような前処理を全く
必要とせず、非破壊的に、容易に白かびチーズの熟成程
度を測定することができる。これにより、同じ熟成程度
の白かびチーズを製造することが可能となり、最終品質
のばらつきをなくすことができる。
According to the present invention, there is provided a method for nondestructively and quickly measuring the maturity of white mold cheese. The measurement method of the present invention does not require any pretreatment such as chemical treatment, and can non-destructively and easily measure the maturity of white mold cheese. As a result, it is possible to produce white mold cheese of the same ripening degree, and it is possible to eliminate variations in final quality.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 平松 和彦 北海道札幌市東区北9条東8丁目4−28 グランメール北9条403 (72)発明者 吉岡 朋栄 北海道江別市見晴台59番地30 (72)発明者 今村 美生 北海道札幌市中央区北4条西13丁目1−27 −402 (72)発明者 板垣 康治 北海道札幌市中央区南11条西18丁目 (72)発明者 元賣 康幸 埼玉県所沢市東新井287−20 Fターム(参考) 2G059 AA01 BB11 CC20 EE01 EE12 HH01 HH06 MM12 4B001 BC10 CC01 EC01 EC04  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kazuhiko Hiramatsu 8-4-28 Kita9-Johigashi, Higashi-ku, Sapporo-shi, Hokkaido Grandma Kita9-403 (72) Inventor Tomoyoshi Yoshioka 59-30 Miharudai, Ebetsu-shi, Hokkaido (72) Inventor Mio Imamura 13-27-402, Kita 4-jo Nishi, Chuo-ku, Sapporo City, Hokkaido (72) Inventor Koji Itagaki 18-chome, Minami 11-Jo Nishi, Chuo-ku, Sapporo, Hokkaido (72) Inventor Yasuyuki Motomeri Tokorozawa, Saitama 287-20, Higashiarai-shi F-term (reference) 2G059 AA01 BB11 CC20 EE01 EE12 HH01 HH06 MM12 4B001 BC10 CC01 EC01 EC04

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 近赤外線を用いて白かびチーズの熟成程
度を測定することを特徴とする非破壊的熟度測定法。
1. A nondestructive ripeness measuring method characterized by measuring the maturity of white mold cheese using near infrared rays.
【請求項2】 近赤外線の波長が、800〜2500n
mであることを特徴とする請求項1記載の非破壊的熟度
測定法。
2. The wavelength of a near infrared ray is 800 to 2500 n.
2. The nondestructive ripeness measurement method according to claim 1, wherein m is m.
【請求項3】 近赤外線を照射することにより、白かび
チーズの熟成程度と相関関係を有する成分の分光スペク
トルを得ることを特徴とする請求項1または2記載の非
破壊的熟度測定法。
3. The nondestructive ripeness measurement method according to claim 1, wherein a near-infrared ray is irradiated to obtain a spectral spectrum of a component having a correlation with the maturity of the white mold cheese.
【請求項4】 白かびチーズに800〜2500nmの
近赤外線を照射して得られた分光スペクトルから、多変
量解析手法により前記チーズ中の熟成程度と相関関係を
有する成分の含量を推定し、それに適した波長を求め、
その波長から前記成分の含量を算出すると共に、算出し
た成分の含量から熟度指数を算出して白かびチーズの熟
成程度を測定することを特徴とする非破壊的熟度測定
法。
4. Estimating the content of a component having a correlation with the ripening degree in the cheese by a multivariate analysis method from a spectral spectrum obtained by irradiating near-infrared light of 800 to 2500 nm to white mold cheese, Find a suitable wavelength,
A nondestructive ripeness measurement method, comprising calculating the content of the component from the wavelength and calculating a ripeness index from the calculated component content to measure the degree of ripening of the white mold cheese.
【請求項5】 熟成程度と相関関係を有する成分が、ア
ミノ基を有する化合物であることを特徴とする請求項3
または4記載の非破壊的熟度測定法。
5. The component having a correlation with the degree of ripening is a compound having an amino group.
Or the nondestructive ripeness measurement method according to 4.
JP2000085379A 2000-03-24 2000-03-24 Nondestructive measurement method for maturity degree Pending JP2001272338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000085379A JP2001272338A (en) 2000-03-24 2000-03-24 Nondestructive measurement method for maturity degree

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000085379A JP2001272338A (en) 2000-03-24 2000-03-24 Nondestructive measurement method for maturity degree

Publications (1)

Publication Number Publication Date
JP2001272338A true JP2001272338A (en) 2001-10-05

Family

ID=18601730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000085379A Pending JP2001272338A (en) 2000-03-24 2000-03-24 Nondestructive measurement method for maturity degree

Country Status (1)

Country Link
JP (1) JP2001272338A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013145437A1 (en) * 2012-03-26 2013-10-03 日本たばこ産業株式会社 Method for measuring menthol content
JP2017138105A (en) * 2016-02-01 2017-08-10 株式会社明治 Sealed state determination method of packaged food and manufacturing method of sealed packed food

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013145437A1 (en) * 2012-03-26 2013-10-03 日本たばこ産業株式会社 Method for measuring menthol content
JP2017138105A (en) * 2016-02-01 2017-08-10 株式会社明治 Sealed state determination method of packaged food and manufacturing method of sealed packed food

Similar Documents

Publication Publication Date Title
Jha et al. Non-destructive determination of firmness and yellowness of mango during growth and storage using visual spectroscopy
Liu et al. Use of FT-NIR spectrometry in non-invasive measurements of internal quality of ‘Fuji’apples
Woodcock et al. Application of near and mid-infrared spectroscopy to determine cheese quality and authenticity
Flores et al. Feasibility in NIRS instruments for predicting internal quality in intact tomato
Karoui et al. Chemical characterisation of European Emmental cheeses by near infrared spectroscopy using chemometric tools
Wedding et al. Effects of seasonal variability on FT-NIR prediction of dry matter content for whole Hass avocado fruit
Blakey Evaluation of avocado fruit maturity with a portable near-infrared spectrometer
WO2012127617A1 (en) Method for measuring bulk density
Wedding et al. Non‐destructive prediction of ‘Hass’ avocado dry matter via FT‐NIR spectroscopy
JP2002122538A (en) Liquid sample analyzing method and device using near- infrared spectroscopic method
JP4904446B2 (en) Prediction method and prediction apparatus for fruit component information
Torres et al. Fast and accurate quality assessment of Raf tomatoes using NIRS technology
Beghi et al. Rapid monitoring of grape withering using visible near‐infrared spectroscopy
Flores et al. Prediction of total soluble solid content in intact and cut melons and watermelons using near infrared spectroscopy
Melado-Herreros et al. Postharvest ripeness assessment of ‘Hass’ avocado based on development of a new ripening index and Vis-NIR spectroscopy
JP2002122540A (en) Fresh product evaluating device and method
Kanchanomai et al. Non-destructive analysis of Japanese table grape qualities using near-infrared spectroscopy
Xu et al. Nondestructive detection of internal flavor in ‘Shatian’pomelo fruit based on visible/near infrared spectroscopy
JPH01216265A (en) Nondestructive measurement for quality of fruit and vegetable by near infra red rays
Hamid et al. Rapid Spectrophotometric Analysis of the Chemical Composition of Tobacco: Part 2: TotaI AIkaloids
Pi et al. Non-destructive determination of components in processed cheese slice wrapped with a polyethylene film using near-infrared spectroscopy and chemometrics
Zude et al. Optimum harvest date determination for apples using spectral analysis
JPH04208842A (en) Method and device for measuring sugar content of vegetable and fruit
JP2001272338A (en) Nondestructive measurement method for maturity degree
Blakey et al. Non-destructive measurement of moisture content using handheld NIR

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040507