JP4904446B2 - Prediction method and prediction apparatus for fruit component information - Google Patents

Prediction method and prediction apparatus for fruit component information Download PDF

Info

Publication number
JP4904446B2
JP4904446B2 JP2005062328A JP2005062328A JP4904446B2 JP 4904446 B2 JP4904446 B2 JP 4904446B2 JP 2005062328 A JP2005062328 A JP 2005062328A JP 2005062328 A JP2005062328 A JP 2005062328A JP 4904446 B2 JP4904446 B2 JP 4904446B2
Authority
JP
Japan
Prior art keywords
fruit
component information
internal component
dry matter
cultivation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005062328A
Other languages
Japanese (ja)
Other versions
JP2006238849A (en
Inventor
孝尚 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iseki and Co Ltd
Kochi University NUC
Original Assignee
Iseki and Co Ltd
Kochi University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iseki and Co Ltd, Kochi University NUC filed Critical Iseki and Co Ltd
Priority to JP2005062328A priority Critical patent/JP4904446B2/en
Publication of JP2006238849A publication Critical patent/JP2006238849A/en
Application granted granted Critical
Publication of JP4904446B2 publication Critical patent/JP4904446B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/02Food
    • G01N33/025Fruits or vegetables

Description

この発明は、例えばトマト等の果実において、生育途中に成熟時の果実の内成分情報を予測する技術の分野に属する。   The present invention belongs to the field of technology for predicting information on the internal components of a fruit at the time of ripening, for example, in a fruit such as a tomato.

生育途中の青果物(果実)の表面に投光体から光を照射し、その反射光を受光体で検出してその果実の吸光度を検出し、現在の果実の成熟度を判断する方法が知られている(特許文献1参照。)。   A method is known in which the surface of a growing fruit or vegetable (fruit) is irradiated with light from a light projecting body, the reflected light is detected with a light receiver, the absorbance of the fruit is detected, and the current fruit maturity is judged. (See Patent Document 1).

また、生育途中の果実内に光が通過するように投光体と受光体とを設け、該受光体が受ける光よりその果実の吸光度を検出し、現在の果実の成熟度(糖度)を判断する方法が知られている(特許文献2参照。)。
特開平11−332378号公報 特開平7−229834号公報
In addition, a light projecting body and a light receiving body are provided so that light passes through the growing fruit, and the absorbance of the fruit is detected from the light received by the light receiving body to determine the current maturity (sugar content) of the fruit. There is a known method (see Patent Document 2).
JP-A-11-332378 Japanese Patent Laid-Open No. 7-229834

上記背景技術では、単に生育途中の果実の現在の内成分情報を検出する方法が開示されているだけで、現在の果実の内成分情報を判断して収穫適期を予測するのに使用できるが、栽培を終えて収穫するときの果実の内成分情報を事前に予測するという技術思想がなく、現在の果実の内成分情報をフィードバックして果実の栽培に十分に利用することができなかった。   In the above background art, only a method for detecting the current internal component information of the fruit during the growth is disclosed, and it can be used to determine the appropriate harvest time by judging the internal component information of the current fruit, There was no technical idea of predicting in-component information of fruits when harvesting was completed after harvesting, and the present in-component information of fruits could not be fed back and fully utilized for fruit cultivation.

そこで、本発明では、果実の生育途中の内成分情報から成熟時の内成分情報を高い精度で予測できるようにすることを課題とする。   Therefore, an object of the present invention is to make it possible to predict internal component information at maturity with high accuracy from internal component information during fruit growth.

この発明は、上記課題を解決すべく次のような技術的手段を講じた。
すなわち、請求項1に係る発明は、果実の生育途中の内成分情報を判断し、この生育途中の内成分情報から予め作成した演算モデルに基づいて果実の成熟時の内成分情報を予測する果実の内成分情報の予測方法であって、前記演算モデルは、果実の受粉後の栽培週令によって異なる演算方程式を使用し、該演算方程式は、生育途中の内成分情報として乾物率と澱粉含量を使用し、成熟時の内成分情報として可溶性固形物含量を設定し、該可溶性固形物含量を演算する方程式であり、乾物率をA、澱粉含量をB、可溶性固形物含量をCとすると、果実の受粉後の栽培週令が6週令の場合は、C=1.554+0.488A+0.361Bとし、果実の受粉後の栽培週令が7週令の場合は、C=0.521+0.804A+0.049Bとし、果実の受粉後の栽培週令が8週令の場合は、C=0.342+1.259A−0.099Bとし、果実の受粉後の栽培週令が9週令の場合は、C=0.198+0.675A−0.061Bとし、果実の受粉後の栽培週令が10週令の場合は、C=0.489+0.826A+0.055Bとする果実の内成分情報の予測方法とした。
In order to solve the above problems, the present invention has taken the following technical means.
That is, the invention according to claim 1 determines the internal component information during the growth of the fruit, and predicts the internal component information at the time of fruit ripening based on the calculation model created in advance from the internal component information during the growth The calculation model uses different calculation equations depending on the cultivation week after the pollination of the fruit , and the calculation equation uses the dry matter rate and starch content as the internal component information during the growth. It is an equation for setting the soluble solid content as internal component information at the time of ripening and calculating the soluble solid content, where the dry matter rate is A, the starch content is B, and the soluble solid content is C. C = 1.554 + 0.488A + 0.361B when the cultivation week after pollination is 6 weeks, and C = 0.521 + 0.804A + 0. 049B, fruit C = 0.342 + 1.259A-0.099B when the cultivation week after pollination is 8 weeks, and C = 0.198 + 0. 0 when the cultivation week after pollination is 9 weeks. In the case of 675A-0.061B, and when the cultivation week after pollination of the fruit is 10 weeks old, it was set as the prediction method of the internal component information of the fruit as C = 0.589 + 0.826A + 0.055B .

また、請求項2に係る発明は、果実の生育途中の内成分情報を判断する判断手段と、この生育途中の内成分情報から予め作成した演算モデルに基づいて果実の成熟時の内成分情報を予測する予測手段を備え、請求項1に記載の予測方法を使用する果実の内成分情報の予測装置とした Moreover, the invention which concerns on Claim 2 determines the internal component information at the time of fruit ripening based on the calculation means created beforehand from the judgment means which judges the internal component information in the middle of the growth of fruit, and this internal component information in the middle of the growth Predicting means for predicting is provided, and the predicting device for fruit internal component information using the predicting method according to claim 1 is provided .

よって、本発明によると、果実の生育途中の内成分情報から予め作成した果実の受粉後の栽培週令によって異なる演算方程式を使用する演算モデルに基づいて果実の成熟時の内成分情報を高い精度で予測することができ、所望の成熟果実が得られるように生育途中の果実の内成分情報を栽培に適確に利用することができる。 Therefore, according to the present invention, the inner component information in the middle growth fruit, the inner component information at the time of fruit ripening on the basis of the calculation model using different calculation equations by cultivation weeks old after pollination fruit previously prepared high It can be predicted with accuracy, and the information on the internal components of the growing fruit can be used appropriately for cultivation so that a desired mature fruit can be obtained.

まず、図1に基づいて、生育途中の果実(トマト)の内成分情報となる乾燥物含量(DM)及び澱粉含量を検出するために使用する近赤外線スペクトル測定装置1の概略について説明する。この近赤外線スペクトル測定装置1は、物質に吸収されやすい近赤外線を含む光を発生する光源2と、該光源2からの光を照射すると共にその拡散反射光を受光する光干渉型プロ−ブ3と、該光干渉型プロ−ブ3が受光した拡散反射光を分光分析し近赤外線スペクトル(NIRスペクトル)を測定する分光分析器4と、該分光分析器4で分析された結果を出力する出力端末(パソコン)5とを備えている。尚、前記光源2、光干渉型プロ−ブ3及び分光分析器4により果実の生育途中の内成分情報を判断する判断手段が構成され、前記出力端末(パソコン)5により生育途中の内成分情報から予め作成した演算モデルに基づいて果実の成熟時の内成分情報を予測する予測手段が構成されている。また、光源2及び分光分析器4と光干渉型プロ−ブ3とは、ケ−ブル6により接続されている。また、分光分析器4と出力端末5とは、ケ−ブル7により接続されている。前記光源2は、手動シャッタ−8を備え、光干渉型プロ−ブ3から光を照射しない状態に切り替えできる。また、光源2は、その光量を調節するための光量調節つまみ9を備えている。尚、果実(トマト)内部への近赤外光の浸透深さは最大で8mm程度であるので、光量も少なくて且つ精度良くトマトの吸光度を検出するために、果実内部への近赤外光の浸透深さが8mmとなるよう設定している。光干渉型プロ−ブ3の先端部は、図3に示すように、光源2からの光を外部に照射する円形の光放射リング10と外部の光を受光する受光孔11とを備え、前記光放射リング10から果実に投光される光が反射し、その反射光を受光孔11から受光する構成となっている。また、図2に示すように、光干渉型プロ−ブ3の先端部にはラッパ状のサンプルホルダ−12を取り付けており、このサンプルホルダ−12に果実を合わせた状態(図2(b)の状態)で光干渉型プロ−ブ3により果実に光を照射して果実の吸光度(近赤外線スペクトル)を検出するようになっている。従って、前記サンプルホルダ−12が果実の位置決めガイドの役割を果たし、果実と光干渉型プロ−ブ3との距離を適正に維持して果実の吸光度を精度良く検出することができる。また、フィールド(栽培圃場)において外光の影響を受けないようにするため、サンプルホルダ−12部分を含む光干渉型プロ−ブ3の先端部及び測定する果実を黒色で布製のカバ−で覆って遮光し、果実の吸光度(近赤外線スペクトル)を検出するようにしている。   First, based on FIG. 1, the outline of the near-infrared spectrum measuring apparatus 1 used in order to detect the dry matter content (DM) used as the internal component information of the fruit (tomato) in the middle of growth, and starch content is demonstrated. The near-infrared spectrum measuring apparatus 1 includes a light source 2 that generates light including near-infrared light that is easily absorbed by a substance, and an optical interference probe 3 that irradiates light from the light source 2 and receives diffusely reflected light. A spectroscopic analyzer 4 for spectroscopically analyzing the diffuse reflected light received by the optical interference probe 3 and measuring a near infrared spectrum (NIR spectrum); and an output for outputting a result analyzed by the spectroscopic analyzer 4 And a terminal (personal computer) 5. The light source 2, the light interference probe 3 and the spectroscopic analyzer 4 constitute judgment means for judging the internal component information during the fruit growth, and the output terminal (PC) 5 provides the internal component information during the growth. A predicting means for predicting internal component information at the time of fruit ripening based on a calculation model created in advance from the above is configured. The light source 2 and the spectroscopic analyzer 4 and the optical interference probe 3 are connected by a cable 6. The spectroscopic analyzer 4 and the output terminal 5 are connected by a cable 7. The light source 2 includes a manual shutter 8 and can be switched to a state in which light is not emitted from the optical interference probe 3. The light source 2 includes a light amount adjustment knob 9 for adjusting the light amount. In addition, since the penetration depth of near infrared light into the fruit (tomato) is about 8 mm at the maximum, the amount of light is small and the near infrared light into the fruit is detected accurately in order to detect the tomato absorbance. The penetration depth is set to 8 mm. As shown in FIG. 3, the tip of the optical interference probe 3 includes a circular light emitting ring 10 for irradiating light from the light source 2 to the outside and a light receiving hole 11 for receiving external light. The light projected on the fruit from the light emitting ring 10 is reflected, and the reflected light is received from the light receiving hole 11. Further, as shown in FIG. 2, a trumpet-shaped sample holder 12 is attached to the tip of the optical interference probe 3, and the fruit is put on the sample holder 12 (FIG. 2B). In this state, the fruit is irradiated with light by the light interference probe 3 to detect the absorbance (near infrared spectrum) of the fruit. Therefore, the sample holder 12 serves as a fruit positioning guide, and the distance between the fruit and the light interference probe 3 can be properly maintained to detect the absorbance of the fruit with high accuracy. Further, in order not to be affected by external light in the field (cultivation field), the tip portion of the light interference type probe 3 including the sample holder 12 portion and the fruit to be measured are covered with a black cloth cover. The light absorbance (near infrared spectrum) of the fruit is detected.

尚、フィールド(栽培圃場)での取り扱いを簡便にするために、前記判断手段を構成する光源2、光干渉型プロ−ブ3及び分光分析器4を一体にした携帯型の計測器を設け、この携帯型の計測器を出力端末5と接続するケ−ブル7を外して使用すると共に野外の栽培圃場内の適宜位置に移動してその位置にある樹上になる生育途中の果実の吸光度(近赤外線スペクトル)を測定するようにし、この測定作業を簡便にすることもできる。   In order to simplify handling in the field (cultivation field), a portable measuring instrument is provided in which the light source 2, the optical interference probe 3 and the spectroscopic analyzer 4 constituting the determining means are integrated. The portable measuring instrument is used with the cable 7 connected to the output terminal 5 removed, and at the same time, it is moved to an appropriate position in the outdoor cultivation field and the absorbance of the growing fruit on the tree at that position ( This measurement operation can be simplified by measuring the near infrared spectrum.

近赤外線スペクトル測定装置1にて得られるトマト果実の近赤外線スペクトルは750乃至900nmの波長領域において記録し、この記録結果から乾物率(DM)及び澱粉含量(正確には澱粉含有率)を演算し判定する。この乾物率(DM)及び澱粉含量の演算は、出力端末(パソコン)5に備える演算装置(前記予測手段に相当する)により実行されることとなる。また、果実(トマト)の柄を上方にして上下に3等分に区分して上方から果柄部、赤道部(中間部分)、果頂部とした場合、果実(トマト)の成熟度に拘らず該果実(トマト)の前記果柄部及び果頂部の内成分情報に対して前記赤道部(中間部分)の内成分情報は果実全体の平均的な値を示すので、各果実の近赤外線スペクトルは、その前記赤道部(中間部分)に沿って180度離れた2箇所(果実中心に対して対称な位置)で測定し、この測定値を平均して得る。   The near-infrared spectrum of the tomato fruit obtained by the near-infrared spectrum measuring apparatus 1 is recorded in the wavelength region of 750 to 900 nm, and the dry matter rate (DM) and starch content (more precisely, starch content rate) are calculated from the recorded results. judge. The calculation of the dry matter ratio (DM) and starch content is executed by an arithmetic device (corresponding to the predicting means) provided in the output terminal (personal computer) 5. In addition, when the fruit (tomato) pattern is divided upward and divided into three equal parts, the fruit pattern part, equator part (intermediate part) and fruit top part are used from above, regardless of the maturity of the fruit (tomato). Since the inner component information of the equatorial part (intermediate part) shows the average value of the whole fruit with respect to the inner component information of the fruit part and the top part of the fruit (tomato), the near infrared spectrum of each fruit is Measured at two places (symmetric positions with respect to the fruit center) 180 degrees apart along the equator portion (intermediate portion) and averaged.

そして、上記近赤外線スペクトル測定装置1で測定した果実の受粉後の栽培週令をオペレータが出力端末(パソコン)5に入力すると、近赤外線スペクトル測定装置1で得られた乾物率(DM)並びに澱粉含量及び前記栽培週令のデータから、出力端末(パソコン)5に備える演算装置により所定の演算モデル(以降に示す演算方程式を含む)に基づいて予測される成熟時の果実の可溶性固形物含量(SSC)が演算される。演算装置で使用される乾物率(DM)及び澱粉含量の値により成熟果実の可溶性固形物含量(SSC)を予測するための演算方程式は、様々な週令(本例では6週令から10週令)によって異なる。その演算方程式を示すと、6週令の値から演算できる方程式は、
(SSC)=1.554+0.488(6週令のDM)+0.361(6週令の澱粉含量)
7週令の値から演算できる方程式は、
(SSC)=0.521+0.804(7週令のDM)+0.049(7週令の澱粉含量)
8週令の値から演算できる方程式は、
(SSC)=0.342+1.259(8週令のDM)−0.099(8週令の澱粉含量)
9週令の値から演算できる方程式は、
(SSC)=0.198+0.675(9週令のDM)−0.061(9週令の澱粉含量)
10週令の値から演算できる方程式は、
(SSC)=0.489+0.826(10週令のDM)+0.055(10週令の澱粉含量)
となる。尚、上記方程式における成熟果実の可溶性固形物含量(SSC)は、冬期の栽培で着果後11週令乃至12週令で収穫した場合を想定しており、成熟果実の糖度に相当する。一般的に、この糖度が目標値(例えば8%)となるよう養液を制御して所望の品質の果実を収穫しようとするのである。また、上記方程式における乾物率(DM)の単位は%W/Wとなり、澱粉含量(澱粉含有率)の単位は乾物基準の重量パーセント(%W/W dry basis)となる。
And if an operator inputs the cultivation week age after pollination of the fruit measured with the said near-infrared spectrum measuring apparatus 1 into the output terminal (personal computer) 5, the dry matter rate (DM) and starch which were obtained with the near-infrared spectrum measuring apparatus 1 will be shown. From the content and the data of the cultivation week age, the soluble solid content of the fruit at the time of ripening predicted based on a predetermined arithmetic model (including the arithmetic equation shown below) by the arithmetic device provided in the output terminal (personal computer) 5 ( SSC) is calculated. Arithmetic equations for predicting the soluble solids content (SSC) of mature fruits according to the dry matter rate (DM) and starch content values used in the computing device are various weeks (in this example 6 weeks to 10 weeks). It depends on the order. The equation that can be calculated from the value of 6 weeks old is as follows.
(SSC) = 1.554 + 0.488 (6-week old DM) +0.361 (6-week-old starch content)
The equation that can be calculated from 7-week-old values is
(SSC) = 0.521 + 0.804 (7-week old DM) +0.049 (7-week old starch content)
The equation that can be calculated from 8-week old values is
(SSC) = 0.342 + 1.259 (8-week old DM) -0.099 (8-week old starch content)
The equation that can be calculated from 9-week-old values is
(SSC) = 0.198 + 0.675 (9-week old DM) -0.061 (9-week old starch content)
The equation that can be calculated from 10-week-old values is
(SSC) = 0.589 + 0.826 (10-week-old DM) +0.055 (10-week-old starch content)
It becomes. In addition, the soluble solid content (SSC) of the mature fruit in the said equation assumes the case where it harvests by 11 to 12 weeks old after fruit set by winter cultivation, and is equivalent to the sugar content of a mature fruit. Generally, the nutrient solution is controlled so that the sugar content becomes a target value (for example, 8%), and fruit of a desired quality is harvested. Moreover, the unit of the dry matter rate (DM) in the above equation is% W / W, and the unit of the starch content (starch content rate) is the weight percent (% W / W dry basis) based on the dry matter.

以上により、この近赤外線スペクトル測定装置1を使用して、フィールド(栽培圃場)内の樹上でなる生育中の果実(トマト)に光を照射し、その拡散反射光より果実の吸光度を検出して果実の生育途中の内成分情報となる乾燥物含量及び澱粉含量を判断し、この生育途中の乾物率(DM)及び澱粉含量から予め作成した演算モデルに基づいて果実の成熟時の内成分情報となる可溶性固形物含量(SSC)すなわち糖度を予測することができる。従って、樹上でなる生育中の果実の赤道部(中間部分)に光を照射し、その拡散反射光より果実の吸光度を検出して果実全体の内成分情報を判断して果実の成熟時の糖度を予測するため、樹上でなる生育中の果実を傷つけることなく成熟時の果実全体の糖度を予測することができ、高い精度で糖度予測ができる。また、果実の可溶性固形物含量(糖度)と相関の高い生育途中の果実の乾物率に基づいて成熟時の前記糖度を予測するので、概ね適正で安定した予測糖度値を得ることができる。また、果実の成熟時の糖度を予測にあたり、該糖度と相関の高い生育途中の果実の澱粉含量も予測因子として使用するため、この糖度の予測精度を更に向上させることができる。   As described above, the near infrared spectrum measuring apparatus 1 is used to irradiate the growing fruit (tomato) on the tree in the field (cultivation field) and detect the absorbance of the fruit from the diffuse reflected light. The dry matter content and starch content, which are the internal component information during fruit growth, are judged, and the internal component information at the time of fruit ripening based on the calculation model prepared in advance from the dry matter rate (DM) and starch content during the growth The soluble solids content (SSC) or sugar content can be predicted. Therefore, the equatorial part (intermediate part) of the growing fruit on the tree is irradiated with light, the absorbance of the fruit is detected from the diffuse reflected light, and the information on the internal components of the whole fruit is judged to determine when the fruit has matured. Since the sugar content is predicted, the sugar content of the whole fruit at the time of ripening can be predicted without damaging the growing fruit on the tree, and the sugar content can be predicted with high accuracy. Moreover, since the said sugar content at the time of a ripening is estimated based on the dry matter rate of the fruit in the middle of growth with a high correlation with the soluble solid content (sugar content) of a fruit, it can obtain the estimated sugar content value which is generally appropriate and stable. In addition, in predicting the sugar content at the time of fruit ripening, the starch content of the growing fruit having a high correlation with the sugar content is also used as a predicting factor, so that the accuracy of predicting the sugar content can be further improved.

よって、この近赤外線スペクトル測定装置1は、培養トマト果実の乾物率(DM)及び澱粉含量を監視するためのフィールド(栽培圃場)用の近赤外線測定装置となり、更には監視される未熟な果実の乾物率(DM)及び澱粉含量から成熟果実の可溶性固形物含量(SSC)を予測することができる。そして、この近赤外線スペクトル測定装置1により、果実を破壊せずに乾物率(DM)、澱粉含量及び成熟時の可溶性固形物含量(SSC)等の生物情報をリアルタイムで判定又は予測し、その生物情報を栽培における養液の日常的な制御に反映させることができ、高糖度の果実を得ることができる。   Therefore, this near-infrared spectrum measuring apparatus 1 becomes a near-infrared measuring apparatus for the field (cultivated field) for monitoring the dry matter rate (DM) and starch content of the cultured tomato fruit, and further monitoring the immature fruit to be monitored. The soluble solids content (SSC) of the mature fruit can be predicted from the dry matter rate (DM) and starch content. The near-infrared spectrum measuring apparatus 1 determines or predicts biological information such as dry matter rate (DM), starch content, and soluble solid content (SSC) at the time of ripening without destroying the fruit in real time. Information can be reflected in daily control of nutrient solution in cultivation, and fruits with high sugar content can be obtained.

次に、上述した成熟時の果実の可溶性固形物含量(SSC)の予測のための演算手段(演算方程式)の合理性を立証した過程について説明する。
トマト果実に関して考慮すべき品質パラメータの中でも、可溶性固形物含量(SSC)は最も重要な成分であり、生産者に支払うべき価格を定めるにあたって極めて重要である。水ストレスと塩分条件下で生育したトマトは、より高レベルの可溶性固形物含量(SSC)をもつことはよく知られている。水耕養液栽培では、これらの条件は、養液の断続的循環、又は養液の電気伝導度の上昇によって達成される。このような条件下では、乾物率(DM)は高レベルとなり、澱粉蓄積も強調され、拡張される。乾物率(DM)は可溶性固形物を主要成分として含み、且つ成熟段階における澱粉の分解は還元性糖分の急激な蓄積と相関するから、未熟な果実の乾物率(DM)並びに澱粉含量と成熟果実の可溶性固形物含量(SSC)との間には高い相関がある。従って、高品質トマト果実を生産するためには、養液の状態を生長しつつある果実の乾物率(DM)と澱粉含量とに基づいて制御しなければならない。
Next, the process which proved the rationality of the calculation means (calculation equation) for the prediction of the soluble solid content (SSC) of the fruit at the time of ripening described above will be described.
Among the quality parameters to consider for tomato fruit, soluble solids content (SSC) is the most important ingredient and is extremely important in determining the price to be paid to the producer. It is well known that tomatoes grown under water stress and salinity conditions have higher levels of soluble solids content (SSC). In hydroponics, these conditions are achieved by intermittent circulation of the nutrient solution or an increase in the electrical conductivity of the nutrient solution. Under such conditions, the dry matter ratio (DM) is at a high level, and starch accumulation is emphasized and extended. Dry matter ratio (DM) contains soluble solids as the main component, and starch degradation in the ripening stage correlates with rapid accumulation of reducing sugars, so the dry matter ratio (DM) of immature fruits and starch content and mature fruits There is a high correlation with the soluble solids content (SSC). Therefore, in order to produce high quality tomato fruits, the state of nutrient solution must be controlled based on the dry matter rate (DM) and starch content of the growing fruits.

生育中の果実の乾物率(DM)及び澱粉含量を求めるには、非破壊的試験を実行しなければならない。果実の非破壊的品質評価における近赤外線分光光度計測の潜在的能力については、この十年来既に明らかにされている。本願発明者は、室内実験において、可溶性固形物含量(SSC)を測定するための正確な較正方程式が、果実全体へ近赤外線放射光を照射しその果実の底部側から透過光を検出することによって得られることを示した。しかしながら、その提案された測定装置は、フィールド(栽培圃場)での測定を実行するには極めて難しいものであった。最近、携帯用近赤外線装置を用いて、近赤外線分光光度計測がフィールド(栽培圃場)における木になったままのマンゴーの成熟度の判定に使用が可能であることが示されている。   To determine the dry matter rate (DM) and starch content of growing fruits, a non-destructive test must be performed. The potential of near-infrared spectrophotometry in the non-destructive quality assessment of fruits has already been clarified over the last decade. The inventor has found that in laboratory experiments, an accurate calibration equation for measuring soluble solids content (SSC) is obtained by irradiating the whole fruit with near infrared radiation and detecting transmitted light from the bottom side of the fruit. It was shown to be obtained. However, the proposed measuring apparatus is extremely difficult to perform measurement in the field (cultivated field). Recently, it has been shown that near-infrared spectrophotometry can be used to determine the maturity of a mango that remains a tree in a field (cultivated field) using a portable near-infrared device.

そこで、本願の発明者は、乾物率(DM)及び澱粉含量に関する温度補償を備えた較正モデルの作成、及びトマト果実の乾物率(DM)及び澱粉含量の監視法を確立することに注力した。   Thus, the inventors of the present application have focused on creating a calibration model with temperature compensation for dry matter ratio (DM) and starch content, and establishing a method for monitoring tomato fruit dry matter ratio (DM) and starch content.

次に、本件の演算手段を立証するに際し、本願の発明者が行った近赤外線スペクトル記録の手法について説明する。近赤外線スペクトル測定装置1にて得られるトマト果実の近赤外線スペクトルを、305乃至1100nmの波長領域において3.3nm間隔で記録した。近赤外線スペクトル測定条件として、積分時間を20msに設定し、平均値を得るために光干渉型プロ−ブ3から光を50回走査させて行った。参照測定として、果実の代わりに直径5cmの白色の樹脂製の球の吸光度(近赤外線スペクトル)を測定した。果実(トマト)の柄を上方にして上下に3等分に区分して上方から果柄部、赤道部(中間部分)、果頂部とした場合、果実(トマト)の成熟度に拘らず該果実(トマト)の前記果柄部及び果頂部の内成分情報に対して前記赤道部(中間部分)の内成分情報は果実全体の平均的な値を示すので、各果実の近赤外線スペクトルは、その前記赤道部(中間部分)に沿って180度離れた2箇所(果実中心に対して対称な位置)で測定し、この測定値を平均して得ることとした。   Next, a near infrared spectrum recording technique performed by the inventor of the present application when verifying the calculation means of the present case will be described. The near-infrared spectrum of the tomato fruit obtained by the near-infrared spectrum measuring apparatus 1 was recorded at intervals of 3.3 nm in the wavelength region of 305 to 1100 nm. As the near-infrared spectrum measurement conditions, the integration time was set to 20 ms, and light was scanned 50 times from the optical interference probe 3 in order to obtain an average value. As a reference measurement, the absorbance (near-infrared spectrum) of a white resin sphere having a diameter of 5 cm was measured instead of the fruit. When the pattern of the fruit (tomato) is divided upward and downward into three equal parts and the fruit pattern part, equator part (intermediate part), and top part of the fruit are taken from the top, the fruit regardless of the maturity of the fruit (tomato) Since the inner component information of the equatorial part (intermediate part) shows the average value of the whole fruit with respect to the inner component information of the fruit handle part and the fruit top part of (tomato), the near infrared spectrum of each fruit is Measurements were taken at two locations (symmetric positions with respect to the fruit center) 180 degrees apart along the equator (intermediate portion), and the measured values were averaged.

尚、フィールド(栽培圃場)で内部構造が複雑なトマト果実の内成分情報を迅速に測定するためには、合理的な測定位置と測定点数を決定しなければならない。これまでの研究により、少ない測定点で合理的な測定をするための方法を明らかにした。すなわち、果実(トマト)の赤道部(中間部分)の円周上に60度ごとに6点の測定位置をとり、これらの位置において、(1)任意の1点、(2)180度対向する2点、(3)120度の角度をなす位置の3点、及び(4)全ての位置の6点、の4つの組み合わせの測定点を設定し、それぞれについてキャリブレーションモデルを作成し、評価した。その結果、測定点数が少なくて精度の良い合理的な測定方法は、前述のように赤道部における180度対向する2点を測定すればよいという結論を得たのである。尚、トマト果実の成熟度に拘らず、該果実の内成分情報となる糖度は果柄部、赤道部(中間部分)、果頂部といくにつれて少しづつ高い値を示し、該果実の果柄部及び果頂部に対して赤道部(中間部分)における糖度は平均的な値を示すことが判っている。従って、前述のように、測定位置を果実の赤道部とすることにしたのである。   In addition, in order to quickly measure the internal component information of the tomato fruit having a complicated internal structure in the field (cultivation field), a reasonable measurement position and number of measurement points must be determined. Previous studies have clarified methods for rational measurement with a small number of measurement points. That is, six measurement positions are taken every 60 degrees on the circumference of the equator part (intermediate part) of the fruit (tomato), and (1) one arbitrary point and (2) 180 degrees are opposed at these positions. Four measurement points were set: 2 points, (3) 3 points at an angle of 120 degrees, and (4) 6 points at all positions, and a calibration model was created and evaluated for each. . As a result, it has been concluded that a reasonable measurement method with a small number of measurement points and high accuracy may measure two points facing each other at 180 degrees in the equator as described above. Regardless of the maturity of the tomato fruit, the sugar content, which is the component information of the fruit, gradually increases as the fruit part, the equator part (intermediate part), and the fruit top part. It has been found that the sugar content in the equator (intermediate part) shows an average value with respect to the top of the fruit. Therefore, as described above, the measurement position is determined to be the equator part of the fruit.

次に、化学分析の手法について説明する。新鮮なトマトの赤道部(中間部分)における外面から3.3cmの厚み部分を採取し、その採取片を計測器により乾物率(DM)及び澱粉含量の化学的成分を分析した。尚、化学的試験による採取部位を果実(トマト)の前記赤道部(中間部分)で外面から3.3cmの厚み部分としたのは、当該部分の内成分情報が果実全体の平均的な値を示すからである。前記乾物率(DM)は、採取された部分を摂氏70度で72時間乾燥させてから測定した。また、澱粉含量は、その乾燥された標本を小型ブレンダーにて粉砕し、0.5mmスクリーンを通過させてろ過して測定した。可溶性固形物含量(SSC)については、採取部分をハンドミキサーにて粉砕してろ過し、その濾液をデジタル屈折計を用いて測定した。   Next, a chemical analysis method will be described. A 3.3 cm thick portion was collected from the outer surface of the equator (intermediate portion) of fresh tomatoes, and the collected pieces were analyzed for chemical components of dry matter ratio (DM) and starch content using a measuring instrument. In addition, the sampling part by the chemical test is 3.3 cm thick from the outer surface at the equator part (intermediate part) of the fruit (tomato). The internal component information of the part is the average value of the whole fruit. It is because it shows. The dry matter rate (DM) was measured after the collected portion was dried at 70 degrees Celsius for 72 hours. The starch content was measured by pulverizing the dried specimen with a small blender and filtering through a 0.5 mm screen. About soluble solid content (SSC), the extract | collected part was grind | pulverized and filtered with the hand mixer, and the filtrate was measured using the digital refractometer.

そして、フィールド(栽培圃場)では果実の温度管理が困難であることを考慮し、温度補償付きの較正モデルを得るための実験を行った(以下、この実験を実験1という)。サンプルとなるトマトの果実温度は野外では制御することが困難であるので、実験室内の温度制御下でトマト果実の近赤外線スペクトルを測定した。乾物率(DM)及び澱粉含量について温度補償付き較正モデルを作成し、サンプルとして150個のトマト果実を用いた。これらのトマトは、広範囲の乾物率(DM)及び澱粉含量を実現するために、養液のEC値が1及び10dS/mの2種類の異なる養液条件下の養液栽培区を設定し、各々の該養液栽培区で栽培した。以降、EC値が1dS/mで得られた果実を「ノンストレス」トマト、10dS/mで得られた果実を「ストレス」トマトという。これらの果実は、2月から3月の受粉後5週令から9週令にわたって各週に各養液栽培区から15個のトマトを毎週収穫した。すなわち、毎週合計30個のトマトの標本を採取した。近赤外線測定の直前に水温が摂氏15度、25度及び35度に維持された水槽中に各標本を30分間浸して、各標本の温度を設定した。尚、標本(トマト)が濡れるのを防止するため、水槽の水面をポリエチレンフィルムで被って該フィルム上に標本を載せた。150個の標本のうち、74個は乾物率(DM)及び澱粉含量の較正を導く検量線作成用(キャリブレーション用)試料として用い、残りの標本は前記較正の有効性判定のための検量線評価用(バリデーション用)試料として用いた。乾物率(DM)及び澱粉含量に関する温度補償付き較正モデルの作成にあたっては、部分的最小二乗(PLS)回帰法を用いた。   Then, considering that it is difficult to manage the temperature of the fruit in the field (cultivation field), an experiment for obtaining a calibration model with temperature compensation was performed (hereinafter, this experiment is referred to as Experiment 1). Since it is difficult to control the fruit temperature of the tomato sample, the near-infrared spectrum of the tomato fruit was measured under temperature control in the laboratory. A temperature-compensated calibration model was prepared for dry matter ratio (DM) and starch content, and 150 tomato fruits were used as samples. In order to achieve a wide range of dry matter ratio (DM) and starch content, these tomatoes set up two types of nutrient solution culture zones under nutrient solution conditions with EC values of nutrient solutions of 1 and 10 dS / m, Cultivated in each hydroponic zone. Hereinafter, fruits obtained with an EC value of 1 dS / m are referred to as “non-stressed” tomatoes, and fruits obtained with 10 dS / m are referred to as “stressed” tomatoes. These fruits were harvested weekly from 15 tomatoes from each hydroponic zone each week for 5 to 9 weeks after pollination from February to March. That is, a total of 30 tomato specimens were collected every week. Immediately before the near-infrared measurement, each specimen was immersed in a water tank maintained at 15 degrees Celsius, 25 degrees Celsius, and 35 degrees Celsius for 30 minutes to set the temperature of each specimen. In order to prevent the specimen (tomato) from getting wet, the water surface of the water tank was covered with a polyethylene film, and the specimen was placed on the film. Of the 150 specimens, 74 are used as calibration curve preparation samples for calibration of dry matter ratio (DM) and starch content, and the remaining specimens are calibration curves for determining the validity of the calibration. Used as a sample for evaluation (validation). A partial least squares (PLS) regression method was used to create a temperature-compensated calibration model for dry matter (DM) and starch content.

図5に示すように、摂氏15度、25度及び35度の各々の果実(トマト)における近赤外線スペクトル(吸光度)とそれを二次微分した二次微分スペクトル(二次微分吸光度)とは、共に波長971nmの水の吸収バンドの周辺で果実温度による影響が観察された。これは、水の水素結合が温度によって容易に影響されるからであると考察される。このような果実温度による影響に対処するため、摂氏15度、25度及び35度の果実(トマト)の近赤外線スペクトルにおける各々の温度対応型較正モデルを組み合わせて最終的な較正モデル(検量線)を決定した。この最終的な較正モデル(検量線)を評価するために、乾物率(DM)及び澱粉含量について750乃至1000nmの波長領域における二次微分スペクトルを用いて部分的最小二乗(PLS)回帰法により計算した。較正及び有効判定(バリデーション)結果を図4の図表に示す。較正の標準誤差(SEC)及び予測のバイアス補正標準誤差(SEP)は、澱粉において比較的高かった。同時に、澱粉では、予測の標準誤差に対する検量線評価用(バリデーション用)試料の参照データの標準誤差の比(RPD)は2.66と比較的高かった。前記参照データと近赤外線スペクトル測定データとの変動はそれぞれ標準偏差と予測のバイアス補正標準誤差(SEP)とによって示されるが、前記RPDから前記SEPは参照データの標準偏差よりもはるかに低いことが判った。従って、澱粉含量について、乾物率(DM)で0.57%、澱粉含量で2.32%のSEPとなる作成された較正モデルは、十分正確なものと考察できる。また、摂氏15度、25度及び35度からなる異なる温度における果実(トマト)の乾物率(DM)及び澱粉含量も十分正確に判定できた。95%信頼性水準による2標本t−検定を用いたところ、乾物率(DM)及び澱粉含量の両判定値とも、化学分析値と近赤外線スペクトル予測値の間に有意差はみられなかった。これは、バイアスずれがないことを示す。よって、較正モデルは摂氏15乃至35度の果実の乾物率(DM)及び澱粉含量を判定することにおいて十分に正確であることが認められた。従って、この較正モデルは、温度制御の不可能なフィールド(栽培圃場)における樹上で生育中の実なりのトマトに適用するのに好適である。   As shown in FIG. 5, the near-infrared spectrum (absorbance) of each fruit (tomato) at 15 degrees Celsius, 25 degrees Celsius and 35 degrees Celsius and the second derivative spectrum (second derivative absorbance) obtained by secondarily differentiating it are as follows: In both cases, the effect of fruit temperature was observed around the absorption band of water having a wavelength of 971 nm. This is considered because the hydrogen bond of water is easily influenced by temperature. In order to deal with the effects of such fruit temperature, the final calibration model (calibration curve) is obtained by combining the temperature-dependent calibration models in the near-infrared spectrum of fruits (tomatoes) at 15 degrees, 25 degrees and 35 degrees Celsius. It was determined. In order to evaluate this final calibration model (calibration curve), dry matter (DM) and starch content were calculated by partial least squares (PLS) regression using second derivative spectra in the 750 to 1000 nm wavelength region. did. The calibration and validity determination (validation) results are shown in the chart of FIG. Calibration standard error (SEC) and predicted bias correction standard error (SEP) were relatively high in starch. At the same time, in starch, the ratio of standard error (RPD) of the reference data of the calibration curve evaluation (validation) sample to the standard error of prediction was relatively high at 2.66. The variation between the reference data and near-infrared spectrum measurement data is indicated by the standard deviation and the predicted bias correction standard error (SEP), respectively. From the RPD, the SEP is much lower than the standard deviation of the reference data. understood. Therefore, the created calibration model with a starch content of 0.57% dry matter (DM) and a starch content of 2.32% can be considered sufficiently accurate. Moreover, the dry matter rate (DM) and the starch content of the fruit (tomato) at different temperatures of 15 degrees Celsius, 25 degrees Celsius, and 35 degrees Celsius could be determined sufficiently accurately. Using a two-sample t-test with a 95% confidence level, no significant difference was found between the chemical analysis value and the near-infrared spectrum prediction value for both the dry matter rate (DM) and the starch content judgment value. This indicates that there is no bias deviation. Thus, the calibration model was found to be sufficiently accurate in determining the dry matter rate (DM) and starch content of fruits between 15 and 35 degrees Celsius. Therefore, this calibration model is suitable for application to a real tomato growing on a tree in a field (cultivation field) where temperature control is impossible.

回帰係数を波長に対してプロットした回帰係数プロットにおけるピークは、乾物率(DM)及び澱粉含量共に765、839,904及び987nmに観察された。765及び839nmの大きな負のピークは水に関係し、904及び987nmのピークは炭水化物に関係する。これは、乾燥物含量(DM)及び澱粉含量の参照値を与える化学組成物が共に炭水化物であることに由来したものと考察される。   Peaks in the regression coefficient plot in which the regression coefficient was plotted against wavelength were observed at 765, 839, 904, and 987 nm for both dry matter ratio (DM) and starch content. The large negative peaks at 765 and 839 nm are related to water, and the peaks at 904 and 987 nm are related to carbohydrates. This is considered to be derived from the fact that both the dry matter content (DM) and the starch content chemical composition are carbohydrates.

また、フィールド(栽培圃場)における樹上果実の乾物率(DM)及び澱粉含量の監視法を確立するための実験を行った(この実験を実験2という)。上述の実験1と同じフィールド(栽培圃場)で得られた合計45個の果実を用い、生育中の果実について受粉後6週令から10週令まで毎週フィールド(栽培圃場)において近赤外線測定を行った。乾物率(DM)及び澱粉含量は、実験1にて作成した較正モデルをフィールド(栽培圃場)において測定された近赤外線スペクトルに適用して確定した。実験1との近赤外線スペクトル測定条件の相違(実験1は実験室内で測定しており、本実験ではフィールド(栽培圃場)で測定している)による偏倚(バイアス)発生は、本実験で使用した標本(トマト果実)の一部(各週6個、合計30個)を収穫し、その収穫した標本の乾物率(DM)及び澱粉含量を化学分析を用いて定量測定することによってチェックし、前記測定条件の相違に伴う偏倚(バイアス)発生分を偏倚(バイアス)補正として以後に補正することにした。収穫されない残りの15個の果実は、各週毎に近赤外線測定を行った後も熟成するまで(受粉後12週令まで)栽培を継続した。この残りの15個の果実のフィールド(栽培圃場)において測定された近赤外線スペクトルから、実験1で得られた温度補償付き較正モデルと前記偏倚(バイアス)補正とを用いて乾物率(DM)及び澱粉含量の予測を行った。そして、この残りの15個の完熟果実について可溶性固形物含量(SSC)を化学分析を用いて測定する通例法によって分析した。様々な週令における化学分析値と近赤外線測定から予測される乾物率(DM)並びに澱粉含量とを用いて関係式を作成した。この関係式を用いることにより、生育時の果実の乾物率(DM)並びに澱粉含量から成熟果実の可溶性固形物含量(SSC)を予測することが可能となった。   In addition, an experiment was conducted to establish a method for monitoring the dry matter rate (DM) and starch content of tree fruits in the field (cultivation field) (this experiment is referred to as Experiment 2). Using a total of 45 fruits obtained in the same field (cultivation field) as in Experiment 1 above, near-infrared measurements are made on the growing fruit every week from the 6th to 10th week after pollination in the field (cultivation field). It was. The dry matter rate (DM) and starch content were determined by applying the calibration model created in Experiment 1 to the near infrared spectrum measured in the field (cultivated field). Deviation (bias) generation due to the difference in near-infrared spectrum measurement conditions from Experiment 1 (Experiment 1 is measured in the laboratory, and measured in the field (cultivated field) in this experiment) was used in this experiment. A part of the specimen (tomato fruit, 6 per week, total 30) was harvested, and the dry specimen (DM) and starch content of the harvested specimen were checked by quantitative measurement using chemical analysis, and the measurement The deviation (bias) generated due to the difference in conditions was corrected later as bias (bias) correction. The remaining 15 fruits that were not harvested were cultivated until near maturation (until 12 weeks after pollination) after performing near-infrared measurements every week. From the near-infrared spectrum measured in the remaining 15 fruit fields (cultivation field), using the temperature-compensated calibration model obtained in Experiment 1 and the bias correction, the dry matter rate (DM) and The starch content was predicted. The remaining 15 ripe fruits were then analyzed by the usual method of measuring soluble solids content (SSC) using chemical analysis. A relational expression was prepared using chemical analysis values at various weeks, dry matter rate (DM) predicted from near-infrared measurement, and starch content. By using this relational expression, it became possible to predict the soluble solid content (SSC) of the mature fruit from the dry matter rate (DM) of the fruit during growth and the starch content.

実験1で得られた較正モデルに基づいて、果実生育時の果実の内成分の変化を連続的に監視すると、「ストレス」トマトの乾物率(DM)は高く殆ど安定的なレベルに維持され、「ノンストレス」トマトの乾物率(DM)は低下していたことが判った。この現象は、他の研究者によっても既に報告されている事項である。また、トマトは、水補給を制限されると、その生長期の大部分を通じて大量の澱粉を蓄積することから、較正モデルは、樹上果実の乾物率(DM)及び澱粉含量を監視するのに有効であることが確認できた。   Based on the calibration model obtained in Experiment 1, continuously monitoring changes in the fruit components during fruit growth, the “stress” tomato dry matter ratio (DM) is maintained at a high and almost stable level, It was found that the dry matter rate (DM) of “non-stressed” tomatoes was reduced. This phenomenon has already been reported by other researchers. Also, because tomatoes accumulate large amounts of starch throughout most of their growth when water supply is limited, the calibration model is used to monitor tree fruit dry matter (DM) and starch content. It was confirmed that it was effective.

そして、成熟果実の可溶性固形物含量(SSC)を予測するにあたり、生育中の果実の乾物率(DM)及び澱粉含量にそれぞれを独立変数として直線回帰及び重回帰を適用すると、果実の様々な成長段階を通じて、乾物率(DM)及び澱粉含量の両方を使用する方が一方のみを使用するよりもより適切な予測結果を得られることが判明した。次に、様々な週令(本例では6週令から10週令)における乾物率(DM)及び澱粉含量の値により成熟果実の可溶性固形物含量(SSC)を予測するための演算方程式を示すと、6週令の値から演算できる方程式は、
(SSC)=1.554+0.488(6週令のDM)+0.361(6週令の澱粉含量)
7週令の値から演算できる方程式は、
(SSC)=0.521+0.804(7週令のDM)+0.049(7週令の澱粉含量)
8週令の値から演算できる方程式は、
(SSC)=0.342+1.259(8週令のDM)−0.099(8週令の澱粉含量)
9週令の値から演算できる方程式は、
(SSC)=0.198+0.675(9週令のDM)−0.061(9週令の澱粉含量)
10週令の値から演算できる方程式は、
(SSC)=0.489+0.826(10週令のDM)+0.055(10週令の澱粉含量)
となる。尚、上記方程式における成熟果実の可溶性固形物含量(SSC)は、冬期の栽培で着果後11週令乃至12週令で収穫した場合を想定しており、成熟果実の糖度に相当する。一般的に、この糖度が目標値(例えば8%)となるよう養液を制御して所望の品質の果実を収穫しようとするのである。また、上記方程式における乾物率(DM)の単位は%W/Wとなり、澱粉含量(澱粉含有率)の単位は乾物基準の重量パーセント(%W/W dry basis)となる。これらの方程式からも判るように、様々な生長段階において、乾物率(DM)の回帰係数は澱粉含量の回帰係数に比較して極めて高く、成熟果実の可溶性固形物含量(SSC)を予測するには、乾物率(DM)の方が澱粉含量より重要である。これは、可溶性固形物が乾燥物質の主要基質であることを裏付けている。尚、未熟果実における澱粉は、成熟段階における糖生産の供給源と考えられるが、成熟過程における澱粉分解は極めて複雑であり澱粉以外の多くの要因を含むため、澱粉含量の回帰係数が比較的低くなったものと考えられる。
In predicting the soluble solid content (SSC) of mature fruits, applying linear regression and multiple regression to the dry matter rate (DM) and starch content of growing fruits as independent variables respectively, Throughout the stages, it has been found that using both dry matter ratio (DM) and starch content gives better predictive results than using only one. Next, an operational equation for predicting the soluble solid content (SSC) of the mature fruit based on the dry matter rate (DM) and starch content values at various weeks (6 to 10 weeks in this example) is shown. And the equation that can be calculated from the value of 6 weeks old is
(SSC) = 1.554 + 0.488 (6-week old DM) +0.361 (6-week-old starch content)
The equation that can be calculated from 7-week-old values is
(SSC) = 0.521 + 0.804 (7-week old DM) +0.049 (7-week old starch content)
The equation that can be calculated from 8-week old values is
(SSC) = 0.342 + 1.259 (8-week old DM) -0.099 (8-week old starch content)
The equation that can be calculated from 9-week-old values is
(SSC) = 0.198 + 0.675 (9-week old DM) -0.061 (9-week old starch content)
The equation that can be calculated from 10-week-old values is
(SSC) = 0.589 + 0.826 (10-week-old DM) +0.055 (10-week-old starch content)
It becomes. In addition, the soluble solid content (SSC) of the mature fruit in the said equation assumes the case where it harvests by 11 to 12 weeks old after fruit set by winter cultivation, and is equivalent to the sugar content of a mature fruit. Generally, the nutrient solution is controlled so that the sugar content becomes a target value (for example, 8%), and fruit of a desired quality is harvested. Moreover, the unit of the dry matter rate (DM) in the above equation is% W / W, and the unit of the starch content (starch content rate) is the weight percent (% W / W dry basis) based on the dry matter. As can be seen from these equations, at various growth stages, the dry matter (DM) regression coefficient is extremely high compared to the starch content regression coefficient, which predicts the soluble solids content (SSC) of mature fruits. The dry matter rate (DM) is more important than the starch content. This confirms that soluble solids are the primary substrate for dry matter. Although starch in immature fruits is considered to be a source of sugar production in the maturation stage, starch degradation during the maturation process is extremely complicated and includes many factors other than starch, so the regression coefficient of starch content is relatively low. It is thought that it became.

栽培途中の果実の内成分情報を判定することにより、収穫適期の予測に利用できる。また、栽培途中の果実の内成分情報に基づいて、収穫時における果実の内成分を推測するのに利用できる。さらに、養液栽培において栽培途中の果実の内成分情報に基づいて養液の濃度等を制御することにより、目的とする糖度の果実を収穫できる。また、例えば選果機等、果実の質を判定してその質に基づいて果実を選別するのに利用できる。   By determining the internal component information of the fruit in the middle of cultivation, it can be used for predicting the appropriate harvest time. Moreover, it can utilize for estimating the internal component of the fruit at the time of a harvest based on the internal component information of the fruit in the middle of cultivation. Furthermore, the fruit of the target sugar content can be harvested by controlling the concentration of the nutrient solution based on the internal component information of the fruit during cultivation in the nutrient solution cultivation. Moreover, it can utilize, for example in fruit selection machine etc., to judge the quality of a fruit and to select a fruit based on the quality.

近赤外線スペクトル測定装置の概略を示す図The figure which shows the outline of the near infrared spectrum measuring device 光干渉型プロ−ブにより果実の吸光度を検出する状態を示す図(a:検出前、b:検出時)The figure which shows the state which detects the light absorbency of a fruit with a light interference type probe (a: before detection, b: at the time of detection) 光干渉型プロ−ブの先端部を示す図The figure which shows the front-end | tip part of an optical interference type probe 未熟果の乾物率と澱粉含量に関する較正(キャリブレーション)と有効判定(バリデーション)の結果を示す図表Chart showing calibration (calibration) and validity (validation) results for dry matter rate and starch content of immature fruits 各温度におけるトマトの2次微分スペクトルSecond derivative spectrum of tomato at each temperature

Claims (2)

果実の生育途中の内成分情報を判断し、この生育途中の内成分情報から予め作成した演算モデルに基づいて果実の成熟時の内成分情報を予測する果実の内成分情報の予測方法であって、前記演算モデルは、果実の受粉後の栽培週令によって異なる演算方程式を使用し、該演算方程式は、生育途中の内成分情報として乾物率と澱粉含量を使用し、成熟時の内成分情報として可溶性固形物含量を設定し、該可溶性固形物含量を演算する方程式であり、乾物率をA、澱粉含量をB、可溶性固形物含量をCとすると、果実の受粉後の栽培週令が6週令の場合は、C=1.554+0.488A+0.361Bとし、果実の受粉後の栽培週令が7週令の場合は、C=0.521+0.804A+0.049Bとし、果実の受粉後の栽培週令が8週令の場合は、C=0.342+1.259A−0.099Bとし、果実の受粉後の栽培週令が9週令の場合は、C=0.198+0.675A−0.061Bとし、果実の受粉後の栽培週令が10週令の場合は、C=0.489+0.826A+0.055Bとする果実の内成分情報の予測方法。 A method for predicting internal component information of a fruit by determining internal component information during fruit growth and predicting internal component information at the time of fruit ripening based on a calculation model created in advance from the internal component information during growth The calculation model uses different calculation equations depending on the cultivation age after pollination of the fruit , and the calculation equation uses the dry matter rate and starch content as the internal component information during the growth, and as the internal component information at the time of ripening An equation for setting the soluble solid content and calculating the soluble solid content, where the dry matter rate is A, the starch content is B, and the soluble solid content is C, the cultivation age after pollination of the fruit is 6 weeks In the case of decree, C = 1.554 + 0.488A + 0.361B, and in the case where the cultivation week after fruit pollination is 7 weeks, C = 0.521 + 0.804A + 0.049B, the cultivation week after fruit pollination When the order is 8 weeks old Is C = 0.342 + 1.259A-0.099B, and when the cultivation week after pollination of the fruit is 9 weeks old, C = 0.198 + 0.675A-0.061B, cultivation after the pollination of the fruit When the week age is 10 weeks, C = 0.589 + 0.826A + 0.055B . 果実の生育途中の内成分情報を判断する判断手段と、この生育途中の内成分情報から予め作成した演算モデルに基づいて果実の成熟時の内成分情報を予測する予測手段を備え、請求項1に記載の予測方法を使用する果実の内成分情報の予測装置。A judging means for judging the internal component information during the growth of the fruit and a predicting means for predicting the internal component information at the time of fruit ripening based on a calculation model created in advance from the internal component information during the growth, A device for predicting information on the internal components of fruits using the prediction method described in 1.
JP2005062328A 2005-03-07 2005-03-07 Prediction method and prediction apparatus for fruit component information Expired - Fee Related JP4904446B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005062328A JP4904446B2 (en) 2005-03-07 2005-03-07 Prediction method and prediction apparatus for fruit component information

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005062328A JP4904446B2 (en) 2005-03-07 2005-03-07 Prediction method and prediction apparatus for fruit component information

Publications (2)

Publication Number Publication Date
JP2006238849A JP2006238849A (en) 2006-09-14
JP4904446B2 true JP4904446B2 (en) 2012-03-28

Family

ID=37045866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005062328A Expired - Fee Related JP4904446B2 (en) 2005-03-07 2005-03-07 Prediction method and prediction apparatus for fruit component information

Country Status (1)

Country Link
JP (1) JP4904446B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5441703B2 (en) * 2007-09-21 2014-03-12 サントリーホールディングス株式会社 Visible / Near-Infrared Spectroscopy and Grape Brewing Method
CN101581714A (en) * 2008-05-12 2009-11-18 胡伟松 Detection apparatus for detecting color change ratio of kumquats
CN102313708A (en) * 2010-06-29 2012-01-11 北京市农林科学院 Method for quantitatively detecting capsaicine
WO2013145437A1 (en) * 2012-03-26 2013-10-03 日本たばこ産業株式会社 Method for measuring menthol content
JP6146010B2 (en) 2012-12-27 2017-06-14 パナソニックIpマネジメント株式会社 Food analyzer
JP2015154727A (en) * 2014-02-20 2015-08-27 パイオニア株式会社 Harvest timing determination device
CN107064056B (en) * 2017-03-08 2020-05-22 北京农业智能装备技术研究中心 Method and device for nondestructive testing of fruits
CN108062602B (en) * 2017-12-28 2019-08-02 江苏大学 A method of prediction greenhouse solanaceous vegetables crop assimilation products yield
CN109284771B (en) * 2018-08-03 2020-09-15 中国农业大学 Tomato growth model determination method and device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2517858B2 (en) * 1991-10-04 1996-07-24 農林水産省食品総合研究所長 Nondestructive measurement method of fruit sugar content by near infrared transmission spectrum
JP2001013070A (en) * 1999-06-29 2001-01-19 Astem:Kk Fruit component non-destructive measuring device

Also Published As

Publication number Publication date
JP2006238849A (en) 2006-09-14

Similar Documents

Publication Publication Date Title
JP4904446B2 (en) Prediction method and prediction apparatus for fruit component information
Zude et al. Non-destructive tests on the prediction of apple fruit flesh firmness and soluble solids content on tree and in shelf life
CN100590417C (en) Plant blade physiologic index non-destructive test method
JP5848242B2 (en) Measurement of nitrate nitrogen concentration in soil based on absorption spectroscopy
Liu et al. Use of FT-NIR spectrometry in non-invasive measurements of internal quality of ‘Fuji’apples
Hadiwijaya et al. Rapid and non-destructive prediction of total soluble solids of guava fruits at various storage periods using handheld near-infrared instrument
JPWO2005111583A1 (en) Non-destructive inspection method for components such as vegetables by near infrared spectroscopy and the same device
Lin et al. Calibration set selection method based on the “M+ N” theory: application to non-invasive measurement by dynamic spectrum
CN111912793A (en) Method for measuring cadmium content in tobacco by hyperspectral and establishment of prediction model
JP2002122540A (en) Fresh product evaluating device and method
Elfadl et al. Development of near infrared reflectance spectroscopy (NIRS) calibration model for estimation of oil content in a worldwide safflower germplasm collection
CN109142238B (en) Cotton phosphorus nutrition rapid diagnosis method
Itoh et al. Development of method for non-destructive measurement of nitrate concentration in vegetable leaves by near-infrared spectroscopy
Jie et al. Determination of Nitrogen Concentration in Fresh Pear Leaves by Visible/Near‐Infrared Reflectance Spectroscopy
EP2774476B1 (en) Management method and management system for biomass at plant harvest
JP3903147B2 (en) Non-destructive sugar content measuring device for fruits and vegetables
Townsend et al. The Determination of Total THC and CBD Content in Cannabis Flower by Fourier Transform Near Infrared Spectroscopy
JP2014240825A (en) Analysis method and analysis device of soil biochemical characteristics
JPH04208842A (en) Method and device for measuring sugar content of vegetable and fruit
JP4915783B2 (en) Liquid supply control device
JP4621876B2 (en) Near-infrared spectrum measuring device
US20230044049A1 (en) Method for Determining and Optimizing the Content of At Least One Plant Substance of At Least One Part of a Plant
Beghi et al. Rapid determination of crucial parameters for the optimization of milling process by using visible/near infrared spectroscopy on intact olives and olive paste
Lu et al. NIR measurement of apple fruit soluble solids content and firmness as affected by postharvest storage
JP2001272338A (en) Nondestructive measurement method for maturity degree

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111011

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111020

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4904446

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees