JP2005257676A - Method for determining quantity of chemical component in tea leaves - Google Patents

Method for determining quantity of chemical component in tea leaves Download PDF

Info

Publication number
JP2005257676A
JP2005257676A JP2005010131A JP2005010131A JP2005257676A JP 2005257676 A JP2005257676 A JP 2005257676A JP 2005010131 A JP2005010131 A JP 2005010131A JP 2005010131 A JP2005010131 A JP 2005010131A JP 2005257676 A JP2005257676 A JP 2005257676A
Authority
JP
Japan
Prior art keywords
tea leaves
chemical component
calibration curve
quantifying
absorbance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005010131A
Other languages
Japanese (ja)
Other versions
JP4505598B2 (en
JP2005257676A5 (en
Inventor
Mari Yamamoto
万里 山本
Hiroshi Nagai
寛 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Agriculture and Bio Oriented Research Organization NARO
Asahi Soft Drinks Co Ltd
Original Assignee
National Agriculture and Bio Oriented Research Organization NARO
Asahi Soft Drinks Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Agriculture and Bio Oriented Research Organization NARO, Asahi Soft Drinks Co Ltd filed Critical National Agriculture and Bio Oriented Research Organization NARO
Priority to JP2005010131A priority Critical patent/JP4505598B2/en
Publication of JP2005257676A publication Critical patent/JP2005257676A/en
Publication of JP2005257676A5 publication Critical patent/JP2005257676A5/ja
Application granted granted Critical
Publication of JP4505598B2 publication Critical patent/JP4505598B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a measurement method for simply, easily and quickly measuring the content of chemical components in tea leaves, including raw tea leaves, dried tea leaves and finished tea leaves. <P>SOLUTION: The absorbances of the target tea leaves with chemical components, having known concentrations, are measured using near-infrared spectrophotometer. The concentrations of the chemical components are calculated from the absorbances of the tea leaves with the chemical components having unknown concentrations, based on the information of the correlation between the absorbance and the quantity of the chemical components of the target tea leaves. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、茶葉中に含まれる化学成分の定量方法に関する。さらに詳しくは、メチル化カテキン、カフェイン及びビタミン類の含有量を近赤外分光光度計により簡易迅速に測定する方法を開発する。   The present invention relates to a method for quantifying chemical components contained in tea leaves. More specifically, a method for measuring the contents of methylated catechin, caffeine and vitamins simply and quickly with a near-infrared spectrophotometer will be developed.

「べにふうき」、「べにふじ」、「べにほまれ」等の茶葉は、花粉症状を抑制するメチル化カテキンを多く含有しており、アレルギー抑制効果を有する飲料や食品として幅広く使用することができる。従って、これらの茶葉(生葉、荒茶、仕上げ茶等)に含まれている化学成分の含有量は、製造工程における品質管理のため迅速に測定する必要がある。例えば、茶葉中に含まれているメチル化カテキンの含有量は、5%未満である。このため、従来では測定方法として高速液体クロマトグラフ法(以下HPLC法とする)を用いていた(非特許文献1参照)。   Tea leaves such as “Benifuuki”, “Benifuji”, “Benihomare” contain a lot of methylated catechins that suppress pollen symptoms, and can be widely used as beverages and foods that have an allergy-suppressing effect. it can. Therefore, the content of chemical components contained in these tea leaves (raw leaves, rough tea, finished tea, etc.) needs to be measured quickly for quality control in the manufacturing process. For example, the content of methylated catechin contained in tea leaves is less than 5%. For this reason, conventionally, a high performance liquid chromatographic method (hereinafter referred to as HPLC method) has been used as a measurement method (see Non-Patent Document 1).

HPLC法は、各種の固体または液体を固定相とし、固定相を含むカラムに液体移動相の加圧した流れを用いて試料を通過させ、その一端に置いた試料混合物を適当な展開剤(移動相mobile phase)で移動させて、各成分の吸着性や分配係数の差異に基づく移動速度の差を利用してこれを相互分離する方法であり、これによって、マイクログラム量からグラム量の混合物を分離することが可能となる(非特許文献2参照)。   In the HPLC method, various solids or liquids are used as a stationary phase, a sample is passed through a column containing the stationary phase using a pressurized flow of the liquid mobile phase, and the sample mixture placed at one end of the sample is transferred to an appropriate developing agent (transferring agent). This is a method in which a mixture of microgram amount to gram amount is separated by using a difference in moving speed based on the adsorptivity and distribution coefficient of each component. It becomes possible to separate (refer nonpatent literature 2).

村松敬一郎編「茶の化学」朝倉書店 1997年9月1日 p.119Edited by Keiichiro Muramatsu “Chemistry of Tea” Asakura Shoten September 1, 1997 p. 119 古谷圭一監訳「分析化学」丸善株式会社 平成10年2月28日 p.103−130Translated by Junichi Furuya "Analytical Chemistry" Maruzen Co., Ltd. February 28, 1998 p. 103-130

しかし、HPLC法による化学成分の測定は、精度は高いが測定装置が高価であるという点と測定操作や試料作成が煩雑であるという点が難点となり、迅速さや簡便さが要求される製造工程における品質管理のための測定には適していない。また、茶葉中に含まれているメチル化カテキンは数種類あるが、その総含有量は茶葉全体の数%程度である。従ってこれらのメチル化カテキンを同時に検出する場合、高い分解能を有する測定装置でなければ正確に検出することは困難である。   However, the measurement of chemical components by the HPLC method has high accuracy, but the measurement device is expensive and the measurement operation and sample preparation are difficult, and in the manufacturing process that requires quickness and simplicity. Not suitable for quality control measurements. There are several types of methylated catechins contained in tea leaves, but the total content is about several percent of the total tea leaves. Therefore, when these methylated catechins are simultaneously detected, it is difficult to accurately detect them unless the measuring apparatus has high resolution.

本発明は、以上の課題に鑑みてなされたものであり、その目的は、生葉、荒茶、仕上げ茶等を含む茶葉中の化学成分の含有量を簡易迅速に測定する測定方法を提供することである。   The present invention has been made in view of the above problems, and its purpose is to provide a measurement method for simply and quickly measuring the content of chemical components in tea leaves including fresh leaves, rough tea, and finished tea. It is.

以上のような目的を達成するために、本発明は、近赤外分光光度計を用いて化学成分濃度既知の茶葉の吸光度を測定し、この吸光度と前記茶葉中の化学成分量との相関に関する情報に基づいて、化学成分濃度未知の茶葉の吸光度から化学成分濃度を算出することを特徴とするものである。   In order to achieve the above object, the present invention measures the absorbance of a tea leaf having a known chemical component concentration using a near-infrared spectrophotometer, and relates to the correlation between this absorbance and the amount of the chemical component in the tea leaf. Based on the information, the chemical component concentration is calculated from the absorbance of tea leaves whose chemical component concentration is unknown.

本発明は具体的に以下のようなものを提供する。   The present invention specifically provides the following.

(1) 茶葉中に含まれる化学成分の定量方法であって、1000nmから2500nmの近赤外領域の波長を用いて前記茶葉の吸光度を測定し、この吸光度と前記茶葉中の化学成分量との相関に関する情報に基づいて、化学成分濃度未知の茶葉の吸光度から化学成分濃度を算出することを特徴とする茶葉中に含まれる化学成分の定量方法。   (1) A method for quantifying chemical components contained in tea leaves, wherein the absorbance of the tea leaves is measured using wavelengths in the near infrared region of 1000 nm to 2500 nm, and the absorbance and the amount of chemical components in the tea leaves A method for quantifying a chemical component contained in tea leaves, wherein the chemical component concentration is calculated from the absorbance of the tea leaf having an unknown chemical component concentration based on information relating to the correlation.

(1)の発明によれば、近赤外領域の波長を用いることによって、試料を非破壊で迅速、かつ、簡便に多成分同時分析を行うことが可能となる。また、多くの化学成分が有するC−H、O−HもしくはN−H基が帰属する官能基は、近赤外線領域に特有の吸収領域があるため、この吸収領域の吸光度を測定することによって、茶葉中の化学成分量との相関に関する情報を得ることが可能となる。   According to the invention of (1), by using a wavelength in the near-infrared region, it is possible to perform a multicomponent simultaneous analysis in a nondestructive manner quickly and simply. In addition, since the functional group to which C—H, O—H or N—H group of many chemical components belongs has an absorption region peculiar to the near infrared region, by measuring the absorbance of this absorption region, It is possible to obtain information on the correlation with the amount of chemical components in tea leaves.

(2) 前記情報は、定期的又は常時更新するものであることを特徴とする(1)に記載の茶葉中に含まれる化学成分の定量方法。   (2) The method for quantifying chemical components contained in tea leaves according to (1), wherein the information is regularly or constantly updated.

(2)の発明によれば、茶量と吸光度に関する情報を、定期的あるいは常時更新することで化学成分濃度未知の試料の濃度を最適化することが可能となっている。更新方法としては、年次毎にデータを取り直し、傾き等を適宜補正する方法が挙げられる。   According to the invention of (2), it is possible to optimize the concentration of the sample whose chemical component concentration is unknown by regularly or constantly updating the information on the tea amount and the absorbance. As an update method, there is a method in which data is reacquired every year, and a slope or the like is corrected appropriately.

(3) 前記化学成分は、カテキン類、プリン塩基、及びビタミン類からなる群から選ばれる1種以上の成分である(1)又は(2)に記載の茶葉中に含まれる化学成分の定量方法。   (3) The method for quantifying a chemical component contained in tea leaves according to (1) or (2), wherein the chemical component is one or more components selected from the group consisting of catechins, purine bases, and vitamins. .

(3)の発明によれば、化学成分をカテキン類、プリン塩基、及びビタミン類からなる群から選ばれる1種以上の成分としたことによって、本発明に係る定量方法の精度を上げることが可能となる。ここで「カテキン類」とは、エピカテキン、エピカテキンガレート、エピガロカテキン、エピガロカテキンガレート、カテキン、ガロカテキン、メチル化カテキン及びこれらの光学異性体をいい、「プリン塩基」とは、主としてカフェインをいい、「ビタミン類」とは、ビタミンC、ビタミンE、ビタミンB及びビタミンBをいう。 According to the invention of (3), the chemical component is one or more components selected from the group consisting of catechins, purine bases, and vitamins, so that the accuracy of the quantification method according to the present invention can be improved. It becomes. Here, “catechins” refers to epicatechin, epicatechin gallate, epigallocatechin, epigallocatechin gallate, catechin, gallocatechin, methylated catechin and optical isomers thereof, and “purine base” mainly refers to cafe “Vitamin” means vitamin C, vitamin E, vitamin B 1 and vitamin B 2 .

(4) 前記化学成分は、メチル化カテキンである(1)から(3)いずれかに記載の茶葉中に含まれる化学成分の定量方法。   (4) The method for quantifying a chemical component contained in tea leaves according to any one of (1) to (3), wherein the chemical component is methylated catechin.

(4)の発明によれば、化学成分をメチル化カテキンとしたことによって、本発明に係る定量方法の精度をより向上させることが可能となる。   According to the invention of (4), since the chemical component is methylated catechin, the accuracy of the quantification method according to the present invention can be further improved.

(5) 茶葉中に含まれる化学成分の定量方法であって、前記化学成分濃度が既知の複数の標準試料を、所定の波長を有する近赤外光を照射する近赤外分光光度計を用いて、前記標準試料の吸光度を測定する吸光度測定工程と、この吸光度測定工程で測定したそれぞれの吸光度と、前記標準試料の化学成分濃度に基づいて単回帰法又は直線重回帰法の少なくともいずれか1つにより検量線を算出する検量線算出工程と、化学成分濃度が未知の対象試料を前記標準試料と同じ波長における吸光度を測定し、この吸光度の値から前記検量線に基づいて前記対象試料の化学成分濃度を算出する濃度算出工程と、を有することを特徴とする茶葉中に含まれる(1)から(4)いずれかに記載の茶葉中に含まれる化学成分の定量方法。   (5) A method for quantifying chemical components contained in tea leaves, wherein a plurality of standard samples having known chemical component concentrations are irradiated with a near infrared spectrophotometer that irradiates near infrared light having a predetermined wavelength. Then, an absorbance measurement step for measuring the absorbance of the standard sample, each absorbance measured in the absorbance measurement step, and at least one of a single regression method and a linear multiple regression method based on the chemical component concentration of the standard sample. A calibration curve calculating step for calculating a calibration curve by one, and measuring the absorbance at the same wavelength as that of the standard sample for the target sample whose chemical component concentration is unknown, and based on the calibration curve from the absorbance value, A method for quantifying a chemical component contained in a tea leaf according to any one of (1) to (4), comprising: a concentration calculating step for calculating a component concentration.

(5)の発明によれば、吸光度検出工程において、メチル化カテキン濃度が既知の試料に所定の波長を有する近赤外光を照射することによってこの試料中のメチル化カテキンの吸光度を測定することが可能となる。また、検量線算出工程及び濃度算出工程において、単回帰法又は直線重回帰法を使用することによってメチル化カテキン濃度が未知の試料の濃度を正確、かつ、迅速に算出することが可能となる。   According to the invention of (5), in the absorbance detection step, the absorbance of the methylated catechin in the sample is measured by irradiating the sample with a known methylated catechin concentration with near infrared light having a predetermined wavelength. Is possible. In addition, in the calibration curve calculation step and the concentration calculation step, it is possible to calculate the concentration of a sample whose methylated catechin concentration is unknown accurately and quickly by using a single regression method or a linear multiple regression method.

ここで、「単回帰法又は直線重回帰法」とは、複数の変数間の関係を一次方程式(y=ax+b)で表現する分析方法をいう。単回帰法を使用する場合は、試料に照射する近赤外光の波長は1種類であるが、直線重回帰法(MLRコンビネーションサーチ法、ステップサーチ法)を使用する場合は、複数種の試料を用いることが可能となる。そのため、同じ試料に異なる波長の近赤外光を照射し、直線重回帰法を用いることによって、より正確にメチル化カテキンの濃度を算出することが可能となる。   Here, the “single regression method or linear multiple regression method” refers to an analysis method in which a relationship between a plurality of variables is expressed by a linear equation (y = ax + b). When the single regression method is used, the wavelength of the near infrared light applied to the sample is one, but when the linear multiple regression method (MLR combination search method, step search method) is used, a plurality of types of samples are used. Can be used. Therefore, the concentration of methylated catechin can be calculated more accurately by irradiating the same sample with near-infrared light of different wavelengths and using the linear multiple regression method.

(6) 前記近赤外光の波長は、略1000nmから略2500nmである(5)に記載の茶葉中に含まれる化学成分の定量方法。   (6) The method for quantifying chemical components contained in tea leaves according to (5), wherein the wavelength of the near-infrared light is about 1000 nm to about 2500 nm.

(6)の発明によれば、近赤外光の波長を略1000nmから略2500nmとしたことによって、各化学成分の吸収領域を効率よく検出することが可能となる。   According to the invention of (6), the absorption region of each chemical component can be efficiently detected by setting the wavelength of near infrared light from about 1000 nm to about 2500 nm.

(7) 前記近赤外光の波長は、略1100nmから略2400nmである(5)又は(6)に記載の茶葉中に含まれる化学成分の定量方法。   (7) The method for quantifying chemical components contained in tea leaves according to (5) or (6), wherein the wavelength of the near-infrared light is about 1100 nm to about 2400 nm.

(7)の発明によれば、近赤外光の波長を略1100nmから略2400nmとしたことによって、各化学成分のうち特に、カテキン類の吸収領域を効率よく検出することが可能となる。スキャンタイプのNIRにおいてカテキン類は、下記の波長を用いて検出することが好ましい。   According to the invention of (7), by setting the wavelength of near-infrared light from about 1100 nm to about 2400 nm, it is possible to efficiently detect the absorption region of catechins among each chemical component. In the scan type NIR, catechins are preferably detected using the following wavelengths.

例えば波長を、略1220nm、略1400nm、略1650nm、略1770nm、略1900nm、略2070nm、からなる群より選ばれる2以上としたことによってカテキン類特有の吸収領域をより効率良く検出することが可能となる。ここで「略1220nm」とは、1210nm〜1230nmをいい、「略1400nm」とは、1390nm〜1410nmをいい、「略1650nm」とは、1640nm〜1670nmをいい、「略1770nm」とは、1760nm〜1790nmをいい、「略1900nm」とは、1890nm〜1920nmをいい、「略2070nm」とは、2050nm〜2080nmをいう。   For example, by setting the wavelength to 2 or more selected from the group consisting of approximately 1220 nm, approximately 1400 nm, approximately 1650 nm, approximately 1770 nm, approximately 1900 nm, and approximately 2070 nm, it is possible to detect the catechin-specific absorption region more efficiently. Become. Here, “approximately 1220 nm” refers to 1210 nm to 1230 nm, “approximately 1400 nm” refers to 1390 nm to 1410 nm, “approximately 1650 nm” refers to 1640 nm to 1670 nm, and “approximately 1770 nm” refers to 1760 nm to 1760 nm 1790 nm means “approximately 1900 nm” refers to 1890 nm to 1920 nm, and “approximately 2070 nm” refers to 2050 nm to 2080 nm.

また波長を、略1100nmから略2400nmの任意の波長としたことによって、カテキン類の中でも、特にエピガロカテキンガレート及びエピカテキンの吸収領域をより効率良く検出することが可能となる。この場合において、測定波長は1波長であってもよいが、2以上の波長を組み合わせて用いることが好ましく、4以上の波長を組み合わせて用いることがより好ましい。例えば、1110〜1140nm、1650〜1670nm、1620〜1650nm、及び2090〜2120nmの任意の波長を組み合わせて測定することが挙げられる。   Further, by setting the wavelength to an arbitrary wavelength from about 1100 nm to about 2400 nm, it is possible to more efficiently detect the absorption region of epigallocatechin gallate and epicatechin among catechins. In this case, the measurement wavelength may be one wavelength, but two or more wavelengths are preferably used in combination, and four or more wavelengths are more preferably used in combination. For example, it is possible to measure by combining arbitrary wavelengths of 1110 to 1140 nm, 1650 to 1670 nm, 1620 to 1650 nm, and 2090 to 2120 nm.

また波長を、略1500nmから略2400nmの任意の波長としたことによって、カテキン類の中でも、特にエピガロカテキンの吸収領域をより効率良く検出することが可能となる。この場合においても上記と同様、測定波長は1波長であってもよいが、2以上の波長を組み合わせて用いることが好ましく、4以上の波長を組み合わせて用いることがより好ましい。例えば、1520〜1550nm、1660〜1680nm、1990〜2010nm及び、2260〜2280nmの任意の波長を組み合わせて測定することが挙げられる。   In addition, by setting the wavelength to an arbitrary wavelength from approximately 1500 nm to approximately 2400 nm, it is possible to more efficiently detect the epigallocatechin absorption region, in particular, among catechins. In this case as well, as described above, the measurement wavelength may be one wavelength, but it is preferable to use a combination of two or more wavelengths, and more preferably to use a combination of four or more wavelengths. For example, it is possible to measure by combining arbitrary wavelengths of 1520 to 1550 nm, 1660 to 1680 nm, 1990 to 2010 nm, and 2260 to 2280 nm.

(8) 前記検量線算出工程における前記検量線の精度(SEP)が、0.4以下のものである(5)から(7)いずれかに記載の茶葉中に含まれる化学成分の定量方法。   (8) The method for quantifying chemical components contained in tea leaves according to any one of (5) to (7), wherein the accuracy (SEP) of the calibration curve in the calibration curve calculation step is 0.4 or less.

(8)の発明によれば、検量線算出工程で算出した検量線の精度(検量線評価時(予測値)の標準誤差:SEP)を0.4以下とすることによって、メチル化カテキンの濃度をより正確に算出することが可能となる。   According to the invention of (8), the accuracy of the calibration curve calculated in the calibration curve calculation step (standard error at the time of calibration curve evaluation (predicted value): SEP) is 0.4 or less, whereby the concentration of methylated catechins Can be calculated more accurately.

(9) 茶葉中に含まれる化学成分を定量するプログラムであって、この化学成分濃度が既知の複数の標準試料を、所定の波長を有する近赤外光を照射する近赤外分光光度計を用いて測定したそれぞれの吸光度と、前記標準試料の化学成分濃度に基づいて単回帰法又は直線重回帰法の少なくともいずれか1つにより検量線を算出するように指令する検量線算出工程と、化学成分濃度が未知の対象試料を前記標準試料と同じ波長における吸光度の値から前記検量線に基づいて前記対象試料の化学成分濃度を算出するように指令する濃度算出工程と、を有することを特徴とする茶葉中に含まれる化学成分の定量方法をコンピュータに実行させるためのプログラム。   (9) A program for quantifying chemical components contained in tea leaves, comprising: a near-infrared spectrophotometer that irradiates a plurality of standard samples having known chemical component concentrations with near-infrared light having a predetermined wavelength. A calibration curve calculation step for instructing to calculate a calibration curve by at least one of a single regression method and a linear multiple regression method based on each absorbance measured using the chemical component concentration of the standard sample, A concentration calculation step for instructing a target sample having an unknown component concentration to calculate a chemical component concentration of the target sample based on the calibration curve from an absorbance value at the same wavelength as that of the standard sample. A program that causes a computer to execute a method for quantifying chemical components contained in tea leaves.

(10) 茶葉中に含まれるメチル化カテキンを定量するプログラムであって、このメチル化カテキン濃度が既知の複数の標準試料を、所定の波長を有する近赤外光を照射する近赤外分光光度計を用いて測定したそれぞれの吸光度と、前記標準試料のメチル化カテキン濃度に基づいて単回帰法又は直線重回帰法の少なくともいずれか1つにより検量線を算出するように指令する検量線算出工程と、メチル化カテキン濃度が未知の対象試料を前記標準試料と同じ波長における吸光度の値から前記検量線に基づいて前記対象試料のメチル化カテキン濃度を算出するように指令する濃度算出工程と、を有することを特徴とする茶葉中に含まれるメチル化カテキンの定量方法をコンピュータに実行させるためのプログラム。   (10) A program for quantifying methylated catechins contained in tea leaves, wherein a plurality of standard samples with known methylated catechin concentrations are irradiated with near-infrared light having a predetermined wavelength. Calibration curve calculation step for instructing to calculate a calibration curve by at least one of a single regression method and a linear multiple regression method based on each absorbance measured using a meter and the methylated catechin concentration of the standard sample And a concentration calculation step for instructing a target sample having an unknown methylated catechin concentration to calculate the methylated catechin concentration of the target sample based on the calibration curve from the absorbance value at the same wavelength as the standard sample. A program for causing a computer to execute a method for quantifying methylated catechin contained in tea leaves.

以上説明したように本発明は、茶葉中の化学成分の近赤外領域における特有の吸収領域と試料中の各化学成分濃度との相関に基づいて化学成分濃度未知の試料の濃度を粉砕のみで迅速、かつ、簡便に算出することが可能となる。これによって、製造工程において製品や茶葉の十分な品質管理を行うことができる。   As described above, the present invention is based on the correlation between the specific absorption region of the chemical component in tea leaves in the near infrared region and the concentration of each chemical component in the sample. It is possible to calculate quickly and easily. Thereby, sufficient quality control of products and tea leaves can be performed in the manufacturing process.

以下、本発明について詳しく説明する。   The present invention will be described in detail below.

<測定試料>
本発明は、測定試料に茶葉を用いる。「茶葉」とは、茶葉の一枚一枚を意味するのではなく、茶や食品の原料となる茶葉の集合体のことを意味する。使用する茶葉には「べにふうき」、「べにふじ」、「べにほまれ」、「やえほ」、「するがわせ」、「ゆたかみどり」、「くりたわせ」、「かなやみどり」、「おくむさし」、「大葉烏龍」、「青心大パン」、「青心烏龍」、「鳳凰単叢」、「鳳凰水仙」、「白葉単叢水仙」、「黄枝香」、「武夷水仙」、「紅花」、「べにひかり」、「やまかい」、「やまとみどり」、「ひめみどり」、「香駿」、及び「おくみどり」、等が挙げられ、これら数種を混合したものを用いてもよい。
<Measurement sample>
In the present invention, tea leaves are used as a measurement sample. “Tea leaf” does not mean each tea leaf, but an assembly of tea leaves that are used as raw materials for tea and food. The tea leaves used are Benifuuki, Benifuji, Benihore, Yaeho, Shiragase, Yutaka Midori, Kuritase, Kanaya Midori, `` Okumusashi '', `` Ooba Soryu '', `` Blue Heart Large Bread '', `` Aoshin Souryu '', `` Aoi Monoplex '', `` Suisuisen '', `` Shiraba Monoplex Daffodil '', `` Koueda Incense '', `` Wuyou Daffodil ”,“ Safflower ”,“ Benihikari ”,“ Yamakai ”,“ Yamato Midori ”,“ Himemidori ”,“ Kaori ”,“ Okumidori ”, etc. May be used.

測定対象物質は、カテキン類、プリン塩基(カフェイン)、ビタミン類である。カテキン類の一種であるメチル化カテキンとは、メチル化されたカテキンをいい、エピガロカテキン−3−O−(3−O−メチル)ガレート(以下、EGCG3”Meという)、エピガロカテキン−3−O−(4−O−メチル)ガレート(以下、EGCG4”Meという)、ガロカテキン−3−O−(3−O−メチル)ガレート(以下、GCG3”Meという)、又は、ガロカテキン−3−O−(4−O−メチル)ガレート(以下、GCG4”Meという)を含む。   Substances to be measured are catechins, purine bases (caffeine), and vitamins. Methylated catechin, which is a kind of catechins, refers to methylated catechins such as epigallocatechin-3-O- (3-O-methyl) gallate (hereinafter referred to as EGCG3 "Me), epigallocatechin-3. -O- (4-O-methyl) gallate (hereinafter referred to as EGCG4 "Me), gallocatechin-3-O- (3-O-methyl) gallate (hereinafter referred to as GCG3" Me), or gallocatechin-3-O -(4-O-methyl) gallate (hereinafter referred to as GCG4 "Me).

EGCG3”Me、EGCG4”Meは、以下の化学構造式で示される。   EGCG3 ″ Me and EGCG4 ″ Me are represented by the following chemical structural formulas.

Figure 2005257676
Figure 2005257676

がメチル基(−CH)であり、かつ、Rが水素原子(−H)である場合には、EGCG3”Meを示す。また、Rが水素原子(−H)であり、Rがメチル基(−CH)である場合には、EGCG4”Meを示す。 In the case where R 1 is a methyl group (—CH 3 ) and R 2 is a hydrogen atom (—H), EGCG3 ″ Me is indicated. Also, R 1 is a hydrogen atom (—H), When R 2 is a methyl group (—CH 3 ), EGCG4 ″ Me is shown.

GCG3”Me、GCG4”Meは、以下の化学構造式で示される。   GCG3 ″ Me and GCG4 ″ Me are represented by the following chemical structural formulas.

Figure 2005257676
Figure 2005257676

がメチル基(−CH)であり、かつ、Rが水素原子(−H)である場合には、GCG3”Meを示す。また、Rが水素原子(−H)であり、Rがメチル基(−CH)である場合には、GCG4”Meを示す。なお、EGCG3”Me及びEGCG4”Meは互いに構造異性体であり、GCG3”Me及びGCG4”Meは互いに構造異性体である。EGCG3”Me及びGCG3”Meは互いに立体異性体であり、EGCG4”Me及びGCG4”Meは互いに立体異性体である。 In the case where R 1 is a methyl group (—CH 3 ) and R 2 is a hydrogen atom (—H), GCG3 ″ Me is shown. Also, R 1 is a hydrogen atom (—H), When R 2 is a methyl group (—CH 3 ), GCG4 ″ Me is shown. Note that EGCG3 ″ Me and EGCG4 ″ Me are structural isomers, and GCG3 ″ Me and GCG4 ″ Me are structural isomers. EGCG3 "Me and GCG3" Me are stereoisomers of each other, and EGCG4 "Me and GCG4" Me are stereoisomers of each other.

<測定及びメチル化カテキン濃度の算出>
本発明では、吸光度測定工程において近赤外分光高度計を用いている。「近赤外分光光度計(以下、NIRとする)」とは、試薬不要、前処理不要、多成分同時分析、定性及び定量分析可能であることを特徴とする近赤外線(700〜2500nm)を用いる分光光度計をいう。従来の赤外分光光度計(2500〜10000nm)と比べ、短波長であるため、赤外分光光度計の測定における分子の基本振動による吸収特性の、倍音、結合音での測定が可能である。使用するNIRには、スキャンタイプとフィルタータイプのものが挙げられる。
<Measurement and calculation of methylated catechin concentration>
In the present invention, a near infrared spectrophotometer is used in the absorbance measurement step. “Near-infrared spectrophotometer (hereinafter referred to as NIR)” means a near-infrared ray (700 to 2500 nm) characterized by being capable of no reagent, no pretreatment, simultaneous multi-component analysis, qualitative and quantitative analysis. This is the spectrophotometer used. Compared with conventional infrared spectrophotometers (2500 to 10000 nm), it has a shorter wavelength, so that it is possible to measure the overtone and the combined sound of the absorption characteristics due to the fundamental vibration of molecules in the measurement of the infrared spectrophotometer. The NIR to be used includes scan type and filter type.

また検量線算出工程における「検量線」とは、このNIRで測定した茶葉の吸光度(y)とメチル化カテキン濃度(x)の相関関係を単回帰法又は直線重回帰法を用いて一次方程式(y=ax+b)に表したものである。x軸のメチル化カテキンの濃度は、高速液体クロマトグラフィー(以下、HPLCとする)を用いて予め測定し、算出した値を用いている。「単回帰法又は直線重回帰法」とは一般に、幾つかの変数(独立変数又は説明変数)に基づいて、別の変数(従属変数又は目的変数)を予測することである。独立変数をx、従属変数をy、yの予測値をy´としたとき、x、yの各点の近くを通るような直線(検量線)y´=ax+bが考えられる。なお、この直線式の定数は最小自乗法により求めることができる。この検量線の精度は、検量線上に乗らない点の数によって決定される。なお本発明では、測定の便宜上、独立変数をyに従属変数をxに設定している。更に検量線の精度は、検量線評価時(予測値)の標準誤差(SEP)を用いて評価している。   The “calibration curve” in the calibration curve calculation step is a linear equation for the correlation between the tea leaf absorbance (y) and methylated catechin concentration (x) measured by NIR using a single regression method or a linear multiple regression method ( y = ax + b). The concentration of methylated catechin on the x-axis is a value measured and calculated in advance using high performance liquid chromatography (hereinafter referred to as HPLC). “Single regression method or linear multiple regression method” is generally to predict another variable (dependent variable or objective variable) based on several variables (independent variable or explanatory variable). Assuming that the independent variable is x, the dependent variable is y, and the predicted value of y is y ′, a straight line (calibration curve) y ′ = ax + b passing near each point of x and y can be considered. The linear constant can be obtained by the method of least squares. The accuracy of the calibration curve is determined by the number of points that are not on the calibration curve. In the present invention, for convenience of measurement, the independent variable is set to y and the dependent variable is set to x. Furthermore, the accuracy of the calibration curve is evaluated using the standard error (SEP) at the time of calibration curve evaluation (predicted value).

以下、検量線算出工程及び濃度算出工程の具体的な方法を説明する。   Hereinafter, specific methods of the calibration curve calculation step and the concentration calculation step will be described.

メチル化カテキン濃度既知の標準試料を、少なくとも4点、好ましくは10点以上についてNIRにて吸光度を測定する。照射波長の範囲としては、NIRにより通常測定される700〜2500nm波長の範囲を含んでいればよい。なお、このスキャンタイプのNIRで測定した場合、得られたスペクトルは、ピークの最大吸光度を示す波長が含まれている。ここで、最大吸光度とはスペクトルのピークの山の部分を指し、このピークの位置は、得られるスペクトルデータを目視又はコンピュータ等の情報処理装置などにより確認することができる。そして、この最大吸光度を示す波長が上記範囲の波長の中に入っていればよい。   Absorbance is measured by NIR for a standard sample with a known methylated catechin concentration for at least 4 points, preferably 10 points or more. The range of the irradiation wavelength may include the range of 700 to 2500 nm wavelength that is usually measured by NIR. In addition, when measured by this scan type NIR, the obtained spectrum includes a wavelength indicating the maximum absorbance of the peak. Here, the maximum absorbance refers to a peak portion of a spectrum peak, and the position of this peak can be confirmed visually or by an information processing device such as a computer. And the wavelength which shows this maximum absorbance should just be in the wavelength of the said range.

そして、フィルタータイプのNIRにおいてはまず、各波長における試料の吸光度を説明変数とし、メチル化カテキン濃度を目的変数として、まず単回帰分析及び重回帰分析を行い、精度の良い回帰線の波長を少なくとも2本以上採用し、アウトライヤー(外れ値)をチェックし、その原因が明確であれば切り捨てていく。次に上記の作業で採用した検量線について他の試料での検証を行い、最も精度の良い検量線を決定する。   In the filter type NIR, first, the absorbance of the sample at each wavelength is used as an explanatory variable, and the methylated catechin concentration is used as an objective variable. First, single regression analysis and multiple regression analysis are performed, and at least the wavelength of the accurate regression line is set. Adopt two or more, check outliers, and discard if the cause is clear. Next, the calibration curve employed in the above operation is verified with another sample to determine the most accurate calibration curve.

スキャンタイプのNIRにおいては、得られたNIRスペクトルのピークの最大吸光度を示す波長を2以上、好ましくは3以上選択し、それらの波数における吸光度を用いる。得られたスペクトルのピークの最大吸光度の波長を選択し、それらの吸光度を用いる。各波長における試料の吸光度を説明変数とし、メチル化カテキン濃度を目的変数として、重回帰分析を行う。   In the scan type NIR, the wavelength indicating the maximum absorbance of the peak of the obtained NIR spectrum is selected to be 2 or more, preferably 3 or more, and the absorbance at those wave numbers is used. The wavelength of the maximum absorbance of the obtained spectrum peak is selected and the absorbance is used. Multiple regression analysis is performed with the absorbance of the sample at each wavelength as the explanatory variable and the methylated catechin concentration as the objective variable.

また、重回帰分析計算や主成分回帰分析計算は市販の計算ソフトもしくは自作のものでも特に限定されるものではない。更にこれら一連の作業をNIRの測定プログラムに組込んでメチル化カテキン濃度検出用プログラムとしてもよい。   The multiple regression analysis calculation and the principal component regression analysis calculation are not particularly limited even if they are commercially available calculation software or self-made ones. Furthermore, these series of operations may be incorporated into the NIR measurement program to provide a methylated catechin concentration detection program.

濃度算出工程では、メチル化カテキン濃度未知の試料の吸光度を測定し、その値を上記の検量線算出工程で得られた検量線に代入してメチル化カテキンの濃度を算出することが可能となる。   In the concentration calculation step, the absorbance of a sample with an unknown methylated catechin concentration can be measured, and the value can be substituted into the calibration curve obtained in the calibration curve calculating step to calculate the concentration of methylated catechin. .

本発明に係る定量方法をプログラムとする場合は、NIRで測定した吸光度を、ケモメトリックス手法による主成分分析、クラスター分析、判別分析、重回帰分析、主成分回帰分析、PLS(partial least squares )回帰分析、SIMCA(soft independent modeling of class analogy)、KNN(K−nearest neighbor method)、ニューラルネットワーク分析等、及びこれらを組み合わせて使用することが好ましい。   When the quantification method according to the present invention is used as a program, the absorbance measured by NIR is used to analyze principal component analysis, cluster analysis, discriminant analysis, multiple regression analysis, principal component regression analysis, PLS (partial least squares) regression using a chemometrics technique. It is preferable to use analysis, SIMCA (soft independent modeling of class analysis), KNN (K-nearest neighbor method), neural network analysis, and the like, and a combination thereof.

[フィルタータイプのNIRを用いた場合]
<試料>
平成15年産べにふうき(n=50 1茶期18点、2茶期18点、3茶期8点、秋冬期6点)及びメチル化カテキンを含有する品種茶(n=100 1茶期50点、2茶期50点)をUDYサイクロンミル(スクリーン φ1.0mm)で粉砕した試料をNIR(GT−8基準機(Dickey john社製) IL610S/N11138);Mode1.0,Djセル,2回測定(詰め替えあり))で測定した。また同じサンプルをHPLC(島津製作所製 LC−10AVp、LC−M10AVp)にて測定し、Dickey john回帰プログラムv2.0(直線重回帰法)を用いて2つの測定値について解析した。方法としては、試料を3群にわけ、Cross Validation方式で作成及び検証を行なった。なお、NIRのフィルタ番号と照射波長の帰属は表1の通りである。
[When using filter type NIR]
<Sample>
Benifuuki (n = 50 1 tea season 18 points, 2 tea season 18 points, 3 tea seasons 8 points, fall / winter season 6 points) and varieties tea containing methylated catechins (n = 100 1 tea season 50 points) A sample obtained by pulverizing two tea seasons (50 points) with a UDY cyclone mill (screen φ1.0 mm) is NIR (GT-8 standard machine (Dickey John) IL610S / N11138); Mode 1.0, Dj cell, measured twice ( Measured with refilling)). Moreover, the same sample was measured by HPLC (LC-10AVp, LC-M10AVp by Shimadzu Corporation), and two measured values were analyzed using Dickey John regression program v2.0 (linear multiple regression method). As a method, the samples were divided into three groups and created and verified by the Cross Validation method. Table 1 shows the NIR filter number and the attribute of the irradiation wavelength.

Figure 2005257676
Figure 2005257676

フィルタ7(L7)(2139nm)は、タンニンの吸収領域に由来し、フィルタ2(L2)(2180nm)は蛋白質に、フィルタ9(L9)(2345nm)は繊維に由来し、フィルタ4(L4)(1940nm)は水分に、フィルタ6(L6)(2208nm)は蛋白質に由来していることが判っている。   Filter 7 (L7) (2139 nm) is derived from the tannin absorption region, Filter 2 (L2) (2180 nm) is derived from protein, Filter 9 (L9) (2345 nm) is derived from fiber, and Filter 4 (L4) ( 1940 nm) is derived from moisture, and filter 6 (L6) (2208 nm) is derived from protein.

<検量線作成手順>
(1)単回帰、2波長及び3波長でラフに検量線を作成し、選択波長の構成をみる。(2)傾き(t−Value)をチェックし、2.0以下の検量線を切り捨てる(オミット)。(3)波長の帰属、係数の符号(+,−)、CAL定数(2.0以下)、及び多重共線性(40nm以下)等で組合せをチェックし、検量線を絞り込んでいく。(4)数本の検量線のなかから、統計値のよい検量線2〜3本を選び採用候補とする。統計値の評価は、SEP:小さいほど良い、傾き(SLOPE):0.9〜1.1、寄与率(R):0.85以上、変動率(CV%):10以下、K係数の総和(Sum K):0.1〜1.0以下、K係数の自乗和の平方根(RSSK):1.0以下、及びF比:80以上等を基準にして行った。(5)アウトライヤーをチェックし、原因が明確であれば切り捨てた。上記(1)〜(5)を繰り返し、採用候補を決定した(Calibration)。(6)他の試料群で、採用候補の検量線を検証した(Validation)。このようにして一番よい結果の検量線を決定した。
<Procedure for creating a calibration curve>
(1) Create a calibration curve roughly with single regression, two wavelengths, and three wavelengths, and look at the configuration of the selected wavelength. (2) The slope (t-Value) is checked, and a calibration curve of 2.0 or less is discarded (Omit). (3) The combination is checked by wavelength assignment, coefficient sign (+, −), CAL constant (2.0 or less), multicollinearity (40 nm or less), and the calibration curve is narrowed down. (4) From several calibration curves, select 2 to 3 calibration curves with good statistical values and select them as candidates for adoption. The statistical value is evaluated as follows: SEP: smaller is better, slope (SLOPE): 0.9 to 1.1, contribution rate (R 2 ): 0.85 or more, variation rate (CV%): 10 or less, K coefficient Sum (Sum K): 0.1 to 1.0 or less, square root of sum of squares of K coefficient (RSSK): 1.0 or less, F ratio: 80 or more, and the like. (5) The outliers were checked and discarded if the cause was clear. The above candidates (1) to (5) were repeated to determine employment candidates (Calibration). (6) The calibration curve of the adoption candidate was verified in another sample group (Validation). In this way, the best calibration curve was determined.

<メチル化カテキン検量線の作成と検証>
表2は、上記の検量線作成手順によって算出した検量線の検証結果を示したものである。
<Preparation and verification of methylated catechin calibration curve>
Table 2 shows the verification result of the calibration curve calculated by the above-described calibration curve creation procedure.

Figure 2005257676
Figure 2005257676

これより、PLS解析(PLSとは、Partial Least Squares解析(部分最小自乗法))をベースにしたMLR CAL作成作業(Multiple Linear Pregreesion Cakewalk Application Language)で、全サンプルの採用候補は2、5、7のフィルタの組合せであり、メチル化カテキン群の採用候補は2、7、9の組合せであった。本発明では2、5、7のフィルタの組合せと2、7、9のフィルタの組合せを中心に解析をすすめた。   From this, MLR CAL creation work (Multiple Linear Precise Cakewalk Language) based on PLS analysis (PLS is Partial Least Squares analysis (partial least squares method)). The candidates for the methylated catechin group were 2, 7, and 9 combinations. In the present invention, the analysis was promoted mainly on the combination of 2, 5, and 7 filters and the combination of 2, 7, and 9 filters.

また、全試料を3分割し、2グループでCAL作成し、他の1グループで検証を行ったが、特別な傾向は認められなかった。3分割Cross Validation方式でサンプル群としての差異は認められなかったことから、全試料でCAL作成(アウトライヤー9点をオミット)を行った結果、2、5、7のフィルタの組合せで、SEC:0.302、R:0.814、CV%:33.83、F Ratio:259.4の精度が得られた。 Moreover, although all the samples were divided into 3 parts, CAL was created by 2 groups and it verified by 1 other group, the special tendency was not recognized. Since there was no difference as a sample group in the three-division Cross Validation method, CAL creation was performed on all samples (outlier 9 points were omitted). As a result, SEC: Accuracy of 0.302, R 2 : 0.814, CV%: 33.83, F Ratio: 259.4 was obtained.

試料が「べにふうき」のみである場合におけるCAL作成(4点オミット)の結果は、2、7、9のフィルタの組合せで、SEC:0.210、R:0.594、CV%:13.19、F Ratio:43.0の精度が得られたため、これをCAL採用候補とし、図1、2に示す。なお、このときのサンプル数は46、平均吸光度は1.59(最大値(log値):2.33、最小値(log値):0.65)であり、標準誤差は0.160、変動係数は10.1%である。また、CALの検証のため、上記で作成した検量線「べにふうきCAL」で乾物したべにふうきを用いてその精度を検証した結果は、SEP:0.207、R:0.594、CV%:13.0%、slope:1.683、F ratio:42.96であった。 The results of CAL creation (4-point omit) when the sample is only “Benifuuki” are SEC: 0.210, R 2 : 0.594, CV%: 13. 19, F Ratio: Since accuracy of 43.0 was obtained, this is set as a CAL adoption candidate and is shown in FIGS. The number of samples at this time is 46, the average absorbance is 1.59 (maximum value (log value): 2.33, minimum value (log value): 0.65), standard error is 0.160, fluctuation The coefficient is 10.1%. In addition, for the verification of CAL, the results of verifying the accuracy by using the wiping cloth dried with the calibration curve “Benifuki CAL” created above are SEP: 0.207, R 2 : 0.594, CV%: 13 0.0%, slope: 1.683, Fratio: 42.96.

なお参考として、カテキン類の検量線を作成してメチル化カテキンと比較を行った。その結果、含量の多いエピガロカテキンガレートやカテキン総量の変動係数の方が、含量の少ないエピガロカテキン、エピカテキン及びエピカテキンガレートよりも優れていた。また、カテキン類で選択された検量線の波長構成は、3、7、8(第一候補)、2、7、9(第二候補)のフィルタの組合せであり、べにふうきCALの波長構成の妥当性が確認された。   For reference, a calibration curve for catechins was prepared and compared with methylated catechins. As a result, epigallocatechin gallate with a high content and the coefficient of variation of the total amount of catechin were superior to epigallocatechin, epicatechin and epicatechin gallate with a low content. The wavelength configuration of the calibration curve selected with catechins is a combination of filters of 3, 7, 8 (first candidate), 2, 7, 9 (second candidate), and the wavelength configuration of Benififuki CAL is appropriate. Sex was confirmed.

更に、普通煎茶群と乾燥生葉群とに層別してCAL作成を行ったが、普通煎茶群はべにふうきと、乾燥生葉群は全サンプルとほぼ対応しているので、CALの精度に変化はないことが確認された。   Furthermore, although CAL was prepared by stratifying into the normal sencha group and the dried fresh leaf group, the normal sencha group corresponds to Benifukuki, and the dried fresh leaf group corresponds to almost all samples, so there is no change in the accuracy of CAL. confirmed.

[スキャンタイプのNIRを用いた場合]
<試料>
平成16年産べにふうき(荒茶、n=106、一番茶〜秋冬番茶)を用い、上述と同様の方法で粉体を測定用試料とした。試料をNIR(Bran+Luebbe社製 InfraAlyzer 500)の試料用セルにセットし、1100nmから2500nmの近赤外域において2nm間隔で反射光を測定した。
[When using scan type NIR]
<Sample>
Using Benifukuki (Aracha, n = 106, Ichibancha-Akiyubancha) produced in 2004, powder was used as a measurement sample in the same manner as described above. The sample was set in a sample cell of NIR (Bran + Lubebe InfraAlyzer 500), and the reflected light was measured at 2 nm intervals in the near infrared region from 1100 nm to 2500 nm.

得られたスペクトルは解析プログラムSESAMI(Bran+Luebbe社製)を用いて前処理(2次微分)と多変量解析した。   The obtained spectrum was subjected to pretreatment (secondary differentiation) and multivariate analysis using an analysis program SESAMI (manufactured by Bran + Lubebe).

得られたスペクトルを正規化、二次微分または平準化して、HPLC法で測定した個別カテキン量との相関を調べたところ、二次微分により高い相関が得られた。なお、検量線の作成にはMLRコンビネーションサーチ法とステップサーチ法を組み合わせて行った。   The obtained spectrum was normalized, second-order differentiated or leveled, and the correlation with the individual catechin amount measured by the HPLC method was examined. As a result, a high correlation was obtained by the second-order derivative. The calibration curve was created by combining the MLR combination search method and the step search method.

MLRコンビネーションサーチ法とは、直線重回帰法の1種であり、すべての波長の組み合わせを試行して、最適な波長を求め、各波長の重相関係数Rをそれぞれ算出して、最も高い値の組み合わせを検出する方法をいう。   The MLR combination search method is a kind of linear multiple regression method, which tries the combination of all wavelengths, finds the optimum wavelength, calculates the multiple correlation coefficient R of each wavelength, and calculates the highest value. A method of detecting a combination of

ステップアップサーチとは、MLRコンビネーションサーチ法と同様、直線重回帰法の1種である。まず、第1波長だけはコンビネーションサーチ法により求め、次の新しい波長を決めるのに、コンビネーションサーチで決定した波長は固定しておき、重相関係数Rが最高値を示すような波長を検索する。第3波長までRが最高となる波長を検索し、その後、第2、第3波長を固定するまで第1波長を再度変動させる。新しい波長を使ってもそれ以上相関が向上しなくなるまで、同様の操作を繰り返す(MLR変数増加法)。   The step-up search is a kind of linear regression method, similar to the MLR combination search method. First, only the first wavelength is obtained by the combination search method, and in order to determine the next new wavelength, the wavelength determined by the combination search is fixed, and the wavelength at which the multiple correlation coefficient R shows the maximum value is searched. . The wavelength having the highest R up to the third wavelength is searched, and then the first wavelength is changed again until the second and third wavelengths are fixed. The same operation is repeated until the correlation no longer improves even when a new wavelength is used (MLR variable increasing method).

なお、検量線を作成する際、目的変数を増加させることによりSEC(検量線作成時の標準誤差)を小さくすることができる。しかし、SEP(予測値の標準誤差)は一度小さくなるが目的変数をさらに増加させると増加する。これは、オーバーフィッティングとよばれており、多変量解析において目的変数の決定に用いられている。その結果、メチル化カテキンで4波長、EGCG、ECGで3波長、EGCで4波長を選択することが妥当であることがわかった。メチル化カテキンには、ヒドロキシ基および、メチル基が含まれており、この波長選択は妥当であることがわかる。   When creating a calibration curve, the SEC (standard error when creating a calibration curve) can be reduced by increasing the objective variable. However, SEP (standard error of the predicted value) decreases once, but increases when the objective variable is further increased. This is called overfitting and is used to determine the objective variable in multivariate analysis. As a result, it was found that it is appropriate to select 4 wavelengths for methylated catechins, 3 wavelengths for EGCG and ECG, and 4 wavelengths for EGC. The methylated catechin contains a hydroxy group and a methyl group, and it can be seen that this wavelength selection is appropriate.

〔一番茶を用いた茶葉中のメチル化カテキン定量法〕
NIRの波長として1220nm±50nm、2068nm±50nm、2364nm±50nm、2468nm±50nmの波長を選択し、MLR変数増加法を適用して検量線を作成すると、キャリブレーションのR=0.983、SEC=0.103、SEP=0.17の精度で測定できるようになった(図3)。
[Quantitative determination of methylated catechins in tea leaves using Ichiban tea]
When NIR wavelengths of 1220 nm ± 50 nm, 2068 nm ± 50 nm, 2364 nm ± 50 nm, 2468 nm ± 50 nm are selected and a calibration curve is created by applying the MLR variable increasing method, R = 0.983 of calibration, SEC = Measurement can be performed with an accuracy of 0.103 and SEP = 0.17 (FIG. 3).

<EGCG定量法>
NIRの波長として1660±50nm、1632±50nm、1128±50nmを選択してMLR変数増加法を適用して検量線を作成すると、キャリブレーションのR(重相関係数)=0.97、SEC=0.549、SEP=0.63の精度で測定できるようになる(図4)。
<EGCG quantification method>
When a calibration curve is created by selecting 1660 ± 50 nm, 1632 ± 50 nm, 1128 ± 50 nm as the NIR wavelength and applying the MLR variable increasing method, R (multiple correlation coefficient) of calibration = 0.97, SEC = Measurement can be performed with an accuracy of 0.549 and SEP = 0.63 (FIG. 4).

<ECG定量法>
NIRの波長として2186±50nm、2062±50nm、1546±50nmを選択してMLR変数増加法を適用して検量線を作成すると、キャリブレーションのR=0.963、SEC=0.17、SEP=0.24の精度で測定できるようになる(図5)。
<ECG quantitative method>
When a calibration curve is created by selecting the NIR wavelength of 2186 ± 50 nm, 2062 ± 50 nm, 1546 ± 50 nm and applying the MLR variable increasing method, the calibration R = 0.963, SEC = 0.17, SEP = Measurement can be performed with an accuracy of 0.24 (FIG. 5).

<EGC定量法>
NIRの波長として1534±50nm、2000±50nm、2270±50nm、2356±50nmを選択してMLR変数増加法を適用して検量線を作成すると、キャリブレーションのR=0.978、SEC=0.215、SEP=0.328の精度で測定できるようになる(図6)。
<EGC quantification method>
When a calibration curve is generated by selecting 1534 ± 50 nm, 2000 ± 50 nm, 2270 ± 50 nm, 2356 ± 50 nm as the NIR wavelength and applying the MLR variable increasing method, R = 0.978 of the calibration, SEC = 0. 215, SEP = 0.328 can be measured with accuracy (FIG. 6).

<EC定量法>
NIRの波長として1124±50nm、1470±50nm、2208±50nmを選択してMLR変数増加法を適用して検量線を作成すると、キャリブレーションのR=0.884、SEC=0.112、SEP=0.128の精度で測定できるようになる(図7)。
<EC quantification method>
When a calibration curve is created by selecting 1124 ± 50 nm, 1470 ± 50 nm, 2208 ± 50 nm as the NIR wavelength and applying the MLR variable increasing method, calibration R = 0.848, SEC = 0.112, SEP = Measurement can be performed with an accuracy of 0.128 (FIG. 7).

以上より、本発明は製造工程における茶葉の品質管理、育種選抜システムの目的の下では十分な精度を有していることがわかった。また、本発明による検量線を組み込んだプログラム、オプションキットとしてそれぞれの波長フィルタを従来からある茶葉分析計等の測定装置に搭載することにより、機能性に関わるカテキン類を高精度、簡易に測定することが可能となる。   From the above, it was found that the present invention has sufficient accuracy under the purpose of tea leaf quality control and breeding selection system in the production process. In addition, by installing each wavelength filter as a program and option kit incorporating the calibration curve according to the present invention in a conventional measuring device such as a tea leaf analyzer, catechins related to functionality can be measured with high accuracy and simplicity. It becomes possible.

本発明の分析方法により算出したカテキン類の検量線を示した図である。It is the figure which showed the calibration curve of catechin calculated by the analysis method of this invention. 本発明の分析方法により算出したカテキン類の検量線を示した図である。It is the figure which showed the calibration curve of catechin calculated by the analysis method of this invention. 本発明の分析方法により算出したカテキン類の検量線を示した図である。It is the figure which showed the calibration curve of catechin calculated by the analysis method of this invention. 本発明の分析方法により算出したエピガロカテキンカテキンガレートの検量線を示した図である。It is the figure which showed the calibration curve of the epigallocatechin catechin gallate computed by the analysis method of this invention. 本発明の分析方法により算出したエピカテキンガレートの検量線を示した図である。It is the figure which showed the calibration curve of the epicatechin gallate computed by the analysis method of this invention. 本発明の分析方法により算出したエピガロカテキンの検量線を示した図である。It is the figure which showed the analytical curve of the epigallocatechin computed by the analysis method of this invention. 本発明の分析方法により算出したエピカテキンの検量線を示した図である。It is the figure which showed the calibration curve of epicatechin computed by the analysis method of this invention.

Claims (10)

茶葉中に含まれる化学成分の定量方法であって、1000nmから2500nmの近赤外領域の波長を用いて前記茶葉の吸光度を測定し、この吸光度と前記茶葉中の化学成分量との相関に関する情報に基づいて、化学成分濃度未知の茶葉の吸光度から化学成分濃度を算出することを特徴とする茶葉中に含まれる化学成分の定量方法。   A method for quantifying chemical components contained in tea leaves, wherein the absorbance of the tea leaves is measured using wavelengths in the near-infrared region of 1000 nm to 2500 nm, and information relating to the correlation between the absorbance and the amount of chemical components in the tea leaves A method for quantifying chemical components contained in tea leaves, wherein the chemical component concentration is calculated from the absorbance of tea leaves with unknown chemical component concentrations based on 前記情報は、定期的又は常時更新するものであることを特徴とする請求項1に記載の茶葉中に含まれる化学成分の定量方法。   The method for quantifying chemical components contained in tea leaves according to claim 1, wherein the information is updated regularly or constantly. 前記化学成分は、カテキン類、プリン塩基、及びビタミン類からなる群から選ばれる1種以上の成分である請求項1又は2に記載の茶葉中に含まれる化学成分の定量方法。   The method for quantifying a chemical component contained in tea leaves according to claim 1 or 2, wherein the chemical component is one or more components selected from the group consisting of catechins, purine bases, and vitamins. 前記化学成分は、メチル化カテキンである請求項1から3いずれかに記載の茶葉中に含まれる化学成分の定量方法。   The method for quantifying a chemical component contained in tea leaves according to any one of claims 1 to 3, wherein the chemical component is methylated catechin. 茶葉中に含まれる化学成分の定量方法であって、
前記化学成分濃度が既知の複数の標準試料を、所定の波長を有する近赤外光を照射する近赤外分光光度計を用いて、前記標準試料の吸光度を測定する吸光度測定工程と、
この吸光度測定工程で測定したそれぞれの吸光度と、前記標準試料の化学成分濃度に基づいて単回帰法又は直線重回帰法の少なくともいずれか1つにより検量線を算出する検量線算出工程と、
化学成分濃度が未知の対象試料を前記標準試料と同じ波長における吸光度を測定し、この吸光度の値から前記検量線に基づいて前記対象試料の化学成分濃度を算出する濃度算出工程と、
を有することを特徴とする茶葉中に含まれる請求項1から4いずれかに記載の茶葉中に含まれる化学成分の定量方法。
A method for quantifying chemical components contained in tea leaves,
Absorbance measurement step of measuring the absorbance of the standard sample using a near-infrared spectrophotometer that irradiates a plurality of standard samples with known chemical component concentrations, near-infrared light having a predetermined wavelength;
A calibration curve calculation step of calculating a calibration curve by at least one of a single regression method or a linear multiple regression method based on each absorbance measured in this absorbance measurement step and the chemical component concentration of the standard sample,
A concentration calculation step of measuring the absorbance at the same wavelength as the standard sample for the target sample whose chemical component concentration is unknown, and calculating the chemical component concentration of the target sample based on the calibration curve from the absorbance value;
The method for quantifying a chemical component contained in a tea leaf according to any one of claims 1 to 4, wherein the chemical component is contained in the tea leaf.
前記近赤外光の波長は、略1000nmから略2500nmである請求項5に記載の茶葉中に含まれる化学成分の定量方法。   6. The method for quantifying chemical components contained in tea leaves according to claim 5, wherein the wavelength of the near-infrared light is about 1000 nm to about 2500 nm. 前記近赤外光の波長は、略1100nmから略2400nmである請求項5又は6に記載の茶葉中に含まれる化学成分の定量方法。   The method for quantifying chemical components contained in tea leaves according to claim 5 or 6, wherein the wavelength of the near-infrared light is about 1100 nm to about 2400 nm. 前記検量線算出工程における前記検量線の精度(SEP)が、0.4以下のものである請求項5から7いずれかに記載の茶葉中に含まれる化学成分の定量方法。   The method for quantifying chemical components contained in tea leaves according to any one of claims 5 to 7, wherein an accuracy (SEP) of the calibration curve in the calibration curve calculation step is 0.4 or less. 茶葉中に含まれる化学成分を定量するプログラムであって、
この化学成分濃度が既知の複数の標準試料を、所定の波長を有する近赤外光を照射する近赤外分光光度計を用いて測定したそれぞれの吸光度と、前記標準試料の化学成分濃度に基づいて単回帰法又は直線重回帰法の少なくともいずれか1つにより検量線を算出するように指令する検量線算出工程と、
化学成分濃度が未知の対象試料を前記標準試料と同じ波長における吸光度の値から前記検量線に基づいて前記対象試料の化学成分濃度を算出するように指令する濃度算出工程と、
を有することを特徴とする茶葉中に含まれる化学成分の定量方法をコンピュータに実行させるためのプログラム。
A program for quantifying chemical components contained in tea leaves,
A plurality of standard samples with known chemical component concentrations are measured based on respective absorbances measured using a near-infrared spectrophotometer that irradiates near-infrared light having a predetermined wavelength, and the chemical component concentrations of the standard samples. A calibration curve calculation step for commanding to calculate a calibration curve by at least one of a single regression method and a linear multiple regression method;
A concentration calculation step for instructing a target sample whose chemical component concentration is unknown to calculate a chemical component concentration of the target sample based on the calibration curve from an absorbance value at the same wavelength as the standard sample;
A program for causing a computer to execute a method for quantifying a chemical component contained in tea leaves.
茶葉中に含まれるメチル化カテキンを定量するプログラムであって、
このメチル化カテキン濃度が既知の複数の標準試料を、所定の波長を有する近赤外光を照射する近赤外分光光度計を用いて測定したそれぞれの吸光度と、前記標準試料のメチル化カテキン濃度に基づいて単回帰法又は直線重回帰法の少なくともいずれか1つにより検量線を算出するように指令する検量線算出工程と、
メチル化カテキン濃度が未知の対象試料を前記標準試料と同じ波長における吸光度の値から前記検量線に基づいて前記対象試料のメチル化カテキン濃度を算出するように指令する濃度算出工程と、
を有することを特徴とする茶葉中に含まれるメチル化カテキンの定量方法をコンピュータに実行させるためのプログラム。
A program for quantifying methylated catechins contained in tea leaves,
A plurality of standard samples with known methylated catechin concentrations, the respective absorbances measured using a near infrared spectrophotometer that irradiates near infrared light having a predetermined wavelength, and the methylated catechin concentrations of the standard samples A calibration curve calculation step for instructing to calculate a calibration curve by at least one of a single regression method or a linear multiple regression method based on
A concentration calculating step for instructing a target sample having an unknown methylated catechin concentration to calculate the methylated catechin concentration of the target sample based on the calibration curve from the absorbance value at the same wavelength as the standard sample;
A program for causing a computer to execute a method for quantifying methylated catechins contained in tea leaves.
JP2005010131A 2004-02-09 2005-01-18 Method for quantifying chemical components contained in tea leaves Active JP4505598B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005010131A JP4505598B2 (en) 2004-02-09 2005-01-18 Method for quantifying chemical components contained in tea leaves

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004031814 2004-02-09
JP2005010131A JP4505598B2 (en) 2004-02-09 2005-01-18 Method for quantifying chemical components contained in tea leaves

Publications (3)

Publication Number Publication Date
JP2005257676A true JP2005257676A (en) 2005-09-22
JP2005257676A5 JP2005257676A5 (en) 2008-02-28
JP4505598B2 JP4505598B2 (en) 2010-07-21

Family

ID=35083513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005010131A Active JP4505598B2 (en) 2004-02-09 2005-01-18 Method for quantifying chemical components contained in tea leaves

Country Status (1)

Country Link
JP (1) JP4505598B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008122412A (en) * 2004-03-12 2008-05-29 Aomori Prefecture Method of measuring calorie of food item, and device for measuring calorie of food item
CN101900678A (en) * 2010-07-05 2010-12-01 浙江大学 Method for quickly detecting leucine content in rape leaves
CN101900677A (en) * 2010-07-05 2010-12-01 浙江大学 Method for rapidly detecting valine content of rape leaf
CN102128791A (en) * 2010-12-09 2011-07-20 福建省农业科学院土壤肥料研究所 Method for determining content of tea caffeine
KR101181315B1 (en) 2010-03-22 2012-09-11 주식회사 장원 Use of Near-Infrared Reflectance Spectroscopy for Estimating Caffeine and Individual Catechines Contents in Green Tea Leaves
KR101306801B1 (en) 2011-08-24 2013-09-11 주식회사 장원 Simultaneous measurement method of Theanine, GABA and Glutamic acid individual contents using NIRS in green tea leaves
WO2013145437A1 (en) * 2012-03-26 2013-10-03 日本たばこ産業株式会社 Method for measuring menthol content
CN106706567A (en) * 2017-01-10 2017-05-24 浙江大学 Method for identifying young leaves of tea plants based on EGCG (Epigallocatechin Gallate) concentration difference
CN106872411A (en) * 2017-01-10 2017-06-20 浙江大学 A kind of tea tree tender leaf recognition methods based on ECG concentration differences
CN106872368A (en) * 2017-01-10 2017-06-20 浙江大学 A kind of tea tree tender leaf recognition methods based on EC concentration differences
CN106908417A (en) * 2017-01-10 2017-06-30 浙江大学 A kind of tea tree tender leaf recognition methods based on EGC concentration differences
WO2019031331A1 (en) * 2017-08-07 2019-02-14 株式会社堀場製作所 Analyzer, analysis method, analyzer program, and analysis learning device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104297203B (en) * 2014-09-28 2016-08-17 安徽农业大学 A kind of Quick method of congou tea fermented quality based on near-infrared spectral analysis technology

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03179239A (en) * 1989-12-07 1991-08-05 Satake Eng Co Ltd Evaluation of quality and processing of green tea leaf
JPH0827226A (en) * 1994-07-12 1996-01-30 Itouen:Kk Acrylamidomethylpolyphenol polymer and its production
JPH0827142A (en) * 1994-07-12 1996-01-30 Itouen:Kk Mono(meth)acrylamidomethyl-polyphenol and its production
JPH0894522A (en) * 1994-09-26 1996-04-12 Iseki & Co Ltd Quality measuring device for grain-like matter such as rice
JPH08114543A (en) * 1994-10-17 1996-05-07 Shizuoka Seiki Co Ltd Method for evaluating quality of leaf tea
JPH0915146A (en) * 1995-06-29 1997-01-17 Tadashi Goto Device and method for measuring moisture in tea leaves in tea manufacturing process
JPH11346702A (en) * 1998-06-04 1999-12-21 Mayekawa Mfg Co Ltd Production of processed raw leaf
JP2000121578A (en) * 1998-10-20 2000-04-28 Syst Sogo Kaihatsu Kk Apparatus and method for calibration of moisture meter
JP2001343325A (en) * 2000-06-05 2001-12-14 Solt Industry Center Of Japan Component concentration measuring method, and calibration curve calibration method
JP2003023890A (en) * 2001-07-10 2003-01-28 Shizuoka Prefecture Method for classifying plant individual by optical means and plant individual whose expressive character is classified by the optical means
JP2003075339A (en) * 2001-09-04 2003-03-12 Tsukuba Bio Syst:Kk ANALYSIS METHOD OF beta-GLUCAN IN CULTURE SOLUTION OF EDIBLE BASIDIOMYCETE AGARICUS BY NEAR INFRARED SPECTROSCOPIC ANALYSIS METHOD

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03179239A (en) * 1989-12-07 1991-08-05 Satake Eng Co Ltd Evaluation of quality and processing of green tea leaf
JPH0827226A (en) * 1994-07-12 1996-01-30 Itouen:Kk Acrylamidomethylpolyphenol polymer and its production
JPH0827142A (en) * 1994-07-12 1996-01-30 Itouen:Kk Mono(meth)acrylamidomethyl-polyphenol and its production
JPH0894522A (en) * 1994-09-26 1996-04-12 Iseki & Co Ltd Quality measuring device for grain-like matter such as rice
JPH08114543A (en) * 1994-10-17 1996-05-07 Shizuoka Seiki Co Ltd Method for evaluating quality of leaf tea
JPH0915146A (en) * 1995-06-29 1997-01-17 Tadashi Goto Device and method for measuring moisture in tea leaves in tea manufacturing process
JPH11346702A (en) * 1998-06-04 1999-12-21 Mayekawa Mfg Co Ltd Production of processed raw leaf
JP2000121578A (en) * 1998-10-20 2000-04-28 Syst Sogo Kaihatsu Kk Apparatus and method for calibration of moisture meter
JP2001343325A (en) * 2000-06-05 2001-12-14 Solt Industry Center Of Japan Component concentration measuring method, and calibration curve calibration method
JP2003023890A (en) * 2001-07-10 2003-01-28 Shizuoka Prefecture Method for classifying plant individual by optical means and plant individual whose expressive character is classified by the optical means
JP2003075339A (en) * 2001-09-04 2003-03-12 Tsukuba Bio Syst:Kk ANALYSIS METHOD OF beta-GLUCAN IN CULTURE SOLUTION OF EDIBLE BASIDIOMYCETE AGARICUS BY NEAR INFRARED SPECTROSCOPIC ANALYSIS METHOD

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008122412A (en) * 2004-03-12 2008-05-29 Aomori Prefecture Method of measuring calorie of food item, and device for measuring calorie of food item
KR101181315B1 (en) 2010-03-22 2012-09-11 주식회사 장원 Use of Near-Infrared Reflectance Spectroscopy for Estimating Caffeine and Individual Catechines Contents in Green Tea Leaves
CN101900678A (en) * 2010-07-05 2010-12-01 浙江大学 Method for quickly detecting leucine content in rape leaves
CN101900677A (en) * 2010-07-05 2010-12-01 浙江大学 Method for rapidly detecting valine content of rape leaf
CN101900678B (en) * 2010-07-05 2012-05-23 浙江大学 Method for quickly detecting leucine content in rape leaves
CN101900677B (en) * 2010-07-05 2012-05-23 浙江大学 Method for rapidly detecting valine content of rape leaf
CN102128791A (en) * 2010-12-09 2011-07-20 福建省农业科学院土壤肥料研究所 Method for determining content of tea caffeine
KR101306801B1 (en) 2011-08-24 2013-09-11 주식회사 장원 Simultaneous measurement method of Theanine, GABA and Glutamic acid individual contents using NIRS in green tea leaves
WO2013145437A1 (en) * 2012-03-26 2013-10-03 日本たばこ産業株式会社 Method for measuring menthol content
CN106706567A (en) * 2017-01-10 2017-05-24 浙江大学 Method for identifying young leaves of tea plants based on EGCG (Epigallocatechin Gallate) concentration difference
CN106872411A (en) * 2017-01-10 2017-06-20 浙江大学 A kind of tea tree tender leaf recognition methods based on ECG concentration differences
CN106872368A (en) * 2017-01-10 2017-06-20 浙江大学 A kind of tea tree tender leaf recognition methods based on EC concentration differences
CN106908417A (en) * 2017-01-10 2017-06-30 浙江大学 A kind of tea tree tender leaf recognition methods based on EGC concentration differences
WO2019031331A1 (en) * 2017-08-07 2019-02-14 株式会社堀場製作所 Analyzer, analysis method, analyzer program, and analysis learning device
JPWO2019031331A1 (en) * 2017-08-07 2020-06-25 株式会社堀場製作所 Analysis device, analysis method, analysis device program, and analysis learning device
US11448588B2 (en) 2017-08-07 2022-09-20 Horiba, Ltd. Analyzer, analysis method, analyzer program, and analysis learning device

Also Published As

Publication number Publication date
JP4505598B2 (en) 2010-07-21

Similar Documents

Publication Publication Date Title
JP4505598B2 (en) Method for quantifying chemical components contained in tea leaves
Zhang et al. Application of near-infrared hyperspectral imaging with variable selection methods to determine and visualize caffeine content of coffee beans
Mignani et al. Visible and near-infrared absorption spectroscopy by an integrating sphere and optical fibers for quantifying and discriminating the adulteration of extra virgin olive oil from Tuscany
US8124415B2 (en) Method and test for blood serum component analysis
WO2012127617A1 (en) Method for measuring bulk density
KR101181315B1 (en) Use of Near-Infrared Reflectance Spectroscopy for Estimating Caffeine and Individual Catechines Contents in Green Tea Leaves
Fransson et al. Comparison of multivariate methods for quantitative determination with transmission Raman spectroscopy in pharmaceutical formulations
CN109085136B (en) Method for measuring content of oxide components in cement raw material by near-infrared diffuse reflection spectrum
KR20100001401A (en) Non-destructive analysis method of fresh tea leaves by near infrared spectroscopy
Henriques et al. Determination of formaldehyde/urea molar ratio in amino resins by near‐infrared spectroscopy
Fu-Li et al. Surface-enhanced Raman spectroscopy for rapid determination of β-agonists in swine urine
Hirri et al. The use of Fourier transform mid infrared (FT-MIR) spectroscopy for detection and estimation of extra virgin olive oil adulteration with old olive oil
KR101306801B1 (en) Simultaneous measurement method of Theanine, GABA and Glutamic acid individual contents using NIRS in green tea leaves
Perez-Guaita et al. Chemometric determination of lipidic parameters in serum using ATR measurements of dry films of solvent extracts
Turgut et al. Estimation of the sensory properties of black tea samples using non-destructive near-infrared spectroscopy sensors
Smola et al. Qualitative and quantitative analysis of oxytetracycline by near-infrared spectroscopy
CN109799224A (en) Quickly detect the method and application of protein concentration in Chinese medicine extract
Xiang et al. Development of robust quantitative methods by near-infrared spectroscopy for rapid pharmaceutical determination of content uniformity in complex tablet matrix
Mlcek et al. Application of FT NIR spectroscopy in the determination of basic chemical composition of pork and beef
CN109030410B (en) Construction method of royal jelly near-infrared quantitative correction model and royal jelly detection method
Liang et al. Detecting melamine‐adulterated raw milk by using near‐infrared transmission spectroscopy
Guo et al. Nondestructive estimation of total free amino acid in green tea by near infrared spectroscopy and artificial neural networks
JPH063264A (en) Method for forming calibration curve in near infrared analysis
Ding et al. Rapid Assessment of Exercise State through Athlete’s Urine Using Temperature‐Dependent NIRS Technology
Dong et al. Nondestructive method for analysis of the soybean quality

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080108

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100323

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100331

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4505598

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250