JPH03179239A - Evaluation of quality and processing of green tea leaf - Google Patents

Evaluation of quality and processing of green tea leaf

Info

Publication number
JPH03179239A
JPH03179239A JP1319807A JP31980789A JPH03179239A JP H03179239 A JPH03179239 A JP H03179239A JP 1319807 A JP1319807 A JP 1319807A JP 31980789 A JP31980789 A JP 31980789A JP H03179239 A JPH03179239 A JP H03179239A
Authority
JP
Japan
Prior art keywords
quality
green tea
tea leaf
sample
tea
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1319807A
Other languages
Japanese (ja)
Other versions
JP2911150B2 (en
Inventor
Toshihiko Satake
佐竹 利彦
Yukio Hosaka
幸男 保坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Satake Engineering Co Ltd
Original Assignee
Satake Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Satake Engineering Co Ltd filed Critical Satake Engineering Co Ltd
Priority to JP31980789A priority Critical patent/JP2911150B2/en
Publication of JPH03179239A publication Critical patent/JPH03179239A/en
Application granted granted Critical
Publication of JP2911150B2 publication Critical patent/JP2911150B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To enable accurate evaluation of quality and manufacture of a product with a stable quality by a method wherein green tea leaf is dried below a fixed moisture level and a content component thereof is measured by a near infrared spectrochemical analysis while a specified production process is determined by the resulting content of the green tea leaf. CONSTITUTION:A green tea leaf (sample) is sampled and dried to reduce until moisture is down below 20% and then, it is crushed to be adjusted in particle size with a sieve ranging from 0.4-0.2 mm. Then, the sample is irradiated with near infrared rays by a near infrared spectrochemical analyzer to determine absorptivity thereof and a content component, a characteristic value or a sensory quality of a green tea leaf from the absorptivity thus obtained. Moreover, manufacturing methods for a rough tea process and a firing process as production process of tea are determined by the content component of the green tea leaf. With such an arrangement, objective evaluation of quality is possible free from external factors, which moreover, facilitates accurate section of a production process to match an amount of components contained actually and a desired product. This enables a producer to evaluate quality accurately and a manufacturer to turn out a product with a stable quality.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 近赤外分光分析法によりお茶の含有成分または特性値ま
たは官能品質を測定する茶生葉の品質評価方法及びその
加工方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for evaluating the quality of green tea leaves, which measures the components, characteristic values, or sensory quality of tea by near-infrared spectroscopy, and a method for processing the same.

〔従来の技術〕[Conventional technology]

お茶の品質評価は従来より官能審査法が用いられてきた
。つまり人間の官能に依存する審査法であり、鋭敏で熟
練した審査官を必要とした。
Sensory evaluation methods have traditionally been used to evaluate the quality of tea. In other words, it was an examination method that relied on human sensibility and required a sensitive and skilled examiner.

この官能審査法は人間の五官に頼る方法であり、審査す
る人間の体調や環境により審査結果が大きく左右される
ことは避けられず、客観的な審査法とは言えないもので
あった。また、化学的手法により行う成分分析も一部取
り入れる方向性もあるが、未だに確立されていない。
This sensory evaluation method relied on the five human senses, and it was inevitable that the results of the examination would be greatly influenced by the physical condition and environment of the person conducting the examination, and it could not be called an objective examination method. There is also some direction toward incorporating component analysis performed using chemical methods, but this has not yet been established.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前記従来技術に明らかなように、人間の五官に頼る審査
法は数値で正確に表現できないばかりか、審査官の主観
の差に影響を受けるものである。
As is clear from the above-mentioned prior art, examination methods that rely on human senses not only cannot be accurately expressed numerically, but are also influenced by differences in the examiner's subjectivity.

したがって、茶の取引やその規格の設定に際し官能審査
に化学的審査をとり入れることの必要性が上げられるよ
うになった。つまり公正な茶の審査のために官能と化学
の両面から審査して、できるだけ客観的に茶の品質を表
現することが望まれている。
Therefore, it has become necessary to incorporate chemical evaluation into sensory evaluation when trading tea and setting standards for it. In other words, in order to judge tea fairly, it is desirable to evaluate it from both sensory and chemical aspects, and to express the quality of tea as objectively as possible.

また化学的な検査法は一般的に検査装置、検査器具とし
ても色差計、分光光度計、ガスクロマドグラフィーある
いは液体クロマトグラフィー等を必要とし、それに伴う
検査人員の充実を必要とするものであり、どこでも誰で
も手軽に人員と設備とを備えることができないものであ
る。
In addition, chemical testing methods generally require testing equipment such as a color difference meter, spectrophotometer, gas chromatography, or liquid chromatography, and this requires a sufficient number of testing personnel. It is not possible for anyone to easily provide personnel and equipment anywhere.

また荒茶加工、仕上(火入れ)加工の業者において、そ
の加工方法(乾燥時間、乾燥温度、蒸熱温度、蒸熱時間
、火入れ温度、火入れ時間等)は、茶生葉の品種と摘採
時期及び外観等を見て選択する、いわゆる勘に頼るとこ
ろが多く、また製造する茶(煎茶、玉露、はうし茶等)
によりさらに細かい手順があるために、できあがった製
品にバラツキが発生することは避けられないことであっ
た。
In addition, in the case of rough tea processing and finishing (pastoring) processing companies, the processing methods (drying time, drying temperature, steaming temperature, steaming time, pasteurizing temperature, pasteurizing time, etc.) are determined based on the variety, picking time, appearance, etc. of the raw tea leaves. There is a lot of reliance on intuition, and the selection of teas (Sencha, Gyokuro, Haushicha, etc.)
Because of the more detailed steps involved, it was inevitable that the finished product would vary.

上記のことから本発明においては、官能審査に頼ること
なく誰でも手軽に、最小人員で茶の品質を審査すること
のできる茶生葉の品質評価方法及びその加工方法を技術
的課題とするものである。
Based on the above, the technical problem of the present invention is to develop a method for evaluating the quality of tea leaves and a method for processing the same, which allows anyone to easily examine the quality of tea with a minimum number of people without relying on sensory evaluation. be.

〔発明を解決するための手段〕 茶生葉を水分20%以下に乾燥して粉砕し、近赤外分光
分析法により茶生葉の含有成分又は特性値又は官能品質
を測定することにより前記技術的課題を解決するための
手段とした。
[Means for Solving the Invention] The above-mentioned technical problem is solved by drying and pulverizing fresh tea leaves to a moisture content of 20% or less, and measuring the contained components, characteristic values, or sensory quality of the fresh tea leaves by near-infrared spectroscopy. It was used as a means to solve the problem.

更に茶の製造工程である荒茶工程と火入れ工程の加工方
法を茶生葉の含有成分で決定することにより前記技術的
課題を解決するための手段とした。
Furthermore, the method of processing the rough tea process and the pasteurization process, which are the tea manufacturing processes, was determined based on the ingredients contained in the fresh tea leaves, thereby providing a means for solving the above-mentioned technical problem.

〔作 用〕[For production]

近赤外分光分析法による茶葉の分析は、収穫した茶の生
葉をそのまま分析できれば良いが、分析の際に行う単純
な粉砕工程において、茶生葉の水分が多ければ粉砕が難
しい。とくに品質が一番良いとされる一番茶は茶芽の整
反が若く、玉露の原葉となる茶生葉は被覆栽培で粗繊維
も少なく柔らかい等の理由と、茶生葉の75%〜80%
が水分で構成されていることなどから、そのまま粉砕す
ることは難しく、茶生葉を一定水分以下に乾燥させる必
要がある。
Tea leaf analysis using near-infrared spectroscopy can be done as long as the raw tea leaves that have been harvested can be analyzed as they are, but if the raw tea leaves have a high moisture content, it is difficult to crush them during the simple crushing process performed during analysis. In particular, Ichibancha, which is said to have the best quality, has young tea buds, and the raw tea leaves that are used for Gyokuro are grown under cover, so they have less coarse fiber and are softer.
Because tea leaves are composed of water, it is difficult to grind them as is, and it is necessary to dry the fresh tea leaves to below a certain moisture content.

本発明においては、水分20%以下に乾燥して粉砕する
ので、前記の問題は解消され粉砕粒度も均一となる。こ
こで茶生葉に含有する成分のうち味成分に関しては、乾
燥熱により酵素は失活するので、乾燥中の変化はほとん
どなく原料の茶生葉と変わらない。
In the present invention, since the powder is dried to a moisture content of 20% or less and then pulverized, the above-mentioned problem is solved and the pulverized particle size becomes uniform. Among the ingredients contained in fresh tea leaves, the enzymes are inactivated by the drying heat, so there is almost no change during drying and the taste components are the same as the raw tea leaves.

次に粉砕した茶(試料)を近赤外分光分析法で分析して
得られる値は含有成分、特性値、官能品質などである。
Next, the ground tea (sample) is analyzed using near-infrared spectroscopy, and the values obtained include the contained components, characteristic values, and sensory quality.

一般的に近赤外分光分析法は、粉砕した試料に近赤外線
を照射して得られる吸光度が、試料に含まれる成分によ
り特有の吸光度曲線を成し、試料固有の曲線を示すもの
であり、狭帯域波長部分において試料から得られる値と
他の試料あるいは基準の試料との比較により試料に含ま
れる成分値を求めたり、吸光度曲線の二次微分により得
られる値を比較して成分値を求めたりする。
In general, in near-infrared spectroscopy, the absorbance obtained by irradiating a crushed sample with near-infrared rays forms a unique absorbance curve depending on the components contained in the sample, and shows a curve unique to the sample. Calculate the component values contained in the sample by comparing the values obtained from the sample with other samples or reference samples in the narrow band wavelength region, or determine the component values by comparing the values obtained by the second derivative of the absorbance curve. or

また、近赤外分光分析法により得られる茶生葉の成分は
、たんばく質、炭水化物、アミノ酸、脂質、水分、糖、
繊維量、アルコール、カフェイン等がある。
In addition, the components of fresh tea leaves obtained by near-infrared spectroscopy are proteins, carbohydrates, amino acids, lipids, water, sugars,
It has fiber content, alcohol, caffeine, etc.

茶の化学成分のうち特に品質に関係するものは窒素、ア
ミノ酸、カフェイン、たんばく質、でんぷん、脂質等で
ある。これらの化学成分の生成は、茶の品種と、茶刈、
茶芽の整反、成育土壌及び成育環境(気温、地温)によ
りほぼ決まり、荒茶加工、仕上げ加工のような品種と茶
の適期及び商品銘柄とにより確立された製造工程以前に
茶の品質は決定している。
Among the chemical components of tea, those particularly related to quality include nitrogen, amino acids, caffeine, protein, starch, and lipids. The production of these chemical components depends on the variety of tea, tea harvesting,
The quality of the tea is determined by the arrangement of the tea buds, the growing soil, and the growing environment (temperature, soil temperature), and the quality of the tea is determined before the manufacturing process is established, which is determined by the variety, the appropriate timing of tea, and the product brand, such as rough tea processing and finishing processing. are doing.

つまり摘採時において茶の味成分は決定され、荒茶加工
等の製造工程において成分の絶対量は変化せず、その抽
出量が変化するものである。
In other words, the taste components of tea are determined at the time of picking, and the absolute amounts of the components do not change during the manufacturing process such as rough tea processing, but the amount extracted changes.

以下に示す表は同一の原葉を荒茶加工工程において揉捻
して玉露にしたものと、揉まずにてん茶にしたものの成
分の絶対量と任意時間経過後の成分抽出量とを示す。
The table below shows the absolute amount of the components and the amount of component extracted after an arbitrary period of time when the same raw leaves are rolled into gyokuro in the crude tea processing process and when they are made into tencha without rolling.

したがって、同一原料でも荒茶工程で玉露にもてん茶に
も変化することから、生葉の段階で茶の品質を決定され
るべきであり、荒茶または火入れ後の茶は消費者の嗜好
感覚により良否が決定されるべきである。
Therefore, even with the same raw material, it changes into Gyokuro and Tencha in the raw tea process, so the quality of the tea should be determined at the raw leaf stage, and the quality of the tea should be determined at the raw leaf stage. Good or bad should be determined.

以上のことから、本発明は茶の生葉を乾燥して粉砕可能
とし、粉砕により茶の成分分析を容易とすると共に、荒
茶加工、仕上げ加工の段階を経ず近赤外分光分析法とい
う、試料を粉砕して簡単に実施することのできる方法で
、茶゛の生葉の成分分析を可能とした。この成分分析で
得られた値は、含有成分でありこの値で形成される香り
、滋味(苦味、渋味、旨味、H゛味)、水色の特性値を
重回帰分析等の手法により任意に仮定した製造工程をも
とに求めることも可能となる。更に前記含有成分から直
接あるいは、特性値から茶の品質評価をたとえば点数評
価することも可能となる。
In view of the above, the present invention makes it possible to dry and crush fresh tea leaves, facilitate the analysis of tea components through crushing, and perform near-infrared spectroscopy without going through the stages of rough tea processing and finishing. We have made it possible to analyze the components of fresh tea leaves using a method that can be easily carried out by pulverizing the sample. The values obtained in this component analysis are the contained components, and the characteristic values of aroma, flavor (bitterness, astringency, umami, hot taste), and light blue formed by these values can be arbitrarily determined using methods such as multiple regression analysis. It is also possible to obtain it based on an assumed manufacturing process. Furthermore, it is also possible to evaluate the quality of tea, for example, by scoring, directly from the contained components or from characteristic values.

逆に、前記含有成分や特性値あるいは品質評価値から製
造工程の蒸熱の温度、時間、揉捻の時間、温度等を決定
する目安とすることも可能であり、生産者の立場から、
公正な品質評価を生葉で実施することができると共に、
加工業者はその品質評価を目安に製造工程のさまざまな
調節を行い消費者の嗜好する製品を製造することが可能
となった。
Conversely, it is also possible to use the above-mentioned contained components, characteristic values, or quality evaluation values as a guideline for determining the steaming temperature, time, kneading time, temperature, etc. in the manufacturing process, and from the producer's perspective,
Fair quality evaluation can be carried out on fresh leaves, and
Processors are now able to make various adjustments to the manufacturing process based on quality evaluations to produce products that consumers prefer.

〔実施例〕〔Example〕

本発明の生茶葉の品質評価方法の実施例を説明する。 An example of the method for evaluating the quality of raw tea leaves of the present invention will be described.

まず、品質評価の手順を示すと、 ■試料(茶生葉)をサンプリングする。First, the steps for quality evaluation are as follows: ■Sampling the sample (fresh tea leaves).

■試料を乾燥し、水分を20%以下とする。■ Dry the sample and reduce the moisture content to 20% or less.

■試料を粉砕し、0.4+nm −0,2mmの篩で粒
度をそろえる。
(2) Grind the sample and use a sieve of 0.4+nm -0.2mm to make the particle size uniform.

■近赤外分光分析装置で近赤外線を照射し吸光度を求め
る。
■Irradiate near-infrared rays with a near-infrared spectrometer to determine absorbance.

■求めた吸光度から茶生葉の含有成分または特性値また
は官能品質を求める。
■Determine the content, characteristic values, or sensory quality of the fresh tea leaves from the determined absorbance.

となる。次に各手順について説明する。becomes. Next, each procedure will be explained.

試料のサンプリングは摘採した茶生葉から四分法等によ
り100g以上採集する。これは茶生葉の70%〜80
%が水分であり乾燥により大幅にこの水分を取り除くた
めである。煎茶の例で、乾量基準で茶生葉は約350%
の水分を有することが明らかになっている。
For sampling, collect 100 g or more from the picked green tea leaves using a quartering method or the like. This is 70% to 80% of raw tea leaves.
This is because % is water, and this water is largely removed by drying. In the example of Sencha, fresh tea leaves account for approximately 350% on a dry basis.
It has been revealed that it has a water content of

またサンプリングした茶生葉には、荒茶加工、仕上げ加
工で選別除去される言葉や茎などが混入しないようあら
かじめ選別しておく必要がある。これは言葉にはタンニ
ン等の苦味を呈するものが多く含まれ製品に混入すると
等級は低下するため一般的に製品にするまでに選別され
る。
In addition, the sampled raw tea leaves must be sorted in advance to avoid contamination with words and stems that are removed during rough tea processing and finishing processing. This is because words contain many bitter substances such as tannins, and if they are mixed into a product, the grade will be lowered, so they are generally sorted before being made into a product.

次に採集した試料を乾燥する。乾燥温度は70℃〜10
0℃で行い、酵素を失活させるためには一般的に70℃
以上の温度を必要とする。このとき目標とする水分値は
乾量基準で20%以下とする。水分が20%を超えると
、同一試料で同一水分でも第1図に示す如く、分析され
た各波長に対する吸光度に差を生じて、求める値との相
関は低くなる。これは高水分からくる、サンプルの粉砕
後の粒度分布の差であり、試料の粒度の影響を受ける近
赤外分光分析方法において留意すべき点である。本発明
は20%以下の一定水分に試料を乾燥することでこの問
題点を解決し、安定した近赤外分光分析が可能となった
The collected sample is then dried. Drying temperature is 70℃~10
The temperature is generally 70°C to deactivate the enzyme.
or higher temperature is required. At this time, the target moisture value is 20% or less on a dry basis. When the water content exceeds 20%, even if the same sample has the same water content, as shown in FIG. 1, there will be a difference in the absorbance for each wavelength analyzed, and the correlation with the determined value will be low. This is a difference in the particle size distribution of the sample after crushing due to high moisture content, and is a point to be kept in mind in near-infrared spectroscopic analysis methods that are affected by the particle size of the sample. The present invention solves this problem by drying the sample to a constant moisture content of 20% or less, making stable near-infrared spectroscopic analysis possible.

20%以下に乾燥した試料は次に粉砕機により粉砕する
が、粉砕により試料温度が上昇するような粉砕機は試料
の水分値が変化するめで、粉砕による試料の温度上昇の
低いもの、たとえばサイクロン粉砕機等が良い。またこ
のとき、粉砕粒度をそろえるため0.2mm〜0.5m
mの篩を通過させることにより近赤外分光分析する試料
はより安定した粒度の分布を有することになる。
The sample dried to less than 20% is then crushed using a crusher. However, since crushers that increase the sample temperature due to crushing change the moisture content of the sample, we recommend using a crusher that does not increase the temperature of the sample due to crushing, such as a cyclone. A crusher etc. is good. At this time, in order to make the pulverized particle size uniform, the
By passing through a sieve of m, the sample to be analyzed by near-infrared spectroscopy will have a more stable particle size distribution.

次にこの粉砕粒となった試料を近赤外分光分析装置によ
り分析する。この分析は試料を石英ガラスの蓋を有する
測定用セルに均等に充てんして近赤外光を照射する。近
赤外光(I100nm〜2500nm)を石英ガラスを
通して試料に照射して、別に設けた白色セラミック板の
拡散反射エネルギーと、試料の拡散反射エネルギーとの
比によって反射率Rを求め、lQg(1/R)値を吸光
度とする。このとき照射する近赤外光はlI00nm〜
2500nmで連続的に照射すること、あるいは複数個
の特定波長を狭帯域フィルターにより作り照射すること
などの方法があるが、複数個のフィルターで特定波長の
みを照射すると短時間で測定できることは言うまでもな
い。しかし特定波長を決定するため、連続的に、波長を
照射し求める含有成分にヒツトする特定波長を探し出す
作業が事前に必要となる。
Next, the sample, which has become the pulverized particles, is analyzed using a near-infrared spectrometer. In this analysis, a sample is evenly filled into a measurement cell with a quartz glass lid and irradiated with near-infrared light. The sample is irradiated with near-infrared light (I100 nm to 2500 nm) through quartz glass, and the reflectance R is determined by the ratio of the diffuse reflection energy of a separately provided white ceramic plate and the diffuse reflection energy of the sample, and is calculated as lQg (1/ R) value is the absorbance. The near-infrared light irradiated at this time is lI00nm ~
There are methods such as continuous irradiation at 2500 nm, or irradiation using multiple specific wavelengths using narrow band filters, but it goes without saying that measurements can be made in a short time by irradiating only specific wavelengths using multiple filters. . However, in order to determine the specific wavelength, it is necessary in advance to continuously irradiate wavelengths and find the specific wavelength that hits the desired content component.

近赤外分光分析により得た複数のlog(1/R)値と
他の化学分析等で得た値とにより、重回帰分析を行い、
前記各log(1/R1値の係数(F)を求めて、たと
えば含有成分のうち窒素は、窒素−Fn +F+  ・
log(1/R)、 +F2・log(1/R) 2 
+−xr。−log(1/R)。  −・−(1)の重
回帰式により検量線が成立し、近赤外分光分析で求めた
log(1/R)値を代入することで窒素量を求めるこ
とができる。他のアミノ酸、カフェイン、たんばく質、
でんぷん、脂質等の含を成分についても同様にしてそれ
ぞれに重回帰式%式% 次に前記含有成分により香り、滋味(苦味、渋味、旨味
、甘味)、水色等の特性値が形成されることから、前記
log(1/R1値あるいはlog(1/R)値から重
回帰式(1)により得られる各含有成分と、官能審査値
(香り、滋味、水色)とにより重回帰式が成立する係数
を求め、たとえば滋味−Gn + G+  ・log(
1/R)t + G2 ・log(1/R) 2  +
・・・   十 G 。  ・ l og(1/R) 
。    ・・・・・・く2)の重回帰式を得る。ある
いは滋味に関係する含有成分を窒素とアミノ酸であると
すれば滋味=Ho+H+  ・窒素量子H,アミノ酸・
・・・・・(3) の重回帰式を得る。このときlog (1/R+値から
得た牛、r検値を介した重回帰式(3)は、重回帰式(
2)に比較して相関係数が劣ることになる。
Perform multiple regression analysis using multiple log(1/R) values obtained by near-infrared spectroscopy and values obtained from other chemical analyses, etc.
By calculating the coefficient (F) of each log(1/R1 value), for example, among the contained components, nitrogen is nitrogen -Fn +F+ ・
log(1/R), +F2・log(1/R) 2
+-xr. −log(1/R). A calibration curve is established by the multiple regression equation (1), and the amount of nitrogen can be determined by substituting the log(1/R) value determined by near-infrared spectroscopic analysis. other amino acids, caffeine, protein,
Similarly, for ingredients such as starch and lipids, multiple regression formula % formula % Next, characteristic values such as aroma, nourishment (bitterness, astringency, umami, sweetness), light blue, etc. are formed by the above-mentioned ingredients. Therefore, a multiple regression equation is established using each ingredient obtained from the log(1/R1 value or log(1/R) value using the multiple regression equation (1)) and the sensory evaluation values (aroma, flavor, light blue). Find the coefficient, for example, Degustation - Gn + G+ ・log (
1/R)t + G2 ・log(1/R) 2 +
... 10G.・log(1/R)
. ... Obtain the multiple regression equation of 2). Or, if the ingredients related to nutrition are nitrogen and amino acids, then nutrition = Ho + H + ・Nitrogen quantum H, amino acids ・
...(3) Obtain the multiple regression equation. In this case, the multiple regression equation (3) using the log (1/R+ cow obtained from the value and the r test value) is the multiple regression equation (
The correlation coefficient is inferior to that of 2).

更に、喜能品質においても同様にlog(1/RJ値あ
るいは含了イ成分あるいは特性値と、茶の等級あるい+
t、 ’+6− a審査の採点とにより重回帰式が成立
は゛る係数をンRぬマー、官能品質を求める回帰式この
Lうに17.て求める含有成分、特性値または前症品質
(4、常にそれぞれの重回帰式で得!〉れる検量線、と
’g(+/R)値とにより算出されるため、外的な1,
1に左右されない安定した値を得るこ7社がてきるよら
になった。
Furthermore, in terms of quality, the log (1/RJ value or contained component or characteristic value and the grade or +
A multiple regression equation is established based on the scores of t and '+6-a examination. Because it is calculated from the calibration curve obtained from the content, characteristic value, or presymptomatic quality (4, always obtained using each multiple regression equation!) and the 'g(+/R) value, the external 1,
Seven companies are now able to obtain stable values that are not influenced by 1.

更に、ここで得られる値は、生茶葉から得られるもので
あり、その後の工程における荒茶工程、仕上げ(火入れ
)工程の加工温度、加工時間を決定する重要な情報とす
ることができる。
Furthermore, the values obtained here are obtained from raw tea leaves, and can be used as important information for determining the processing temperature and processing time of the rough tea process and finishing (pastoring) process in the subsequent steps.

「効 果〕 茶の審査は従来から生茶葉の外観と官能審査が主流であ
ったが、本発明で成分そのものを分析することにより外
的要因に左右されない客観的な品質評価が可能となった
。またその作業も単純であり、標準化により誰にでも品
質評価ができるようになると共に、多くの検査機器を必
要としない。
``Effects'' Until now, the mainstream of tea evaluation has been based on the appearance and sensory evaluation of raw tea leaves, but with the present invention, by analyzing the ingredients themselves, it has become possible to objectively evaluate quality unaffected by external factors. Furthermore, the work is simple, and standardization allows anyone to perform quality evaluation, and does not require a large amount of testing equipment.

更に、荒茶加工、仕上げ加工の製造工程は、含有成分で
はなく茶生葉の品種と摘採時期および外観等の勘により
、製造する茶(煎茶、玉露、はうじ茶等)に見合う方法
がとられることから、実際にできあがった製品にバラツ
キが発生ずることは避けられなかったが、含有成分を得
ることにより実際に含有する成分量と目的とする製品に
見合う製造工程を確実に選択することが容易となった。
In addition, the manufacturing process for rough tea processing and finishing is determined based on intuition such as the variety of fresh tea leaves, the time of picking, and the appearance, not on the ingredients contained, and the method that is appropriate for the tea being produced (sencha, gyokuro, haujicha, etc.) is adopted. Therefore, it was inevitable that variations would occur in the actual product, but by knowing the ingredients contained, it would be easier to reliably select a manufacturing process that matches the actual amount of ingredients contained and the desired product. It became.

以上のことから生産者において正確な品質評価と、加工
業者においても品質の安定した製品の製造が可能となっ
た。
As a result of the above, it has become possible for producers to accurately evaluate quality and for processors to manufacture products with stable quality.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、水分20%以上の茶生葉を連続スペクトルで
分析した時の吸光度曲線図である。
FIG. 1 is an absorbance curve diagram when raw tea leaves with a moisture content of 20% or more are analyzed by continuous spectrum.

Claims (2)

【特許請求の範囲】[Claims] (1)茶生葉を水分20%以下に乾燥して粉砕し、近赤
外線分光分析法により茶生葉の含有成分または特性値ま
たは官能品質を測定することを特徴とする茶生葉の品質
評価方法。
(1) A method for evaluating the quality of green tea leaves, which comprises drying the green tea leaves to a moisture content of 20% or less, pulverizing them, and measuring the contained components, characteristic values, or sensory quality of the green tea leaves by near-infrared spectroscopy.
(2)茶の製造工程である荒茶工程と火入れ工程の加工
方法を茶生葉の含有成分で決定することを特徴とする茶
生葉の加工方法。
(2) A method for processing fresh tea leaves, characterized in that the processing methods of the rough tea process and pasteurization process, which are tea manufacturing processes, are determined by the ingredients contained in the fresh tea leaves.
JP31980789A 1989-12-07 1989-12-07 Quality evaluation method of raw tea leaves and processing method based on the method Expired - Fee Related JP2911150B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31980789A JP2911150B2 (en) 1989-12-07 1989-12-07 Quality evaluation method of raw tea leaves and processing method based on the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31980789A JP2911150B2 (en) 1989-12-07 1989-12-07 Quality evaluation method of raw tea leaves and processing method based on the method

Publications (2)

Publication Number Publication Date
JPH03179239A true JPH03179239A (en) 1991-08-05
JP2911150B2 JP2911150B2 (en) 1999-06-23

Family

ID=18114415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31980789A Expired - Fee Related JP2911150B2 (en) 1989-12-07 1989-12-07 Quality evaluation method of raw tea leaves and processing method based on the method

Country Status (1)

Country Link
JP (1) JP2911150B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005257676A (en) * 2004-02-09 2005-09-22 National Agriculture & Bio-Oriented Research Organization Method for determining quantity of chemical component in tea leaves
WO2009116613A1 (en) * 2008-03-21 2009-09-24 株式会社 伊藤園 Method and apparatus of evaluating fitness-for-plucking of tea leaf, system of evaluating fitness-for-plucking of tea leaf, and computer-usable medium
CN113455697A (en) * 2021-07-30 2021-10-01 河南中烟工业有限责任公司 Method for representing and judging tobacco mellowing process by using light absorption value

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005257676A (en) * 2004-02-09 2005-09-22 National Agriculture & Bio-Oriented Research Organization Method for determining quantity of chemical component in tea leaves
JP4505598B2 (en) * 2004-02-09 2010-07-21 独立行政法人農業・食品産業技術総合研究機構 Method for quantifying chemical components contained in tea leaves
WO2009116613A1 (en) * 2008-03-21 2009-09-24 株式会社 伊藤園 Method and apparatus of evaluating fitness-for-plucking of tea leaf, system of evaluating fitness-for-plucking of tea leaf, and computer-usable medium
AU2009226465B2 (en) * 2008-03-21 2011-11-17 Ito En, Ltd. Plucking propriety assessment method, plucking propriety assessment apparatus and plucking propriety assessment system for tea leaf, and computer-usable medium.
JP5361862B2 (en) * 2008-03-21 2013-12-04 株式会社 伊藤園 Tea leaf plucking aptitude evaluation method, plucking suitability evaluation apparatus, plucking suitability evaluation system, and computer-usable medium
CN113455697A (en) * 2021-07-30 2021-10-01 河南中烟工业有限责任公司 Method for representing and judging tobacco mellowing process by using light absorption value

Also Published As

Publication number Publication date
JP2911150B2 (en) 1999-06-23

Similar Documents

Publication Publication Date Title
Teye et al. Estimating cocoa bean parameters by FT-NIRS and chemometrics analysis
Hazarika et al. Quality assessment of fresh tea leaves by estimating total polyphenols using near infrared spectroscopy
Barbin et al. Application of infrared spectral techniques on quality and compositional attributes of coffee: An overview
Caporaso et al. Hyperspectral imaging for non-destructive prediction of fermentation index, polyphenol content and antioxidant activity in single cocoa beans
Sunoj et al. Nondestructive determination of cocoa bean quality using FT-NIR spectroscopy
Cozzolino Near infrared spectroscopy in natural products analysis
Hall et al. Near-infrared reflectance prediction of quality, theaflavin content and moisture content of black tea
Quelal‐Vásconez et al. Roadmap of cocoa quality and authenticity control in the industry: A review of conventional and alternative methods
Diniz et al. Using i SPA-PLS and NIR spectroscopy for the determination of total polyphenols and moisture in commercial tea samples
US20090305423A1 (en) Methods for Monitoring Composition and Flavor Quality of Cheese Using a Rapid Spectroscopic Method
KR20100001401A (en) Non-destructive analysis method of fresh tea leaves by near infrared spectroscopy
Kiani et al. Hyperspectral imaging, a non-destructive technique in medicinal and aromatic plant products industry: Current status and potential future applications
Huang et al. Rapid measurement of total polyphenols content in cocoa beans by data fusion of NIR spectroscopy and electronic tongue
Kusumiyati et al. Fast, simultaneous and contactless assessment of intact mango fruit by means of near infrared spectroscopy
KR101000889B1 (en) Non-destructive analysis method of wet-paddy rice for protein contents of brown and milled rice by near infrared spectroscopy
KR101306801B1 (en) Simultaneous measurement method of Theanine, GABA and Glutamic acid individual contents using NIRS in green tea leaves
Munawar et al. Fast, simultaneous and contactless assessment of intact mango fruit by means of near infrared spectroscopy.
Camps et al. Determination of artemisinin and moisture content of Artemisia annua L. dry powder using a hand-held near infrared spectroscopy device
KR20080075761A (en) Development for discriminating geographical origin of green tea products from korea and japan by nir spectrophotometer
Baqueta et al. A review of coffee quality assessment based on sensory evaluation and advanced analytical techniques
JPH03179239A (en) Evaluation of quality and processing of green tea leaf
KR102430947B1 (en) Method for identifying age of ginseng and processed ginseng using NIRS
Osborne et al. Discriminant analysis of black tea by near infrared reflectance spectroscopy
Huxsoll et al. Near infrared analysis potential for grading raisin quality and moisture
Phuphaphud et al. Effects of waxy types of a sugarcane stalk surface on the spectral characteristics of visible-shortwave near infrared measurement

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees