WO2013144501A1 - Dispositif de commande de la position d'un volet d'alimentation en air d'une installation de chauffage/ climatisation en fonction de la capacité de réfrigération - Google Patents

Dispositif de commande de la position d'un volet d'alimentation en air d'une installation de chauffage/ climatisation en fonction de la capacité de réfrigération Download PDF

Info

Publication number
WO2013144501A1
WO2013144501A1 PCT/FR2013/050655 FR2013050655W WO2013144501A1 WO 2013144501 A1 WO2013144501 A1 WO 2013144501A1 FR 2013050655 W FR2013050655 W FR 2013050655W WO 2013144501 A1 WO2013144501 A1 WO 2013144501A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
temperature
supply
installation
control
Prior art date
Application number
PCT/FR2013/050655
Other languages
English (en)
Inventor
Arnaud TROUILLARD
Original Assignee
Peugeot Citroen Automobiles Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peugeot Citroen Automobiles Sa filed Critical Peugeot Citroen Automobiles Sa
Priority to ES13715377.1T priority Critical patent/ES2583933T3/es
Priority to EP13715377.1A priority patent/EP2847013B1/fr
Priority to CN201380027460.7A priority patent/CN104364102B/zh
Publication of WO2013144501A1 publication Critical patent/WO2013144501A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00735Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models
    • B60H1/00764Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models the input being a vehicle driving condition, e.g. speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/81Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the air supply to heat-exchangers or bypass channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00821Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being ventilating, air admitting or air distributing devices
    • B60H1/00835Damper doors, e.g. position control
    • B60H1/00849Damper doors, e.g. position control for selectively commanding the induction of outside or inside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • F25B2700/21173Temperatures of an evaporator of the fluid cooled by the evaporator at the outlet

Definitions

  • the invention relates to heating / air conditioning systems that include a supply valve for supplying outside air and / or recycled air (or recirculated).
  • the invention relates to any system comprising at least one enclosure to be supplied with air treated by a heating / air conditioning system. Therefore, it concerns at least vehicles, possibly of automobile type, and buildings.
  • heating / air conditioning systems include a supply flap whose variable position allows each moment to control the proportions of outside air and recycled air (or recirculated) that feed. This is particularly the case of many vehicles, possibly of the automotive type.
  • the use of the aforementioned power shutter has several advantages.
  • the supply flap when the supply flap is placed in a total recycling position that allows only recycled air, it allows to isolate the enclosure (for example a passenger compartment) external odors and / or pollution exterior.
  • it optimizes the cooling performance (or refrigeration) of the installation (heating / air conditioning).
  • the lower the temperature of the air, which is supplied to the installation by the supply flap is lower, the lower the temperature of the treated air, supplied by the installation to the enclosure, can be low (It will be understood that it is easier for an installation to reprocess recirculated air having a temperature of 25 ° C than outside air ayart a temperature of 35 ° C).
  • the position of the supply flap (or air intake) is generally managed in a manner that can be described as "static". Indeed, this position is a function of parameters that are quasi-static because their values vary temporally only very slowly, namely the temperature of the outside air and the temperature setpoint in the enclosure (which has been chosen by user of the installation).
  • the higher the outdoor temperature the higher the amount of recycled air that is imposed on the facility.
  • the lower the temperature setpoint in the enclosure the higher the proportion of recycled air, which is imposed on the installation.
  • the proportion of recycled air is frequently oversized in the majority of situations in order to be just sufficient in difficult situations, for example when a user requires a large amount of air to be treated or when the installation has a limited refrigeration capacity because the operating speed of its compressor is forced to be low due to a reduced power supply capacity or a low drive speed.
  • the invention therefore aims to improve the situation.
  • a device for controlling the position of a supply flap to control the external air supply and / or recycled air of a heating / air conditioning system to feed a treated air chamber, and, secondly, comprising first control means arranged to determine each position of the supply flap according to a temperature setpoint inside the enclosure and a measurement of the temperature of the outside air.
  • This control device is characterized in that its first control means are arranged to determine each position of the supply flap in function, in addition, an estimate of a capacity of refrigeration means of the installation to produce a treated air that is adapted to the instructions.
  • control device may comprise other features that can be taken separately or in combination, and in particular:
  • its first control means can be arranged to estimate the capacity as a function of an operation command of a compressor of the refrigeration means and of the difference between a temperature measurement of the air treated at the outlet of an evaporator of the installation and a target temperature, defining a theoretical temperature that should present the treated air output of this evaporator; its first control means can be arranged, when the operation command is between a minimum operating command and a maximum operating command, to determine a position of the supply gate which is adapted to reduce the proportion of air recycled in the air it must supply to the installation;
  • its first control means can be arranged, when the operation control corresponds to a maximum operation, or to determine a position of the supply flap which is adapted to increase the proportion of air recycled into the air that it must provide at installation when the target temperature is lower than the temperature measurement of the treated air, or to maintain the current position of the supply flap when the target temperature is greater than or equal to the air temperature measurement treaty ;
  • his first command means may comprise i) a first control submodule arranged to determine a position pre-control for the supply flap as a function of the temperature setpoint of the enclosure chosen by the user, and the outside temperature measurement, ii) a first combination module arranged to combine the temperature measurement of the treated air with the target temperature, in order to deliver a result representative of a difference between the target temperature and the temperature measurement of the treated air, iii) a second sub-module of control arranged to determine a position control correction for the supply shutter according to the operation control and that difference, and iv) a second combination module arranged to combine this pre-control with this control correction to deliver a control. control that defines the next position of the power shutter;
  • It may comprise second control means arranged to determine the compressor operating command and the target temperature that the air treated at the outlet of the evaporator should exhibit according to at least the temperature setpoint of the enclosure chosen by the user and the outside temperature measurement.
  • the invention also provides a computer, intended to equip a heating / air conditioning system for supplying an enclosure with treated air, and comprising a control device of the type of that presented above.
  • the invention also proposes a heating / air-conditioning installation comprising a calculator of the type of that presented above.
  • the invention also proposes a vehicle, possibly of automobile type, and comprising a heating / air-conditioning installation of the type presented above.
  • FIG. 1 schematically illustrates a heating / air-conditioning installation of a motor vehicle coupled to a calculator comprising an exemplary embodiment of a control device according to the invention
  • FIG. 2 diagrammatically and functionally illustrates the control device of FIG. 1.
  • the object of the invention is to propose a control device D intended to equip a heating / air-conditioning system IC with a system.
  • the IC heating / air conditioning system is part of a motor vehicle, such as a car.
  • the air-conditioned chamber of the vehicle is therefore its cabin.
  • the invention is not limited to this type of system. It concerns any type of land vehicle, maritime (or fluvial), or air, and any type of building, since it includes at least one enclosure to be supplied with air treated by a heating / air conditioning system.
  • FIG. 1 schematically and functionally shows a heating / air conditioning system IC, here a vehicle.
  • this installation (heating / air conditioning) IC comprises at least one blower (or motor-fan unit (or GMV)) PU, a cold loop (or air conditioning loop) BF, a hot loop (or heating loop) BC, a V1 power pane, and a VM mix pane.
  • blower or motor-fan unit (or GMV)
  • GMV motor-fan unit
  • the PU blower is supplied with outside air and / or recycled (or recirculated) air through the supply (or air intake) flap V1.
  • the outside air comes from a first duct C1 and the recycled air comes from the passenger compartment via a second duct C2.
  • the air flow rate provided by the PU blower depends on the power level that has been chosen by a passenger of the vehicle by means of a control member installed in the cockpit, generally in the dashboard.
  • the cold loop BF is supplied with air by the PU blower. It comprises for example an evaporator EV (crossed by the air from the blower PU), a compressor CP, a condenser and a circuit in which a refrigerant circulates and which is coupled to the evaporator EV, the compressor CP and the condenser.
  • this refrigerant circulates in a closed circuit in the circuit in different phases.
  • This refrigerant is, for example, an HFC (or other fluorinated refrigerant) or carbon dioxide.
  • the output of the evaporator EV is coupled to a duct which feeds, on the one hand, a mixing chamber CM in which is implanted the mixing flap VM, and, on the other hand, the hot loop BC.
  • the hot loop BC is intended to heat the air that is derived from the evaporator EV and which is intended for the passenger compartment of the vehicle. It comprises a heater AE comprising, for example, a heater, such as for example a heat exchanger (in which circulates a liquid which is optionally heated by electrical heating resistors (for example high voltage CTP type)), and / or an electric heater, for example consisting of electrical heating resistors (for example high voltage CTP type).
  • a heater such as for example a heat exchanger (in which circulates a liquid which is optionally heated by electrical heating resistors (for example high voltage CTP type)), and / or an electric heater, for example consisting of electrical heating resistors (for example high voltage CTP type).
  • the heating device AE is charged, when it is operating, to heat the air passing through it, which comes from the evaporator EV. It delivers the air that passes through a conduit that leads into the mixing chamber CM, for example.
  • the mixing chamber CM is also connected to ducts which are here intended to supply defrost and ventilation outlets S1 placed in the passenger compartment of the vehicle, front foot exits S2 and rear leg exits S3 also placed in the interior of the vehicle. the passenger compartment of the vehicle. Access to these ducts is controlled by intake flaps V2 and V3.
  • the respective positions of the intake flaps V2 and V3 depend on the air outlets at which a passenger of the vehicle wishes that the treated air from the IC installation is delivered. These air outlets can be chosen by the passenger by means of a control member installed in the passenger compartment, usually in the dashboard.
  • the mixer VM is designed to mix (or mix) a controlled portion of the air that has passed through the cold loop BF and the air that has crossed the hot loop BC. Its position depends on the operating mode of the IC installation which has been chosen by a passenger of the vehicle by means of a control member installed in the cockpit, generally in the dashboard.
  • the operation of the IC installation, and in particular of its PU blower, its BF and hot BC cold loops, its VM mixing flap and its V2 and V3 intake flaps, is controlled by a CA computer.
  • the installation IC could have a substantially different architecture, especially when it operates as a reversible heat pump.
  • control device D is part of the computer CA. But this is not obligatory. It could indeed be equipment that is coupled to the CA computer, directly or indirectly. Therefore, the control device D can be realized in the form of software modules (or computer or "software”), or a combination of electronic circuits (or “hardware”) and software modules.
  • a control device D comprises at least first control means MC1 arranged to determine each position of the supply flap V1 as a function of a set point C T defining the desired temperature inside the enclosure (in this case a passenger compartment), a measurement T E x of the outside air temperature, and an estimate of a capacity of cooling means CP of the cold loop BF (of the IC installation)) to produce a treated air which is adapted to this setpoint C T.
  • the setpoint C T is chosen by a passenger of the vehicle by means of a control member installed in the cockpit, generally in the dashboard. Furthermore, the measurement ⁇ ⁇ ⁇ is for example carried out by a first temperature sensor which is installed in a selected location of the engine compartment or on an external element of the vehicle such as mirrors, remote sources of production of calories, and supplied to the control device D by the computer CA.
  • the first control means MC1 can be arranged to estimate the capacity of the refrigeration means as a function of an operating command Ce of the compressor CP and of a difference between a measurement T E v of the temperature that the air treated at the outlet of the evaporator EV exhibits and a target temperature T E c which defines a theoretical temperature that should present the treated air output of this evaporator EV.
  • the measurement T E v is performed by a second temperature sensor which is installed at the output of the evaporator EV, and supplied to the control device D by the computer CA.
  • the output of the evaporator EV is indeed a place that is well suited to representative measurements of the temperature of the IC installation when the latter (IC) operates in refrigeration mode (or air conditioning).
  • the objective here is to directly compare the temperature of the treated air T E v measured at the evaporator outlet EV with the target temperature T EC of the air treated at the outlet of this same evaporator EV.
  • the target temperature of the treated air T EC at the outlet of the evaporator EV may itself be constructed, in particular, from the target temperature of the treated air to be injected into the passenger compartment.
  • the operating command Ce of the compressor CP is determined by second control means MC2 which, as shown in non-limiting manner in FIGS. 1 and 2, may be part of the control device D. It will be noted that in an embodiment variant, not shown, the second control means MC2 could be part of the computer CA while being external to the control device D, or another computer.
  • these second control means MC2 can be arranged so as to determine the operating command C c as a function of at least the selected set point CT and the measurement of the outside temperature T EX .
  • this determination is also made as a function of the temperature measurement T EV that the air treated at the outlet of the evaporator EV exhibits.
  • This operating command This defines an operating displacement of the compressor CP which is between a minimum displacement (for example zero) corresponding to a minimum operating command and a minimum maximum displacement corresponding to a maximum operating command.
  • the first control means MC1 can be arranged to determine a new position of the supply shutter V1 suitable for reducing the proportion of air recycled into the air it has to supply to the IC facility.
  • a first situation occurs when the target temperature T E c is lower than the measured temperature of the treated air T E v-
  • the first control means MC1 can be arranged to determine a new position of the supply flap V1 clean to increase the proportion of air recirculated in the air that it must provide to the IC installation. It will be understood that in this first situation the installation IC does not have the capacity to increase its production of cold, and therefore the first control means MC1 are forced to increase the proportion of recycled air that feeds the blower PU to facilitate the work of the cold loop BF and thus allow the temperature in the passenger compartment to converge more easily towards the set point C T.
  • a second situation occurs when the target temperature T E c is greater than or equal to the temperature measurement of the treated air T EV .
  • the first control means MC1 can be arranged to maintain the current position of the supply flap V1. It will be understood that in this second situation the device D has managed to converge the temperature T E v of the treated air at the outlet of the evaporator EV towards the target temperature T E c, and therefore that eventually the installation IC will succeed in converging the temperature prevailing in the passenger compartment to the setpoint C T.
  • the second control means MC2 can also be arranged to determine the target temperature T E c as a function of at least the setpoint C T chosen and the measurement of the outside temperature ⁇ ⁇ ⁇ .
  • this target temperature T E c at the outlet of the evaporator EV is a function of the theoretical temperature of the treated air to be injected into the passenger compartment, which is a function of the setpoint C T chosen, the measurement of the outside temperature ⁇ ⁇ ⁇ , and the measurement (or estimate) of the temperature inside the passenger compartment.
  • the first control means MC1 can operate as indicated above, they can be made as illustrated in FIG. 2. More precisely, in this embodiment the first control means MC1 comprise first SM1 and second sub SM2. control modules and first MB1 and second MB2 combination modules.
  • the first control sub-module SM1 is, for example, responsible for determining a pre-control CS (or "static control") of the position of the supply flap V1 simply as a function of the set point C T and the measurement of the outside temperature. T EX .
  • the first control sub-module SM1 may, for example, use a correspondence table establishing a correspondence between pairs (CT, T EX ) and CS pre-commands.
  • the first combination module MB1 is responsible for combining the measurement T EV with a target temperature T EC defining the theoretical temperature that the treated air should have at the outlet of the evaporator EV.
  • the second control sub-module SM2 is, for example, responsible for determining a control correction CP (or "dynamic control") of the position of the supply flap V1 as a function of the operating command Ce and of the distance ⁇ .
  • the second control sub-module SM2 may, for example, use a PID ("Proportional Integrator Diverter") regulator with anti-saturation having for input either the distance ⁇ if the operating command C c is maximum, ie a given fixed value if the operating command Ce is less than the maximum command.
  • PID Proportional Integrator Diverter
  • the output of this regulator can then be converted, via a correspondence table into a result that will give the control correction CP position of the supply flap V1.
  • the second combination module MB2 is for example responsible for combining the pre-command (or static command) CS with the control correction (or dynamic control) CP in order to deliver a command Cvi defining the next position of the supply flap V1.
  • This operating mode advantageously makes it possible to calibrate the static control on a small proportion of recycled air in order to minimize the impact on the sound (or acoustic) level, and to correct this static control (recycling) by means of the control dynamic when necessary, so that the IC installation can ensure at any time the production of cold that is adapted to the current thermal situation (CT, T EX ).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Signal Processing (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

Un dispositif (D) est destiné à commander la position d'un volet d'alimentation (V1) contrôlant l'alimentation en air extérieur et/ou air recyclé d'une installation de chauffage/climatisation (IC) devant alimenter une enceinte en air traité. Ce dispositif (D) comprend des premiers moyens de commande (MC1) agencés pour déterminer chaque position du volet d'alimentation (V1) en fonction d'une consigne de température à l'intérieur de l'enceinte, d'une mesure de la température de l'air extérieur, et d'une estimation de la capacité de moyens de réfrigération (CP) de l'installation (IC) à produire un air traité adapté à la consigne.

Description

DISPOSITIF DE COMMANDE DE LA POSITION D'UN VOLET D'ALIMENTATION EN AIR D'UNE INSTALLATION DE CHAUFFAGE/ CLIMATISATION EN FONCTION DE LA CAPACITÉ DE RÉFRIGÉRATION
L'invention concerne les installations de chauffage/climatisation qui comprennent un volet d'alimentation destiné à les alimenter en air extérieur et/ou en air recyclé (ou recirculé).
On notera que l'invention concerne tout système comprenant au moins une enceinte devant être alimentée en air traité par une installation de chauffage/climatisation. Par conséquent, elle concerne au moins les véhicules, éventuellement de type automobile, et les bâtiments.
Comme le sait l'homme de l'art, certaines installations de chauffage/ climatisation comprennent un volet d'alimentation dont la position variable permet à chaque instant de contrôler les proportions d'air extérieur et d'air recyclé (ou recirculé) qui les alimentent. C'est notamment le cas de nombreux véhicules, éventuellement de type automobile.
On notera que l'on entend ici par « air recyclé (ou recirculé) » un air qui est extrait d'une enceinte alimentée en air traité par une installation de chauffage/climatisation.
L'utilisation du volet d'alimentation précité présente plusieurs avantages. Ainsi, lorsque le volet d'alimentation est placé dans une position de recyclage total qui ne laisse passer que de l'air recyclé, elle permet d'isoler l'enceinte (par exemple un habitacle) des odeurs extérieures et/ou de la pollution extérieure. De plus, elle permet d'optimiser les performances de refroidissement (ou de réfrigération) de l'installation (de chauffage/climatisation). En effet, plus la température de l'air, qui est fourni à l'installation par le volet d'alimentation, est basse, plus la température de l'air traité, fourni par l'installation à l'enceinte, peut être basse (on comprendra en effet qu'il est plus facile pour une installation de retraiter de l'air recyclé ayant une température de 25 °C que de l'air extérieur ayart une température de 35 °C). Actuellement, la position du volet d'alimentation (ou d'entrée d'air) est généralement gérée d'une manière que l'on peut qualifier de « statique ». En effet, cette position est fonction de paramètres qui sont quasi statiques du fait que leurs valeurs ne varient temporellement que très lentement, à savoir la température de l'air extérieur et la consigne de température dans l'enceinte (qui a été choisie par l'usager de l'installation). Plus la température extérieure est élevée, plus la proportion d'air recyclé, qui est imposée à l'installation, est élevée. De même, plus la consigne de température dans l'enceinte est basse, plus la proportion d'air recyclé, qui est imposée à l'installation, est élevée. En fait, la proportion d'air recyclé est fréquemment surdimensionnée dans la majorité des situations afin d'être juste suffisante dans les situations difficiles, comme par exemple lorsqu'un usager demande un important débit d'air traité ou lorsque l'installation a une capacité de réfrigération limitée car le régime de fonctionnement de son compresseur est contraint d'être faible du fait d'une capacité d'alimentation électrique réduite ou d'une vitesse d'entraînement faible.
Hélas, ce surdimensionnement de la proportion d'air recyclé induit au moins deux inconvénients. En effet, plus la proportion d'air recyclé est élevée, plus la qualité de l'air dans l'enceinte est dégradée (en particulier lorsque l'on est en recyclage total), et plus le niveau sonore de l'air traité diffusé dans l'enceinte est élevé (dans un climat chaud l'utilisation de 10% d'air recyclé induit une augmentation du niveau sonore de +3db et l'utilisation de 100% d'air recyclé induit une augmentation du niveau sonore de +6db à débit d'air traité constant, sachant qu'une augmentation de +3dB correspond à un doublement du niveau sonore).
L'invention a donc pour but d'améliorer la situation.
Elle propose notamment à cet effet un dispositif, d'une part, destiné à commander la position d'un volet d'alimentation devant contrôler l'alimentation en air extérieur et/ou air recyclé d'une installation de chauffage/climatisation devant alimenter une enceinte en air traité, et, d'autre part, comprenant des premiers moyens de commande agencés pour déterminer chaque position du volet d'alimentation en fonction d'une consigne de température à l'intérieur de l'enceinte et d'une mesure de la température de l'air extérieur. Ce dispositif de commande se caractérise par le fait que ses premiers moyens de commande sont agencés pour déterminer chaque position du volet d'alimentation en fonction, en outre, d'une estimation d'une capacité de moyens de réfrigération de l'installation à produire un air traité qui est adapté à la consigne.
Ainsi, on prend en compte à chaque instant non seulement la situation thermique externe à l'enceinte, en cours, mais également la capacité de l'installation à refroidir de l'air, ce qui permet d'optimiser la proportion d'air recyclé qui est utilisée.
Le dispositif de commande selon l'invention peut comporter d'autres caractéristiques qui peuvent être prises séparément ou en combinaison, et notamment :
- ses premiers moyens de commande peuvent être agencés pour estimer la capacité en fonction d'une commande de fonctionnement d'un compresseur des moyens de réfrigération et de la différence entre une mesure de température de l'air traité en sortie d'un évaporateur de l'installation et une température cible, définissant une température théorique que devrait présenter l'air traité en sortie de cet évaporateur ; ses premiers moyens de commande peuvent être agencés, lorsque la commande de fonctionnement est comprise entre une commande de fonctionnement minimal et une commande de fonctionnement maximal, pour déterminer une position du volet d'alimentation qui est propre à diminuer la proportion d'air recyclé dans l'air qu'il doit fournir à l'installation ;
ses premiers moyens de commande peuvent être agencés, lorsque la commande de fonctionnement correspond à un fonctionnement maximal, soit pour déterminer une position du volet d'alimentation qui est propre à augmenter la proportion d'air recyclé dans l'air qu'il doit fournir à l'installation lorsque la température cible est inférieure à la mesure de température de l'air traité, soit pour maintenir la position en cours du volet d'alimentation lorsque la température cible est supérieure ou égale à la mesure de température de l'air traité ;
ses premiers moyens de commande peuvent comprendre i) un premier sous-module de commande agencé pour déterminer une précommande de position pour le volet d'alimentation en fonction de la consigne de température de l'enceinte choisie par l'usager, et de la mesure de température extérieure, ii) un premier module de combinaison agencé pour combiner la mesure de température de l'air traité avec la température cible, afin de délivrer un résultat représentatif d'un écart entre la température cible et la mesure de température de l'air traité, iii) un second sous-module de commande agencé pour déterminer une correction de commande de position pour le volet d'alimentation en fonction de la commande de fonctionnement et de cet écart, et iv) un second module de combinaison agencé pour combiner cette précommande avec cette correction de commande afin de délivrer une commande qui définit la prochaine position du volet d'alimentation ;
• il peut comprendre des seconds moyens de commande agencés pour déterminer la commande de fonctionnement du compresseur et la température cible que devrait présenter l'air traité en sortie de l'évaporateur en fonction au moins de la consigne de température de l'enceinte choisie par l'usager et de la mesure de température extérieure.
L'invention propose également un calculateur, destiné à équiper une installation de chauffage/climatisation devant alimenter une enceinte en air traité, et comprenant un dispositif de commande du type de celui présenté ci- avant.
L'invention propose également une installation de chauffage/ climatisation comprenant un calculateur du type de celui présenté ci-avant.
L'invention propose également un véhicule, éventuellement de type automobile, et comprenant une installation de chauffage/climatisation du type de celle présentée ci-avant.
D'autres caractéristiques et avantages de l'invention apparaîtront à l'examen de la description détaillée ci-après, et des dessins annexés, sur lesquels:
- la figure 1 illustre schématiquement une installation de chauffage/ climatisation de véhicule automobile couplée à un calculateur comportant un exemple de réalisation d'un dispositif de commande selon l'invention, et
- la figure 2 illustre schématiquement et fonctionnellement le dispositif de commande de la figure 1 .
L'invention a pour but de proposer un dispositif de commande D destiné à équiper une installation de chauffage/climatisation IC d'un système.
Dans ce qui suit, on considère, à titre d'exemple non limitatif, que l'installation de chauffage/climatisation IC fait partie d'un véhicule automobile, comme par exemple une voiture. L'enceinte climatisée du véhicule est donc son habitacle. Mais l'invention n'est pas limitée à ce type de système. Elle concerne en effet tout type de véhicule terrestre, maritime (ou fluvial), ou aérien, et tout type de bâtiment, dès lors qu'il comprend au moins une enceinte destinée à être alimentée en air traité par une installation de chauffage/climatisation.
On a schématiquement et fonctionnellement représenté sur la figure 1 une installation de chauffage/climatisation IC, ici de véhicule.
Comme illustré, cette installation (de chauffage/climatisation) IC comprend au moins un pulseur (ou groupe moto-ventilateur (ou GMV)) PU, une boucle froide (ou boucle de climatisation) BF, une boucle chaude (ou boucle de chauffage) BC, un volet d'alimentation V1 , et un volet de mixage VM.
Le pulseur PU est alimenté en air extérieur et/ou en air recyclé (ou recirculé) par le volet d'alimentation (ou d'entrée d'air) V1 . L'air extérieur est issu d'un premier conduit C1 et l'air recyclé est issu de l'habitacle via un second conduit C2. Le débit d'air fourni par le pulseur PU dépend du niveau de puissance qui a été choisi par un passager du véhicule au moyen d'un organe de commande installé dans l'habitacle, généralement dans la planche de bord.
La position du volet d'alimentation V1 , et donc les répartitions d'air extérieur et d'air recyclé, est/sont contrôlées par un dispositif de commande D sur lequel on reviendra plus loin.
La boucle froide BF est alimentée en air par le pulseur PU. Elle comporte par exemple un évaporateur EV (traversé par l'air issu du pulseur PU), un compresseur CP, un condenseur et un circuit dans lequel circule un fluide frigorigène et qui est couplé à l'évaporateur EV, au compresseur CP et au condenseur.
Il est rappelé que ce fluide frigorigène circule en circuit fermé dans le circuit dans différentes phases. Ce fluide frigorigène est, par exemple, un HFC (ou un autre réfrigérant fluoré) ou du dioxyde de carbone.
La sortie de l'évaporateur EV est couplée à un conduit qui alimente, d'une part, une chambre de mixage CM dans laquelle est implanté le volet de mixage VM, et, d'autre part, la boucle chaude BC.
La boucle chaude BC est destinée à chauffer l'air qui est issu de l'évaporateur EV et qui est destiné à l'habitacle du véhicule. Elle comprend un dispositif de chauffage AE comportant, par exemple, un aérotherme, comme par exemple un échangeur de chaleur (dans lequel circule un liquide qui est éventuellement chauffé par des résistances électriques de chauffage (par exemple de type CTP haute tension)), et/ou un radiateur électrique, par exemple constitué de résistances électriques de chauffage (par exemple de type CTP haute tension).
Le dispositif de chauffage AE est chargé, lorsqu'il fonctionne, de réchauffer l'air qui le traverse et qui est issu de l'évaporateur EV. Il délivre l'air qui le traverse dans un conduit qui débouche dans la chambre de mixage CM, par exemple.
La chambre de mixage CM est également connectée à des conduits qui sont, ici, destinés à alimenter des sorties de dégivrage et d'aération S1 placées dans l'habitacle du véhicule, des sorties pieds avant S2 et des sorties pieds arrière S3 également placées dans l'habitacle du véhicule. L'accès à ces conduits est contrôlé par des volets d'admission V2 et V3.
Les positions respectives des volets d'admission V2 et V3 dépendent des sorties d'air au niveau desquelles un passager du véhicule souhaite que l'air traité, issu de l'installation IC, soit délivré. Ces sorties d'air peuvent être choisies par le passager au moyen d'un organe de commande installé dans l'habitacle, généralement dans la planche de bord.
Le volet de mixage VM est destiné à mélanger (ou mixer) de façon contrôlée une partie de l'air qui a traversé la boucle froide BF et l'air qui a traversé la boucle chaude BC. Sa position dépend du mode de fonctionnement de l'installation IC qui a été choisi par un passager du véhicule au moyen d'un organe de commande installé dans l'habitacle, généralement dans la planche de bord.
Le fonctionnement de l'installation IC, et en particulier de son pulseur PU, de ses boucles froide BF et chaude BC, de son volet de mixage VM et de ses volets d'admission V2 et V3, est contrôlé par un calculateur CA.
On notera que l'installation IC pourrait présenter une architecture sensiblement différente, notamment lorsqu'elle fonctionne en tant que pompe à chaleur réversible.
Dans l'exemple non limitatif illustré sur la figure 1 , le dispositif de commande D fait partie du calculateur CA. Mais cela n'est pas obligatoire. Il pourrait en effet s'agir d'un équipement qui est couplé au calculateur CA, directement ou indirectement. Par conséquent, le dispositif de commande D peut être réalisé sous la forme de modules logiciels (ou informatiques ou encore « software »), ou bien d'une combinaison de circuits électroniques (ou « hardware ») et de modules logiciels.
Comme illustré sur les figures 1 et 2, un dispositif de commande D, selon l'invention, comprend au moins des premiers moyens de commande MC1 agencés pour déterminer chaque position du volet d'alimentation V1 en fonction d'une consigne CT définissant la température désirée à l'intérieur de l'enceinte (ici un habitacle), d'une mesure TEx de la température de l'air extérieur, et d'une estimation d'une capacité de moyens de réfrigération CP de la boucle froide BF (de l'installation IC)) à produire un air traité qui est adapté à cette consigne CT.
La consigne CT est choisie par un passager du véhicule au moyen d'un organe de commande installé dans l'habitacle, généralement dans la planche de bord. Par ailleurs, la mesure ΤΕχ est par exemple effectuée par un premier capteur de température qui est installé dans un endroit choisi du compartiment moteur ou sur un élément extérieur du véhicule comme par exemple les rétroviseurs, éloigné des sources de production de calories, et fournie au dispositif de commande D par le calculateur CA.
Par exemple, les premiers moyens de commande MC1 peuvent être agencés pour estimer la capacité des moyens de réfrigération en fonction d'une commande de fonctionnement Ce du compresseur CP et d'une différence entre une mesure TEv de la température que présente l'air traité en sortie de l'évaporateur EV et une température cible TEc qui définit une température théorique que devrait présenter l'air traité en sortie de cet évaporateur EV.
La mesure TEv est effectuée par un second capteur de température qui est installé en sortie de l'évaporateur EV, et fournie au dispositif de commande D par le calculateur CA. La sortie de l'évaporateur EV est en effet un endroit qui est bien adapté aux mesures représentatives de la température de l'installation IC lorsque cette dernière (IC) fonctionne en mode de réfrigération (ou climatisation). L'objectif est ici de comparer directement la température de l'air traité TEv mesurée en sortie évaporateur EV à la température cible TEC de l'air traité en sortie de ce même évaporateur EV. On notera que la température cible de l'air traité TEC en sortie de l'évaporateur EV peut être elle-même construite, notamment, à partir de la température cible de l'air traité devant être injecté dans l'habitacle.
La commande de fonctionnement Ce du compresseur CP est déterminée par des seconds moyens de commande MC2 qui, comme illustré non limitativement sur les figures 1 et 2, peut faire partie du dispositif de commande D. On notera que dans une variante de réalisation non représentée les seconds moyens de commande MC2 pourraient faire partie du calculateur CA tout en étant externes au dispositif de commande D, ou bien d'un autre calculateur.
Par exemple, ces seconds moyens de commande MC2 peuvent être agencés de manière à déterminer la commande de fonctionnement Cc en fonction au moins de la consigne CT choisie et de la mesure de la température extérieure TEX. De préférence, et comme illustré sur la figure 2, cette détermination se fait également en fonction de la mesure de température TEV que présente l'air traité en sortie de l'évaporateur EV. Cette commande de fonctionnement Ce définit une cylindrée de fonctionnement du compresseur CP qui est compris entre une cylindrée minimale (par exemple nulle) correspondant à une commande de fonctionnement minimal et une cylindrée maximale correspondant à une commande de fonctionnement maximal.
Lorsque la commande de fonctionnement Ce est « comprise » entre les commande de fonctionnement minimal et commande de fonctionnement maximal, les premiers moyens de commande MC1 peuvent être agencés pour déterminer une nouvelle position du volet d'alimentation V1 propre à diminuer la proportion d'air recyclé dans l'air qu'il doit fournir à l'installation IC.
On comprendra que cette diminution se fait par rapport à la proportion d'air recyclé correspondant à la dernière position déterminée et donc en cours.
On comprendra également que dans ce cas le compresseur CP ne fonctionne pas à un régime maximum et donc que le potentiel de refroidissement de l'installation IC n'est pas utilisé à son maximum. Par conséquent, on peut diminuer, de préférence progressivement, la proportion d'air recyclé qui alimente le pulseur PU, ce qui provoquera un nouveau calcul de la commande de fonctionnement Cc du compresseur CP par les seconds moyens de commande MC2. Cette nouvelle commande de fonctionnement Cc correspond alors à un régime du compresseur CP supérieur à son précédent régime (en cours).
Lorsque la commande de fonctionnement Ce correspond à un fonctionnement maximal, deux situations peuvent survenir.
Une première situation survient lorsque la température cible TEc est inférieure à la mesure de température de l'air traité TEv- Dans ce cas, les premiers moyens de commande MC1 peuvent être agencés pour déterminer une nouvelle position du volet d'alimentation V1 propre à augmenter la proportion d'air recyclé dans l'air qu'il doit fournir à l'installation IC. On comprendra en effet que dans cette première situation l'installation IC n'a pas la capacité d'augmenter sa production de froid, et donc les premiers moyens de commande MC1 sont contraints d'augmenter la proportion d'air recyclé qui alimente le pulseur PU afin de faciliter le travail de la boucle froide BF et ainsi permettre à la température régnant dans l'habitacle de converger plus facilement vers la consigne CT.
Une seconde situation survient lorsque la température cible TEc est supérieure ou égale à la mesure de température de l'air traité TEV. Dans ce cas, les premiers moyens de commande MC1 peuvent être agencés pour maintenir la position en cours du volet d'alimentation V1 . On comprendra en effet que dans cette seconde situation le dispositif D a réussi à faire converger la température TEv de l'air traité en sortie de l'évaporateur EV vers la température cible TEc, et donc qu'à terme l'installation IC réussira à faire converger la température régnant dans l'habitacle vers la consigne CT.
Comme illustré sur la figure 2, les seconds moyens de commande MC2 peuvent être également agencés pour déterminer la température cible TEc en fonction au moins de la consigne CT choisie et de la mesure de la température extérieure ΤΕχ. Par exemple, cette température cible TEc en sortie de l'évaporateur EV est fonction de la température théorique de l'air traité qui doit être injecté dans l'habitacle, laquelle est fonction de la consigne CT choisie, de la mesure de la température extérieure ΤΕχ, et de la mesure (ou de l'estimation) de la température à l'intérieur de l'habitacle.
Afin que les premiers moyens de commande MC1 puissent fonctionner comme indiqué ci-dessus, ils peuvent être réalisés comme illustré sur la figure 2. Plus précisément, dans cet exemple de réalisation les premiers moyens de commande MC1 comprennent des premier SM1 et second SM2 sous-modules de commande et des premier MB1 et second MB2 modules de combinaison.
Le premier sous-module de commande SM1 est par exemple chargé de déterminer une pré-commande CS (ou « commande statique ») de position du volet d'alimentation V1 simplement en fonction de la consigne CT et de la mesure de la température extérieure TEX. Pour ce faire, le premier sous-module de commande SM1 peut, par exemple, utiliser une table de correspondance établissant une correspondance entre des couples (CT, TEX) et des pré-commandes CS.
Le premier module de combinaison MB1 est par exemple chargé de combiner la mesure TEV avec une température cible TEC définissant la température théorique que devrait présenter l'air traité en sortie de l'évaporateur EV.
Par exemple, le premier module de combinaison MB1 peut effectuer la soustraction entre la température cible TEc et la mesure TEv afin de délivrer un résultat ε qui est représentatif de l'écart entre la température cible TEc et la mesure TEv (soit ε = TEC - TEV).
Le second sous-module de commande SM2 est par exemple chargé de déterminer une correction de commande CP (ou « commande dynamique ») de position du volet d'alimentation V1 en fonction de la commande de fonctionnement Ce et de l'écart ε. Pour ce faire, le second sous-module de commande SM2 peut, par exemple, utiliser un régulateur de type PID (« Proportionnel Intégrateur Dérivateur ») avec anti-saturation ayant pour entrée soit l'écart ε si la commande de fonctionnement Cc est maximale, soit une valeur fixe donnée si la commande de fonctionnement Ce est inférieure à la commande maximale. La sortie de ce régulateur pourra ensuite être convertie, via une table de correspondance en un résultat qui donnera la correction de commande CP de position du volet d'alimentation V1 .
Le second module de combinaison MB2 est par exemple chargé de combiner la pré-commande (ou commande statique) CS avec la correction de commande (ou commande dynamique) CP afin de délivrer une commande Cvi définissant la prochaine position du volet d'alimentation V1 .
Par exemple, le second module de combinaison MB2 peut effectuer la somme de la pré-commande (ou commande statique) CS et de la correction de commande (ou commande dynamique) CP afin de délivrer la commande CVi (soit CVi = CS + CP).
Ce mode de fonctionnement permet avantageusement de calibrer la commande statique sur une faible proportion d'air recyclé afin de minimiser l'impact sur le niveau sonore (ou acoustique)), et de corriger cette commande statique (de recyclage) au moyen de la commande dynamique lorsque cela s'avère nécessaire, afin que l'installation IC puisse assurer à chaque instant la production de froid qui est adaptée à la situation thermique en cours (CT, TEX).

Claims

REVENDICATIONS
1 . Dispositif (D) de commande de la position d'un volet d'alimentation (V1 ) destiné à contrôler l'alimentation en air extérieur et/ou air recyclé d'une installation de chauffage/climatisation (IC) devant alimenter une enceinte en air traité, ledit dispositif (D) comprenant des premiers moyens de commande (MC1 ) agencés pour déterminer chaque position dudit volet d'alimentation (V1 ) en fonction d'une consigne de température à l'intérieur de ladite enceinte et d'une mesure de la température dudit air extérieur, dans lequel lesdits premiers moyens de commande (MC1 ) sont agencés pour déterminer chaque position dudit volet d'alimentation (V1 ) en fonction, en outre, d'une estimation d'une capacité de moyens de réfrigération (CP) de ladite installation (IC) à produire un air traité adapté à ladite consigne, ledit dispositif étant caractérisé en ce que lesdits premiers moyens de commande (MC1 ) sont agencés pour estimer ladite capacité en fonction d'une commande de fonctionnement d'un compresseur (CP) desdits moyens de réfrigération (CP) et d'une différence entre une mesure de température dudit air traité en sortie d'un évaporateur (EV) de ladite installation (IC) et une température cible, définissant une température théorique que devrait présenter l'air traité en sortie dudit évaporateur (EV).
2. Dispositif selon la revendication 1 , caractérisé en ce que lesdits premiers moyens de commande (MC1 ) sont agencés, lorsque ladite commande de fonctionnement est comprise entre une commande de fonctionnement minimal et une commande de fonctionnement maximal, pour déterminer une position dudit volet d'alimentation (V1 ) propre à diminuer la proportion d'air recyclé dans l'air qu'il doit fournir à ladite installation (IC).
3. Dispositif selon l'une des revendications 1 ou 2, caractérisé en ce que lesdits premiers moyens de commande (MC1 ) sont agencés, lorsque ladite commande de fonctionnement correspond à un fonctionnement maximal, soit pour déterminer une position dudit volet d'alimentation (V1 ) propre à augmenter la proportion d'air recyclé dans l'air qu'il doit fournir à ladite installation (IC) lorsque ladite température cible est inférieure à ladite mesure de température de l'air traité, soit pour maintenir la position en cours dudit volet d'alimentation (V1 ) lorsque ladite température cible est supérieure ou égale à ladite mesure de température de l'air traité.
4. Dispositif selon l'une des revendications 1 à 3, caractérisé en ce que lesdits premiers moyens de commande (MC1 ) comprennent i) un premier sous-module de commande (SM1 ) agencé pour déterminer une précommande de position pour ledit volet d'alimentation (V1 ) en fonction de ladite consigne et de ladite mesure de température extérieure, ii) un premier module de combinaison (MB1 ) agencé pour combiner ladite mesure de température de l'air traité avec ladite température cible, afin de délivrer un résultat représentatif d'un écart entre ladite température cible et ladite mesure de température de l'air traité, iii) un second sous-module de commande (SM2) agencé pour déterminer une correction de commande de position pour ledit volet d'alimentation (V1 ) en fonction de ladite commande de fonctionnement et dudit écart, et iv) un second module de combinaison (MB2) agencé pour combiner ladite pré-commande avec ladite correction de commande afin de délivrer une commande définissant la prochaine position dudit volet d'alimentation (V1 ).
5. Dispositif selon la revendication 4, caractérisé en ce qu'il comprend des seconds moyens de commande (MC2) agencés pour déterminer ladite commande de fonctionnement et ladite température cible en fonction au moins de ladite consigne et de ladite mesure de la température extérieure.
6. Calculateur (CA) pour une installation de chauffage/climatisation (IC) devant alimenter une enceinte en air traité, caractérisé en ce qu'il comprend un dispositif de commande (D) selon l'une des revendications précédentes.
7. Installation de chauffage/climatisation (IC), caractérisée en ce qu'elle comprend un calculateur (CA) selon la revendication 6.
8. Véhicule, caractérisé en ce qu'il comprend une installation de chauffage/climatisation (IC) selon la revendication 7.
9. Véhicule selon la revendication 8, caractérisé en ce qu'il est de type automobile.
PCT/FR2013/050655 2012-03-30 2013-03-26 Dispositif de commande de la position d'un volet d'alimentation en air d'une installation de chauffage/ climatisation en fonction de la capacité de réfrigération WO2013144501A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
ES13715377.1T ES2583933T3 (es) 2012-03-30 2013-03-26 Dispositivo de mando de la posición de una válvula de alimentación de aire de una instalación de calefacción/climatización en función de la capacidad de refrigeración
EP13715377.1A EP2847013B1 (fr) 2012-03-30 2013-03-26 Dispositif de commande de la position d'un volet d'alimentation en air d'une installation de chauffage/ climatisation en fonction de la capacité de réfrigération
CN201380027460.7A CN104364102B (zh) 2012-03-30 2013-03-26 根据制冷能力控制加热/空调设施供气阀位置的装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1252911 2012-03-30
FR1252911A FR2988817A1 (fr) 2012-03-30 2012-03-30 Dispositif de commande de la position d'un volet d'alimentation en air d'une installation de chauffage/ climatisation en fonction de la capacite de refrigeration

Publications (1)

Publication Number Publication Date
WO2013144501A1 true WO2013144501A1 (fr) 2013-10-03

Family

ID=48083539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2013/050655 WO2013144501A1 (fr) 2012-03-30 2013-03-26 Dispositif de commande de la position d'un volet d'alimentation en air d'une installation de chauffage/ climatisation en fonction de la capacité de réfrigération

Country Status (5)

Country Link
EP (1) EP2847013B1 (fr)
CN (1) CN104364102B (fr)
ES (1) ES2583933T3 (fr)
FR (1) FR2988817A1 (fr)
WO (1) WO2013144501A1 (fr)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5653913A (en) * 1979-10-09 1981-05-13 Nippon Denso Co Ltd Air conditioner for automobile
JPS61102306A (ja) * 1984-10-24 1986-05-21 Diesel Kiki Co Ltd 車輛用空気調和装置
JPS63222918A (ja) * 1987-03-11 1988-09-16 Nissan Motor Co Ltd 車両用空調装置
EP0568445A1 (fr) * 1992-04-28 1993-11-03 Valeo Thermique Habitacle Procédé et dispositif pour abaisser la température de l'air dans l'habitacle d'un véhicule hors circulation
EP0780253A1 (fr) * 1995-12-22 1997-06-25 Valeo Climatisation Installation de climatisation, notamment d'un véhicule automobile
DE19917502C1 (de) * 1999-04-17 2000-10-12 Bayerische Motoren Werke Ag Verfahren zur Regelung der Innenraumtemperatur in Kraftfahrzeugen

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5653913A (en) * 1979-10-09 1981-05-13 Nippon Denso Co Ltd Air conditioner for automobile
JPS61102306A (ja) * 1984-10-24 1986-05-21 Diesel Kiki Co Ltd 車輛用空気調和装置
JPS63222918A (ja) * 1987-03-11 1988-09-16 Nissan Motor Co Ltd 車両用空調装置
EP0568445A1 (fr) * 1992-04-28 1993-11-03 Valeo Thermique Habitacle Procédé et dispositif pour abaisser la température de l'air dans l'habitacle d'un véhicule hors circulation
EP0780253A1 (fr) * 1995-12-22 1997-06-25 Valeo Climatisation Installation de climatisation, notamment d'un véhicule automobile
DE19917502C1 (de) * 1999-04-17 2000-10-12 Bayerische Motoren Werke Ag Verfahren zur Regelung der Innenraumtemperatur in Kraftfahrzeugen

Also Published As

Publication number Publication date
EP2847013B1 (fr) 2016-06-29
ES2583933T3 (es) 2016-09-22
CN104364102B (zh) 2017-03-01
FR2988817A1 (fr) 2013-10-04
CN104364102A (zh) 2015-02-18
EP2847013A1 (fr) 2015-03-18

Similar Documents

Publication Publication Date Title
EP3347237B1 (fr) Systeme de gestion thermique pour vehicule automobile et procede de gestion thermique correspondant
EP3873753B1 (fr) Installation de gestion thermique d'un vehicule
US8346422B2 (en) Hybrid electric vehicle thermal management system
US9873307B2 (en) Vehicular air conditioner
BR102015019764A2 (pt) sistema de desembaçamento de para-brisas e método
FR2895786A1 (fr) Module de detente pour installation de climatisation a deux evaporateurs
JP2016068687A (ja) 車両用空気調和装置
US9702605B2 (en) Method for adjusting fan and compressor power for a vehicle cabin heating system
EP3727910A1 (fr) Procédé de fonctionnement d'un système de régulation thermique d'un véhicule automobile à propulsion électrique ou hybride
JP2010076517A (ja) 車両の制御装置
EP2704914B1 (fr) Procede de regulation multizone de la temperature interieure de l'habitacle d'un vehicule automobile et systeme de climatisation associe
DE102010027141B4 (de) Fahrzeugklimatisierungsverfahren
EP3003750B1 (fr) Dispositif d'estimation indirecte de la température dans une enceinte refroidie par une installation de chauffage/climatisation
EP2847013B1 (fr) Dispositif de commande de la position d'un volet d'alimentation en air d'une installation de chauffage/ climatisation en fonction de la capacité de réfrigération
FR3029847A1 (fr) Procede de regulation de la temperature dans l'habitacle d'un vehicule automobile a traction hybride
EP2550491B1 (fr) Boucle de climatisation comprenant un échangeur thermique directement interpose entre deux organes de détente
EP2874833B1 (fr) Dispositif d'estimation indirecte de la température dans une enceinte alimentée en air traité par une installation de chauffage/climatisation
WO2012143119A1 (fr) Procede de controle d'un systeme de conditionnement thermique d'un habitacle d'un vehicule.
EP3606773B1 (fr) Installation de chauffage/climatisation pour l'alimentation d'un espace d'accueil de véhicule en air réfrigéré ayant des température et débit contrôlés
FR3070902B1 (fr) Dispositif de controle de clapet(s) motorise(s) d’extraction d’air pour une installation de chauffage/climatisation d’un vehicule.
EP2057027B1 (fr) Systeme de climatisation pour vehicule automobile
JP2010089697A (ja) 車両用空調装置
EP1375212A1 (fr) Procédé et dispositif de commande de débit d'un appareil de climatisation de véhicule
FR3140797A1 (fr) Désembuage de pare-brise de véhicule automobile
EP4161790A1 (fr) Procédé de contrôle d'une boucle de thermoregulation, notamment pour véhicule automobile

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13715377

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013715377

Country of ref document: EP